Research article Special Issues

PCDA-HNMP: Predicting circRNA-disease association using heterogeneous network and meta-path


  • Received: 29 August 2023 Revised: 17 October 2023 Accepted: 01 November 2023 Published: 14 November 2023
  • Increasing amounts of experimental studies have shown that circular RNAs (circRNAs) play important regulatory roles in human diseases through interactions with related microRNAs (miRNAs). CircRNAs have become new potential disease biomarkers and therapeutic targets. Predicting circRNA-disease association (CDA) is of great significance for exploring the pathogenesis of complex diseases, which can improve the diagnosis level of diseases and promote the targeted therapy of diseases. However, determination of CDAs through traditional clinical trials is usually time-consuming and expensive. Computational methods are now alternative ways to predict CDAs. In this study, a new computational method, named PCDA-HNMP, was designed. For obtaining informative features of circRNAs and diseases, a heterogeneous network was first constructed, which defined circRNAs, mRNAs, miRNAs and diseases as nodes and associations between them as edges. Then, a deep analysis was conducted on the heterogeneous network by extracting meta-paths connecting to circRNAs (diseases), thereby mining hidden associations between various circRNAs (diseases). These associations constituted the meta-path-induced networks for circRNAs and diseases. The features of circRNAs and diseases were derived from the aforementioned networks via mashup. On the other hand, miRNA-disease associations (mDAs) were employed to improve the model's performance. miRNA features were yielded from the meta-path-induced networks on miRNAs and circRNAs, which were constructed from the meta-paths connecting miRNAs and circRNAs in the heterogeneous network. A concatenation operation was adopted to build the features of CDAs and mDAs. Such representations of CDAs and mDAs were fed into XGBoost to set up the model. The five-fold cross-validation yielded an area under the curve (AUC) of 0.9846, which was better than those of some existing state-of-the-art methods. The employment of mDAs can really enhance the model's performance and the importance analysis on meta-path-induced networks shown that networks produced by the meta-paths containing validated CDAs provided the most important contributions.

    Citation: Lei Chen, Xiaoyu Zhao. PCDA-HNMP: Predicting circRNA-disease association using heterogeneous network and meta-path[J]. Mathematical Biosciences and Engineering, 2023, 20(12): 20553-20575. doi: 10.3934/mbe.2023909

    Related Papers:

  • Increasing amounts of experimental studies have shown that circular RNAs (circRNAs) play important regulatory roles in human diseases through interactions with related microRNAs (miRNAs). CircRNAs have become new potential disease biomarkers and therapeutic targets. Predicting circRNA-disease association (CDA) is of great significance for exploring the pathogenesis of complex diseases, which can improve the diagnosis level of diseases and promote the targeted therapy of diseases. However, determination of CDAs through traditional clinical trials is usually time-consuming and expensive. Computational methods are now alternative ways to predict CDAs. In this study, a new computational method, named PCDA-HNMP, was designed. For obtaining informative features of circRNAs and diseases, a heterogeneous network was first constructed, which defined circRNAs, mRNAs, miRNAs and diseases as nodes and associations between them as edges. Then, a deep analysis was conducted on the heterogeneous network by extracting meta-paths connecting to circRNAs (diseases), thereby mining hidden associations between various circRNAs (diseases). These associations constituted the meta-path-induced networks for circRNAs and diseases. The features of circRNAs and diseases were derived from the aforementioned networks via mashup. On the other hand, miRNA-disease associations (mDAs) were employed to improve the model's performance. miRNA features were yielded from the meta-path-induced networks on miRNAs and circRNAs, which were constructed from the meta-paths connecting miRNAs and circRNAs in the heterogeneous network. A concatenation operation was adopted to build the features of CDAs and mDAs. Such representations of CDAs and mDAs were fed into XGBoost to set up the model. The five-fold cross-validation yielded an area under the curve (AUC) of 0.9846, which was better than those of some existing state-of-the-art methods. The employment of mDAs can really enhance the model's performance and the importance analysis on meta-path-induced networks shown that networks produced by the meta-paths containing validated CDAs provided the most important contributions.



    加载中


    [1] H. L. Sanger, G. Klotz, D. Riesner, H. J. Gross, A. K. Kleinschmidt, Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures, Proc. Natl. Acad. Sci. USA, 73 (1976), 3852–3856. https://doi.org/10.1073/pnas.73.11.3852 doi: 10.1073/pnas.73.11.3852
    [2] M. T. Hsu, M. Coca-Prados, Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells, Nature, 280 (1979), 339–340. https://doi.org/10.1038/280339a0 doi: 10.1038/280339a0
    [3] S. Memczak, M. Jens, A. Elefsinioti, F. Torti, J. Krueger, A. Rybak, et al., Circular RNAs are a large class of animal RNAs with regulatory potency, Nature, 495 (2013), 333–338. https://doi.org/10.1038/nature11928 doi: 10.1038/nature11928
    [4] L. Chen, C. Huang, X. Wang, G. Shan, Circular RNAs in eukaryotic cells, Curr. Genomics, 16 (2015), 312–318. https://doi.org/10.2174/1389202916666150707161554 doi: 10.2174/1389202916666150707161554
    [5] Q. Chu, X. Zhang, X. Zhu, C. Liu, L. Mao, C. Ye, et al., PlantcircBase: A database for plant circular RNAs, Mol. Plant, 10 (2017), 1126–1128. https://doi.org/10.1016/j.molp.2017.03.003 doi: 10.1016/j.molp.2017.03.003
    [6] J. Salzman, R. E. Chen, M. N. Olsen, P. L. Wang, P. O. Brown, Cell-type specific features of circular RNA expression, PLoS Genet., 9 (2013), e1003777. https://doi.org/10.1371/journal.pgen.1003777 doi: 10.1371/journal.pgen.1003777
    [7] T. B. Hansen, T. I. Jensen, B. H. Clausen, J. B. Bramsen, B. Finsen, C. K. Damgaard, et al., Natural RNA circles function as efficient microRNA sponges, Nature, 495 (2013), 384–388. https://doi.org/10.1038/nature11993 doi: 10.1038/nature11993
    [8] Z. Li, C. Huang, C. Bao, L. Chen, M. Lin, X. Wang, et al., Exon-intron circular RNAs regulate transcription in the nucleus, Nat. Struct. Mol. Biol., 22 (2015), 256–264. https://doi.org/10.1038/nsmb.2959 doi: 10.1038/nsmb.2959
    [9] J. T. Granados-Riveron, G. Aquino-Jarquin, The complexity of the translation ability of circRNAs, Biochim. Biophys. Acta Gene Regul. Mech., 1859 (2016), 1245–1251. https://doi.org/10.1016/j.bbagrm.2016.07.009 doi: 10.1016/j.bbagrm.2016.07.009
    [10] H. Xu, S. Guo, W. Li, P. Yu, The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells, Sci. Rep., 5 (2015), 12453. https://doi.org/10.1038/srep12453 doi: 10.1038/srep12453
    [11] Q. Liu, X. Zhang, X. Hu, L. Dai, X. Fu, J. Zhang, et al., Circular RNA related to the chondrocyte ECM regulates MMP13 expression by functioning as a MiR-136 'Sponge' in human cartilage degradation, Sci. Rep., 6 (2016), 22572. https://doi.org/10.1038/srep22572 doi: 10.1038/srep22572
    [12] X. Cui, W. Niu, L. Kong, M. He, K. Jiang, S. Chen, et al., hsa_circRNA_103636: Potential novel diagnostic and therapeutic biomarker in Major depressive disorder, Biomark. Med., 10 (2016), 943–952. https://doi.org/10.2217/bmm-2016-0130 doi: 10.2217/bmm-2016-0130
    [13] Y. K. Lu, X. Chu, S. Wang, Y. Sun, J. Zhang, J. Dong, et al., Identification of circulating hsa_circ_0063425 and hsa_circ_0056891 as novel biomarkers for detection of type 2 diabetes, J. Clin. Endocrinol. Metab., 106 (2021), e2688–e2699. https://doi.org/10.1210/clinem/dgab101 doi: 10.1210/clinem/dgab101
    [14] D. Yao, L. Zhang, M. Zheng, X. Sun, Y. Lu, P. Liu, Circ2Disease: a manually curated database of experimentally validated circRNAs in human disease, Sci. Rep., 8 (2018), 11018. https://doi.org/10.1038/s41598-018-29360-3 doi: 10.1038/s41598-018-29360-3
    [15] C. Fan, X. Lei, Z. Fang, Q. Jiang, F. X. Wu, CircR2Disease: A manually curated database for experimentally supported circular RNAs associated with various diseases, Database, 2018 (2018), bay044. https://doi.org/10.1093/database/bay044 doi: 10.1093/database/bay044
    [16] R. Sheikhpour, K. Berahmand, S. Forouzandeh, Hessian-based semi-supervised feature selection using generalized uncorrelated constraint, Knowledge-Based Syst., 269 (2023), 110521. https://doi.org/10.1016/j.knosys.2023.110521 doi: 10.1016/j.knosys.2023.110521
    [17] S. Forouzandeh, K. Berahmand, R. Sheikhpour, Y. Li, A new method for recommendation based on embedding spectral clustering in heterogeneous networks (RESCHet), Expert Syst. Appl., 231 (2023), 120699. https://doi.org/10.1016/j.eswa.2023.120699 doi: 10.1016/j.eswa.2023.120699
    [18] S. Forouzandeh, A. R. Aghdam, S. Forouzandeh, S. Xu, Addressing the cold-start problem using data mining techniques and improving recommender systems by cuckoo algorithm: A case study of Facebook, Comput. Sci. Eng., 22 (2018), 62–73. https://doi.org/10.1109/MCSE.2018.2875321 doi: 10.1109/MCSE.2018.2875321
    [19] S. Forouzandeh, A. Sheikhahmadi, A. R. Aghdam, S. Xu, New centrality measure for nodes based on user social status and behavior on Facebook, Int. J. Web Inf. Syst., 14 (2018), 158–176. https://doi.org/10.1108/IJWIS-07-2017-0053 doi: 10.1108/IJWIS-07-2017-0053
    [20] G. Li, J. Luo, D. Wang, C. Liang, Q. Xiao, P. Ding, et al., Potential circRNA-disease association prediction using DeepWalk and network consistency projection, J. Biomed. Inf., 112 (2020), 103624. https://doi.org/10.1016/j.jbi.2020.103624 doi: 10.1016/j.jbi.2020.103624
    [21] C. Fan, X. Lei, F. X Wu, Prediction of circRNA-disease associations using KATZ model based on heterogeneous networks, Int. J. Biol. Sci., 14 (2018), 1950–1959. https://doi.org/10.7150/ijbs.28260 doi: 10.7150/ijbs.28260
    [22] L. Deng, W. Zhang, Y. Shi, Y. Tang, Fusion of multiple heterogeneous networks for predicting circRNA-disease associations, Sci. Rep., 9 (2019), 9605. https://doi.org/10.1038/s41598-019-45954-x doi: 10.1038/s41598-019-45954-x
    [23] X. Lei, Z. Fang, L. Chen, F. X. Wu, PWCDA: Path weighted method for predicting circRNA-disease associations, Int. J. Mol. Sci., 19 (2018), 3410. https://doi.org/10.3390/ijms19113410 doi: 10.3390/ijms19113410
    [24] K. Zheng, Z. You, J. Li, L. Wang, Z. H. Guo, Y. Huang, iCDA-CGR: Identification of circRNA-disease associations based on Chaos game representation, PLoS. Comput. Biol., 16 (2020), e1007872. https://doi.org/10.1371/journal.pcbi.1007872 doi: 10.1371/journal.pcbi.1007872
    [25] M. Kouhsar, E. Kashaninia, B. Mardani, H. R. Rabiee, CircWalk: A novel approach to predict CircRNA-disease association based on heterogeneous network representation learning, BMC Bioinf., 23 (2022), 331. https://doi.org/10.1186/s12859-022-04883-9 doi: 10.1186/s12859-022-04883-9
    [26] L. Wang, Z. H. You, Y. M. Li, K. Zheng, Y. A. Huang, GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm, PLoS Comput. Biol., 16 (2020), e1007568. https://doi.org/10.1371/journal.pcbi.1007568 doi: 10.1371/journal.pcbi.1007568
    [27] C. Lu, M. Zeng, F. X. Wu, M. Li, J. Wang, Improving circRNA-disease association prediction by sequence and ontology representations with convolutional and recurrent neural networks, Bioinformatics, 36 (2021), 5656–5664. https://doi.org/10.1093/bioinformatics/btaa1077 doi: 10.1093/bioinformatics/btaa1077
    [28] L. Deng, D. Liu, Y. Li, R. Wang, J. Liu, J. Zhang, et al., MSPCD: Predicting circRNA-disease associations via integrating multi-source data and hierarchical neural network, BMC Bioinf., 23 (2022), 427. https://doi.org/10.1186/s12859-022-04976-5 doi: 10.1186/s12859-022-04976-5
    [29] C. Lu, M. Zeng, F. Zhang, F. X. Wu, M. Li, J. Wang, Deep matrix factorization improves prediction of human circRNA-disease associations, IEEE J. Biomed. Health. Inf., 25 (2021), 891–899. https://doi.org/10.1109/JBHI.2020.2999638 doi: 10.1109/JBHI.2020.2999638
    [30] H. Wei, B. Liu, iCircDA-MF: Identification of circRNA-disease associations based on matrix factorization, Briefings Bioinf., 21 (2020), 1356–1367. https://doi.org/10.1093/bib/bbz057 doi: 10.1093/bib/bbz057
    [31] M. Li, M. Liu, Y. Bin, J. Xia, Prediction of circRNA-disease associations based on inductive matrix completion, BMC Med. Genomics, 13 (2020), 42. https://doi.org/10.1186/s12920-020-0679-0 doi: 10.1186/s12920-020-0679-0
    [32] H. Cho, B. Berger, J. Peng, Compact integration of multi-network topology for functional analysis of genes, Cell Syst., 3 (2016), 540–548. https://doi.org/10.1016/j.cels.2016.10.017 doi: 10.1016/j.cels.2016.10.017
    [33] T. Chen, C. Guestrin, XGBoost: A scalable tree boosting system, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2016), 785–794. https://doi.org/10.1145/2939672.2939785
    [34] A. P. Davis, C. J. Grondin, R. J. Johnson, D. Sciaky, J. Wiegers, T. C. Wiegers, et al., Comparative Toxicogenomics Database (CTD): Update 2021, Nucleic Acids Res., 49 (2021), D1138–D1143. https://doi.org/10.1093/nar/gkaa891 doi: 10.1093/nar/gkaa891
    [35] W. Wu, P. Ji, F. Zhao, CircAtlas: An integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes, Genome Biol., 21 (2020), 101. https://doi.org/10.1186/s13059-020-02018-y doi: 10.1186/s13059-020-02018-y
    [36] Y. Yang, L. Chen, Identification of drug–disease associations by using multiple drug and disease networks, Curr. Bioinf., 17 (2022), 48–59. https://doi.org/10.2174/1574893616666210825115406 doi: 10.2174/1574893616666210825115406
    [37] X. Zhao, L. Chen, Z. Guo, T. Liu, Predicting drug side effects with compact integration of heterogeneous networks, Curr. Bioinf., 14 (2019), 709–720. https://doi.org/10.2174/1574893614666190220114644 doi: 10.2174/1574893614666190220114644
    [38] Z. Xian, C. Lei, L. Jing, A similarity-based method for prediction of drug side effects with heterogeneous information, Math. Biosci., 306 (2018), 136–144. https://doi.org/10.1016/j.mbs.2018.09.010 doi: 10.1016/j.mbs.2018.09.010
    [39] H. Shi, J. Xu, G. Zhang, L. Xu, C. Li, L. Wang, et al., Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes, BMC Syst. Biol., 7 (2013), 101. https://doi.org/10.1186/1752-0509-7-101 doi: 10.1186/1752-0509-7-101
    [40] X. Chen, L. Wang, J. Qu, N. Guan, J. Li, Predicting miRNA-disease association based on inductive matrix completion, Bioinformatics, 34 (2018), 4256–4265. https://doi.org/10.1093/bioinformatics/bty503 doi: 10.1093/bioinformatics/bty503
    [41] L. Zhang, B. Liu, Z. Li, X. Zhu, Z. Liang, J. An, Predicting MiRNA-disease associations by multiple meta-paths fusion graph embedding model, BMC Bioinf., 21 (2020), 470. https://doi.org/10.1186/s12859-020-03765-2 doi: 10.1186/s12859-020-03765-2
    [42] G. Li, T. Fang, Y. Zhang, C. Liang, Q. Xiao, J. Luo, Predicting miRNA-disease associations based on graph attention network with multi-source information, BMC Bioinf., 23 (2022), 244. https://doi.org/10.1186/s12859-022-04796-7 doi: 10.1186/s12859-022-04796-7
    [43] L. X. Guo, Z. H. You, L. Wang, C. Q. Yu, B. W. Zhao, Z. H. Ren, et al., A novel circRNA-miRNA association prediction model based on structural deep neural network embedding, Briefings Bioinf., 23 (2022), bbac391. https://doi.org/10.1093/bib/bbac391 doi: 10.1093/bib/bbac391
    [44] X. F. Wang, C. Q. Yu, L. P. Li, Z. H. You, W. Z. Huang, Y. C. Li, et al., KGDCMI: A new approach for predicting circRNA-miRNA interactions from multi-source information extraction and deep learning, Front. Genet., 13 (2022), 958096. https://doi.org/10.3389/fgene.2022.958096 doi: 10.3389/fgene.2022.958096
    [45] Y. Qian, J. Zheng, Y. Jiang, S. Li, L. Deng, Prediction of circRNA-miRNA association using singular value decomposition and Graph Neural Networks, IEEE/ACM Trans. Comput. Biol. Bioinf., 2022 (2022), 1–9. https://doi.org/10.1109/TCBB.2022.3222777 doi: 10.1109/TCBB.2022.3222777
    [46] Z. Huang, J. Shi, Y. Gao, C. Cui, S. Zhang, J. Li, et al., HMDD v3.0: A database for experimentally supported human microRNA-disease associations, Nucleic Acids Res., 47 (2019), D1013–D1017. https://doi.org/10.1093/nar/gky1010 doi: 10.1093/nar/gky1010
    [47] Q. Jiang, Y. Wang, Y. Hao, L. Juan, M. Teng, Xi. Zhang, et al., miR2Disease: A manually curated database for microRNA deregulation in human disease, Nucleic Acids Res., 37 (2009), D98–104. https://doi.org/10.1093/nar/gkn714 doi: 10.1093/nar/gkn714
    [48] P. Glažar, P. Papavasileiou, N. Rajewsky, circBase: A database for circular RNAs, RNA, 20 (2014), 1666–1670. https://doi.org/10.1261/rna.043687.113 doi: 10.1261/rna.043687.113
    [49] P. J. A. Cock, T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox, A. Dalke, et al., Biopython: Freely available Python tools for computational molecular biology and bioinformatics, Bioinformatics, 25 (2009), 1422–1423. https://doi.org/10.1093/bioinformatics/btp163 doi: 10.1093/bioinformatics/btp163
    [50] Y. Yi, Y. Zhao, C. Li, L. Zhang, H. Huang, Y. Li, et al., RAID v2.0: An updated resource of RNA-associated interactions across organisms, Nucleic Acids Res., 45 (2017), D115–D118. https://doi.org/10.1093/nar/gkw1052 doi: 10.1093/nar/gkw1052
    [51] J. H. Yang, J. H. Li, P. Shao, H. Zhou, Y. Q. Chen, L. H. Qu, starBase: A database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data, Nucleic Acids Res., 39 (2011), D202–209. https://doi.org/10.1093/nar/gkq1056 doi: 10.1093/nar/gkq1056
    [52] H. Y. Huang, Y. C. D. Lin, J. Li, K. Y. Huang, S. Shrestha, H. C. Hong, et al., miRTarBase 2020: Updates to the experimentally validated microRNA-target interaction database, Nucleic Acids Res., 48 (2020), D148–D154. https://doi.org/10.1093/nar/gkz896 doi: 10.1093/nar/gkz896
    [53] C. E. Lipscomb, Medical Subject Headings (MeSH), Bull. Med. Lib. Assoc., 88 (2000), 265–266.
    [54] J. Z. Wang, Z. Du, R. Payattakool, P. S. Yu, C. F. Chen, A new method to measure the semantic similarity of GO terms, Bioinformatics, 23 (2007), 1274–1281. https://doi.org/10.1093/bioinformatics/btm087 doi: 10.1093/bioinformatics/btm087
    [55] Z. Tian, Y. Yu, H. Fang, W. Xie, M. Guo, Predicting microbe-drug associations with structure-enhanced contrastive learning and self-paced negative sampling strategy, Briefings Bioinf., 24 (2023), bbac634. https://doi.org/10.1093/bib/bbac634 doi: 10.1093/bib/bbac634
    [56] T. Kawichai, A. Suratanee, K. Plaimas, Meta-path based gene ontology profiles for predicting drug-disease associations, IEEE Access, 9 (2021), 41809–41820. https://doi.org/10.1109/ACCESS.2021.3065280 doi: 10.1109/ACCESS.2021.3065280
    [57] M. L. Zhang, B. W. Zhao, X. R. Su, Y. Z. He, Y. Yang, L. Hu, RLFDDA: A meta-path based graph representation learning model for drug–disease association prediction, BMC Bioinf., 23 (2022), 516. https://doi.org/10.1186/s12859-022-05069-z doi: 10.1186/s12859-022-05069-z
    [58] B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social representations, in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2014), 701–710. https://doi.org/10.1145/2623330.2623732
    [59] A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2016), 855–864. https://doi.org/10.48550/arXiv.1607.00653
    [60] H. Tong, C. Faloutsos, J. Pan, Fast random walk with restart and its applications, in Sixth International Conference on Data Mining (ICDM'06), (2006), 613–622. https://doi.org/10.1109/ICDM.2006.70
    [61] D. Smedley, S. Köhler, J. C. Czeschik, J. Amberger, C. Bocchini, A. Hamosh, et al., Walking the interactome for prioritization of candidate disease genes, Am. J. Hum. Genet., 82 (2008), 949–958. https://doi.org/10.1016/j.ajhg.2008.02.013 doi: 10.1016/j.ajhg.2008.02.013
    [62] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn., 20 (1995), 273–297. https://doi.org/10.1007/BF00994018 doi: 10.1007/BF00994018
    [63] D. R. Cox, The regression analysis of binary sequences, J. R. Stat. Soc. B, 20 (1958), 215–242. https://doi.org/10.1111/j.2517-6161.1958.tb00292.x doi: 10.1111/j.2517-6161.1958.tb00292.x
    [64] L. Breiman, Random forests, Mach. Learn., 45 (2001), 5–32. https://doi.org/10.1023/A:1010933404324 doi: 10.1023/A:1010933404324
    [65] R. E. Schapire, Explaining adaboost, in Empirical Inference: Festschrift in Honor of Vladimir N Vapnik, Springer, (2013), 37–52. https://doi.org/10.1007/978-3-642-41136-6_5
    [66] M. Kubat, Neural networks: A comprehensive foundation by Simon Haykin, Macmillan, 1994, ISBN 0-02-352781-7, Knowl. Eng. Rev., 13 (1999), 409–412. https://doi.org/10.1017/S0269888998214044
    [67] R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, in IJCAI'95: Proceedings of the 14th International Joint Conference on Artificial Intelligence-Volume 2, (1995), 1137–1145.
    [68] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, et al., Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 12 (2011), 2825–2830.
    [69] D. M. W. Powers, Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation, arXiv preprint, (2011), arXiv: 2010.16061. https://doi.org/10.48550/arXiv.2010.16061
    [70] L. Chen, K. Chen, B. Zhou, Inferring drug-disease associations by a deep analysis on drug and disease networks, Math. Biosci. Eng., 20 (2023), 14136–14157. https://doi.org/10.3934/mbe.2023632 doi: 10.3934/mbe.2023632
    [71] F. Huang, M. Fu, J. Li, L. Chen, K.Y. Feng, T. Huang, et al., Analysis and prediction of protein stability based on interaction network, gene ontology, and KEGG pathway enrichment scores, Biochim. Biophys. Acta Proteins Proteomics, 1871 (2023), 140889. https://doi.org/10.1016/j.bbapap.2023.140889 doi: 10.1016/j.bbapap.2023.140889
    [72] F. Huang, Q. Ma, J. Ren, J. Li, F. Wang, T. Huang, et al., Identification of smoking associated transcriptome aberration in blood with machine learning methods, Biomed Res. Int., 2023 (2023), 5333361. https://doi.org/10.1155/2023/5333361 doi: 10.1155/2023/5333361
    [73] J. Ren, Y. Zhang, W. Guo, K. Feng, Y. Yuan, T. Huang, et al., Identification of genes associated with the impairment of olfactory and gustatory functions in COVID-19 via machine-learning Methods, Life, 13 (2023), 798. https://doi.org/10.3390/life13030798 doi: 10.3390/life13030798
    [74] C. Wu, L. Chen, A model with deep analysis on a large drug network for drug classification, Math. Biosci. Eng., 20 (2023), 383–401. https://doi.org/10.3934/mbe.2023018 doi: 10.3934/mbe.2023018
    [75] Y. Li, Z. Guo, K. Wang, X. Gao, G. Wang, End-to-end interpretable disease–gene association prediction, Briefings Bioinf., 24 (2023), bbad118. https://doi.org/10.1093/bib/bbad118 doi: 10.1093/bib/bbad118
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(713) PDF downloads(69) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog