
In this study, a stochastic SIRS epidemic model that features constant immigration and general incidence rate is investigated. Our findings show that the dynamical behaviors of the stochastic system can be predicted using the stochastic threshold RS0. If RS0<1, the disease will become extinct with certainty, given additional conditions. Conversely, if RS0>1, the disease has the potential to persist. Moreover, the necessary conditions for the existence of the stationary distribution of positive solution in the event of disease persistence is determined. Our theoretical findings are validated through numerical simulations.
Citation: Zhongwei Cao, Jian Zhang, Huishuang Su, Li Zu. Threshold dynamics of a stochastic general SIRS epidemic model with migration[J]. Mathematical Biosciences and Engineering, 2023, 20(6): 11212-11237. doi: 10.3934/mbe.2023497
[1] | Hai-Feng Huo, Tian Fu, Hong Xiang . Dynamics and optimal control of a Zika model with sexual and vertical transmissions. Mathematical Biosciences and Engineering, 2023, 20(5): 8279-8304. doi: 10.3934/mbe.2023361 |
[2] | Ming-Zhen Xin, Bin-Guo Wang, Yashi Wang . Stationary distribution and extinction of a stochastic influenza virus model with disease resistance. Mathematical Biosciences and Engineering, 2022, 19(9): 9125-9146. doi: 10.3934/mbe.2022424 |
[3] | Maghnia Hamou Maamar, Matthias Ehrhardt, Louiza Tabharit . A nonstandard finite difference scheme for a time-fractional model of Zika virus transmission. Mathematical Biosciences and Engineering, 2024, 21(1): 924-962. doi: 10.3934/mbe.2024039 |
[4] | Ali Moussaoui, Vitaly Volpert . The influence of immune cells on the existence of virus quasi-species. Mathematical Biosciences and Engineering, 2023, 20(9): 15942-15961. doi: 10.3934/mbe.2023710 |
[5] | H. J. Alsakaji, F. A. Rihan, K. Udhayakumar, F. El Ktaibi . Stochastic tumor-immune interaction model with external treatments and time delays: An optimal control problem. Mathematical Biosciences and Engineering, 2023, 20(11): 19270-19299. doi: 10.3934/mbe.2023852 |
[6] | Tingting Xue, Long Zhang, Xiaolin Fan . Dynamic modeling and analysis of Hepatitis B epidemic with general incidence. Mathematical Biosciences and Engineering, 2023, 20(6): 10883-10908. doi: 10.3934/mbe.2023483 |
[7] | Yan Wang, Tingting Zhao, Jun Liu . Viral dynamics of an HIV stochastic model with cell-to-cell infection, CTL immune response and distributed delays. Mathematical Biosciences and Engineering, 2019, 16(6): 7126-7154. doi: 10.3934/mbe.2019358 |
[8] | Jiying Ma, Shasha Ma . Dynamics of a stochastic hepatitis B virus transmission model with media coverage and a case study of China. Mathematical Biosciences and Engineering, 2023, 20(2): 3070-3098. doi: 10.3934/mbe.2023145 |
[9] | Biao Tang, Weike Zhou, Yanni Xiao, Jianhong Wu . Implication of sexual transmission of Zika on dengue and Zika outbreaks. Mathematical Biosciences and Engineering, 2019, 16(5): 5092-5113. doi: 10.3934/mbe.2019256 |
[10] | An Ma, Shuting Lyu, Qimin Zhang . Stationary distribution and optimal control of a stochastic population model in a polluted environment. Mathematical Biosciences and Engineering, 2022, 19(11): 11260-11280. doi: 10.3934/mbe.2022525 |
In this study, a stochastic SIRS epidemic model that features constant immigration and general incidence rate is investigated. Our findings show that the dynamical behaviors of the stochastic system can be predicted using the stochastic threshold RS0. If RS0<1, the disease will become extinct with certainty, given additional conditions. Conversely, if RS0>1, the disease has the potential to persist. Moreover, the necessary conditions for the existence of the stationary distribution of positive solution in the event of disease persistence is determined. Our theoretical findings are validated through numerical simulations.
Zika virus disease, referred to as Zika, is a mosquito-borne infectious disease induced by Zika virus originally found in rhesus monkeys in the jungle of Uganda in 1947 [1] and afterward isolated from humans in Uganda and Tanzania in 1952 [2]. In the following decades, only a few cases from Africa and Southeast Asia were reported sporadically [3] until 2007 when Zika broke out on Yap Island in Micronesia in the western Pacific Ocean [4]. In early 2015, researchers detected Zika virus infection in Brazil [5]. The virus spread rapidly to Northern Europe, Australia, the United States, Canada [6,7,8,9], and then to Japan, China, India, and other countries [10,11,12], causing great harm to human health. At present, Zika is still prevalent at a low level in Central and South America. From January 1 to April 30, 2022, a total of 6171 suspected cases of Zika had been reported in Brazil, of which 541 cases were confirmed [13]. Zika remains an essential global public health challenge.
The reason why Zika spreads fast and widely is mainly its multiple transmission channels. The virus is primarily propagated to mankind via the biting of infected Aedes aegypti and Aedes albopictus [14]. Meanwhile, it can be spread among humans through heterosexual or homosexual sexual contact [15,16]. In addition, it can also be spread from infected female mosquitoes to their descendants vertically [17] and from the water contaminated by the urine of the infected person to the mosquitoes in the aquatic stage [18]. The latency of the virus in the human body is generally 3–14 days [14]. The majority of infected people are asymptomatic, and only a quarter are believed to develop slight symptoms such as fever, erythema, conjunctivitis, and arthrodynia, with only a handful of documented fatalities [14]. Although the mortality of Zika virus disease is meager, it is believed that Zika infection during the gestational period is one of the causes of microcephaly and other congenital malformations in developing fetuses and newborns [19]. Zika infection is also a trigger factor for Guillain-Barre syndrome, myelitis, and neuropathy, especially in adults and older children [20]. Unfortunately, there is still no allowable vaccination or antivirus drug for the virus.
As we all know, mathematical modeling is an effective and indispensable tool for a better understanding of population dynamics and epidemics [21]. Using this tool, many scholars have conducted rich and detailed research on the transmission of Zika disease, see [22,23,24,25,26,27] and their references. For example, Gao et al. [22] proposed an ordinary differential equation (ODE) model to examine the influences of media transmission and sexual transmission on the propagation of Zika disease and carried out a sensitive analysis of basic reproduction number. Agusto et al. [23] established an ODE model of Zika virus, including human vertical transmission, the birth of babies with microcephaly, and asymptomatic infection, and studied the dynamic behavior of the model. Considering the limitation of medical resources during the outbreak of Zika, Zhao et al. built an ODE model of Zika to investigate the effect of medical resources on the spread of Zika [24]. In addition, due to the impact of spatial differentiation and spatial mobility of human and vector populations on the dynamics of vector-borne diseases, some reaction-diffusion models for describing the spatial transmission of Zika virus have been developed accordingly, see [28,29,30] and references therein. However, the transmission of Zika virus is also influenced by temperature, wind, rain, fire, and other random environmental factors, which are ignored by the deterministic model. Using a stochastic differential equation (SDE) model to describe the epidemic dynamics can better reflect the actual phenomenon to some extent. The extinction and persistence of the epidemic driven by random noise have been studied in some works of literature, see [31,32,33,34]. Nevertheless, to our knowledge, there are few documents on the dynamic analysis of infectious diseases considering both random factors and spatial diffusion. Therefore, this paper intends to explore the permanence and extinction of Zika disease described by a random model with spatial diffusion, which includes human-mosquito transmission, human-human sexual transmission, and vertical transmission of mosquitoes, to fill this gap.
The outbreak and prevalence of Zika have brought enormous economic burdens and health losses to the local people and government. Therefore, from the perspective of epidemiology and social economics, it is an essential and meaningful problem to formulate the optimal control strategy for Zika virus, that is, to achieve the greatest limitation of the disease with the least cost. There have been some studies on the optimal control problem of Zika. For instance, the literature [35] introduced vaccination as a control variable (although the vaccine has not been publicly available yet) and characterized the most economical and effective vaccination strategy in a reaction-diffusion model of Zika virus by utilizing the optimal control theory. The control variables (the prevention through mosquito nets, the treatment of infection patients, and the spraying of insecticides) were selected into the ODE model by authors in [36,37] to establish an optimal control problem of Zika virus. Their numerical simulation results suggested that it might be more beneficial to eliminate Zika virus infection if all three control measures are considered. This paper also plans to adopt three control variables, namely, personal protection, treatment of infected humans (here we use saturation treatment function due to limited medical resources), and reduction in the number of mosquitoes, and draw them into the SRDM to generate a stochastic control model of Zika virus.
The rest of this paper is arranged as follows. In Section 2, we present the model description of Zika virus and prove the existence, uniqueness, and boundedness of the global positive solution of this model. In Sections 3 and 4, we discuss the conditions of disease extinction as well as the existence conditions of the stationary distribution. A stochastic optimal control problem is proposed and the expressions of the optimal controls are acquired in Section 5. Some numerical simulations are performed in Section 6 to declare and supplement the theoretical contents. At last, a summary is made in Section 7.
According to the transmission mechanism of Zika virus, we plot the flow chart in Figure 1. In the flow chart, Sh(t,x), Eh(t,x), Ih(t,x), and Rh(t,x) are the number of susceptible, exposed, infected, and recovered human population at time t and location x, respectively. The total number of humans is Nh=Sh+Eh+Ih+Rh. The number of susceptible, exposed, and infected mosquitoes at time t and position x, are recorded as Sm(t,x), Em(t,x), and Im(t,x), respectively. Thus, Nm=Sm+Em+Im is the total amount of mosquitoes. Since only female mosquitoes suck blood and transmit diseases, the mosquitoes in this paper only refer to female mosquitoes.
A susceptible human may be infected with Zika virus via the bite of an exposed or infected mosquito at a rate λmh(t,x)=bm(t,x)βh(khEm+Im)/Nh or through sexual contact with an exposed or infected partner at a rate λhh(t,x)=βhh(khhEh+Ih)/Nh, where bm(t,x)=b(t,x)/Nm, b(t,x)=αhNhαmNmαhNh+αmNm is the total number of bites per day at position x [38,39], and so bm(t,x) is the average number of bites per mosquito per day at position x. Susceptible mosquitoes move to the exposed class after biting exposed or infected humans at a rate λhm(t,x)=bh(t,x)βm(kmEh+Ih)/Nm, here bh(t,x)=b(t,x)/Nh is the average number of bites per day for an infectious person at position x. This paper considers the infectivity of humans and mosquitoes during the exposure period and the modification parameters 0<kh,khh,km<1 measure the reduction in transmissibility during the exposure period relative to the infection period.
Zika virus can also be spread vertically from infected mothers to newborns and from infected female mosquitoes to their offspring [17,40]. This paper only deals with vertical transmission in mosquitoes, neglecting vertical transmission in humans because Zika has a very short transmission period compared to the human lifespan [26]. We assume that kθμmEm+θμmIm of the mosquito's offspring will be infected, and thus enter Em class, where μm is the average birth rate of mosquitoes, θ is the proportion of congenital infections in the progeny of infectious female mosquitoes, and 0<k<1 is also a modification parameter.
Since the symptoms of Zika are slight and rarely fatal, we ignore the human mortality caused by the disease. And because of the short lifespan of mosquitoes, we assume that infected mosquitoes will not recover until natural death and that these mosquitoes will not die from Zika.
Based on the above description and the flow chart in Figure 1, and taking into account the move of humans and mosquitoes, we establish the following reaction-diffusion system for Zika virus
{∂Sh∂t=d1ΔSh+Λh−λmh(t,x)Sh−λhh(t,x)Sh−dhSh,∂Eh∂t=d2ΔEh+λmh(t,x)Sh+λhh(t,x)Sh−(ξh+dh)Eh,∂Ih∂t=d3ΔIh+ξhEh−(γ+dh)Ih,∂Rh∂t=d4ΔRh+γIh−dhRh,∂Sm∂t=d5ΔSm+Λm−kθμmEm−θμmIm−λhm(t,x)Sm−dmSm,∂Em∂t=d6ΔEm+kθμmEm+θμmIm+λhm(t,x)Sm−(ξm+dm)Em,∂Im∂t=d7ΔIm+ξmEm−dmIm, | (2.1) |
for t>0,x∈Q, with the boundary conditions
∂∂nSh=∂∂nEh=∂∂nIh=∂∂nRh=∂∂nSm=∂∂nEm=∂∂nIm=0,t>0,x∈∂Q, |
and initial conditions
(Sh(0,x),Eh(0,x),Ih(0,x),Rh(0,x),Sm(0,x),Em(0,x),Im(0,x)) |
=(S0h(x),E0h(x),I0h(x),R0h(x),S0m(x),E0m(x),I0m(x)),x∈Q. |
here Q is a bounded region possessing smooth boundary ∂Q and n is the outward unit normal vector on ∂Q. d1,d2,d3, and d4 represent the diffusion coefficients of susceptible, exposed, infected, and recovered human population, respectively, and d5,d6, and d7 denote the diffusion coefficients of susceptible, exposed, and infected mosquitoes population, respectively, di>0,i=1,2,⋯,7. The meanings of the remaining parameters of model (2.1) are explained in Table 1.
Parameter | Meaning | Value or Range | Source of data |
Λh | Recruitment rate of the human population (per day) | 30 | [41] |
Λm | Recruitment rate of the mosquitoes (per day) | 2000 | Assumed |
βh | Probability of Zika virus spreading from an infected mosquito to a susceptible human | 0.1–0.75 | [42] |
βhh | Transmission rate from infected humans to susceptible humans (per day) | 0.001–0.1 | [22] |
βm | Probability of Zika virus spreading from an infected human to a susceptible mosquito | 0.3–0.75 | [43] |
αh | The maximum number of bites that a susceptible human will tolerate being bitten (per day) | 0.1–50 | [39] |
αm | Number of times a mosquito would bite a human (per day) | 0.19–0.39 | [39] |
ξh | Average incubation rate of humans (per day) | 0.14–0.25 | [39] |
ξm | Average incubation rate of mosquitoes (per day) | 0.07–0.14 | [39] |
dh | Natural mortality rate of humans (per day) | 3.65×10−5 –4.98×10−5 |
[26] |
dm | Natural mortality rate of mosquitoes (per day) | 0.029–0.25 | [26] |
γ | Recovery rate of infected humans (per day) | 0.07–0.3 | [26] |
μm | Natural birth rate of mosquitoes (per day) | 0.029–0.25 | [26] |
θ | Proportion of congenital infections in the progeny of infectious female mosquitoes | 0–0.004 | [26] |
k,kh,khh,km | Modification parameters | 0.4, 0.1, 0.01, 0.1 | [25] |
Because parameters in the infectious disease model are often subject to environmental noise and exhibit random fluctuations to a certain extent, this paper intends to build a stochastic Zika model by perturbing the natural death rates dh and dm for humans and mosquitoes with white noise. In other words, we will replace dh and dm in model (2.1) with dh−σ1˙B1(t) and dm−σ2˙B2(t), respectively, where B1(t) and B2(t) are independent standard Brownian motions in the complete probability space (Ω,F,P) with a filtration {Ft}t≥0, which is increasing, right continuous, and satisfies that F0 involves all P-null sets. σ1>0 and σ2>0 are the intensities of the noise. Then the corresponding stochastic system of model (2.1) has the following form
{dSh=[d1ΔSh+Λh−λmh(t,x)Sh−λhh(t,x)Sh−dhSh]dt+σ1ShdB1,dEh=[d2ΔEh+λmh(t,x)Sh+λhh(t,x)Sh−(ξh+dh)Eh]dt+σ1EhdB1,dIh=[d3ΔIh+ξhEh−(γ+dh)Ih]dt+σ1IhdB1,dRh=[d4ΔRh+γIh−dhRh]dt+σ1RhdB1,dSm=[d5ΔSm+Λm−θμm(kEm+Im)−λhm(t,x)Sm−dmSm]dt+σ2SmdB2,dEm=[d6ΔEm+θμm(kEm+Im)+λhm(t,x)Sm−(ξm+dm)Em]dt+σ2EmdB2,dIm=[d7ΔIm+ξmEm−dmIm]dt+σ2ImdB2, | (2.2) |
for t>0,x∈Q, with the boundary conditions
∂∂nSh=∂∂nEh=∂∂nIh=∂∂nRh=∂∂nSm=∂∂nEm=∂∂nIm=0,t>0,x∈∂Q, |
and initial conditions
(Sh(0,x),Eh(0,x),Ih(0,x),Rh(0,x),Sm(0,x),Em(0,x),Im(0,x)) |
=(S0h(x),E0h(x),I0h(x),R0h(x),S0m(x),E0m(x),I0m(x)),x∈Q. |
Let H=H1(Q)={φ|φ∈L2(Q),∂φ∂xi∈L2(Q) is generalized partial derivative, i = 1, 2, 3}. H is a Sobolev space and H↪L2(Q)↪H′, where H′=H−1(Q) is the dual space of H. ‖⋅‖ and ‖⋅‖∗ are the norms of H and L2(Q), respectively. ‖φ‖2=‖φ‖2∗+‖∇φ‖2∗, and there exists a positive constant c such that ‖φ‖∗≤c‖φ‖. ⟨⋅,⋅⟩ indicates the dual product of H and H′. The norm of Euclidean space is denoted by |⋅|. H=H7. Denote H+={φ|φ∈L2(Q;(0,∞)),∂φ∂xi∈L2(Q),i=1,2,3}, H+=(H+)7. In addition, Rl+={(x1,x2,⋯,xl)∈Rl:xi>0,i=1,2,⋯,l}, R+=[0,∞). L2F([0,T]×Q;Rl) is a set of square integrable and Ft-adapted stochastic processes. The indicative function of set A is denoted by χA. a∧b=min{a,b}, a∨b=max{a,b}. φx represents the partial derivative of φ to x. B(t,x) is sometimes abbreviated to B for convenience without causing confusion.
Theorem 2.1. For any initial value X(0,x)=(S0h(x),E0h(x),I0h(x),R0h(x),S0m(x),E0m(x),I0m(x))∈H+, stochastic Zika system (2.2) has a unique global positive solution X(t,x)=(Sh(t,x),Eh(t,x),Ih(t,x),Rh(t,x),Sm(t,x),Em(t,x),Im(t,x))∈H+ on t≥0. Moreover, there is a positive constant C0 such that
∫Q[Sh(t,x)+Eh(t,x)+Ih(t,x)+Rh(t,x)+Sm(t,x)+Em(t,x)+Im(t,x)]dx≤C0a.s. |
Theorem 2.1 is an important fundamental theorem, which gives the existence, uniqueness, and boundness of the positive solution of system (2.2), and its proof is shown in Appendix A. The following theorem discusses the pth moment boundedness of system (2.2) and its proof can be found in Appendix B.
Theorem 2.2. For any p>0, we have
Esup0≤t≤T(‖Sh(t,x)‖p+‖Eh(t,x)‖p+‖Ih(t,x)‖p+‖Rh(t,x)‖p+‖Sm(t,x)‖p+‖Em(t,x)‖p+‖Im(t,x)‖p)≤C, |
where C is a constant related to p,T, and the original condition and the parameters of system (2.2).
In this section, we will discuss the conditions for almost surely exponential extinction of Zika disease.
In general, consider an l-dimensional stochastic reaction-diffusion system by
dυ(t,x)=(∂2xυ(t,x)+f(t,x,υ(t,x)))dt+g(t,x,υ(t,x))dB(t),t>t0,x∈Q, | (3.1) |
with boundary condition ∂υ(t,x)∂n=0(t>t0,x∈∂Q) and initial condition υ(t0,x)=υ0(x)(x∈Q).
We give the definition of the almost surely exponential stability of system (3.1) [44].
Definition 3.1. The trivial solution of system (3.1) is said to be almost surely exponentially stable if
lim supt→∞1t|log|υ(t,x;t0,υ0)||Q<0a.s. |
for all υ0∈Rl+, where |log|υ(⋅,x)||Q:=∫Qlog|υ(⋅,x)|dx.
Next, the almost surely exponential extinction of Zika disease will be given in the following theorem.
Theorem 3.2. For any starting value X(0,x)∈H+ of system (2.2), if
d2∨d3∨d6∨d7→0, | (3.2) |
and
σ21∧σ22>8[(ξh+dhξh)2∨(ξm+dmξm)2](αmβh+βhh+θμm+αhβm), | (3.3) |
then
lim supt→∞1t|log(Eh(t,x)+ξh+dhξhIh(t,x)+Em(t,x)+ξm+dmξmIm(t,x))|Q<0a.s. |
Proof. Let V(t,x)=log(Eh(t,x)+ξh+dhξhIh(t,x)+Em(t,x)+ξm+dmξmIm(t,x)), then
|V(t,x)|Q=∫QV(t,x)dx=∫Qlog(Eh(t,x)+ξh+dhξhIh(t,x)+Em(t,x)+ξm+dmξmIm(t,x))dx. |
Let A(t,x)=(Eh(t,x)+ξh+dhξhIh(t,x)+Em(t,x)+ξm+dmξmIm(t,x)). By Itˆo's formula, we have
d|V(t,x)|Q=∫QdV(t,x)dx=∫Qdlog(Eh(t,x)+ξh+dhξhIh(t,x)+Em(t,x)+ξm+dmξmIm(t,x))dx=∫Q{[1A(t,x)[d2ΔEh(t,x)+λmh(t,x)Sh(t,x)+λhh(t,x)Sh(t,x)−(ξh+dh)Eh(t,x)]+ξh+dhξhA(t,x)[d3ΔIh(t,x)+ξhEh(t,x)−(γ+dh)Ih(t,x)]+1A(t,x)[d6ΔEm(t,x)+θμm(kEm(t,x)+Im(t,x))+λhm(t,x)Sm(t,x)−(ξm+dm)Em(t,x)]+ξm+dmξmA(t,x)[d7ΔIm(t,x)+ξmEm(t,x)−dmIm(t,x)]−12σ21E2h(t,x)+σ21I2h(t,x)(ξh+dhξh)2+σ22E2m(t,x)+σ22I2m(t,x)(ξm+dmξm)2(Eh(t,x)+ξh+dhξhIh(t,x)+Em(t,x)+ξm+dmξmIm(t,x))2]dt+(σ1Eh(t,x)A(t,x)+(ξh+dh)σ1Ih(t,x)ξhA(t,x))dB1(t)+(σ2Em(t,x)A(t,x)+(ξm+dm)σ2Im(t,x)ξmA(t,x))dB2(t)}dx≤∫Q{d2ΔEh(t,x)+d3Δ(ξh+dhξhIh(t,x))+d6ΔEm(t,x)+d7Δ(ξm+dmξmIm(t,x))Eh(t,x)+ξh+dhξhIh(t,x)+Em(t,x)+ξm+dmξmIm(t,x)+αmβh(khEm(t,x)+Im(t,x))Em(t,x)+ξm+dmξmIm(t,x)+βhh(khhEh(t,x)+Ih(t,x))Eh(t,x)+ξh+dhξhIh(t,x)+θμm(kEm(t,x)+Im(t,x))Em(t,x)+ξm+dmξmIm(t,x)+αhβm(kmEh(t,x)+Ih(t,x))Eh(t,x)+ξh+dhξhIh(t,x)−(σ21∧σ21(ξh+dhξh)2∧σ22∧σ22(ξm+dmξm)2)(E2h+I2h+E2m+I2m)8((ξh+dhξh)2∨(ξm+dmξm)2)(E2h+I2h+E2m+I2m)+(σ1Eh(t,x)A(t,x)+(ξh+dh)σ1Ih(t,x)ξhA(t,x))dB1(t)+(σ2Em(t,x)A(t,x)+(ξm+dm)σ2Im(t,x)ξmA(t,x))dB2(t)}dx≤∫Q{(d2∨d3∨d6∨d7)|ΔA(t,x)|A(t,x)+αmβh+βhh+θμm+αhβm−σ21∧σ228[(ξh+dhξh)2∨(ξm+dmξm)2]+(σ1Eh(t,x)A(t,x)+(ξh+dh)σ1Ih(t,x)ξhA(t,x))dB1(t)+(σ2Em(t,x)A(t,x)+(ξm+dm)σ2Im(t,x)ξmA(t,x))dB2(t)}dx. |
Integrating the above inequality from 0 to t, we get
|V(t,x)|Q=≤|V(0,x)|Q+∫t0∫Q(d2∨d3∨d6∨d7)|ΔA(s,x)|A(s,x)dxds==+∫t0∫Q(αmβh+βhh+θμm+αhβm−σ21∧σ228[(ξh+dhξh)2∨(ξm+dmξm)2])dxds==+∫t0∫Q(σ1Eh(s,x)A(s,x)+(ξh+dh)σ1Ih(s,x)ξhA(s,x))dxdB1(s)==+∫t0∫Q(σ2Em(s,x)A(s,x)+(ξm+dm)σ2Im(s,x)ξmA(s,x))dxdB2(s)=≤|V(0,x)|Q+∫t0∫Q(d2∨d3∨d6∨d7)|ΔA(s,x)|A(s,x)dxds==+(αmβh+βhh+θμm+αhβm−σ21∧σ228[(ξh+dhξh)2∨(ξm+dmξm)2])|Q|t+M1(t)+M2(t), | (3.4) |
where
M1(t)=∫t0∫Q(σ1Eh(s,x)A(s,x)+(ξh+dh)σ1Ih(s,x)ξhA(s,x))dxdB1(s), |
M2(t)=∫t0∫Q(σ2Em(s,x)A(s,x)+(ξm+dm)σ2Im(s,x)ξmA(s,x))dxdB2(s). |
In addition, the quadratic variations of M1 and M2 are respectively
⟨M1,M1⟩t=∫t0(∫Q(σ1Eh(s,x)A(s,x)+(ξh+dh)σ1Ih(s,x)ξhA(s,x))dx)2ds, |
⟨M2,M2⟩t=∫t0(∫Q(σ2Em(s,x)A(s,x)+(ξm+dm)σ2Im(s,x)ξmA(s,x))dx)2ds. |
Therefore
lim supt→∞⟨M1,M1⟩tt=lim supt→∞1t∫t0(∫Q(σ1Eh(s,x)A(s,x)+(ξh+dh)σ1Ih(s,x)ξhA(s,x))dx)2ds≤(2σ1|Q|)2<∞a.s., |
lim supt→∞⟨M2,M2⟩tt=lim supt→∞1t∫t0(∫Q(σ2Em(s,x)A(s,x)+(ξm+dm)σ2Im(s,x)ξmA(s,x))dx)2ds≤(2σ2|Q|)2<∞a.s. |
Thus, martingale's strong law of large numbers yields
lim supt→∞M1(t)t=0a.s.andlim supt→∞M2(t)t=0a.s. |
Together with (3.2)–(3.4), , we obtain
lim supt→∞1t|log(Eh(t,x)+ξh+dhξhIh(t,x)+Em(t,x)+ξm+dmξmIm(t,x))|Q≤(αmβh+βhh+θμm+αhβm−σ21∧σ228[(ξh+dhξh)2∨(ξm+dmξm)2])|Q|<0, |
which shows that
limt→∞Eh(t,x)=limt→∞Ih(t,x)=limt→∞Em(t,x)=limt→∞Im(t,x)=0a.s. |
This completes the proof.
Conditions (3.2) and (3.3) of Theorem 3.2 suggest that Zika virus will become exponentially extinct when the diffusion coefficients of infected people and mosquitoes are very small, that is, they hardly move, and the intensities of environmental noise are relatively large. There is no doubt that such conditions are very harsh. In what follows we will talk about the stationary distribution of system (2.2), which means the persistence of Zika disease.
First of all, we give the definition of the stationary distribution of system (2.2) [45]. Let P(H) represent the space of all probability measures on (H,B(H)), here B(H) denotes the Borel σ-algebra on H. Cb(H) is the set of all bounded and continuous real-valued functions on H.
Definition 4.1. A stationary distribution of the positive solution X(t,x), t≥0, of system (2.2) is defined as a probability measure π∈P(H) which satisfies
π(g)=π(Ptg),t≥0, |
here π(g):=∫Hg(ϕ)π(dϕ), Ptg(ϕ):=Eg(|X(t,x,ϕ)|Q), and g∈Cb(H).
For π1,π2∈P(H), a measure on P(H) is defined by
d(π1,π2)=supg∈N|∫Hg(ϕ1)π1(dϕ1)−∫Hg(ϕ2)π2(dϕ2)|, |
where N:={g:H→R,|g(ϕ1)−g(ϕ2)|≤‖ϕ1−ϕ2‖ for any ϕ1,ϕ2∈H and |g(⋅)|≤1}. P(H) is complete under the measure d(⋅,⋅) by [46], and then we can get an important lemma as follows, which provides an assertion for the existence of stationary distribution [45].
Lemma 4.1. Assuming that for arbitrary bounded subset O of H+, p>1,
(i)limt→∞supϕ1,ϕ2∈OE‖X(t,x,ϕ1)−X(t,x,ϕ2)‖p=0;
(ii)supt≥0supϕ∈OE‖X(t,x,ϕ)‖p<∞.
Then, X(t,x,ϕ),t≥0, has a stationary distribution for initial data ϕ∈H+.
Applying Lemma 4.1, we can obtain the conditions for the existence of the steady-state distribution of system (2.2).
Theorem 4.2. Assume there are constants p>1, ϑ>0, and 0<ci<1(i=1,2,⋯,7) such that
2βphh+pβhhkhh+7(p−1)+αph^A1+^A2+12p(p−1)σ21<pdh+pˇB1, | (4.1) |
and
(θμm)p(1+kp)+pkθμm+ξpm+5(p−1)+αpm^A3+12p(p−1)σ22<pdm+pˇB2, | (4.2) |
where ^A1=2βpm∨βph(1+kph), ^A2=ξph∨γp, ^A3=2βph∨βpm(1+kpm), ˇB1=c1d1∧c2d2∧c3d3∧c4d4, ˇB2=c5d5∧c6d6∧c7d7, then process X(t,x),t≥0, of system (2.2) has a unique stationary distribution π∈P(H).
Proof. To illustrate the existence of steady-state distribution of system (2.2), we need to prove that the conditions (i) and (ii) in Lemma 4.1 hold. Since Theorem 2.2 implies that (ii) is true, we only need to verify (i). To this end, for p>1, ϑ>0, let
Φ(t,x,ϕ1,ϕ2)=eϑt(‖y1‖p+‖y2‖p+‖y3‖p+‖y4‖p+‖y5‖p+‖y6‖p+‖y7‖p), |
where
y1=y1(t,x,ϕ1,ϕ2)=Sh(t,x,ϕ1)−Sh(t,x,ϕ2):=Sh1−Sh2,y2=y2(t,x,ϕ1,ϕ2)=Eh(t,x,ϕ1)−Eh(t,x,ϕ2):=Eh1−Eh2,y3=y3(t,x,ϕ1,ϕ2)=Ih(t,x,ϕ1)−Ih(t,x,ϕ2):=Ih1−Ih2,y4=y4(t,x,ϕ1,ϕ2)=Rh(t,x,ϕ1)−Rh(t,x,ϕ2):=Rh1−Rh2,y5=y5(t,x,ϕ1,ϕ2)=Sm(t,x,ϕ1)−Sm(t,x,ϕ2):=Sm1−Sm2,y6=y6(t,x,ϕ1,ϕ2)=Em(t,x,ϕ1)−Em(t,x,ϕ2):=Em1−Em2,y7=y7(t,x,ϕ1,ϕ2)=Im(t,x,ϕ1)−Im(t,x,ϕ2):=Im1−Im2. |
Applying Itˆo's formula, we deduce
dΦ(t,x,ϕ1,ϕ2)=ϑΦ(t,x,ϕ1,ϕ2)dt+eϑtd(‖y1‖p+‖y2‖p+‖y3‖p+‖y4‖p+‖y5‖p+‖y6‖p+‖y7‖p). | (4.3) |
For simplicity, we assume that Nh(t,x,ϕ1)=Nh(t,x,ϕ2)=Nh(t,x) and Nm(t,x,ϕ1)=Nm(t,x,ϕ2)=Nm(t,x). Thus denote λmh1(t,x)=bm(t,x)βh(khEm1+Im1)/Nh=αhαmαhNh+αmNmβh(khEm1+Im1), λmh2(t,x)=bm(t,x)βh(khEm2+Im2)/Nh=αhαmαhNh+αmNmβh(khEm2+Im2), λhh1(t,x)=βhh(khhEh1+Ih1)/Nh, and λhh2(t,x)=βhh(khhEh2+Ih2)/Nh. By Itˆo's formula and embedding theorem,
d‖y1‖p=p‖y1‖p−2⟨y1,d1Δy1−(λmh1(t,x)Sh1−λmh2(t,x)Sh2)−(λhh1(t,x)Sh1−λhh2(t,x)Sh2)−dhy1⟩dt+12p(p−1)‖y1‖p−4⟨y1,σ1y1⟩2dt+p‖y1‖p−2⟨y1,σ1y1⟩dB1=[−pd1‖y1‖p−2‖∇y1‖2∗−p‖y1‖p−2⟨y1,αhαmβhαhNh+αmNm(khEm1Sh1−khEm2Sh2+Im1Sh1−Im2Sh2)⟩−p‖y1‖p−2⟨y1,βhhNh(khhEh1Sh1−khhEh2Sh2+Ih1Sh1−Ih2Sh2)−pdh‖y1‖p+12p(p−1)σ21‖y1‖p]dt+pσ1‖y1‖pdB1≤[−pc1d1‖y1‖p+pαmβhkh‖y1‖p−1‖y6‖+pαmβh‖y1‖p−1‖y7‖+pβhhkhh‖y1‖p−1‖y2‖+pβhh‖y1‖p−1‖y3‖−pdh‖y1‖p+12p(p−1)σ21‖y1‖p]dt+pσ1‖y1‖pdB1≤[(−pc1d1+4(p−1)−pdh+12p(p−1)σ21)‖y1‖p+(αmβhkh)p‖y6‖p+(αmβh)p‖y7‖p+(βhhkhh)p‖y2‖p+βphh‖y3‖p]dt+pσ1‖y1‖pdB1, | (4.4) |
here c1<1 is a constant and the last inequality sign takes advantage of the Young inequality. Similarly,
d‖y2‖p=p‖y2‖p−2⟨y2,d2Δy2+λmh1(t,x)Sh1−λmh2(t,x)Sh2+λhh1(t,x)Sh1−λhh2(t,x)Sh2−(ξh+dh)y2⟩dt+12p(p−1)σ21‖y2‖pdt+pσ1‖y2‖pdB1≤[(−pc2d2+7(p−1)+pβhhkhh−p(ξh+dh)+12p(p−1)σ21)‖y2‖p+((αhβhkh)p+(αhβh)p+(βhhkhh)p+βphh)‖y1‖p+βphh‖y3‖p+(αmβhkh)p‖y6‖p+(αmβh)p‖y7‖p]dt+pσ1‖y2‖pdB1, | (4.5) |
d‖y3‖p=p‖y3‖p−2⟨y3,d3Δy3+ξhy2−(γ+dh)y3⟩dt+12p(p−1)σ21‖y3‖pdt+pσ1‖y3‖pdB1≤[(−pc3d3+p−1−p(γ+dh)+12p(p−1)σ21)‖y3‖p+ξph‖y2‖p]dt+pσ1‖y3‖pdB1, | (4.6) |
d‖y4‖p=p‖y4‖p−2⟨y4,d4Δy4+γy3−dhy4⟩dt+12p(p−1)σ21‖y4‖pdt+pσ1‖y4‖pdB1≤[(−pc4d4+p−1−pdh+12p(p−1)σ21)‖y4‖p+γp‖y3‖p]dt+pσ1‖y4‖pdB1, | (4.7) |
d‖y5‖p=p‖y5‖p−2⟨y5,d5Δy5−kθμmy6−θμmy7−(λhm1(t,x)Sm1−λhm2(t,x)Sm2)−dmy5⟩dt+12p(p−1)σ22‖y5‖pdt+pσ2‖y5‖pdB2≤[(−pc5d5+4(p−1)−pdm+12p(p−1)σ22)‖y5‖p+(kθμm)p‖y6‖p+(θμm)p‖y7‖p+(αhβmkm)p‖y2‖p+(αhβm)p‖y3‖p]dt+pσ2‖y5‖pdB2, | (4.8) |
d‖y6‖p=p‖y6‖p−2⟨y6,d6Δy6+kθμmy6+θμmy7+λhm1(t,x)Sm1−λhm2(t,x)Sm2−(ξm+dm)y6⟩dt+12p(p−1)σ22‖y6‖pdt+pσ2‖y6‖pdB2≤[(−pc6d6+5(p−1)+pkθμm−p(ξm+dm)+12p(p−1)σ22)‖y6‖p+(kθμm)p‖y7‖p+((αmβmkm)p+(αmβm)p)‖y5‖p+(αhβmkm)p‖y2‖p+(αhβm)p‖y3‖p]dt+pσ2‖y6‖pdB2, | (4.9) |
d‖y7‖p=p‖y7‖p−2⟨y7,d7Δy7+ξmy6−dmy7⟩dt+12p(p−1)σ22‖y7|pdt+pσ2‖y7‖pdB2≤[(−pc7d7+p−1−pdm+12p(p−1)σ22)‖y7‖p+ξpm‖y6‖p]dt+pσ2‖y7‖pdB2. | (4.10) |
Substituting (4.4)–(4.10) into (4.3), integrating the two sides of (4.3), and seeking mathematical expectation, then
EΦ(t,x,ϕ1,ϕ2)≤EΦ(0,x,ϕ1,ϕ2)+E∫t0ϑΦ(s,x,ϕ1,ϕ2)ds+E∫t0eϑsC7(‖y1‖p+‖y2‖p+‖y3‖p+‖y4‖p+‖y5‖p+‖y6‖p+‖y7‖p)ds=EΦ(0,x,ϕ1,ϕ2)+E∫t0(ϑ+C7)Φ(s,x,ϕ1,ϕ2)ds, |
where
\begin{equation*} \begin{split} C_7 = &\max\{-pc_1d_1+4(p-1)-pd_h+\frac{1}{2}p(p-1)\sigma_1^2+(\alpha_h\beta_h)^p(k_h^p+1)+\beta_{hh}^p(k_{hh}^p+1), \;-pc_2d_2+7(p-1)\\ &+p\beta_{hh}k_{hh}-p(\xi_h+d_h)+\frac{1}{2}p(p-1)\sigma_1^2+(\beta_{hh}k_{hh})^p+\xi_h^p+2(\alpha_h\beta_mk_m)^p, -pc_3d_3+p-1-p(\gamma+d_h)\\ &+\frac{1}{2}p(p-1)\sigma_1^2+2\beta_{hh}^p+\gamma^p+2(\alpha_h\beta_m)^p, \;-pc_4d_4+p-1-pd_h+\frac{1}{2}p(p-1)\sigma_1^2, \;-pc_5d_5+4(p-1) \\&-pd_m+\frac{1}{2}p(p-1)\sigma_2^2+(\alpha_m\beta_mk_m)^p+(\alpha_m\beta_m)^p, \;-pc_6d_6+5(p-1)+pk\theta\mu_m-p(\xi_m+d_m)+\xi_m^p\\ \end{split} \end{equation*} |
\begin{equation*} \begin{split} &+\frac{1}{2}p(p-1)\sigma_2^2+2(\alpha_m\beta_hk_h)^p+(k\theta\mu_m)^p, \;-pc_7d_7+p-1-pd_m+\frac{1}{2}p(p-1)\sigma_2^2+(\theta\mu_m)^p(1+k^p)\\ &+2(\alpha_m\beta_h)^p\}, \end{split} \end{equation*} |
and \vartheta+C_7 > 0 . Next, we take the \sup\limits_{\phi_1, \phi_2\in \mathcal{O}} and use the Gronwall inequality to get
\begin{equation*} \sup\limits_{\phi_1, \phi_2\in \mathcal{O}} \mathbb{E}\Phi(t, x, \phi_1, \phi_2)\leq\sup\limits_{\phi_1, \phi_2\in\mathcal{O}} \mathbb{E}\Phi(0, x, \phi_1, \phi_2)e^{(\vartheta+C_7)t}, \\ \end{equation*} |
i.e.,
\begin{equation} \sup\limits_{\phi_1, \phi_2\in \mathcal{O}} \mathbb{E}(\|y_1\|^p+\|y_2\|^p+\|y_3\|^p+\|y_4\|^p+\|y_5\|^p+\|y_6\|^p+\|y_7\|^p)\leq\sup\limits_{\phi_1, \phi_2\in\mathcal{O}} \mathbb{E}\Phi(0, x, \phi_1, \phi_2)e^{C_7t}.\\ \end{equation} | (4.11) |
According to (4.1) and (4.2), C_7 < 0 . Therefore,
\begin{equation*} \lim\limits_{t\rightarrow \infty}\sup\limits_{\phi_1, \phi_2\in \mathcal{O}} \mathbb{E}(\|y_1\|^p+\|y_2\|^p+\|y_3\|^p+\|y_4\|^p+\|y_5\|^p+\|y_6\|^p+\|y_7\|^p) = 0. \end{equation*} |
Thus, the condition (i) of Lemma 4.1 is proved. Let us now explain the uniqueness of steady-state distribution of system (2.2).
Suppose \pi'\in\mathcal{P}(\mathcal{H}) is another steady-state distribution for X(t, x), t\geq 0, of system (2.2). \mathcal{C}_{lb}(\mathcal{H}) is a bounded and Lipschitz continuous function family on \mathcal{H} . Then by the definition of stationary distribution, the Hölder inequality, and (4.11), for g\in\mathcal{C}_{lb}(\mathcal{H}) , we can derive that
\begin{equation} |\pi(g)-\pi'(g)|\leq\int_{\mathcal{H}\times\mathcal{H}}| \mathbb{P}_tg(\phi_1)- \mathbb{P}_tg(\phi_2)|\pi(d\phi_1)\pi'(d\phi_2)\leq C_8e^{\frac{1}{2}C_7t}, \quad t\geq 0, \end{equation} | (4.12) |
here C_8 > 0 is a constant. Whereupon, the uniqueness of stationary distribution can be obtained by setting t\rightarrow \infty in (4.12) when C_7 < 0 . The proof is completed.
From (4.1) and (4.2) of Theorem 4.2, we find that Zika disease will be persistent when the intensities of environmental noise are low, while the diffusion coefficients of humans and mosquitoes are relatively large, which is the opposite of exponential extinction.
The objective of this section is to illustrate that anti-Zika control strategies can be implemented while minimizing the cost of implementing these measures. So we formulate a stochastic optimal control problem by introducing three control variables into system (2.2). The control u_1(t, x) denotes the level of personal protective efforts among the population, so the correlative infectivity is decreased by the factor (1 -u_1(t, x)) . The control u_2(t, x) represents the level of treatment for infected people. We choose saturated treatment rate function \frac{cu_2I_h}{1+\alpha I_h} with treatment rate c > 0 and saturation coefficient \alpha\geq 0 due to the limited medical resources (medical staff, medicines, hospital beds, etc.), where \frac{c}{\alpha} is the largest medical resource provided per unit of time. The control u_3(t, x) indicates the level of insecticides used to kill mosquitoes in mosquito breeding grounds, which increases the mosquito mortality rate from d_m to d_m+c_0u_3 with killing efficacy c_0 . In this thesis, 0\leq u_i\leq 1\; (i = 1, 2, 3) means that there is no effort (i.e., no control) when the control is zero, and the maximum control is put when the control is one. Let u = (u_1, u_2, u_3) . Thus the stochastic control system for Zika disease will be written as
\begin{equation} \begin{cases} dS_h = \Big[d_1\Delta S_h+\Lambda_h-(1-u_1)\lambda_{mh}(t, x)S_h-(1-u_1)\lambda_{hh}(t, x)S_h-d_hS_h\Big]dt+\sigma_1S_hdB_1\\\quad\quad : = z_1(t, x, X, u)dt+\sigma_1S_hdB_1, \\ dE_h = \Big[d_2\Delta E_h+(1-u_1)\lambda_{mh}(t, x)S_h+(1-u_1)\lambda_{hh}(t, x)S_h-(\xi_h+d_h)E_h\Big]dt+\sigma_1E_hdB_1\\\quad\quad : = z_2(t, x, X, u)dt+\sigma_1E_hdB_1, \\ dI_h = \Big[d_3\Delta I_h+\xi_hE_h-(\gamma+d_h)I_h-\frac{cu_2I_h}{1+\alpha I_h}\Big]dt+\sigma_1I_hdB_1\\\quad\quad : = z_3(t, x, X, u)dt+\sigma_1I_hdB_1, \\ dR_h = \Big[d_4\Delta R_h+\gamma I_h-d_hR_h+\frac{cu_2I_h}{1+\alpha I_h}\Big]dt+\sigma_1R_hdB_1\\\quad\quad : = z_4(t, x, X, u)dt+\sigma_1R_hdB_1, \\ dS_m = \Big[d_5\Delta S_m+\Lambda_m-\theta\mu_m(kE_m+I_m)-\lambda_{hm}(t, x)S_m-(d_m+c_0u_3)S_m\Big]dt+\sigma_2S_mdB_2\\\quad\quad : = z_5(t, x, X, u)dt+\sigma_2S_mdB_2, \\ dE_m = \Big[d_6\Delta E_m+\theta\mu_m(kE_m+I_m)+\lambda_{hm}(t, x)S_m-(\xi_m+d_m+c_0u_3)E_m\Big]dt+\sigma_2E_mdB_2\\\quad\quad : = z_6(t, x, X, u)dt+\sigma_2E_mdB_2, \\ dI_m = \Big[d_7\Delta I_m+\xi_mE_m-(d_m+c_0u_3)I_m\Big]dt+\sigma_2I_mdB_2\\\quad\quad : = z_7(t, x, X, u)dt+\sigma_2I_mdB_2, \\ \end{cases} \end{equation} | (5.1) |
for t > 0, x\in Q , with the boundary conditions
\frac{\partial}{\partial {\bf n}}S_h = \frac{\partial}{\partial {\bf n}}E_h = \frac{\partial}{\partial {\bf n}}I_h = \frac{\partial}{\partial {\bf n}}R_h = \frac{\partial}{\partial {\bf n}}S_m = \frac{\partial}{\partial {\bf n}}E_m = \frac{\partial}{\partial {\bf n}}I_m = 0, \quad t > 0, x\in\partial Q, |
and initial conditions
(S_h(0, x), E_h(0, x), I_h(0, x), R_h(0, x), S_m(0, x), E_m(0, x), I_m(0, x)) |
= (S_h^0(x), E_h^0(x), I_h^0(x), R_h^0(x), S_m^0(x), E_m^0(x), I_m^0(x)), \quad x\in Q. |
Our optimal control study aims at minimizing the number of exposed and infected people, the total number of mosquitoes, and the cost of executing the control in time interval [0, T] and region Q . In order to realize this goal, an objective functional is defined as
\begin{equation} J(u) = \mathbb{E}\Big\{\int^T_0\int_Qf(X(t, x), u(t, x))dxdt+\int_Q\varphi(X(T, x))dx\Big\}, \end{equation} | (5.2) |
with
f(X, u) = a_1E_h+a_2I_h+a_3N_m+b_1u_1S_h+b_2u_2I_h+b_3u_3N_m+\frac{1}{2}\sum\limits_{j = 1}^{3}c_ju_j^2, |
where a_1, a_2, and a_3 are positive coefficients of weight of the exposed, infected human and the total mosquito populations, respectively, b_1, b_2, and b_3 are positive coefficients of weigh for the linear costs of personal protection, the treatment for infected people, and mosquito control, respectively, c_1, c_2, and c_3 are positive coefficients of weight for the quadratic costs, respectively. A function of X(t, x) at the terminal time T is denoted by \varphi(X(T, x)) . The next task is to find the optimal control \bar{u} = (\bar{u}_1, \bar{u}_2, \bar{u}_3) such that
J(\bar{u}) = \min\limits_{u\in U}J(u), |
here U is the admissible control set as follows
\begin{equation} U = \{(u(t, x)|u_i(t, x)\in [0, 1]\text{ is }\{\mathcal{F}_t\}_{t\geq0}-\text{adapted}, t\in [0, T], x\in Q, i = 1, 2, 3\}. \end{equation} | (5.3) |
Similar to Theorem 2.1, the existence, uniqueness, and boundness of the positive solution of system (5.1) can also be verified. Further, we can obtain the boundedness and convexity of f_i(t, x, X, u)(i = 1, 2, \cdots, 7) and the compactness of U , and then the existence of optimal control \bar{u} can be shown according to Theorem 3.1 in [47].
Next, we will makes use of the Pontryagin maximum principle [48] to obtain the optimal control. Denote \lambda(t, x) = (\lambda_1(t, x), \lambda_2(t, x), \cdots, \lambda_7(t, x)) , \mu(t, x) = (\mu_1(t, x), \mu_2(t, x), \cdots, \mu_7(t, x)) . \bar{X} = (\bar{X}_1, \bar{X}_2, \bar{X}_3, \bar{X}_4, \bar{X}_5, \bar{X}_6, \bar{X}_7) = (\bar{S}_h, \bar{E}_h, \bar{I}_h, \bar{R}_h, \bar{S}_m, \bar{E}_m, \bar{I}_m) is the optimal state variable of system (5.1) corresponding to the optimal control \bar{u} . Then by the stochastic maximum principle, there exists a pair of processes (\lambda(t, x), \mu(t, x))\in L^2_\mathcal{F}([0, T]\times Q; \mathbb{R}^7)\times L^2_\mathcal{F}([0, T]\times Q; \mathbb{R}^7) that satisfy the following SDE
\begin{equation} \begin{cases} d\lambda_1(t, x) = -g_1(\bar{X}(t, x), \bar{u}(t, x), \lambda(t, x), \mu(t, x))dt+\mu_1(t, x)dB_1(t), \\ d\lambda_2(t, x) = -g_2(\bar{X}(t, x), \bar{u}(t, x), \lambda(t, x), \mu(t, x))dt+\mu_2(t, x)dB_1(t), \\ d\lambda_3(t, x) = -g_3(\bar{X}(t, x), \bar{u}(t, x), \lambda(t, x), \mu(t, x))dt+\mu_3(t, x)dB_1(t), \\ d\lambda_4(t, x) = -g_4(\bar{X}(t, x), \bar{u}(t, x), \lambda(t, x), \mu(t, x))dt+\mu_4(t, x)dB_1(t), \\ d\lambda_5(t, x) = -g_5(\bar{X}(t, x), \bar{u}(t, x), \lambda(t, x), \mu(t, x))dt+\mu_5(t, x)dB_2(t), \\ d\lambda_6(t, x) = -g_6(\bar{X}(t, x), \bar{u}(t, x), \lambda(t, x), \mu(t, x))dt+\mu_6(t, x)dB_2(t), \\ d\lambda_7(t, x) = -g_7(\bar{X}(t, x), \bar{u}(t, x), \lambda(t, x), \mu(t, x))dt+\mu_7(t, x)dB_2(t), \\ \lambda_i(T, x) = \varphi_{X_i}(\bar{X}(T, x)), \\ \end{cases} \end{equation} | (5.4) |
where
\begin{equation*} \begin{split} g_1(\bar{X}, \bar{u}, \lambda, \mu) = &d_1\Delta \lambda_1-\Big[(1-\bar{u}_1)\bar{\lambda}_{mh}\frac{\alpha_m\bar{N}_m+\alpha_h(\bar{E}_h+\bar{I}_h+\bar{R}_h)}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h}+ (1-\bar{u}_1)\bar{\lambda}_{hh}\frac{\bar{E}_h+\bar{I}_h+\bar{R}_h}{\bar{N}_h}+d_h\Big]\lambda_1\\&+\Big[(1-\bar{u}_1)\bar{\lambda}_{mh} \frac{\alpha_m\bar{N}_m+\alpha_h(\bar{E}_h+\bar{I}_h+\bar{R}_h)}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h}+(1-\bar{u}_1)\bar{\lambda}_{hh}\frac{\bar{E}_h+\bar{I}_h+\bar{R}_h} {\bar{N}_h}\Big]\lambda_2\\&+\Big[\bar{\lambda}_{hm}\frac{\alpha_h}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h}\bar{S}_m\Big]\lambda_5- \Big[\bar{\lambda}_{hm}\frac{\alpha_h}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h}\bar{S}_m\Big]\lambda_6+\sigma_1\mu_1+b_1u_1, \\ g_2(\bar{X}, \bar{u}, \lambda, \mu) = &d_2\Delta \lambda_2 +\Big[(1-\bar{u}_1)\bar{\lambda}_{mh}\frac{\alpha_h\bar{S}_h}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h}- (1-\bar{u}_1)\beta_{hh}\frac{k_{hh}\bar{S}_h(\bar{S}_h+\bar{I}_h+\bar{R}_h)-\bar{I}_h\bar{S}_h}{\bar{N}_h^2}\Big]\lambda_1\\&-\Big[ (1-\bar{u}_1)\bar{\lambda}_{mh}\frac{\alpha_h\bar{S}_h}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h}- (1-\bar{u}_1)\beta_{hh}\frac{k_{hh}\bar{S}_h(\bar{S}_h+\bar{I}_h+\bar{R}_h)-\bar{I}_h\bar{S}_h}{\bar{N}_h^2}+\xi_h+d_h\Big]\lambda_2\\&+ \xi_h\lambda_3-\Big[\frac{\alpha_m\alpha_h\beta_mk_m\bar{S}_m-\alpha_h\bar{\lambda}_{hm}\bar{S}_m}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h}\Big]\lambda_5 +\Big[\frac{\alpha_m\alpha_h\beta_mk_m\bar{S}_m-\alpha_h\bar{\lambda}_{hm}\bar{S}_m}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h}\Big]\lambda_6 +\sigma_1\mu_2+a_1, \\ \end{split} \end{equation*} |
\begin{equation*} \begin{split} g_3(\bar{X}, \bar{u}, \lambda, \mu) = &d_3\Delta \lambda_3 +\Big[(1-\bar{u}_1)\bar{\lambda}_{mh}\frac{\alpha_h\bar{S}_h}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h}- (1-\bar{u}_1)\beta_{hh}\frac{\bar{S}_h(\bar{S}_h+\bar{E}_h+\bar{R}_h)-k_{hh}\bar{E}_h\bar{S}_h}{\bar{N}_h^2}\Big]\lambda_1\\&-\Big[ (1-\bar{u}_1)\bar{\lambda}_{mh}\frac{\alpha_h\bar{S}_h}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h}- (1-\bar{u}_1)\beta_{hh}\frac{\bar{S}_h(\bar{S}_h+\bar{E}_h+\bar{R}_h)-k_{hh}\bar{E}_h\bar{S}_h}{\bar{N}_h^2}\Big]\lambda_2\\&- \Big[\gamma+d_h+\frac{cu_2}{(1+\alpha I_h)^2}\Big]\lambda_3+\Big[\gamma+\frac{cu_2}{(1+\alpha I_h)^2}\Big]\lambda_4 -\Big[\frac{\alpha_m\alpha_h\beta_m\bar{S}_m-\alpha_h\bar{\lambda}_{hm}\bar{S}_m}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h}\Big]\lambda_5\\& +\Big[\frac{\alpha_m\alpha_h\beta_m\bar{S}_m-\alpha_h\bar{\lambda}_{hm}\bar{S}_m}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h}\Big]\lambda_6 +\sigma_1\mu_3+a_2+b_2u_2, \\ g_4(\bar{X}, \bar{u}, \lambda, \mu) = &d_4\Delta \lambda_4 +\Big[(1-\bar{u}_1)\bar{\lambda}_{mh}\frac{\alpha_h\bar{S}_h}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h}+ (1-\bar{u}_1)\bar{\lambda}_{hh}\frac{\bar{S}_h}{\bar{N}_h}\Big]\lambda_1- \Big[(1-\bar{u}_1)\bar{\lambda}_{mh}\frac{\alpha_h\bar{S}_h}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h}\\&+ (1-\bar{u}_1)\bar{\lambda}_{hh}\frac{\bar{S}_h}{\bar{N}_h}\Big]\lambda_2-d_h\lambda_4 +\Big[\frac{\alpha_h\bar{\lambda}_{hm}\bar{S}_m}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h}\Big]\lambda_5 -\Big[\frac{\alpha_h\bar{\lambda}_{hm}\bar{S}_m}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h}\Big]\lambda_6 +\sigma_1\mu_4, \\ g_5(\bar{X}, \bar{u}, \lambda, \mu) = &d_5\Delta \lambda_5 +\Big[(1-\bar{u}_1)\bar{\lambda}_{mh}\frac{\alpha_m\bar{S}_h}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h}\Big]\lambda_1 -\Big[(1-\bar{u}_1)\bar{\lambda}_{mh}\frac{\alpha_m\bar{S}_h}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h}\Big]\lambda_2\\&- \Big[\bar{\lambda}_{hm}\frac{\alpha_m(\bar{E}_m+\bar{I}_m)+\alpha_h\bar{N}_h}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h}+d_m+c_0u_3\Big]\lambda_5 +\Big[\bar{\lambda}_{hm}\frac{\alpha_m(\bar{E}_m+\bar{I}_m)+\alpha_h\bar{N}_h}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h}\Big]\lambda_6\\& +\sigma_2\mu_5+a_3+b_3u_3, \\ g_6(\bar{X}, \bar{u}, \lambda, \mu) = &d_6\Delta \lambda_6 -\Big[(1-\bar{u}_1)\alpha_m\frac{\alpha_h\beta_hk_h\bar{S}_h-\bar{\lambda}_{mh}\bar{S}_h}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h}\Big]\lambda_1 +\Big[(1-\bar{u}_1)\alpha_m\frac{\alpha_h\beta_hk_h\bar{S}_h-\bar{\lambda}_{mh}\bar{S}_h}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h}\Big]\lambda_2\\& +\Big[\frac{\alpha_m\bar{\lambda}_{hm}\bar{S}_m}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h}-k\theta\mu_m\Big]\lambda_5+\Big[k\theta\mu_m- \frac{\alpha_m\bar{\lambda}_{hm}\bar{S}_m}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h}-(\xi_m+d_m+c_0u_3)\Big]\lambda_6\\&+\xi_m\lambda_7+\sigma_2\mu_6+a_3+b_3u_3, \\ g_7(\bar{X}, \bar{u}, \lambda, \mu) = &d_7\Delta \lambda_7 -\Big[(1-\bar{u}_1)\alpha_m\frac{\alpha_h\beta_h\bar{S}_h-\bar{\lambda}_{mh}\bar{S}_h}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h}\Big]\lambda_1 +\Big[(1-\bar{u}_1)\alpha_m\frac{\alpha_h\beta_h\bar{S}_h-\bar{\lambda}_{mh}\bar{S}_h}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h}\Big]\lambda_2\\& +\Big[\frac{\alpha_m\bar{\lambda}_{hm}\bar{S}_m}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h}-\theta\mu_m\Big]\lambda_5 -\Big[\frac{\alpha_m\bar{\lambda}_{hm}\bar{S}_m}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h}-\theta\mu_m\Big]\lambda_6\\& -(d_m+c_0u_3)\lambda_7+\sigma_2\mu_7+a_3+b_3u_3, \\ \end{split} \end{equation*} |
and \bar{N}_h = \bar{S}_h+\bar{E}_h+\bar{I}_h+\bar{R}_h , \bar{N}_m = \bar{S}_m+\bar{E}_m+\bar{I}_m , \bar{\lambda}_{mh} = \frac{\alpha_m\alpha_h\beta_h(k_h\bar{E}_m+\bar{I}_m)}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h} , \bar{\lambda}_{hh} = \frac{\beta_{hh}(k_{hh}\bar{E}_h+\bar{I}_h)}{\bar{N}_h} , \bar{\lambda}_{hm} = \frac{\alpha_m\alpha_h\beta_m(k_m\bar{E}_h+\bar{I}_h)}{\alpha_m\bar{N}_m+\alpha_h\bar{N}_h} .
Define the following Hamilton function:
\begin{equation} \begin{split} H(t, X, u, \lambda, \mu) = &\sum\limits_{i = 1}^{7}\langle z_i(t, x, X, u), \lambda_i\rangle+\langle\sigma_1S_h, \mu_1\rangle+\langle\sigma_1E_h, \mu_2\rangle+\langle\sigma_1I_h, \mu_3\rangle+ \langle\sigma_1R_h, \mu_4\rangle\\&+\langle\sigma_2S_m, \mu_5\rangle+\langle\sigma_2E_m, \mu_6\rangle+\langle\sigma_2I_m, \mu_7\rangle+ \int_Qf(X(t, x), u(t, x))dx \\ = &\int_Q\Big(\sum\limits_{i = 1}^{7}z_i(t, x, X, u)\lambda_i+\sigma_1S_h\mu_1+\sigma_1E_h\mu_2+\sigma_1I_h\mu_3+\sigma_1R_h\mu_4\\&+ \sigma_2S_m\mu_5+\sigma_2E_m\mu_6+\sigma_2I_m\mu_7+f(X(t, x), u(t, x))\Big)dx, \end{split} \end{equation} | (5.5) |
for (t, X, u, \lambda, \mu)\in [0, T]\times\mathcal{H^+}\times U\times \mathbb{R}^7\times \mathbb{R}^7 . So, according to the maximum condition of stochastic maximum principle, from \frac{\partial H(t, X, u, \lambda, \mu)}{\partial u_j} = 0 and 0\leq u_j\leq 1, j = 1, 2, 3 , we get the following conclusion:
Theorem 5.1. Under objective functional (5.2), the expressions for the optimal controls of system (5.1) are
\begin{equation*} \begin{split} &\bar{u}_1 = \min\big\{\max\big\{\frac{1}{c_1}[(\bar{\lambda}_{mh}+\bar{\lambda}_{hh})(\lambda_2-\lambda_1)\bar{S}_h-b_1\bar{S}_h], 0\big\}, 1\big\}, \\ &\bar{u}_2 = \min\big\{\max\big\{\frac{1}{c_2}[\frac{cI_h}{1+\alpha I_h}(\lambda_3-\lambda_4)-b_2\bar{I}_h], 0\big\}, 1\big\}, \\ &\bar{u}_3 = \min\big\{\max\big\{\frac{1}{c_3}[c_0(\bar{S}_m\lambda_5+\bar{E}_m\lambda_6+\bar{I}_m\lambda_7)-b_3\bar{N}_m], 0\big\}, 1\big\}. \end{split} \end{equation*} |
In this part, some numerical simulations will be conducted to illustrate our theoretical results more intuitively. We can write the discrete form (13.1) of the state Eq (2.2) shown in Appendix C using Milstein's method [49]. The initial conditions of model (2.2) and model (5.1) are selected as S_h^0(x) = 750000+200\cos\frac{\pi x}{30}, \; E_h^0(x) = 150+10\cos\frac{\pi x}{30}, \; I_h^0(x) = 10+5\cos\frac{\pi x}{30}, \; R_h^0(x) = 0, \; S_m^0(x) = 80000+100\cos\frac{\pi x}{30}, E_m^0(x) = 100+10\cos\frac{\pi x}{30}, \; I_m^0(x) = 10+2\cos\frac{\pi x}{30}, \; x\in(0,100).
We choose parameters \beta_h = 0.1, \beta_{hh} = 0.001, \beta_m = 0.3, \alpha_h = 0.1, \alpha_m = 0.19, \xi_h = 0.14, \xi_m = 0.14, d_h = 0.000039, d_m = 0.03, \gamma = 0.14, \mu_m = 0.029, \theta = 0.001, d_1 = 0.012, d_2 = d_3 = 0.0002, d_4 = d_5 = 0.008, d_6 = d_7 = 0.0001, \sigma_1 = \sigma_2 = 0.59. Please refer to Table 1 for other parameter values. Through calculation, conditions (3.2) and (3.3) for the almost surely exponential extinction of Zika disease in Theorem 3.2 are established at this time. Under these parameter values, we draw the evolutions of E_h, I_h, E_m , and I_m as shown in Figure 2. Here, the left is the spatio-temporal graphs, the right is the relevant projection graphs, where the curves of different colors indicate the variations of the population in different regions over time. Obviously, Figure 2 verifies the conclusion of Theorem 3.2.
It can be seen from the above, to make Zika disease almost surely exponentially extinct, on the one hand, the intensities of noise should be higher; on the other hand, the diffusion coefficients of the infected people and mosquitoes should be very small, which can guide us on how to eliminate Zika disease faster.
In this subsection, the existence of the stationary distribution of system (2.2) will be numerically simulated. We take \beta_h = 0.23, \beta_{hh} = 0.10, \beta_m = 0.33, \alpha_h = 0.1, \alpha_m = 0.26, \xi_h = 0.2, \xi_m = 0.1, \sigma_1 = 0.1, \sigma_2 = 0.1, d_1 = 0.6, d_2 = 0.6, d_3 = 0.55, d_4 = 0.58, d_5 = 0.3, d_6 = 0.3, d_7 = 0.25, p = 1.01, c_i = 0.96 (i = 1, 2, \cdots, 7). Other parameter values are the same as those in Figure 2. At this time, conditions (4.1) and (4.2) in Theorem 4.2 describing the existence of steady-state distribution hold. The trajectories of the solution of system (2.2) are presented in Figures 3 and 4, whose left side is the spatio-temporal graphs and the right side is the corresponding projection graphs, which indicate that the system will achieve a steady state over time t . Figures 5 and 6 show the evolutions of the solution of the system when spatial variable x = 10 and their corresponding histograms, from which we can see that the system has a stationary distribution.
1) The impact of noise on disease
We choose the same parameters as in Figure 2 and take the values of noise as \sigma_1 = \sigma_2 = 0 , \sigma_1 = \sigma_2 = 0.05 , \sigma_1 = \sigma_2 = 0.3 , \sigma_1 = \sigma_2 = 0.8 . Figure 7 describes the variations of I_h(t, x) and I_m(t, x) under different noise intensities when x = 10 . We can observe that a smaller noise intensity has a slight fluctuation in the number of infected people and mosquitoes, however, as the noise intensity enhances, the number of infected persons and mosquitoes decreases significantly. Therefore, we can consider random noise as a control strategy, such as human treatment and mosquito repellent spraying, to achieve the control of Zika disease.
2) The impact of diffusion coefficients on disease
We set diffusion intensity 1 to d_1 = 0.6, d_2 = d_3 = 0.0002, d_4 = 0.5, d_5 = 0.3, d_6 = d_7 = 0.0001 , diffusion intensity 2 to d_1 = 0.6, d_2 = d_3 = 0.1, d_4 = 0.58, d_5 = 0.3, d_6 = 0.18, d_7 = 0.1 , diffusion intensity 3 to d_1 = d_2 = 0.6, d_3 = 0.55, d_4 = 0.58, d_5 = d_6 = 0.3, d_7 = 0.25 , \sigma_1 = \sigma_2 = 0.01 , and the other parameter values are the same as those in Figure 2. The impacts of different diffusion strengths on infected people and mosquitoes are given in Figure 8, from which we find that with the increasing movement of infected people and mosquitoes, the number of infected people and mosquitoes also increases, indicating that controlling the movement of infected people and mosquitoes can reduce the risk of Zika disease.
Some numerical results of optimal controls will be presented in this subsection. We choose c = 0.5 , \alpha = 0.1 , c_0 = 0.5 in (5.1), a_1 = 0.25 , a_2 = 0.35 , a_3 = 0.33 , b_1 = 0.1 , b_2 = 0.2 , b_3 = 0.2 , c_1 = 44 , c_2 = 40 , c_3 = 50 in (5.2), and \mu_i(t, x) = 2.0 (i = 1, 2, \cdots, 7) in (5.4). The remaining parameter values are consistent with those in Figure 2.
Figure 9 shows the space-time diagrams of optimal controls. Figure 10 is the time evolutions of optimal controls when space variable x = 10 . From these two figures, we can see that the levels of human control (individual protection u_1 and medical treatment of the infected people u_2 ) are very high in the early and middle stages of the disease, but they are low in the later stages; however, the control level of mosquitoes ( u_3 ) has maintained the maximum for a long time, which means that the strength of control for mosquitoes has exceeded that for humans. Figure 11 demonstrates the trajectories of I_h(t, x) and I_m(t, x) for x = 10 under the four conditions of no control, only controlling humans, only controlling mosquitoes, and controlling both humans and mosquitoes. We observe that the effects on the disease of implementing three control variables and no control are very significant. In addition, the control variables u_1 and u_2 have great influence on the changes of infected people, but have little influence on infected mosquitoes. However, u_3 has a great impact on both people and mosquitoes. Therefore, to sum up, reducing the number of mosquitoes is the primary factor to control Zika disease and personal protection and treatment of the infected humans are also two indispensable measures.
This paper presents a stochastic Zika disease model with spatial diffusion, which includes human-mosquito transmission, human-human sex transmission, and vertical transmission of mosquitoes, and studies the dynamic behavior and optimal control of the model. Firstly, we give the conditions for almost surely exponential extinction of Zika disease, and the result signifies that the Zika disease will disappear when the diffusion coefficients of infected people and mosquitoes are very small and the fluctuations of environmental noise are relatively large. Secondly, we prove the sufficient conditions for the existence and uniqueness of the steady-state distribution representing the persistence of the disease, and research suggests that when the strengths of environmental noise are low and the diffusion coefficients of humans and mosquitoes are relatively large, Zika disease will continue to exist, which is contrary to the situation of disease extinction. In addition, numerical simulations have shown that increasing the intensity of random noise or decreasing the movement of infected people and mosquitoes can lessen the occurrence of Zika disease. Finally, we take three control variables, namely, individual protection, medical treatment of the infected people, and insecticides for spraying mosquitoes, into the model, and derive the expressions of optimal controls according to the Pontryagin maximum principle. Numerical simulations show that individual protection and treatment of infected persons are very effective for human beings, but reducing the number of mosquitoes is still the most important measure to control Zika.
The experiments demonstrate that the growth, survival, propagation, biting rate, transmission, and infection probability of Aedes aegypti and Aedes albopictus are closely related to the temperature, which is an essential factor affecting the dynamics of the spread of mosquito-borne diseases [50]. Thus, incorporating seasonality, establishing a stochastic periodic system, and studying the dynamics and control of Zika disease are our next exploration directions.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
We would like to thank the editor and the reviewers for their help, which greatly improve this paper. The research is funded by the National Natural Science Foundation of China under grant number 11971013.
The authors declare there is no conflict of interest.
Proof. Because of the local Lipschitz continuity of the coefficients of system (2.2), for any given initial function (S_h^0(x), E_h^0(x), I_h^0(x), R_h^0(x), S_m^0(x), E_m^0(x), I_m^0(x))\in\mathcal{H}^+ , there is a unique local solution (S_h(t, x), E_h(t, x), I_h(t, x), R_h(t, x), S_m(t, x), E_m(t, x), I_m(t, x)) in t\in[0, \tau_e), x\in Q , here \tau_e is the moment of explosion. To validate the local solution is also global, we only need to prove that \tau_e = \infty\; a.s. Let k_0 be large enough such that every component of (|S_h^0(x)|_Q, |E_h^0(x)|_Q, |I_h^0(x)|_Q, |R_h^0(x)|_Q, |S_m^0(x)|_Q, |E_m^0(x)|_Q, |I_m^0(x)|_Q) is in the interval (\frac{1}{k_0}, k_0] . Then for every integer k\geq k_0 , define a stopping time
\begin{equation*} \begin{split} \tau_k = &\inf \{t\in[0, \tau_e)|\min\{|S_h(t, x)|_Q, |E_h(t, x)|_Q, |I_h(t, x)|_Q, |R_h(t, x)|_Q, |S_m(t, x)|_Q, |E_m(t, x)|_Q, |I_m(t, x)|_Q\}\\&\leq\frac{1}{k}\; \text{or}\;\max\{|S_h(t, x)|_Q, |E_h(t, x)|_Q, |I_h(t, x)|_Q, |R_h(t, x)|_Q, |S_m(t, x)|_Q, |E_m(t, x)|_Q, |I_m(t, x)|_Q\}\geq k\}. \end{split} \end{equation*} |
We set \inf\emptyset = \infty ( \emptyset denotes the empty set usually) throughout this paper. Apparently, \tau_k is increasing constantly as k\rightarrow \infty . Let \tau_\infty = \lim_{k\rightarrow \infty}\tau_k , accordingly \tau_\infty\leq\tau_e\; a.s. As long as we can verify that \tau_\infty = \infty\; a.s. , then \tau_e = \infty\; a.s. This means that (S_h(t, x), E_h(t, x), I_h(t, x), R_h(t, x), S_m(t, x), E_m(t, x), I_m(t, x))\in\mathcal{H}^+\; a.s. for all t\geq0 . Before showing that \tau_\infty = \infty\; a.s. , let us prove the boundedness of solution for every k when t\in[0, \tau_k) .
Let
N(t): = \int_{Q}\{S_h(t, x)+E_h(t, x)+I_h(t, x)+R_h(t, x)+S_m(t, x)+E_m(t, x)+I_m(t, x)\}dx, |
then
\begin{align*} &\frac{d}{dt}N(t)\\ & \phantom{ = } = \int_{Q}\Big\{\frac{\partial}{\partial t}S_h(t, x)+\frac{\partial}{\partial t}E_h(t, x)+\frac{\partial}{\partial t}I_h(t, x) +\frac{\partial}{\partial t}R_h(t, x)+\frac{\partial}{\partial t}S_m(t, x)+\frac{\partial}{\partial t}E_m(t, x)+\frac{\partial}{\partial t}I_m(t, x)\Big\}dx\\ & \phantom{ = } = \int_{Q}\Big\{d_1\Delta S_h(t, x)+d_2\Delta E_h(t, x)+d_3\Delta I_h(t, x)+d_4\Delta R_h(t, x)+d_5\Delta S_m(t, x)+d_6\Delta E_m(t, x)\\ & \phantom{ = =} +d_7\Delta I_m(t, x)+\Lambda_h-d_h(S_h(t, x)+E_h(t, x)+I_h(t, x)+R_h(t, x))+\Lambda_m-d_m(S_m(t, x)\\ & \phantom{ = =} +E_m(t, x)+I_m(t, x))+\sigma_1S_h\dot{B_1}(t)+\sigma_1E_h\dot{B_1}(t)+\sigma_1I_h\dot{B_1}(t)+\sigma_1R_h\dot{B_1}(t)\\ & \phantom{ = =} +\sigma_2S_m\dot{B_2}(t)+\sigma_2E_m\dot{B_2}(t)+\sigma_2I_m\dot{B_2}(t)\Big\} dx\\ & \phantom{ = } = d_1\int_{\partial Q}\frac{\partial}{\partial{\bf n}}S_h(t, x)dx+d_2\int_{\partial Q}\frac{\partial}{\partial{\bf n}}E_h(t, x)dx+ d_3\int_{\partial Q}\frac{\partial}{\partial{\bf n}}I_h(t, x)dx+d_4\int_{\partial Q}\frac{\partial}{\partial{\bf n}}R_h(t, x)dx\\ & \phantom{ = =} +d_5\int_{\partial Q}\frac{\partial}{\partial{\bf n}}S_m(t, x)dx+d_6\int_{\partial Q}\frac{\partial}{\partial{\bf n}}E_m(t, x)dx+ d_7\int_{\partial Q}\frac{\partial}{\partial{\bf n}}I_m(t, x)dx+\int_{Q}(\Lambda_h+\Lambda_m)dx\\ & \phantom{ = =} +\int_{Q}(-d_h(S_h(t, x)+E_h(t, x)+I_h(t, x)+R_h(t, x))-d_m(S_m(t, x)+E_m(t, x)+I_m(t, x)))dx\\ & \phantom{ = =} +\int_{Q}\sigma_1(S_h(t, x)+E_h(t, x)+I_h(t, x)+R_h(t, x))\dot{B_1}(t)dx\\ & \phantom{ = =} +\int_{Q}\sigma_2(S_m(t, x)+E_m(t, x)+I_m(t, x))\dot{B_2}(t)dx\\ & \phantom{ = } \leq(\Lambda_h+\Lambda_m)|Q|-\nu N(t)+\int_{Q}\sigma_1(S_h(t, x)+E_h(t, x)+I_h(t, x)+R_h(t, x))\dot{B_1}(t)dx\\ & \phantom{ = =} +\int_{Q}\sigma_2(S_m(t, x)+E_m(t, x)+I_m(t, x))\dot{B_2}(t)dx, \end{align*} |
here |Q| stands for the volume of Q , \nu = d_h\wedge d_m .
Consider the following SDE
\begin{equation} \begin{cases} dZ(t) = [(\Lambda_h+\Lambda_m)|Q|-\nu Z(t)]dt+\int_{Q}\sigma_1(S_h(t, x)+E_h(t, x)+I_h(t, x)+R_h(t, x))dxdB_1(t)\\ \quad\quad\quad+\int_{Q}\sigma_2(S_m(t, x)+E_m(t, x)+I_m(t, x))dxdB_2(t), \\ Z(0) = N(0). \end{cases} \end{equation} | (A.1) |
By the constant variation method, the solution of equation (A.1) can be obtained as
Z(t) = \frac{(\Lambda_h+\Lambda_m)|Q|}{\nu}+\big(Z(0)-\frac{(\Lambda_h+\Lambda_m)|Q|}{\nu}\big)e^{-\nu t}+M(t), |
where M(t) = \int_{0}^{t}e^{-\nu(t-s)}\int_{Q}\sigma_1(S_h(s, x)+E_h(s, x)+I_h(s, x)+R_h(s, x))dxdB_1(s) +\int_{0}^{t}e^{-\nu(t-s)}\int_{Q}\sigma_2(S_m(s, x)+E_m(s, x)+I_m(s, x))dxdB_2(s) is a continuous local martingale with M(0) = 0\; a.s. Combining the stochastic comparison theorem, we can get that there is a constant C_0 > 0 such that N(t)\leq Z(t)\leq C_0\; \; a.s. That is, for each k , when t\in[0, \tau_k) ,
\begin{equation} \int_{Q}\{S_h(t, x)+E_h(t, x)+I_h(t, x)+R_h(t, x)+S_m(t, x)+E_m(t, x)+I_m(t, x)\}dx\leq C_0 \;\; a.s. \end{equation} | (A.2) |
Next, we continue to prove that \tau_\infty = \infty\; a.s. For any T > 0 , define V(t) = \langle S_h, S_h\rangle+\langle E_h, E_h\rangle+\langle I_h, I_h\rangle+\langle R_h, R_h\rangle+\langle S_m, S_m\rangle +\langle E_m, E_m\rangle+\langle I_m, I_m\rangle , t\in[0, \tau_k\wedge T) . Using the It\hat{o} formula, we have
\begin{equation*} \begin{split} dV(t) = &d\langle S_h, S_h\rangle+d\langle E_h, E_h\rangle+d\langle I_h, I_h\rangle+d\langle R_h, R_h\rangle+d\langle S_m, S_m\rangle +d\langle E_m, E_m\rangle+d\langle I_m, I_m\rangle\\ = &\big[2\langle S_h, d_1\Delta S_h+\Lambda_h-\lambda_{mh}(t, x)S_h-\lambda_{hh}(t, x)S_h-d_hS_h\rangle+\sigma_1^2\|S_h\|^2\big]dt+2\langle S_h, \sigma_1S_h\rangle dB_1(t)\\ &+\big[2\langle E_h, d_2\Delta E_h+\lambda_{mh}(t, x)S_h+\lambda_{hh}(t, x)S_h-(\xi_h+d_h)E_h\rangle+\sigma_1^2\|E_h\|^2\big]dt+2\langle E_h, \sigma_1E_h\rangle dB_1(t)\\ &+\big[2\langle I_h, d_3\Delta I_h+\xi_hE_h-(\gamma+d_h)I_h\rangle+\sigma_1^2\|I_h\|^2\big]dt+2\langle I_h, \sigma_1I_h\rangle dB_1(t)\\ &+\big[2\langle R_h, d_4\Delta R_h+\gamma I_h-d_hR_h\rangle+\sigma_1^2\|R_h\|^2\big]dt+2\langle R_h, \sigma_1R_h\rangle dB_1(t)\\ &+\big[2\langle S_m, d_5\Delta S_m+\Lambda_m-\theta\mu_m(kE_m+I_m)-\lambda_{hm}(t, x)S_m-d_mS_m\rangle+\sigma_2^2\|S_m\|^2\big]dt\\ &+\big[2\langle E_m, d_6\Delta E_m+\theta\mu_m(kE_m+I_m)+\lambda_{hm}(t, x)S_m-(\xi_m+d_m)E_m\rangle+\sigma_2^2\|E_m\|^2\big]dt\\ &+\big[2\langle I_m, d_7\Delta I_m+\xi_mE_m-d_mI_m\rangle+\sigma_2^2\|I_m\|^2\big]dt+2\langle S_m, \sigma_2S_m\rangle dB_2(t)\\ &+2\langle E_m, \sigma_2E_m\rangle dB_2(t)+2\langle I_m, \sigma_2I_m\rangle dB_2(t).\\ \end{split} \end{equation*} |
Integrating the two ends of the above equation from 0 to \tau_k\wedge T , taking the expectation, and using (A.2) and the fundamental inequality, yield
\begin{align*} & \mathbb{E}V(\tau_k\wedge T)-V(0))\\ & \phantom{ = } \leq 2 \mathbb{E}\int_{0}^{\tau_k\wedge T}\Big[d_1\langle S_h, \Delta S_h\rangle+\langle S_h, \Lambda_h\rangle+d_2\langle E_h, \Delta E_h\rangle+\langle E_h, \lambda_{mh}(t, x)S_h\rangle+\langle E_h, \lambda_{hh}(t, x)S_h\rangle\\ & \phantom{ = =} +d_3\langle I_h, \Delta I_h\rangle+\xi_h\langle I_h, E_h\rangle +d_4\langle R_h, \Delta R_h\rangle+\gamma\langle R_h, \Delta I_h\rangle+d_5\langle S_m, \Delta S_m\rangle+\langle S_m, \Lambda_m\rangle\\ & \phantom{ = =} +d_6\langle E_m, \Delta E_m\rangle+\theta\mu_m\langle E_m, \Delta kE_m+I_m\rangle+\langle E_m, \lambda_{hm}(t, x)S_m\rangle+d_7\langle I_m, \Delta I_m\rangle +\xi_m\langle I_m, E_m\rangle\\ & \phantom{ = =} +\frac{1}{2}\sigma_1^2\|S_h\|^2+\frac{1}{2}\sigma_1^2\|E_h\|^2+\frac{1}{2}\sigma_1^2\|I_h\|^2+ \frac{1}{2}\sigma_1^2\|R_h\|^2+\frac{1}{2}\sigma_2^2\|S_m\|^2+\frac{1}{2}\sigma_2^2\|E_m\|^2+\frac{1}{2}\sigma_2^2\|I_m\|^2\Big]dt\\ & \phantom{ = } \leq 2 \mathbb{E}\int_{0}^{\tau_k\wedge T}\Big[-d_1\|\nabla S_h\|_\ast^2+C\Lambda_h-d_2\|\nabla E_h\|_\ast^2+\alpha_m\beta_h(2\|E_h\|^2+\|E_m\|^2+\|I_m\|^2)+2\beta_{hh}\|E_h\|^2\\ & \phantom{ = =} +\beta_{hh}\|I_h\|^2-d_3\|\nabla I_h\|_\ast^2+\xi_h\|E_h\|^2+\xi_h\|I_h\|^2-d_4\|\nabla R_h\|_\ast^2+\gamma\|R_h\|^2+\gamma\|I_h\|^2-d_5\|\nabla S_m\|_\ast^2\\ & \phantom{ = =} +C\Lambda_m-d_6\|\nabla E_m\|_\ast^2+2\theta\mu_m\|E_m\|^2+\theta\mu_m\|I_m\|^2+\alpha_h\beta_m(2\|E_m\|^2+\|E_h\|^2+\|I_h\|^2)-d_7\|\nabla I_m\|_\ast^2\\ & \phantom{ = =} +\xi_m\|I_m\|^2+\xi_m\|E_m\|^2+\frac{1}{2}\sigma_1^2\|S_h\|^2+\frac{1}{2}\sigma_1^2\|E_h\|^2+\frac{1}{2}\sigma_1^2\|I_h\|^2+ \frac{1}{2}\sigma_1^2\|R_h\|^2+\frac{1}{2}\sigma_2^2\|S_m\|^2\\ & \phantom{ = =} +\frac{1}{2}\sigma_2^2\|E_m\|^2+\frac{1}{2}\sigma_2^2\|I_m\|^2\Big]dt. \end{align*} |
Thereby,
\begin{equation*} \begin{split} & \mathbb{E}V(\tau_k\wedge T)\\\leq&V(0)+2C(\Lambda_h+\Lambda_m)T+ \mathbb{E}\int_{0}^{\tau_k\wedge T}\Big[\sigma_1^2\|S_h\|^2+ (4\alpha_m\beta_h+4\beta_{hh}+2\xi_h+2\alpha_h\beta_m+\sigma_1^2)\|E_h\|^2\\ &+(2\beta_{hh}+2\xi_h+2\gamma+2\alpha_h\beta_m+\sigma_1^2)\|I_h\|^2 +(2\gamma+\sigma_1^2)\|R_h\|^2+\sigma_2^2\|S_m\|^2+(2\alpha_m\beta_h+4\theta\mu_m\\ &+4\alpha_h\beta_m+2\xi_m+\sigma_2^2)\|E_m\|^2+(2\alpha_m\beta_h+2\theta\mu_m+2\xi_m+\sigma_2^2)\|I_m\|^2\Big]dt\\ \leq&C_1+C_2 \mathbb{E}\int_{0}^{\tau_k\wedge T}(\|S_h\|^2+\|E_h\|^2+\|I_h\|^2+\|R_h\|^2+\|S_m\|^2+\|E_m\|^2+\|I_m\|^2)dt\\ = &C_1+C_2\int_{0}^{T} \mathbb{E}V(\tau_k\wedge t)dt, \end{split} \end{equation*} |
where
\begin{array}{lll} C_1 = V(0)+2C(\Lambda_h+\Lambda_m)T\\\quad\; = \|S_h^0\|^2+\|E_h^0\|^2+\|I_h^0\|^2+\|R_h^0\|^2+\|S_m^0\|^2+\|E_m^0\|^2+\|I_m^0\|^2+2C(\Lambda_h+\Lambda_m)T, \\ C_2 = \max\{4\alpha_m\beta_h+4\beta_{hh}+2\xi_h+2\alpha_h\beta_m+\sigma_1^2, \;2\beta_{hh}+2\xi_h+2\gamma+2\alpha_h\beta_m+\sigma_1^2, \;\\\quad\quad 2\alpha_m\beta_h+4\theta\mu_m+4\alpha_h\beta_m+2\xi_m+\sigma_2^2\}. \end{array} |
By taking advantage of the Gronwall inequality, we get
\begin{equation} \mathbb{E}V(\tau_k\wedge T)\leq C_1e^{C_2T}. \end{equation} | (A.3) |
Denote \varrho_k = \inf_{\|X(t, x)\|\geq k, 0 < t < \infty}V(t) for k\geq k_0 . Obviously, \varrho_k\rightarrow \infty (k\rightarrow \infty) . Combine (A.3) to get C_1e^{C_2T}\geq \mathbb{E}V(\tau_k\wedge T) = \mathbb{E}[V(\tau_k)\chi_{\{\tau_k\leq T\}}]\geq\varrho_k \mathbb{P}(\tau_k\leq T) . Setting k\rightarrow \infty , then \mathbb{P}(\tau_k\leq T) = 0 . Thence \mathbb{P}(\tau_\infty > T) = 1 . The proof is completed.
Proof. Define V(t) = \|S_h(t, x)\|^p+\|E_h(t, x)\|^p+\|I_h(t, x)\|^p+\|R_h(t, x)\|^p+\|S_m(t, x)\|^p+\|E_m(t, x)\|^p+\|I_m(t, x)\|^p . First, consider p\geq2 . Making use of the It\hat{o} formula, we obtain
\begin{equation*} \begin{split} dV(t) = &\big(p\|S_h\|^{p-2}\langle S_h, d_1\Delta S_h+\Lambda_h-\lambda_{mh}(t, x)S_h-\lambda_{hh}(t, x)S_h-d_hS_h\rangle\\ &+p\|E_h\|^{p-2}\langle E_h, d_2\Delta E_h+\lambda_{mh}(t, x)S_h+\lambda_{hh}(t, x)S_h-(\xi_h+d_h)E_h\rangle\\ &+p\|I_h\|^{p-2}\langle I_h, d_3\Delta I_h+\xi_hE_h-(\gamma+d_h)I_h\rangle+p\|R_h\|^{p-2}\langle R_h, d_4\Delta R_h+\gamma I_h-d_hR_h\rangle\\ &+p\|S_m\|^{p-2}\langle S_m, d_5\Delta S_m+\Lambda_m-\theta\mu_m(kE_m+I_m)-\lambda_{hm}(t, x)S_m-d_mS_m\rangle\\ &+p\|E_m\|^{p-2}\langle E_m, d_6\Delta E_m+\theta\mu_m(kE_m+I_m)+\lambda_{hm}(t, x)S_m-(\xi_m+d_m)E_m\rangle\\ &+p\|I_m\|^{p-2}\langle I_m, d_7\Delta I_m+\xi_mE_m-d_mI_m\rangle+\frac{1}{2}p(p-1)\sigma_1^2(\|S_h\|^p+\|E_h\|^p+\|I_h\|^p+\|R_h\|^p)\\ &+\frac{1}{2}p(p-1)\sigma_2^2(\|S_m\|^p+\|E_m\|^p+\|I_m\|^p)\big)dt+p\sigma_1(\|S_h\|^p+\|E_h\|^p+\|I_h\|^p+\|R_h\|^p)dB_1(t)\\ &+p\sigma_2(\|S_m\|^p+\|E_m\|^p+\|I_m\|^p)dB_2(t).\\ \end{split} \end{equation*} |
Integrating the two sides of the above equation and taking the supremum and expectation, we can get
\begin{equation*} \begin{split} & \mathbb{E}\sup\limits_{0\leq t\leq T}\big(\|S_h(t, x)\|^p+\|E_h(t, x)\|^p+\|I_h(t, x)\|^p+\|R_h(t, x)\|^p+\|S_m(t, x)\|^p+\|E_m(t, x)\|^p+\|I_m(t, x)\|^p\big)\\ \leq& \mathbb{E}\big(\|S_h^0(x)\|^p+\|E_h^0(x)\|^p+\|I_h^0(x)\|^p+\|R_h^0(x)\|^p+\|S_m^0(x)\|^p+\|E_m^0(x)\|^p+\|I_m^0(x)\|^p\big)\\ &+ \mathbb{E}\sup\limits_{0\leq t\leq T}\int^t_0\Big[p\|S_h(s, x)\|^{p-2}\langle S_h, \Lambda_h \rangle+p\|E_h(s, x)\|^{p-2}\langle E_h, \lambda_{mh}(s, x)S_h+\lambda_{hh}(s, x)S_h\rangle\\& +p\|I_h(s, x)\|^{p-2}\langle I_h, \xi_hE_h\rangle+p\|R_h(s, x)\|^{p-2}\langle R_h, \gamma I_h\rangle+p\|S_m(s, x)\|^{p-2}\langle S_m, \Lambda_m \rangle\\& +p\|E_m(s, x)\|^{p-2}\langle E_m, \theta\mu_m(kE_m+I_m)+\lambda_{hm}(s, x)S_m\rangle+p\|I_m(s, x)\|^{p-2}\langle I_m, \xi_mE_m\rangle\\ &+\frac{1}{2}p(p-1)\sigma_1^2\big(\|S_h(s, x)\|^p+\|E_h(s, x)\|^p+\|I_h(s, x)\|^p+\|R_h(s, x)\|^p\big)\\ &+\frac{1}{2}p(p-1)\sigma_2^2\big(\|S_m(s, x)\|^p+\|E_m(s, x)\|^p+\|I_m(s, x)\|^p\big)\Big]ds\\ &+ \mathbb{E}\sup\limits_{0\leq t\leq T}\Big|\int^t_0p\sigma_1\big(\|S_h(s, x)\|^p+\|E_h(s, x)\|^p+\|I_h(s, x)\|^p+\|R_h(s, x)\|^p\big)dB_1(s)\Big|\\ &+ \mathbb{E}\sup\limits_{0\leq t\leq T}\Big|\int^t_0p\sigma_2\big(\|S_m(s, x)\|^p+\|E_m(s, x)\|^p+\|I_m(s, x)\|^p\big)dB_2(s)\Big|.\\ \end{split} \end{equation*} |
Using the Young inequality as well as the Burkholder-Davis-Gundy inequality, we can further see that
\begin{align*} & \mathbb{E}\sup\limits_{0\leq t\leq T}\big(\|S_h(t, x)\|^p+\|E_h(t, x)\|^p+\|I_h(t, x)\|^p+\|R_h(t, x)\|^p+\|S_m(t, x)\|^p+\|E_m(t, x)\|^p+\|I_m(t, x)\|^p\big)\\ & \phantom{ = } \leq \mathbb{E}\big(\|S_h^0(x)\|^p+\|E_h^0(x)\|^p+\|I_h^0(x)\|^p+\|R_h^0(x)\|^p+\|S_m^0(x)\|^p+\|E_m^0(x)\|^p+\|I_m^0(x)\|^p\big)\\ & \phantom{ = =} + \mathbb{E}\sup\limits_{0\leq t\leq T}\int^t_0\Big[\Lambda_h^p|Q|^{\frac{p}{2}}+\Lambda_m^p|Q|^{\frac{p}{2}}+\big(p-1+\beta_{hh}^p+\frac{1}{2}p(p-1)\sigma_1^2\big)\|S_h(s, x)\|^p+\big(3(p-1)\\ & \phantom{ = =} +\xi_h^p+\alpha_h^p\beta_m^pk_m^p+\frac{1}{2}p(p-1)\sigma_1^2\big)\|E_h(s, x)\|^p+\big(p-1+\gamma^p+\alpha_h^p\beta_m^p+\frac{1}{2}p(p-1)\sigma_1^2\big)\|I_h(s, x)\|^p\\ & \phantom{ = =} +\big(p-1+\frac{1}{2}p(p-1)\sigma_1^2\big)\|R_h(s, x)\|^p+\big(p-1+\frac{1}{2}p(p-1)\sigma_2^2\big)\|S_m(s, x)\|^p+\big(\alpha_m^p\beta_h^pk_h^p+p\theta\mu_mk\\ & \phantom{ = =} +3(p-1)+\xi_m^p+\frac{1}{2}p(p-1)\sigma_2^2\big)\|E_m(s, x)\|^p+\big(\alpha_m^p\beta_h^p+\theta^p\mu_m^p+p-1+\frac{1}{2}p(p-1)\sigma_2^2\big)\|I_m(s, x)\|^p\Big]ds\\ & \phantom{ = =} +\frac{1}{2} \mathbb{E}\sup\limits_{0\leq t\leq T}\big(\|S_h(t, x)\|^p+\|E_h(t, x)\|^p+\|I_h(t, x)\|^p+\|R_h(t, x)\|^p+\|S_m(t, x)\|^p+\|E_m(t, x)\|^p\\ & \phantom{ = =} +\|I_m(t, x)\|^p\big)+16p^2\sigma_1^2 \mathbb{E}\sup\limits_{0\leq t\leq T}\int^t_0\big(\|S_h(s, x)\|^p+\|E_h(s, x)\|^p+\|I_h(s, x)\|^p+\|R_h(s, x)\|^p\big)ds\\ & \phantom{ = =} +16p^2\sigma_2^2 \mathbb{E}\sup\limits_{0\leq t\leq T}\int^t_0\big(\|S_m(s, x)\|^p+\|E_m(s, x)\|^p+\|I_m(s, x)\|^p\big)ds.\\ \end{align*} |
After organizing, we have
\begin{equation*} \begin{split} & \mathbb{E}\sup\limits_{0\leq t\leq T}\big(\|S_h(t, x)\|^p+\|E_h(t, x)\|^p+\|I_h(t, x)\|^p+\|R_h(t, x)\|^p+\|S_m(t, x)\|^p+\|E_m(t, x)\|^p+\|I_m(t, x)\|^p\big)\\ \leq& C_3+ \mathbb{E}\sup\limits_{0\leq t\leq T}\int^t_02C_4\big(\|S_h(s, x)\|^p+\|E_h(s, x)\|^p+\|I_h(s, x)\|^p+\|R_h(s, x)\|^p+\|S_m(s, x)\|^p\\ &+\|E_m(s, x)\|^p+\|I_m(s, x)\|^p\big)ds, \\ \end{split} \end{equation*} |
where
\begin{array}{ll} C_3 = 2 \mathbb{E}\big(\|S_h^0(x)\|^p+\|E_h^0(x)\|^p+\|I_h^0(x)\|^p+\|R_h^0(x)\|^p+\|S_m^0(x)\|^p+\|E_m^0(x)\|^p+\|I_m^0(x)\|^p\big) \\\quad\quad+2\big(\Lambda_h^p+\Lambda_m^p\big)|Q|^{\frac{p}{2}}T, \\ C_4 = \max\{p-1+\beta_{hh}^p+\frac{1}{2}p(p-1)\sigma_1^2+16p^2\sigma_1^2, \;3(p-1)+\xi_h^p+\alpha_h^p\beta_m^pk_m^p+\frac{1}{2}p(p-1)\sigma_1^2+16p^2\sigma_1^2, \\\quad\quad p-1+\gamma^p+\alpha_h^p\beta_m^p+\frac{1}{2}p(p-1)\sigma_1^2+16p^2\sigma_1^2, \;\alpha_m^p\beta_h^pk_h^p+p\theta\mu_mk+3(p-1)+\xi_m^p\\\quad\quad +\frac{1}{2}p(p-1)\sigma_2^2+16p^2\sigma_2^2, \;\alpha_m^p\beta_h^p+\theta^p\mu_m^p+p-1+\frac{1}{2}p(p-1)\sigma_2^2+16p^2\sigma_2^2\}. \end{array} |
The Gronwall inequality implies
\begin{equation*} \begin{split} & \mathbb{E}\sup\limits_{0\leq t\leq T}\big(\|S_h(t, x)\|^p+\|E_h(t, x)\|^p+\|I_h(t, x)\|^p+\|R_h(t, x)\|^p+\|S_m(t, x)\|^p+\|E_m(t, x)\|^p+\|I_m(t, x)\|^p\big)\\ \leq& C_3\exp\{2C_4T\}: = C_5(p). \end{split} \end{equation*} |
Next suppose 0 < p < 2 . By the Hölder inequality, we have
\begin{equation*} \begin{split} & \mathbb{E}\sup\limits_{0\leq t\leq T}\big(\|S_h(t, x)\|^p+\|E_h(t, x)\|^p+\|I_h(t, x)\|^p+\|R_h(t, x)\|^p+\|S_m(t, x)\|^p+\|E_m(t, x)\|^p+\|I_m(t, x)\|^p\big)\\ \leq&( \mathbb{E}|\sup\limits_{0\leq t\leq T}(\|S_h(t, x)\|^p+\|E_h(t, x)\|^p+\|I_h(t, x)\|^p+\|R_h(t, x)\|^p+\|S_m(t, x)\|^p+\|E_m(t, x)\|^p+\|I_m(t, x)\|^p)|^{\frac{2}{p}})^{\frac{p}{2}}\\ = &( \mathbb{E}\sup\limits_{0\leq t\leq T}(\|S_h(t, x)\|^p+\|E_h(t, x)\|^p+\|I_h(t, x)\|^p+\|R_h(t, x)\|^p+\|S_m(t, x)\|^p+\|E_m(t, x)\|^p+\|I_m(t, x)\|^p)^{\frac{2}{p}})^{\frac{p}{2}}\\ \leq&( \mathbb{E}\sup\limits_{0\leq t\leq T}7^{\frac{2-p}{p}}(\|S_h(t, x)\|^2+\|E_h(t, x)\|^2+\|I_h(t, x)\|^2+\|R_h(t, x)\|^2+\|S_m(t, x)\|^2+\|E_m(t, x)\|^2+\|I_m(t, x)\|^2))^{\frac{p}{2}}\\ \leq&(7^{\frac{2}{p}-1}C_5(2))^{\frac{p}{2}}: = C_6, \\ \end{split} \end{equation*} |
here the second inequality sign makes use of the fundamental inequality |x_1+x_2+\cdots+x_7|^r\leq7^{r-1}(|x_1|^r+|x_2|^r+\cdots+|x_7|^r), \; \forall r > 1 . This completes the proof.
The discrete version of model (2.2) is as follows
\begin{equation} \begin{cases} S_{h(i+1, j)} = S_{h(i, j)}+\Big[d_1\frac{S_{h(i, j+1)}-2S_{h(i, j)}+S_{h(i, j-1)}}{(\triangle x)^2}+\Lambda_h-\lambda_{mh(i, j)}S_{h(i, j)}-\lambda_{hh(i, j)}S_{h(i, j)}\\\quad\quad\quad\quad-d_hS_{h(i, j)}\Big]\triangle t +\sigma_1S_{h(i, j)}\zeta_{1i}\sqrt{\triangle t}+\frac{1}{2}\sigma_1^2S_{h(i, j)}^2(\zeta_{1i}^2-1)\triangle t, \\ E_{h(i+1, j)} = E_{h(i, j)}+\Big[d_2\frac{E_{h(i, j+1)}-2E_{h(i, j)}+E_{h(i, j-1)}}{(\triangle x)^2}+\lambda_{mh(i, j)}S_{h(i, j)}+\lambda_{hh(i, j)}S_{h(i, j)}\\\quad\quad\quad\quad-(\xi_h+d_h)E_{h(i, j)}\Big]\triangle t +\sigma_1E_{h(i, j)}\zeta_{1i}\sqrt{\triangle t}+\frac{1}{2}\sigma_1^2E_{h(i, j)}^2(\zeta_{1i}^2-1)\triangle t, \\ I_{h(i+1, j)} = I_{h(i, j)}+\Big[d_3\frac{I_{h(i, j+1)}-2I_{h(i, j)}+I_{h(i, j-1)}}{(\triangle x)^2}+\xi_hE_{h(i, j)}-(\gamma+d_h)I_{h(i, j)}\Big]\triangle t\\\quad\quad\quad\quad +\sigma_1I_{h(i, j)}\zeta_{1i}\sqrt{\triangle t}+\frac{1}{2}\sigma_1^2I_{h(i, j)}^2(\zeta_{1i}^2-1)\triangle t, \\ R_{h(i+1, j)} = R_{h(i, j)}+\Big[d_4\frac{R_{h(i, j+1)}-2R_{h(i, j)}+R_{h(i, j-1)}}{(\triangle x)^2}+\gamma I_{h(i, j)}-d_hR_{h(i, j)}\Big]\triangle t\\\quad\quad\quad\quad +\sigma_1R_{h(i, j)}\zeta_{1i}\sqrt{\triangle t}+\frac{1}{2}\sigma_1^2R_{h(i, j)}^2(\zeta_{1i}^2-1)\triangle t, \\ S_{m(i+1, j)} = S_{m(i, j)}+\Big[d_5\frac{S_{m(i, j+1)}-2S_{m(i, j)}+S_{m(i, j-1)}}{(\triangle x)^2}+\Lambda_m-\theta\mu_m(kE_{m(i, j)}+I_{m(i, j)}) \\\quad\quad\quad\quad-\lambda_{hm(i, j)}S_{m(i, j)}-d_mS_{m(i, j)}\Big]\triangle t +\sigma_2S_{m(i, j)}\zeta_{2i}\sqrt{\triangle t}+\frac{1}{2}\sigma_2^2S_{m(i, j)}^2(\zeta_{2i}^2-1)\triangle t, \\ E_{m(i+1, j)} = E_{m(i, j)}+\Big[d_6\frac{E_{m(i, j+1)}-2E_{m(i, j)}+E_{m(i, j-1)}}{(\triangle x)^2}+\theta\mu_m(kE_{m(i, j)}+I_{m(i, j)}) \\\quad\quad\quad\quad+\lambda_{hm(i, j)}S_{m(i, j)}-(\xi_m+d_m)E_{m(i, j)}\Big]\triangle t +\sigma_2E_{m(i, j)}\zeta_{2i}\sqrt{\triangle t}+\frac{1}{2}\sigma_2^2E_{m(i, j)}^2(\zeta_{2i}^2-1)\triangle t, \\ I_{m(i+1, j)} = I_{m(i, j)}+\Big[d_7\frac{I_{m(i, j+1)}-2I_{m(i, j)}+I_{m(i, j-1)}}{(\triangle x)^2}+\xi_mE_{m(i, j)} -d_mI_{m(i, j)}\Big]\triangle t\\\quad\quad\quad\quad +\sigma_2I_{m(i, j)}\zeta_{2i}\sqrt{\triangle t}+\frac{1}{2}\sigma_2^2I_{m(i, j)}^2(\zeta_{2i}^2-1)\triangle t, \\ \end{cases} \end{equation} | (A.4) |
where \zeta_{1i}, \zeta_{2i}(i = 1, 2, \cdots) are independent standard normal variables.
[1] |
W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics-I, Bltn. Mathcal. Biology, 53 (1991), 33–55. https://doi.org/10.1007/bf02464423 doi: 10.1007/bf02464423
![]() |
[2] | Z. Ma, Y. Zhou, J. Wu, Modeling and dynamics of infectious diseases, World Scientific Publishing, New Jersey, 2009. https://doi.org/10.1142/7223 |
[3] |
J. Li, J. Zhang, Z. Ma, Global analysis of some epidemic models with general contact rate and constant immigration, Appl. Math. Mech., 25 (2004), 396–404. https://doi.org/10.1007/bf02437523 doi: 10.1007/bf02437523
![]() |
[4] |
Y. Cai, Y. Kang, M. Banerjee, W. Wang, A stochastic SIRS epidemic model with infectious force under intervention strategies, J. Differ. Equations, 259 (2015), 7463–7502. https://doi.org/10.1016/j.jde.2015.08.024 doi: 10.1016/j.jde.2015.08.024
![]() |
[5] |
Y. Cai, Y. Kang, M. Banerjee, W. Wang, A stochastic epidemic model incorporating media coverage, Commun. Math. Sci., 14 (2016), 893–910. https://doi.org/10.4310/CMS.2016.v14.n4.a1 doi: 10.4310/CMS.2016.v14.n4.a1
![]() |
[6] |
B. Cao, M. Shan, Q. Zhang, W. Wang, A stochastic SIS epidemic model with vaccination, Phys. A, 485 (2017), 127–143. https://doi.org/10.1016/j.physa.2017.05.083 doi: 10.1016/j.physa.2017.05.083
![]() |
[7] |
Y. Cai, Y. Kang, W. Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Appl. Math. Comput., 305 (2017), 221–240. https://doi.org/10.1016/j.amc.2017.02.003 doi: 10.1016/j.amc.2017.02.003
![]() |
[8] |
M. De la Sen, S. Alonso-Quesada, A. Ibeas, On the stability of an SEIR epidemic model with distributed time-delay and a general class of feedback vaccination rules, Appl. Math. Comput., 270 (2015), 953–976. https://doi.org/10.1016/j.amc.2015.08.099 doi: 10.1016/j.amc.2015.08.099
![]() |
[9] |
W. Weera, T. Botmart, T. La-inchua, Z. Sabir, R. Núñez, M. Abukhaled, et al., A stochastic computational scheme for the computer epidemic virus with delay effects, AIMS Math., 8 (2023), 148–163. https://doi.org/10.3934/math.2023007 doi: 10.3934/math.2023007
![]() |
[10] |
T. Britton, D. Lindenstrand, Epidemic modelling: aspects where stochasticity matters, Math. Biosci., 222 (2009), 109–116. https://doi.org/10.1016/j.mbs.2009.10.001 doi: 10.1016/j.mbs.2009.10.001
![]() |
[11] |
F. Wang, X. Wang, S. Zhang, C. Ding, On pulse vaccine strategy in a periodic stochastic SIR epidemic model, Chaos, Solitons Fractals, 66 (2014), 127–135. https://doi.org/10.1016/j.chaos.2014.06.003 doi: 10.1016/j.chaos.2014.06.003
![]() |
[12] |
Z. Shi, D. Jiang, N. Shi, T. Hayat, A. Alsaedi, The impact of nonlinear perturbation to the dynamics of HIV model, Math. Methods Appl. Sci., 45 (2022), 2542–2562. https://doi.org/10.1002/mma.7939 doi: 10.1002/mma.7939
![]() |
[13] |
Z. Shi, D. Jiang, N. Shi, A. Alsaedi, Virus infection model under nonlinear perturbation: Ergodic stationary distribution and extinction, J. Franklin Inst., 359 (2022), 11039–11067. https://doi.org/10.1016/j.jfranklin.2022.03.035 doi: 10.1016/j.jfranklin.2022.03.035
![]() |
[14] |
L. Wang, H. Huang, A. Xu, W. Wang, Stochastic extinction in an SIRS epidemic model incorporating media coverage, Abstr. Appl. Anal., 2013 (2013), 891765. https://doi.org/10.1155/2013/891765 doi: 10.1155/2013/891765
![]() |
[15] |
Y. Lin, D. Jiang, Long-time behaviour of a perturbed SIR model by white noise, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1873–1887. https://doi.org/10.3934/dcdsb.2013.18.1873 doi: 10.3934/dcdsb.2013.18.1873
![]() |
[16] |
Q. Liu, D. Jiang, N. Shi, T. Hayat, A. Alsaedi, Stationarity and periodicity of positive solutions to stochastic SEIR epidemic models with distributed delay, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2479–2500. https://doi.org/10.3934/dcdsb.2017127 doi: 10.3934/dcdsb.2017127
![]() |
[17] |
Y. Zhao, D. Jiang, The threshold of a stochastic SIS epidemic model with vaccination, Appl. Math. Comput., 243 (2014), 718–727. https://doi.org/10.1016/j.amc.2014.05.124 doi: 10.1016/j.amc.2014.05.124
![]() |
[18] |
Q. Liu, D. Jiang, N. Shi, T. Hayat, A. Alsaedi, Stationary distribution and extinction of a stochastic SIRS epidemic model with standard incidence, Phys. A, 469 (2017), 510–517. https://doi.org/10.1016/j.physa.2016.11.077 doi: 10.1016/j.physa.2016.11.077
![]() |
[19] |
Z. Shi, X. Zhang, D. Jiang, Dynamics of an avian influenza model with half-saturated incidence, Appl. Math. Comput., 355 (2019), 399–416. https://doi.org/10.1016/j.amc.2019.02.070 doi: 10.1016/j.amc.2019.02.070
![]() |
[20] |
X. Zhang, D. Jiang, T. Hayat, B. Ahmad, Dynamical behavior of a stochastic SVIR epidemic model with vaccination, Phys. A, 483 (2017), 94–108. https://doi.org/10.1016/j.physa.2017.04.173 doi: 10.1016/j.physa.2017.04.173
![]() |
[21] |
Z. Shi, D. Jiang, Dynamical behaviors of a stochastic HTLV-I infection model with general infection form and Ornstein-Uhlenbeck process, Chaos, Solitons Fractals, 165 (2022), 112789. https://doi.org/10.1016/j.chaos.2022.112789 doi: 10.1016/j.chaos.2022.112789
![]() |
[22] |
Y. Lin, D. Jiang, Threshold behavior in a stochastic SIS epidemic model with standard incidence, J. Dyn. Differ. Equations, 26 (2014), 1079–1094. https://doi.org/10.1007/s10884-014-9408-8 doi: 10.1007/s10884-014-9408-8
![]() |
[23] |
X. Mao, G. Marion, E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stoch. Processes Appl., 97 (2002), 95–110. https://doi.org/10.1016/S0304-4149(01)00126-0 doi: 10.1016/S0304-4149(01)00126-0
![]() |
[24] | A. Friedman, Stochastic differential equations and applications, in Stochastic Differential Equations, Springer, Berlin, 2010. https://doi.org/10.1007/978-3-642-11079-5_2 |
[25] | D. W. Stroock, S. R. S. Varadhan, On the support of diffusion processes with applications to the strong maximum principle, in Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, 3 (1972), 333–359. |
[26] |
G. B. Arous, R. Léandre, Décroissance exponentielle du noyau de la chaleur sur la diagonale (II), Probab. Th. Rel. Fields, 90 (1991), 377–402. https://doi.org/10.1007/BF01193751 doi: 10.1007/BF01193751
![]() |
[27] |
K. Pichór, R. Rudnicki, Stability of Markov semigroups and applications to parabolic systems, J. Math. Anal. Appl., 215 (1997), 56–74. https://doi.org/10.1006/jmaa.1997.5609 doi: 10.1006/jmaa.1997.5609
![]() |
[28] |
R. Rudnicki, Long-time behaviour of a stochastic prey-predator model, Stoch. Processes Appl., 108 (2003), 93–107. https://doi.org/10.1016/S0304-4149(03)00090-5 doi: 10.1016/S0304-4149(03)00090-5
![]() |
[29] |
R. Rudnicki, K. Pichór, Influence of stochastic perturbation on prey-predator systems, Math. Biosci., 206 (2007), 108–119. https://doi.org/10.1016/j.mbs.2006.03.006 doi: 10.1016/j.mbs.2006.03.006
![]() |
[30] | R. Rudnicki, K. Pichór, M. Tyran-Kamińska, Markov semigroups and their applications, in Dynamics of Dissipation, Springer, Berlin, 2022. https://doi.org/10.1007/3-540-46122-1_9 |
[31] |
X. Mu, D. Jiang, A. Alsaedi, Analysis of a stochastic phytoplankton Czooplankton model under non-degenerate and degenerate diffusions, J. Nonlinear Sci., 32 (2022), 35. https://doi.org/10.1007/s00332-022-09787-9 doi: 10.1007/s00332-022-09787-9
![]() |
[32] |
D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/s0036144500378302 doi: 10.1137/s0036144500378302
![]() |
1. | Yirizhati Aili, Nuersimanguli Maimaitiming, Zengliang Wang, Yongxin Wang, Brain organoids: A new tool for modelling of neurodevelopmental disorders, 2024, 28, 1582-1838, 10.1111/jcmm.18560 |
Parameter | Meaning | Value or Range | Source of data |
\Lambda_h | Recruitment rate of the human population (per day) | 30 | [41] |
\Lambda_m | Recruitment rate of the mosquitoes (per day) | 2000 | Assumed |
\beta_h | Probability of Zika virus spreading from an infected mosquito to a susceptible human | 0.1–0.75 | [42] |
\beta_{hh} | Transmission rate from infected humans to susceptible humans (per day) | 0.001–0.1 | [22] |
\beta_m | Probability of Zika virus spreading from an infected human to a susceptible mosquito | 0.3–0.75 | [43] |
\alpha_h | The maximum number of bites that a susceptible human will tolerate being bitten (per day) | 0.1–50 | [39] |
\alpha_m | Number of times a mosquito would bite a human (per day) | 0.19–0.39 | [39] |
\xi_h | Average incubation rate of humans (per day) | 0.14–0.25 | [39] |
\xi_m | Average incubation rate of mosquitoes (per day) | 0.07–0.14 | [39] |
d_h | Natural mortality rate of humans (per day) | 3.65\times 10^{-5} – 4.98\times 10^{-5} |
[26] |
d_m | Natural mortality rate of mosquitoes (per day) | 0.029–0.25 | [26] |
\gamma | Recovery rate of infected humans (per day) | 0.07–0.3 | [26] |
\mu_m | Natural birth rate of mosquitoes (per day) | 0.029–0.25 | [26] |
\theta | Proportion of congenital infections in the progeny of infectious female mosquitoes | 0–0.004 | [26] |
k, k_h, k_{hh}, k_m | Modification parameters | 0.4, 0.1, 0.01, 0.1 | [25] |
Parameter | Meaning | Value or Range | Source of data |
\Lambda_h | Recruitment rate of the human population (per day) | 30 | [41] |
\Lambda_m | Recruitment rate of the mosquitoes (per day) | 2000 | Assumed |
\beta_h | Probability of Zika virus spreading from an infected mosquito to a susceptible human | 0.1–0.75 | [42] |
\beta_{hh} | Transmission rate from infected humans to susceptible humans (per day) | 0.001–0.1 | [22] |
\beta_m | Probability of Zika virus spreading from an infected human to a susceptible mosquito | 0.3–0.75 | [43] |
\alpha_h | The maximum number of bites that a susceptible human will tolerate being bitten (per day) | 0.1–50 | [39] |
\alpha_m | Number of times a mosquito would bite a human (per day) | 0.19–0.39 | [39] |
\xi_h | Average incubation rate of humans (per day) | 0.14–0.25 | [39] |
\xi_m | Average incubation rate of mosquitoes (per day) | 0.07–0.14 | [39] |
d_h | Natural mortality rate of humans (per day) | 3.65\times 10^{-5} – 4.98\times 10^{-5} |
[26] |
d_m | Natural mortality rate of mosquitoes (per day) | 0.029–0.25 | [26] |
\gamma | Recovery rate of infected humans (per day) | 0.07–0.3 | [26] |
\mu_m | Natural birth rate of mosquitoes (per day) | 0.029–0.25 | [26] |
\theta | Proportion of congenital infections in the progeny of infectious female mosquitoes | 0–0.004 | [26] |
k, k_h, k_{hh}, k_m | Modification parameters | 0.4, 0.1, 0.01, 0.1 | [25] |