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Abstract: Graph convolutional networks (GCN) have been widely utilized in Alzheimer’s disease
(AD) classification research due to its ability to automatically learn robust and powerful feature
representations. Inter-patient relationships are effectively captured by constructing patients magnetic
resonance imaging (MRI) data as graph data, where nodes represent individuals and edges denote the
relationships between them. However, the performance of GCNs might be constrained by the
construction of the graph adjacency matrix, thereby leading to learned features potentially
overlooking intrinsic correlations among patients, which ultimately causes inaccurate disease
classifications. To address this issue, we propose an Alzheimer’s disease Classification network based
on MRI utilizing diffusion maps for multi-scale feature fusion in graph convolution. This method
aims to tackle the problem of features neglecting intrinsic relationships among patients while
integrating features from diffusion mapping with different neighbor counts to better represent patients
and achieve an accurate AD classification. Initially, the diffusion maps method conducts diffusion
information in the feature space, thus breaking free from the constraints of diffusion based on the
adjacency matrix. Subsequently, the diffusion features with different neighbor counts are merged, and
a self-attention mechanism is employed to adaptively adjust the weights of diffusion features at
different scales, thereby comprehensively and accurately capturing patient characteristics. Finally,
metric learning techniques enhance the similarity of node features within the same category in the
graph structure and bring node features of different categories more distant from each other. This
study aims to enhance the classification accuracy of AD, by providing an effective tool for early
diagnosis and intervention. It offers valuable information for clinical decisions and personalized
treatment. Experimentation on the publicly accessible Alzheimer’s disease neuroimaging initiative
(ADNI) dataset validated our method’s competitive performance across various AD-related
classification tasks. Compared to existing methodologies, our approach captures patient
characteristics more effectively and demonstrates superior generalization capabilities.
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1. Introduction

Alzheimer’s disease (AD) is a severe neurodegenerative brain disorder with a wide-reaching global
impact, affecting a substantial population of individuals [1, 2]. As of the present moment,
approximately 90 million people have received a confirmed diagnosis of AD; according to
projections [3, 4], this number is expected to escalate to 300 million by the year 2050. The early
symptoms of AD primarily involves memory loss; as the condition progresses, patients encounter
challenges in communication, spatial perception, and the control of bodily functions. This ailment
stands as a predominant cause of mortality among the elderly [5, 6]. While a definitive cure for AD
remains elusive, numerous therapeutic avenues exist, including pharmacological treatments, exercise
regimens, and cognitive training, ehich are capable of mitigating symptoms and retarding the
deterioration of the disease [7]. Therefore, the significance of accurately diagnosing AD is
self-evident, particularly during the early stages, such as mild cognitive impairment (MCI), which
marks the transitional phase from cognitive normal (CN) to AD [8]. An early diagnosis of AD can
contribute to postponing the progression of the disease and enhancing the overall health condition of
patients [9].

In recent decades, neuroimaging techniques have made significant strides in the field of early
diagnosis of AD [10–12]. Among these techniques, magnetic resonance imaging (MRI) stands out as
a non-invasive imaging modality. Its fundamental principle relies on the differential attenuation of
energy in different structural environments within substances. By applying external gradient magnetic
fields to detect emitted electromagnetic waves, MRI provides information about the positions and
types of atomic nuclei within an object, subsequently generating images of the object’s internal
structure. Utilizing MRI technology, we can acquire detailed three-dimensional (3D) anatomical brain
images that relatively and accurately portray structural changes in the brain affected by AD. MRI
plays a pivotal role in clinical diagnoses and AD research [13, 14]. MRI scans offer high-contrast soft
tissue images and exceptional spatial resolution, thus facilitating the observation of minute details and
changes in brain tissue. This, in turn, aids in the classification of AD. Utilizing advanced MRI
imaging techniques, researchers have devised various computational approaches, to assist in the
classification of both AD and MCI.

In recent years, deep learning methods have made significant strides across various fields,
including computer vision tasks in medical imaging classification. Convolutional neural networks
(CNNs) have demonstrated remarkable capabilities in extracting features from MRI data, thereby
considerably improving the diagnostic performance for AD [15, 16]. However, within the medical
domain, acquiring large-scale, accurately labeled, and clean-feature data presents a significant
challenge due to the high cost of data acquisition and the diverse clinical settings where subjective
assessments by medical professionals prevail. These challenges can impose limitations on the
effectiveness of deep learning methods [17]. Consequently, achieving robust results with deep
learning approaches using a limited number of medical training samples has become exceedingly
challenging. In the realm of AD diagnosis research and analysis, Graph convolutional networks
(GCNs) have emerged as widely adopted deep learning frameworks. This is because GCNs can
simultaneously consider semantic and structural information, thereby yielding more accurate
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classification results compared to traditional machine learning methods, especially when the training
samples are scarce [18, 19]. However, GCN’s convolutional operations primarily rely on the
Laplacian matrix of the graph, and are thereby constrained by the graph’s own adjacency matrix.

In certain industrial applications, such as the case of a rolling bearing fault diagnosis, the
incorporation of tangible physical information into the network architecture has been instrumental in
enhancing the diagnostic accuracy [20]. Similarly, in collaborative fault identification for rotating
machinery, employing an intermediate fusion strategy to amalgamate diverse modal features has
contributed to an improved diagnostic precision [21]. Both these methodologies address issues by
introducing missing feature information into the original framework. Similar to these approaches, in
order to alleviate GCN’s reliance on adjacency matrices, the recently emerged hybrid diffusion
framework introduces diffusion features with low-dimensional embeddings through unsupervised
manifold learning, thus improving the effectiveness of the model training [22]. While the hybrid
diffusion framework aims to overcome limitations in information diffusion, there might be a potential
concern: it could overlook feature information across different scales within the hybrid diffusion and
fail to take the diverse neighborhood relationships into account.

To address the issue of missing feature information at different scales, we propose the multi-scale
feature fusion graph convolutional network (MFF-GCN), drawing inspiration from recent
developments in graph embedding based on random walks [23–25] and multi-scale graph convolution
in a semi-supervised node classification [26]. We employ multiple GCN modules to perform
convolution embedding on node features obtained from the diffusion of feature space node
information at different neighbor counts. Subsequently, all output vectors from the GCN modules are
integrated into a single classification network using a fully connected network (FCN) for the node
classification of AD patients. This multi-scale feature fusion approach enables a more comprehensive
consideration of feature information at different scales, ultimately enhancing the model’s
performance. Compared to certain current GCN-based modeling methods such as DAGCN [27],
which considers the topological structure between variables and layer-wise characteristics to
accommodate non-linearity between batches, and the proposal of a GCN-based soft sensor that
applies graph concepts in process industries to capture unique local spatio-temporal correlations
among variables [28]; both of these GCN-based modeling methods integrate distinct features between
variables in their design to enhance model performance. However, in these two methods, the
adjacency matrices are learned by the model, and there is no propagation of information among the
neighborhood relationships in the feature space. In contrast, our MFF-GCN leverages unsupervised
manifold learning to achieve propagation of neighborhood relationships in the feature space.

Within the hybrid diffusion framework, when propagating feature space information among nodes,
changes in the node feature information are not constrained by the original graph structure.
Consequently, the relationships between nodes in feature space may no longer adhere to the original
graph structure. Therefore, dynamically adjusting the graph’s structure is crucial for improving the
model classification performance. Past research has often overlooked the inherent relationship
between node features and the graph structure. For instance, in social networks, people with similar
interests are more likely to become friends. To effectively integrate node features with the graph
structure, it is necessary to dynamically adjust the input graph structure during the operation of the
GCN. Hence, we propose a metric learning approach to dynamically adjust the input structure of the
graph within the GCN. This adjustment aims to align the node features at various scales with the
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graph structure, thereby making node features within the same category more proximate and those
from different categories more distant. This, in turn, enables the graph convolution to effectively
embed more similar node features.

Thus, we present an AD classification network based on MRI that utilizes diffusion maps for
MFF-GCN. Initially, we conduct feature extraction on MRI image data by segmenting it according to
brain regions.The MRI features of each patient are treated as nodes, and we create edges in the graph
by calculating similarities among the features of all patients. Subsequently, we conduct the feature
information of diffusion maps with varying neighbor counts on the constructed data, thereby resulting
in features at different scales. Next, the features at various scales are separately processed through
multiple distinct GCN modules. During this process, metric learning is incorporated into the GCN
convolution to adjust the input node features at various scales to align within the same category more
closely and maintain greater separation across different category nodes. This enables graph
convolution to embed more closely related node features. Finally, the output vectors from all GCN
modules are fused using a FCN to consolidate multi-scale feature information. The FCN provides the
final node classification. The method proposed in this study demonstrates an ability to accurately
classify AD patients and enhance the precision of AD classification tasks. The aim of this study is to
enhance the accuracy of AD classification, thereby offering an effective tool for early diagnosis and
intervention, as well as to furnish valuable insights for clinical decision-making and personalized
treatment. Our primary contributions in this research can be summarized as follows:

• We have introduced a multi-scale feature fusion approach. Initially, we produce diffusion maps
with varying neighbor counts to obtain multi-scale node features. Then, we mitigate the issue of
feature information loss within the diffusion map process by amalgamating node features across
different scales.
• To endow our model with finer-grained category discrimination capabilities, we have innovatively

incorporated metric learning into the GCN for AD classification. This adjustment ensures that
the node features at various scales align more closely within the same category and maintain
greater separation across different category nodes in accordance with the graph structure, thereby
enhancing the model performance.
• We have evaluated the effectiveness of this method on the publicly available Alzheimer’s disease

neuroimaging initiative (ADNI) dataset; experimental results demonstrate that our proposed
approach performs well across multiple AD-related classification tasks.

The remaining organization of this research is as follows: Section 2 introduces the related works;
Section 3 provides a detailed description of the specific workflow of the proposed method; Section 4
presents information regarding the data used for experiments, the experimental settings, the
experimental results, and the discussions related to methods; finally, in Section 5, a comprehensive
summary and overview of the entire content are provided.

2. Related works

2.1. Graph convolutional network

The Graph neural network (GNN) is a machine learning model designed for handling graph data.
Its key characteristic lies in its ability to effectively describe the irregular structure of graph data by
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considering dependencies among data samples. As one of the most popular models today, GNNs are
widely employed in the processing and analysis of graph-structured data. Among these models, the
GCN is a deep learning model inspired by CNNs and specifically tailored for graph data processing.
The core idea of a GCN is to extend the convolution operation to graph data, thereby enabling
convolution operations to be performed on graphs [29]. This model incorporates spectral graph
convolution theory and utilizes Fourier transforms and Taylor expansion formulas to enhance filters.
Assuming there is a graph G = (A, X) containing N nodes, where A represents the adjacency matrix
composed of edge weights, and X represents the feature matrix of N nodes, the information
propagation rule of a GCN can be expressed as follows:

Hl+1 = σ
(
ÂHlW l

)
(2.1)

In the above formula, Â = D̃−
1
2 ÃD̃−

1
2 , Hl represents the feature matrix of all nodes in layer 1,W l

represents the trainable weight matrix of layer 1 , and σ denotes the activation function. Ã = A + I,
and D̃ii = Σ jÃi j applies graph convolution theory to the construction of A. This process, D̃−

1
2 ÃD̃−

1
2 ,

first transforms Ã into the Fourier domain, then truncates it using Chebyshev polynomials, and finally
converts it back to the original time domain. With the utilization of the aforementioned propagation
rule, a common two-layer GCN structure can be represented as follows:

GCN2−layer−special(Ã, X) = softmax
(
ReLu

(
ÂXW0

)
W1

)
. (2.2)

2.2. Graph node classification task

The task of graph node classification, also known as semi-supervised node classification, entails
the classification of each node in the graph data, thereby predicting its respective category. In the field
of graph representation learning, we can employ two primary methods to address this issue. Initially,
we can train a machine to learn model by learning node embeddings, and subsequently employ this
model for node classification. This approach is relatively intuitive, as node embedding learning allows
us to represent nodes in a low-dimensional space, thereby rendering them as suitable for an
application in traditional machine learning methods. Alternatively, we can perceive the problem of
node classification in graphs from the perspective of information propagation. Within a graph, nodes
exhibit interrelatedness and diffusion, with connected nodes having a higher likelihood of belonging
to the same category. Consequently, we can regard the task of node classification as a process of
information dissemination within the graph, where the propagation of information influences the
ultimate classification labels of nodes. Graph node classification finds extensive applications in
real-life scenarios, thereby encompassing various tasks related to the graph data analysis, such as
social network analysis [30], bioinformatics [31], and knowledge graphs [32]. These tasks often
involve a multitude of nodes and intricate relationships. Graph node classification methods offer us a
robust tool to gain a deeper understanding of and harness the patterns and structures present in these
data, thus driving advancements in various fields of research and applications.

2.3. Metric learning

Metric learning is a significant subfield within the machine learning domain, which aims to learn a
metric (or distance) function to measure either the similarity or dissimilarity between data samples.
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The fundamental idea behind metric learning is that by acquiring an appropriate metric function,
similar samples can be mapped closer together, while dissimilar samples can be mapped farther apart,
thereby enhancing the capture of the intrinsic structure and relationships within the data space. Metric
learning assumes a pivotal role in the context of multi-scale feature fusion within GCNs. To
effectively integrate node features with the original graph structure, there is a need to dynamically
adjust the input graph structure during the process of GCNs. In the domains of classification and
clustering, each dataset poses specific challenges. The distance metrics often lack effective learning
capabilities, thereby resulting in unreliable outcomes in data classification. Therefore, a robust
distance metric is essential for achieving reliable outcomes for the input data [33, 34]. Currently, there
is research introducing the concept of metric learning within GCNs to enhance the feature
representation of graph nodes [35, 36].

2.4. Alzheimer’s disease classification with graph convolutional networks

In AD classification research involving GCNs, the initial adoption of GCN integrated both image
and non-image features for predicting AD progression [37]. They employed a semi-supervised learning
approach, and trained the GCNs model using a subset of labeled nodes to predict unlabeled nodes.
Subsequently, several methods utilizing GCNs for AD classification have emerged. One approach
involved combining various clinical features into multiple graphs and consolidating the classification
results of each graph for early an AD diagnosis [38,39]. Additionally, an initial module was introduced
to capture the structural heterogeneity within and between graphs for predicting MCI conversion [40].
On another front, the fusion of GCNs with recurrent neural networks was explored to handle missing
values while simultaneously predicting MCI-AD conversion [41]. However, these methods did not
account for the diffusion of node information within the feature space. Furthermore, they did not
find a more suitable distance metric to describe the adjacency matrix in the graph convolution process
through metric learning.

3. Methods

In this section, we will introduce the proposed multi-scale feature fusion GCN for AD diagnoses
based on MRI data, as shown in Figure 1. First, we perform a feature extraction based on brain regions
from each subject’s MRI images. We consider each patient’s MRI features as nodes and establish a
graph structure based on the similarity between nodes. Next, we apply two different diffusion map
operations to the graph structure data, thereby allowing the diffusion of node information from the
perspective of proximity in feature space to obtain multi-scale node features. Subsequently, we employ
metric learning on the multi-scale node features obtained from the diffusion maps to make them adhere
to a graph structure, where nodes of the same category are closer and nodes of different categories are
farther apart. Then, graph convolution operations are applied to embed these multi-scale node features,
thus resulting in the output of GCN modules for each scale. Finally, we merge the outputs of the two
different scale GCN modules and the original graph structure data into a classification network for
AD classification, thereby achieving the goal of multi-scale feature fusion. Additionally, in this paper,
X = [x1, x2, . . . , xn] ∈ RN×d represents a matrix with N participants, where xi ∈ Rd(1 ≤ i ≤ N) denotes
the d-dimensional features of the i-th participant.
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Figure 1. Architecture of the proposed MFF-GCN.

3.1. Graph construction

First, through preprocessing of MRI image data, we obtain brain region features for each subject as
x ∈ Rd. We construct a graph where each node represents a subject, and we calculate the Euclidean
distance between each pair of nodes xi and xj to create a similarity matrix, as shown in the following
formula:

S(ρ(·, ·)) = exp
(
−
ρ(·, ·)2

2σ2

)
(3.1)

Here, S(ρ(·, ·)) is the Gaussian kernel function, ρ(·, ·) is the distance function, and σ is the kernel width.
A larger variance σ leads to weaker connectivity between data nodes.

Next, we normalize and symmetrize the similarity matrix to obtain the adjacency matrix A. Then,
we binarize A using the following formula:

Ai j =

1 Ai j ≥ µ

0 Ai j < µ
(3.2)

where µ is the threshold for binarizing A. This process results in our graph structure data G(X, A).

3.2. Diffusion maps

Diffusion maps are a spectral manifold learning method. They define a Markov random walk on
a graph constructed from data points. After a random walk with a certain number of time steps, a
diffusion map computes a distance function capturing the proximity between any two data points, also
referred to as the diffusion distance. The goal is to obtain a low-dimensional manifold structure of the
data while preserving the diffusion distances as much as possible.

For a given node feature X, the first step is to construct an affinity matrix C, from the given node
feature X. Diffusion maps leverage the relationship between heat kernel diffusion and the Markov
chain of random walks. The connectivity between two nodes can be defined as the probability of a

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1554–1572.



1561

random walk transitioning from one node to another. Typically, a Gaussian kernel function is chosen
to define the connectivity between nodes, which is calculated as follows:

ρ
(
xi, x j

)
=

∥∥∥xi − x j

∥∥∥
2
, xi, x j ∈ X (3.3)

Through the given kernel function S
(
ρ
(
xi, x j

))
, we can obtain the affinity matrix C constructed from

the node feature X as follows:
Ci j = S

(
ρ
(
xi, x j

))
, xi, x j ∈ X (3.4)

Then, we normalize the affinity matrix C so that the sum of each row equals 1 . This results in
a normalized matrix P = P(1) =

{
p(1)

i j

}
, where the elements are defined as following: p(1)

i j =
ci j∑
n cin

.
This normalized matrix P can be interpreted as a Markov state transition matrix on the dataset X.
It represents the probabilities of random walks between various nodes. Therefore, P indicates the
probability of moving from one point to another after one step of random walking. If we perform
t steps of random walking, the corresponding transition probability is denoted as Pt = (P)t. In this
way, the state transition matrix P, after t steps of random walking, yields the diffusion mapping matrix
D = Pt.

The diffusion mapping matrix D can be subjected to eigenvalue decomposition to obtain k largest
eigenvalues and their corresponding eigenvectors. From this, we can derive as following: ψ(x)D =
λψ(x). This reveals that the corresponding eigenvectors can represent a new set of coordinates in the
feature space for the dataset. We obtain the diffusion mapping into a k-dimensional space as follows:

Xdm = Ψ(t)(x) =
∑

k

λk
tψk(x), x ∈ X (3.5)

Here, t represents the number of diffusion iterations, λk represents the k-th eigenvalue of the node
feature x, and ψk(x) represents the k-th eigenvector of the node feature x. Ψ(t)(x) represents the k-
dimensional mapping of node features after t iterations of the diffusion map, also denoted as Xdm.

3.3. Adaptive adjacency matrix based on metric learning

After the diffusion map, the diffusion features Xdm exhibit changes in their feature information,
which are no longer constrained by the original graph structure. To effectively embed node features
through the graph structure, there is a need to dynamically adjust the input graph structure during the
GCN process. Thus, we propose a metric learning approach to dynamically adjust the graph’s input
structure within the GCN process, thereby ensuring that node features from various scales align more
closely for nodes of the same category while being distant for nodes of different categories, which
ultimately enhances the performance of GCN.

We employ a metric learning approach to adaptively update the graph structure based on input
feature [36]. This involves learning a metric function for pairwise similarity represented by a learned
metric matrix over the input features. We define a non-negative function between node features xi and
x j as follows: ρM : X × X → R+,

ρM

(
xi, x j

)
=

√(
xi − x j

)T
M

(
xi − x j

)
(3.6)
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If M = I, Eq (3.6) simplifies to the Euclidean distance. In our model, M = Wd
(
Wd

)T
is a symmetric

positive semi-definite matrix, where Wd is the trainable weight of the metric learning. Wd ∈ Rd×d

represents a transformation basis for measuring the Euclidean distance between xi and x j. Then, we
compute the metric learning-based adjacency matrix Adm

i j using Eq (3.1):

Adm
i j = S

(
ρM

(
xi, x j

))
, xi, xi ∈ Xdm (3.7)

The matrix Wd is optimized during the subsequent training of the GCN network, thus resulting in
Adm as the adjacency matrix for the node features.

3.4. Multi-scale feature fusion

In a diffusion map, the choice of the neighbor count, denoted as n is a crucial parameter. It
determines how many near neighboring data points are considered when constructing the similarity
matrix for the data. The neighbor count influences the sparsity of the similarity matrix and the
connectivity between data points. Opting for a smaller neighbor count captures local data structures,
while choosing a larger neighbor count captures global data structures. Therefore, the neighbor count
allows you to control the extent of diffusion and the structure of the embedding space. Selecting
different neighbor counts can result in different embedding outcomes, which can be reflected in the
scale of node features. Thus, when using different neighbor counts, one can obtain diffusion node
features Xdm(n) at different scales, where n represents the neighbor count used in diffusion maps. By
applying Eqs (3.6) and (3.7), one can derive the corresponding Adm(n) for these diffusion node
features, thereby obtaining different-scale graph structural data G

(
Xdm(n), Adm(n)

)
.

Figure 2. Multi-scale feature fusion network structure.

As illustrated in Figure 2, we consider three instances of GCN, namely {GCN(Xdm(n1), Adm(n1)),
GCN(Xdm(n2), Adm(n2)), GCN(X, A)}, G(Xdm(n1), Adm(n1)), G(Xdm(n2), Adm(n2)) and G(X, A), which are
the inputs for this three instances of GCN by Eq 2.2. Each GCN instance generates a batch of vector
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Zi ∈ RN×k, where k represents the dimension of the final hidden layer output by GCN, and Zi signifies
the output of the i-th instance. While the value of k can be different for each GCN, for simplicity,
let’s assume that all k values are set to be the same. Subsequently, we merge the outputs of these
three GCNs and feed them into a classification network, thereby enabling joint training of all GCNs
and the classification network through backpropagation, where the number of predicted categories
are represented as c. From a deep learning perspective, the classification network can be intuitively
represented as a fully connected layer. We employ a fully connected layer FCN f c : RN×3k → RN×c with
a trainable parameter matrix W f c ∈ R3k×c, which can be expressed as follows:

FCN f c = Softmax(Concat(GCN(X, A),GCN(Xdm(n1), Adm(n1)),GCN(Xdm(n2), Adm(n2)))W f c) (3.8)

The classification network has the capability to select features from each of the GCN instances,
thus serving the purpose of fusing different-scale features. To enhance the generalization ability of the
classification network, we employ self-attention mechanisms [42,43] to automatically learn the weights
associated with the node features obtained from the three GCN instances. Hence, the classification
network can adaptively adjust the weights of node features from different scales, with a focus on the
most salient scale, thereby allowing for better fitting of the labels for input nodes.

The fundamental idea of self-attention in the classification network can be illustrated using
Figure 2, where Z1, Z2 and Z3 represent the integrated node features at three different scales achieved
through self-attention. The classification network simultaneously employs the outputs of the three
GCN instances and concatenates the results, thus obtaining fused node features from different scales;
then, Z1, Z2 and Z3 are input into a fully connected layer, and go to learn the attention weights
(α, β, γ) respectively. Specifically, attention weights can be calculated according to the following:

(α, β, γ) = Softmax(Concat
(
Z1,Z2,Z3

)
·Watt) (3.9)

Here, Watt represents the attention weight matrix. Once the attention weights are obtained, the
self-attention module multiplies the node features at each scale by their respective weights. These
weighted features are concatenated and fed into a fully connected network represented by Eq 3.8 to
obtain the output of the classification network, where different-scale node features are fused for each
node’s category-probability vector of Z.

Z = Softmax(Concat(αZ1, βZ2, γZ3) ·W f c) (3.10)

Finally, we employ the cross-entropy loss function for model training, which is defined as follows:

Loss = −
∑
i∈N

c∑
j=1

Yi j ln Zi j (3.11)

Here, Y represents the label set corresponding to the labeled sample data in the current training dataset,
Yi j denotes the label at the corresponding position of the node in the training dataset, and Zi j represents
the output value for the corresponding node in the current network output. For clarity, the detailed
procedure of the proposed MFF-GCN is presented in Algorithm 1.
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Algorithm 1: MFF-GCN
Input: X ∈ RN×d, label information Y , Number of neighbors n1, n2, and Number of trainings T

1 initialization: Three GCN parameters W l
1,W l

2,W l
3, Metric learning parameters Wd, FCN f c

parameters W f c, self-attention parameters Watt.
2 constructed graph: G = (X, A)← X by (3.1) and (3.2).
3 Diffusion maps: Xdm(n1), Xdm(n2)← {X, n1, n2} by (3.1), (3.3), (3.4) and (3.5).
4 while epoch < T do
5 Adm(n1), Adm(n2)← {Xdm(n1), Xdm(n2),Wd} by (3.1), (3.6) and (3.7)
6 Z1,Z2,Z3 ← {X, A,W l

1, X
dm(n1), Adm(n1),W l

2, X
dm(n2), Adm(n2),W l

3} by (2.2)
7 α, β, γ ← {Z1,Z2,Z3,Watt} by (3.9)
8 Z ← {Z1,Z2,Z3, α, β, γ,W f c} by (3.10)
9 Loss← {Y,Z} by (3.11)

10 end while
Output: Z

4. Experiments

4.1. Data pre-processing

In our experiments, we obtained 1.5T T1-weighted MRI images from the publicly available ADNI
dataset (adni.loni.usc.edu). We sequentially processed the MRI images using SPM8 and the DPABI
toolbox, which involved the following steps: removing non-brain tissue, motion and time correction,
spatial normalization, filtering, and smoothing. Subsequently, we performed brain tissue segmentation
on the MRI images, thus resulting in gray matter, white matter, and cerebrospinal fluid. Then these
segmented regions were registered to the automated anatomical labeling (AAL) template to obtain the
corresponding regions of interest (ROIs) within the brain.

Since we used the AAL human brain atlas template for partitioning the brains of the subjects, this
atlas template divides the brain into 116 regions. Therefore, the overall representation obtained after
partitioning the brains of the subjects is a 116-dimensional vector.

Table 1. The number of samples in the ADNI dataset.

Dataset Samples Dataset Samples
AD-CN 338: 532 CN-MCI 532: 422
AD-MCI 338: 422 AD-MCI-CN 338: 422: 532

In this study, we obtained a total of 1292 samples, with 338 samples from AD, 422 samples from
MCI, and 532 samples from the CN, which consists of individuals without any cognitive impairments.
We evaluated the classification performance of the proposed method on four datasets, including AD vs
CN (discriminating between AD and CN), AD vs MCI (discriminating between AD and MCI), CN vs
MCI (discriminating between CN and MCI), and AD vs MCI vs CN (discriminating among AD, MCI,
and CN). Table 1 displays the distribution of data samples for each dataset.
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4.2. Experimental setup

We conducted our experiments on a server equipped with an NVIDIA GeForce 3060ti (8 GB)
GPU, using the PyTorch framework and PyTorch Geometric library. We performed multiple random
experiments on each of the four datasets, and the reported results are based on their average
performance. We employed the widely used metric of classification accuracy to evaluate all methods.

4.3. Setup of hyperparameters

We adjusted the hyperparameters for each method by referring to the relevant literature to obtain
their best results. For our method, we set the maximum number of epochs to 500, the learning rate to
0.001, used the Adam optimizer, and applied the cross-entropy loss function. We utilized a two-layer
GCN in all of our GCNs, with l set to 2, thus indicating two layers of GCN. The dataset splits used in
all four experiments were in a ratio of 7:1:2 (training set: validation set: test set).

4.4. Comparative experiments

Figure 3. Confusion matrices.

To validate the effectiveness of our proposed method, we conducted a comprehensive comparison
analysis against several baseline methods. In the experiments, we used the same datasets for training
and the same test sets for comparison. Additionally, we employed standard metrics widely used in
academia and industry, including classification accuracy, to provide an objective performance
assessment of our method across the four datasets. The experimental results, organized according to
the classification tasks on different datasets, are presented in Table 2. The experiments we compared
against are listed in the table, including traditional machine learning methods such as SVM [44],
image classification methods like ResNet [45], other node classification methods in GNNs such as
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GCN [29] and GAT [46], and graph classification methods in GNNs such as Graph U-net [47], SAG
Pooling [48], and Dir-GNN [49].

Table 2. The Classifications Performance on AD vs CN, AD vs MCI, CN vs MCI and AD
VS MCI VS CN Datasets.

Method AD-CN AD-MCI CN-MCI AD-MCI-CN
SVM 0.614 0.562 0.554 0.407

ResNet 0.615 0.653 0.742 0.640
GCN 0.789 0.594 0.692 0.526
GAT 0.829 0.636 0.699 0.551

Graph U-net 0.821 0.584 0.709 0.644
SAGPooling 0.838 0.654 0.736 0.652

DirGNN 0.852 0.594 0.737 0.640
DM-GCN 0.866 0.664 0.720 0.555

Our 0.887 0.705 0.825 0.671

Table 2 presents the classification performance of all methods on the four datasets, with the best
results for each metric highlighted in bold. From the table, it’s evident that our method achieved the
best average classification accuracy across all four datasets. In the AD − CN classification task, our
method achieved an average classification accuracy of 88.7%, which is at least 2% higher than other
methods. In the challenging AD-MCI-CN three-class classification task, our method also performed
well, with an average classification accuracy of 66.7%. Figure 3 displays the confusion matrices,
thereby providing a visual representation of how well the predictions match the actual categories. In
the plotted confusion matrices, you can see darker diagonal cells, thus indicating higher accuracy.
Model misclassifications are represented by off-diagonal elements with shading.

As shown in Figure 4, this illustrates the training loss curves of our proposed method when
compared to other GNNs approaches. The graph reveals that our method achieves lower training
losses compared to others. Additionally, our method demonstrates a faster convergence, thus
indicating an improved training efficiency in contrast to the other approaches.

Our method demonstrates a strong performance across multiple classification tasks due to the
multi-scale node feature fusion based on diffusion maps. By fusing node features obtained from the
diffusion maps at different scales, we effectively refine important information while reducing the
impact of redundant information on classification results. This approach leads to excellent
classification outcomes.

4.5. Ablation experiments

To investigate the impact of the diffusion maps module, the metric learning module, and the
multiscale feature fusion module on the final model’s classification results, we conducted experiments
on the test dataset by individually removing each of these three components. This helps us understand
the contribution of each module to the overall improvement in method performance.

As shown in Table 3, we can observe that when the multi-scale feature fusion module and metric
learning module are not used, the AD − CN classification performance of the DM + GCN model
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Figure 4. The training loss curves of the proposed GNNs method for: (a) AD CN dataset.
(b) AD MCI dataset. (c) CN MCI dataset. (d) AD CN MCI dataset.

Table 3. Table of ablation experiments.

Module AD-CN AD-MCI CN-MCI AD-MCI-CN
GCN 0.789 0.594 0.692 0.526
GCN + DM 0.866 0.664 0.720 0.555
GCN + DM +ML 0.874 0.692 0.801 0.653
GCN + DM + FF 0.865 0.651 0.777 0.565
GCN +ML + DM + FF 0.887 0.705 0.825 0.671

decreases by 2%. Similarly, when the metric learning module is not used, the AD CN classification
performance of the DM + FF + GCN model still decreases by 2%. This indicates that the effect of
multi-scale feature fusion is not significant without the metric learning module to adjust the input
graph structure. When the multi-scale feature fusion module is not used, the AD − CN classification
performance of the DM+ML+GCN model decreases by 1%, thus highlighting the role of this module
in feature fusion. If we do not obtain diffusion node features through the diffusion mapping module,
there is no need to use the metric learning module to adjust the input graph structure. The multiscale
feature fusion module relies on the features generated by the diffusion mapping module and cannot be
used in isolation. The results of ablation experiments on the other three datasets are similar.

In summary, the three modules introduced in our approach have played a pivotal role in enhancing
the model’s ultimate classification performance. The metric learning module has heightened the multi-
scale feature fusion module’s capacity to perceive multi-scale features, while the diffusion map module
has aggregated feature information from nodes with similar characteristics in the feature space. By
incorporating these modules, our model exhibits an improved adaptability to various classification
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tasks, thus showcasing a heightened generalization performance and robustness.

5. Conclusions

In this research endeavor, we have introduced a graph convolutional classification network that
leverages the principles of diffusion map for the fusion of multi-scale node characteristics. This
augmentation is aimed at enhancing the classification of Alzheimer’s disease based on MRIs. The
methodology commences by extracting cerebral features from MRI scans, segmented according to
brain regions. Each patient’s MRI characteristics are construed as individual nodes, culminating in the
formation of a network representing Alzheimer’s disease patients. By applying diffusion maps to
patient node characteristics, combined with the integration of diverse-scale node feature fusion
techniques, we ultimately achieved the classification and diagnosis of Alzheimer’s disease. When
juxtaposed with state-of-the-art methodologies, our proposed network architecture exhibited a
commendable classification performance across multiple datasets. Throughout this study, we solely
utilized MRI as the medical data source. This limitation might affect the model’s expressive
capability, thereby influencing its performance. In future research, we aim to explore our approach’s
performance using multimodal medical data, including, but not limited to, fMRI and DTI, while
considering the addition of non-medical information for study purposes. In terms of the methodology,
our current model’s diffusion in the feature space is based on unsupervised manifold learning, thereby
relying on fine-tuning hyperparameters that lack adaptability. In future work, we aim to incorporate
supervised manifold learning into information diffusion within the feature space.
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