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Abstract: In this study, a stochastic SIRS epidemic model that features constant immigration and
general incidence rate is investigated. Our findings show that the dynamical behaviors of the stochastic
system can be predicted using the stochastic threshold RS

0 . If RS
0 < 1, the disease will become extinct

with certainty, given additional conditions. Conversely, if RS
0 > 1, the disease has the potential to

persist. Moreover, the necessary conditions for the existence of the stationary distribution of positive
solution in the event of disease persistence is determined. Our theoretical findings are validated through
numerical simulations.
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1. Introduction

Many well-known epidemic models [1–7] have been proposed and discussed over the years. For
instance, De la Sen et al. [8] in their study analyzed an epidemic model that incorporates delayed,
distributed disease transmission and a general vaccination policy. Weera et al. conducted a numerical
investigation of a nonlinear computer virus epidemic model with time delay effects [9]. Li et al. [3]
examined an SIRS epidemic model with a general incidence rate and constant immigration, which took
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the following form 
Ṡ =aA − β f (N)S I − µS + δR,

İ =bA + β f (N)S I − (µ + γ + α)I,
Ṙ =cA + γI − (µ + δ)R,

(1.1)

where N == S + I + R and the biological implications are shown in Table 1, and the infectious force
β f (N) is a continuous and twice differentiable function of total population and β > 0 is adequate
contact rate. Furthermore, f satisfies the following hypotheses

1) f ∈ C2((0,∞); (0,∞)).
2) f ′(N) ≤ 0 for any N > 0.
3) [ f (N)N]′ ≥ 0 for any N > 0.

Table 1. Variables in model (1.1).

Variables Biological implications

S Numbers of susceptible individuals
I Numbers of infectious individuals
R Numbers of removed individuals
N Total population
A Rate of input to the total population
a Fraction of input to susceptible class
b Fraction of input to infectious class
c Fraction of input to removed class
µ Natural death rate
γ Recovery rate
α Mortality due to virulence
δ Rate of losing immunity

Their research [3] found that

R0 = β f (
A
µ

)
A(δ + (1 − c)µ)

(µ + γ + α)(µ + δ)µ

is the basic reproduction number. Furthermore, one gets

• If b = 0 and R0 < 1, then system (1.1) has a disease-free equilibrium E0 = (S 0, I0,R0) =
( A
µ
− cA

µ+δ
, 0, cA

µ+δ
), which is globally asymptotically stable (GAS).

• If R0 > 1 and b = 0, there exists a unique endemic equilibrium E∗ = (S ∗, I∗,R∗) which is GAS.
• Otherwise if b > 0, there is no disease-free equilibrium in system (1.1) and there exists a unique

endemic equilibrium P∗ = (S ∗1, I
∗
1,R

∗
1) which is locally asymptotically stable. In addition, when

α ≤ µ + 2δ, the endemic equilibrium P∗ is GAS.

However, in reality, variations in environmental factors affect the transmission coefficients of
infectious diseases. As a result, stochastic modelling is an appropriate way to model epidemics in a
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variety of situations. For example, stochastic models can account for the randomness of infectious
contacts that may occur during potential and infectious periods [10]. In comparison to deterministic
models, stochastic epidemic models can provide more realism. A growing number of authors have
recently focused on stochastic epidemic models [4–7, 11–22]. Cai et al. [7] discovered that the global
dynamics of a general SIRS epidemic model can determine the existence of either a unique stationary
distribution free of disease or a unique stationary distribution with endemic disease. Liu et al. [18]
found that in a stochastic SIRS epidemic model with standard incidence, in which two threshold
parameters RS

0 and R̂S
0 exist.

Inspired by Mao et al. [23], this paper posits that fluctuations in the environment primarily manifest
as fluctuations in the transmission coefficient,

β→ β + σḂ(t),

where B(t) is a standard Brownian motion and σ2 > 0 indicates its intensity. Then we have
dS (t) =[aA − β f (N)S (t)I(t) − µS (t) + δR(t)]dt − σ f (N)S (t)I(t)dB(t),
dI(t) =[bA + β f (N)S (t)I(t) − (µ + γ + α)I(t)]dt + σ f (N)S (t)I(t)dB(t),
dR(t) =[cA + γI(t) − (µ + δ)R(t)]dt.

(1.2)

Our study is based on the deterministic SIRS epidemic model, which has proven to be an effective
tool for investigating the spread of infectious diseases. Our approach incorporates two crucial elements:
constant immigration and a general incidence rate, which are essential for understanding the impact of
environmental fluctuations on disease dynamics.

One of the main strengths of our study lies in the fact that we have integrated these essential
components into a stochastic framework. This has enabled us to analyze the effects of random
fluctuations in disease transmission and immigration rates, which are significant factors that can
profoundly influence the dynamics of infectious diseases. By examining these effects, we can obtain a
more comprehensive understanding of the factors that contribute to the spread and persistence of
diseases. Furthermore, our research has established the necessary conditions for the existence of a
stationary distribution of positive solutions in the case of disease persistence. This novel contribution
to the field has significant implications for the development of effective strategies for managing and
controlling infectious diseases. Ultimately, our study provides valuable insights that can inform public
health policies and initiatives aimed at reducing the impact of infectious diseases on global health.

The purpose of this paper is to explore the impact of environmental fluctuations on disease dynamics
by analyzing the global dynamics of the stochastic SIRS epidemic model (1.2). The paper is structured
as follows: In Section 2, we provide some preliminaries. Section 3 outlines the necessary conditions for
disease extinction and persistence. We determine sufficient conditions for the existence of stationary
distributions for persistent solutions of the model in Section 4. The paper concludes with numerical
simulations and conclusions.

2. Preliminaries

In this paper, unless specified otherwise, let (Ω,F , {Ft}t≥0,P) denote a complete probability space
with a filtration {Ft}t≥0 that satisfies the regular conditions. Let B(t) be defined on this complete
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probability space. Denote a ∨ b = max{a, b} for any a, b ∈ R, and
X = {(x1, x2, x3) ∈ R3 : x1 > 0, x2 > 0, x3 > 0}.

Lemma 1. [24] (Strong Law of Large Numbers) Let M = {M}t≥0 be a real-valued continuous local
martingale vanishing at t = 0. Then

lim
t→∞
⟨M,M⟩t = ∞, a.s.⇒ lim

t→∞

Mt

⟨M,M⟩t
= 0 a.s.,

and
lim sup

t→∞

⟨M,M⟩t
t

< ∞ a.s.⇒ lim
t→∞

Mt

t
= 0 a.s.

Theorem 1. For any (S (0), I(0),R(0)) ∈ X, there is a unique solution (S (t), I(t),R(t)) of system (1.2)
that remain in X with probability one.

The proof is standard and hence is omitted here.

Remark 1. From Theorem 2.1, we have

[A − (α + µ)N]dt ≤ dN ≤ [A − µN]dt, dR ≥ [cA − (µ + δ)R]dt, t ∈ [0,∞), a.s.

This implies that

Γ = {(S , I,R) ∈ X :
A

α + µ
< N <

A
µ
,R >

cA
µ + δ

}

is a positively invariant set of system (1.2). Hence throughout this paper we always assume that the
initial value (S (0), I(0),R(0)) ∈ Γ.

3. Extinction

In contrast to the deterministic system (1.1), the purpose of this section is to study the dynamics of
the system (1.2) when b = 0 holds. Denote

Rs
0 := β f (

A
µ

)
A(δ + (1 − c)µ)

(µ + γ + α)(µ + δ)µ
−

σ2 f 2( A
µ
)A2

2(µ + γ + α)µ2 = R0 −
σ2 f 2( A

µ
)A2

2(µ + γ + α)µ2 .

Theorem 2. Let b = 0 and (S (t), I(t),R(t)) be a solution of system (1.2). If

σ2 > max{
β2

2(µ + γ + α)
,

βµ

f ( A
µ
)A
} (3.1)

or
Rs

0 < 1 and σ2 <
βµ

f ( A
µ
)A
, (3.2)

then
lim sup

t→∞

ln I(t)
t

< 0, lim
t→∞

S (t) =
A
µ
−

cA
µ + δ

, lim
t→∞

R(t) =
cA
µ + δ

a.s.

Mathematical Biosciences and Engineering Volume 20, Issue 6, 11212–11237.



11216

Proof. Making the use of Itô’s formula [24] to ln I, we have

d ln I = (β f (N)S − (µ + γ + α) −
σ2

2
f 2(N)S 2)dt + σ f (N)S dB(t).

Integrating the above equality from 0 to t and then dividing by t on both sides, one obtains

ln I(t) − ln I(0)
t

=

∫ t

0
ϕ(τ)dτ

t
+

G(t)
t
, (3.3)

where

ϕ(τ) = β f (N(τ))S (τ) − (µ + γ + α) −
σ2

2
f 2(N(τ))S 2(τ), G(t) =

∫ t

0
σ f (N(τ))S (τ)dB(τ).

Noting that G(t) is a local martingale (since it is a right continuous adapted process defined on
(Ω,F , {Ft}t≥0,P)) whose quadratic variation is

⟨G,G⟩t =
∫ t

0
σ2 f 2(N(τ))S 2(τ)dτ ≤ σ2 f 2(

A
µ + α

)
A2

µ2 t.

Making the use of Lemma 2.1 leads to limt→∞
G(t)

t = 0 a.s. Combining (3.1), we have

ϕ(τ) = −
σ2

2
( f (N(τ))S (τ) −

β

σ2 )2 +
β2

2σ2 − (µ + γ + α) ≤
β2

2σ2 − (µ + γ + α).

Substituting the above inequality into (3.3) and taking the limit on both sides, we obtain

lim
t→∞

ln I(t)
t
≤

β2

2σ2 − (µ + γ + α) < 0 a.s. (3.4)

Consider the case σ2 < βµ

f ( A
µ )A

, we get

ϕ(τ) = β f (N(τ))N(τ)
S (τ)
N(τ)

− (µ + γ + α) −
σ2

2
f 2(N(τ))S 2(τ)

≤ β f (
A
µ

)
A
µ

(1 −
R(τ)
N(τ)

) −
σ2

2
f 2(

A
µ

)
A2

µ2 − (µ + γ + α).
(3.5)

Noting that A
α+µ

< N < A
µ
, R > cA

µ+δ
and substituting them into (3.5), we have

ϕ(τ) ≤ β f (
A
µ

)
A(δ + (1 − c)µ)

µ(µ + δ)
−
σ2

2
f 2(

A
µ

)
A2

µ2 − (µ + γ + α) = (Rs
0 − 1)(µ + γ + α).

From (3.2) and (3.3), we get

lim
t→∞

ln I(t)
t
≤ (µ + γ + α)(Rs

0 − 1) < 0 a.s. (3.6)

Then we have
lim
t→∞

I(t) = 0, a.s., (3.7)
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which means that for arbitrary small ε > 0 there are t0 and Ωε such that P(Ωε) ≥ 1 − ε and αI ≤ ε for
t ≥ t0 and ω ∈ Ωε. In view of system (1.2), we have

A − ε
µ
≤ lim

t→∞
N(t) ≤

A
µ

a.s.

Due to the arbitrariness of ε, one has

lim
t→∞

N(t) =
A
µ

a.s. (3.8)

Similarly as getting equality (3.8), we have

lim
t→∞

R(t) =
cA
µ + δ

a.s. (3.9)

In view of (3.7)–(3.9), we have

lim
t→∞

S (t) =
A
µ
−

cA
µ + δ

a.s.

□

Remark 2. According to Theorem 3.1, if Rs
0 < 1 and σ is not large, the disease will inevitably die out.

It is worth noting that the expressions Rs
0 and R0 reveal that Rs

0 < R0. Furthermore, if σ = 0, Rs
0 = R0.

In simpler terms, the conditions for the disease to die out in system (1.2) are considerably easier than
those in the corresponding deterministic system (1.1).

4. Asymptotic stability

In this section, we will prove that if b = 0 and Rs
0 > 1 or b > 0, the densities of the distributions of

the solutions to system (1.2) can converge in L1 to an invariant density.

Theorem 3. The distribution of (S (t), I(t),R(t)) has a density U(t, x, y, z) for t > 0. If b = 0 and Rs
0 > 1

or b > 0, then there is a unique density U∗(x, y, z) such that

lim
t→∞

$
Γ

|U(t, x, y, z) − U∗(x, y, z)|dxdydz = 0.

The following steps constitute the proof of Theorem 4.1 above:

• First, the kernel function of (S (t), I(t),R(t)) is absolutely continuous.
• We demonstrate that the kernel function is positive on X.
• The Markov semigroup is either sweeping with respect to compact sets or asymptotically stable.
• Due to the presence of Khasminskiǐ function, we exclude sweeping.

For definitions related to Markov semigroups and their asymptotic properties, the reader is referred
to the papers [25–31]. We will show this by Lemmas 4.1–4.5.

Lemma 2. For t > 0 and any initial value (x0, y0, z0) ∈ X, the transition probability function
P(t, x0, y0, z0, B) has a continuous density k(t, x, y, z; x0, y0, z0).

Mathematical Biosciences and Engineering Volume 20, Issue 6, 11212–11237.



11218

Proof. Similar to the proof method in [31], the Lie bracket is given by

[
a⃗, b⃗

]
j
(u) =

3∑
i=1

(
ai
∂b j

∂ui
(u) − bi

∂a j

∂ui
(u)

)
, j = 1, 2, 3.

Let a0(S , I,R) =


aA − β f (N)S I − µS + δR

bA + β f (N)S I − (µ + γ + α)I
cA + γI − (µ + δ)R

 and a1(S , I,R) =


−σ f (N)S I
σ f (N)S I

0

. Direct calculation

leads to

a2 = [a0, a1] =


a21

a22

−σγ f (N)S I

 ,
with

a21 = − (A − µN − αI)σS I f ′(N) − σ f (N)(β f ′(N)S 2I2 + (aA + δR)I + (bA − (µ + γ + α)I)S ),
a22 =σ f ′(N)S I(A − µN − αI) + σ f (N)(I(aA − (2µ + γ + α)S + δR) + bAS ),

and

a3 = [a1, a2] =


a31

a32

σ2γS I f 2(N)(I − S )

 ,
where

a31 =σ
2βS 2I2 f 2(N) f ′(N)(I − 2S ) + σ2 f 2(N)(−µS 2I − (aA + δR)I2 + bAS 2)
− σ2 f (N) f ′(N)S I(β f ′(N)S 2I2 + µS I),

a32 =σ
2 f 2(N)(µS I + β f ′(N)S 2I3 + (aA + δR)I2 + µS 2I − bAS 2) + σ2 f (N) f ′(N)S I(β f ′(N)S 2I2 + µS I).

Therefore, we have∣∣∣a1 a2 a3

∣∣∣ = − σ{σ2γS I f 2(N)(I − S )(a21 + a22) + σγ f (N)S I(a31 + a32)} < 0.

According to Hörmander Theorem [23], one obtains that P(t, x0, y0, z0, B) has a continuous density
k(t, x, y, z; x0, y0, z0).

Next, fixing a point (x0, y0, z0) ∈ X and a function ψ ∈ L2([0,T ] ;R), we have

xψ(t) =x0 +

∫ t

0
( f1(xψ(τ), yψ(τ), zψ(τ)) − σψxψ(τ)yψ(τ) f (Nψ(τ)))dτ,

yψ(t) =y0 +

∫ t

0
( f2(xψ(τ), yψ(τ), zψ(τ)) − σψxψ(τ)yψ(τ) f (Nψ(τ)))dτ,

zψ(t) =z0 +

∫ t

0
f3(xψ(τ), yψ(τ), zψ(τ))dτ,

(4.1)

where
Nψ = xψ + yψ + zψ,

f1 = aA − β f (x + y + z)xy − µx + δz,

f2 = bA + β f (x + y + z)xy − (µ + γ + α)y,
f3 = cA + γy − (µ + δ)z.
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Let DX0;ψ be the Fréchet derivative. If for some ψ ∈ L2([0,T ];R), the rank of DX0;ψ is 3, then
k(T, x, y, x; x0, y0, z0) > 0 for X = Xψ(T ). Let

Ψ(t) = f ′(Xψ(t)) + ψg′(Xψ(t)),

where f ′ and g′ are the Jacobians of

f =


f1

f2

f3

 , g =


−σxy f (x + y + z)
σxy f (x + y + z)

0

 .
For T ≥ t ≥ t0 ≥ 0, let Q(t, t0) be a matrix function such that Q(t0, t0) = Id, ∂Q(t,t0)

∂t = Ψ(t)Q(t, t0). Then

DX0;ψh =
∫ T

0
Q(T, τ)g(τ)h(τ)dτ.

□

Lemma 3. For each (x0, y0, z0), (x, y, z) ∈ Γ, there is T > 0 satistying k(T, x, y, z; x0, y0, z0) > 0.

Proof. Since we only need to find a continuous control function ψ, system (4.1) can be rewritten
as follows 

x′ψ(t) = f1(xψ(t), yψ(t), zψ(t)) − σψxψ(t)yψ(t) f (Nψ(t)),
y′ψ(t) = f2(xψ(t), yψ(t), zψ(t)) − σψxψ(t)yψ(t) f (Nψ(t)),

z′ψ(t) = f3(xψ(t), yψ(t), zψ(t)),
(4.2)

First, we verify that the rank of DX0;ψ is 3. Let ε ∈ (0,T ) and

h(t) =
χ[T−ε,T ]

xψ(t)yψ(t) f (Nψ(t))
, t ∈ [0,T ],

where χ denotes the indicator function of the interval [T − ε,T ]. Since

Q(T, τ) = Id + Ψ(T )(τ − T ) +
1
2
Ψ2(T )(τ − T )2 + ◦((τ − T )2),

we have

DX0;ψh = εv −
ε2

2
Ψ(T )v +

ε3

6
Ψ2(T )v + ◦(ε3),

where v =


−σ

σ

0

. Direct calculation leads to

Ψ(T )v = σ


(β + ψσ) f (N)(I − S ) + µ

(β + ψσ) f (N)(I − S ) − (µ + γ + α)
γ

 ,

Ψ2(T )v = σ


c11

c21

σγ(β + ψσ)(S − I) f (N) − σγ(2µ + γ + α + δ)

 ,
Mathematical Biosciences and Engineering Volume 20, Issue 6, 11212–11237.
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where

c11 = − σ(S − I)2(β + ψσ)2 f 2(N) + σ(β + ψσ)(2µ(S − I) + (α + γ)S ) f (N)
+ σ(γδ − µ2) + σ(β + ψσ)(α + γ)S I f ′(N),

c21 =σ(S − I)2(β + ψσ)2 f 2(N) + σ(β + ψσ)(−2(αS − µI) + (α + γ)I − 2S (µ + γ)) f (N)
− σ(β + ψσ)(α + γ)S I f ′(N) + σ(µ + γ + α)2.

Thus the rank of DX0;ψ is 3.
Then let wψ = xψ + yψ + zψ, (4.2) becomes

x′ψ(τ) =g1(xψ(τ),wψ(τ), zψ(τ)) − σψxψ(τ)(wψ(τ) − xψ(τ) − zψ(τ)) f (wψ(τ)),

w′ψ(τ) =g2(xψ(τ),wψ(τ), zψ(τ)),

z′ψ(τ) =g3(xψ(τ),wψ(τ), zψ(τ)),

(4.3)

where
g1 = aA − β f (w)x(w − x − z) − µx + δz,

g2 = bA − (µ + α)w + α(x + z),
g3 = cA + γ(w − x) − (γ + µ + δ)z.

(4.4)

Let

Γ0 =

{
(x,w, z) ∈ X : 0 < x < w,

cA
µ + δ

< z < w and
A

α + µ
< w <

A
µ

}
. (4.5)

First, we find a positive constant T and a differentiable function

wψ : [0,T ]→
(

A
α + µ

,
A
µ

)
such that wψ(0) = w0, wψ(T ) = w1, w′ψ(0) = g2(x0,w0, z0) = wd

0, w′ψ(T ) = g2(x1,w1, z1) = wd
T and

A − (α + µ)wψ(t) < w′ψ(t) < A − µwψ(t), t ∈ [0,T ].

We split the construction of the function wψ on three intervals [0, τ], [τ,T − τ] and [T − τ,T ], where
0 < τ < T/2. Let

ξ =
1
2

min
{

w0 −
A

α + µ
,w1 −

A
α + µ

,
A
µ
− w0,

A
µ
− w1

}
.

If wψ ∈
(

A
α+µ
+ θ, A

µ
− θ

)
, we have

A − (α + µ)wψ(t) < −(α + µ)θ < 0, 0 < µθ < A − µwψ(t), t ∈ [0,T ].

Then we construct a C2-function wψ: [0, τ]→
(

A
α+µ
+ θ, A

µ
− θ

)
such that

wψ(0) = w0, w′ψ(0) = wd
0, w′ψ(τ) = 0,

and for t ∈ [0, τ], wψ satisfies

A − (α + µ)wψ(t) < w′ψ(t) < A − µwψ(t).

Mathematical Biosciences and Engineering Volume 20, Issue 6, 11212–11237.



11221

Analogously, we can construct a C2-function wψ: [T − τ,T ]→
(

A
α+µ
+ θ, A

µ
− θ

)
such that

wψ(T ) = w1, w′ψ(T ) = wd
T , w′ψ(T − τ) = 0,

and for t ∈ [T − τ,T ], wψ satisfies

A − (α + µ)wψ(t) < w′ψ(t) < A − µwψ(t).

Taking T sufficiently large, then we can extend the function wψ: [0, τ]
⋃

[T − τ,T ] →
(

A
α+µ
+ θ, A

µ
− θ

)
to a C2-function wψ defined on the whole interval [0,T ] such that

A − (α + µ)wψ(t) < w′ψ(t) < A − µwψ(t).

Thus, we can find C1-functions xψ and zψ that satisfy (4.3). Finally we can determine a continuous
function ψ. and T > 0 such that xψ(0) = x0, wψ(0) = w0, zψ(0) = z0, xψ(T ) = x, wψ(T ) = w, zψ(T ) = z.
This completes the proof. □

Lemma 4. If b = 0 and Rs
0 > 1 or b > 0. For {P(t)}t≥0 and every density g, one has

lim
t→∞

$
Γ

P(t)g(x, y, z)dxdydz = 1.

Proof. System (1.2) can be rewriten as
dS = g1(S ,N,R)dt − σS (N − S − R) f (N)dB(t),

dN = g2(S ,N,R)dt,
dR = g3(S ,N,R)dt.

(4.6)

From Remark 2.1, we get

A − (α + µ)N <
dN
dt

< A − µN and
dR
dt

> cA − (µ + δ)R for t ∈ (0,∞) a.s. (4.7)

For almost every w ∈ Ω, there is t0 ∈ t0(w) such that

A
α + µ

< N(t,w) <
A
µ

and R(t,w) >
cA
µ + δ

for t > t0.

As a matter of fact, there exist three possible cases:
1) N(0,w) ∈

(
A
α+µ

, A
µ

)
. In this case, our statement is obvious from (4.7).

2) N(0,w) ∈
(
0, A

α+µ

)
. Assume that our claim is not satisfied. Then there is Ω′ ⊂ Ω with P(Ω′) > 0

such that N(t,w) ∈ (0, A
α+µ

),w ∈ Ω′. By (4.7), we obtain that for any w ∈ Ω′, N(t,w) is strictly
increasing on [0,∞) and

lim
t→∞

N(t,w) =
A

α + µ
, w ∈ Ω′.

According to system (4.6), we get that limt→∞ S (t,w) = limt→∞ R(t,w) = 0, w ∈ Ω′ and thus,
limt→∞ I(t,w) = A

α+µ
, w ∈ Ω′.
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Consider the case b = 0, making the use of Itô’s formula, we have

d ln I =
(
β f (N)S − (µ + γ + α) −

σ2

2
S 2 f 2(N)

)
dt + σS f (N)dB(t).

Thus

ln I(t) − ln I(0)
t

=
1
t

∫ t

0

(
β f (N(τ))S (τ) − (µ + γ + α) −

σ2

2
S 2(τ) f 2(N(τ))

)
dτ +

1
t

∫ t

0
σS (τ) f (N(τ))dB(τ)

=
1
t

∫ t

0

(
β f (N(τ))S (τ) − (µ + γ + α) −

σ2

2
S 2(τ) f 2(N(τ))

)
dτ +

G(t)
t
,

where G(t) := 1
t

∫ t

0
σS (τ) f (N(τ))dB(τ). Applying Lemma 2.1, we have

lim
t→∞

G(t)
t
= 0 a.s.

Thus, due to S (t), I(t), f (N(t)) are continuous,

lim
t→∞

1
t

∫ t

0

(
β f (N(τ))S (τ) − (µ + γ + α) −

σ2

2
S 2(τ) f 2(N(τ))

)
dτ + lim

t→∞

G(t)
t
= −(µ + γ + α).

This contradicts the assumption

lim
t→∞

ln I(t) − ln I(0)
t

= 0 a.s.

Then let us consider the case b > 0. Since limt→∞ N(t,w) = A
α+µ

and
limt→∞ S (t,w) = limt→∞ R(t,w) = 0 for w ∈ Ω′, which contradicts that R(t,w) > 0 for w ∈ Ω′,
t ∈ (0,∞) and the claim follows.

3) N(0,w) ∈ ( A
µ
,∞). We suppose, by contradiction, and analogous arguments to 2), that there is

Ω′ ⊂ Ω with P(Ω′) > 0 such that

lim
t→∞

N(t,w) =
A
µ
,w ∈ Ω′.

Firstly, consider the case b = 0, by the second and third equations of (4.6), for any w ∈ Ω′, one gets

N(t,w) = e−(µ+α)t
(
N(0,w) +

∫ t

0
e(µ+α)τ(A + α(S (τ,w) + R(τ,w)))dτ

)
,

R(t,w) = e−(µ+δ)t
(
R(0,w) +

∫ t

0
e(µ+δ)τ(cA + γI(τ,w))dτ

)
.

For all w ∈ Ω′, one has

lim
t→∞

S (t,w) =
A
µ
−

cA
µ + δ

, lim
t→∞

I(t,w) = 0, lim
t→∞

R(t,w) =
cA
µ + δ

a.s.
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Therefore

lim
t→∞

ln I(t) − ln I(0)
t

= lim
t→∞

1
t

∫ t

0

(
β f (N(τ))S (τ) − (µ + γ + α) −

σ2

2
S 2(τ) f 2(N(τ))

)
dτ + lim

t→∞

G(t)
t

= lim
t→∞

1
t

∫ t

0

(
β f (N(τ))S (τ) − (µ + γ + α) −

σ2

2
S 2(τ) f 2(N(τ))

)
dτ

= β f (
A
µ

)
A(δ + (1 − c)µ)

µ(µ + δ)
− (µ + γ + α) −

σ2

2

(
A
µ
−

cA
µ + δ

)2

f 2(
A
µ

)

> β f (
A
µ

)
A(δ + (1 − c)µ)

µ(µ + δ)
− (µ + γ + α) −

σ2

2
A2

µ2 f 2(
A
µ

)

= (µ + γ + α)(Rs
0 − 1)

> 0 a.s. on Ω′.

This contradicts the assumption limt→∞ I(t) = 0 a.s. In other words, for almost all w ∈ Ω, there is
t0 = t0(w) such that

A
α + µ

< N(t,w) <
A
µ

for t > t0.

When b > 0, we get that I(t,w) > 0 for t ∈ (0,∞) and w ∈ Ω′. This contradicts the assumption
limt→∞ N(t,w) = A

µ
, w ∈ Ω′ and the claim holds.

Similar to the proof of 2) and 3), one obtains that for almost all w ∈ Ω, there is t1 = t1(w) such that

R(t,w) >
cA
µ + δ

for t > t1.

□

Lemma 5. {P(t)}t≥0 is asymptotically stable or is sweeping with respect to compact sets.

Proof. In view of Lemma 4.1, {P(t)}t≥0 is an integral Markov semigroup with kernel
k(t, x, y, z; x0, y0, z0). According to Lemma 4.3, it suffices to consider the restriction of {P(t)}t≥0 to the
space L1(Γ). By Lemma 4.2, one gets ∫ ∞

0
P(t)gdt > 0 a.s.

on Γ, for every g ∈ D. Then {P(t)}t≥0 is asymptotically stable or is sweeping with respect to compact
sets. □

Lemma 6. Assume that b = 0 and Rs
0 > 1 or b > 0, then {P(t)}t≥0 is asymptotically stable.

Proof. From Lemma 4.4, {P(t)}t≥0 satisfies the Foguel alternative. In order to exclude sweeping it is
sufficient to construct a nonnegative C2-Khasminskiǐ function V and a closed set Dϵ ∈ Σ such that

sup
(S ,I,R)∈X\Dϵ

A ∗V(S , I,R) < 0.
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First of all, we consider the case b = 0 and Rs
0 > 1. Define

H =M(− ln I − ℓ1N + ℓ2R) − ln S − ln(
A
µ
− N) − ln(N −

A
µ + α

) − ln(R −
cA
µ + δ

)

:=MV1 + V2 + V3 + V4 + V5,

where V1 = − ln I − ℓ1N + ℓ2R, V2 = − ln S , V3 = − ln( A
µ
− N), V4 = − ln(N − A

µ+α
), V5 = − ln(R − cA

µ+δ
),

ℓ1 =
β f ( A

µ )

µ
, ℓ2 =

β f ( A
µ )

µ+δ
and M is a positive constant satisfying

βA
µ

f (
A

α + µ
) + 4µ + α + δ +

σ2

2
A2

µ2 f 2(
A

α + µ
) ≤ M(µ + γ + α)(Rs

0 − 1) − 2. (4.8)

It is easy to find that H reaches a minimum at (S ∗, I∗,R∗). Then we define

V = MV1 + V2 + V3 + V4 + V5 − H(S ∗, I∗,R∗).

Thus we have

A ∗V1 = − βS f (N) + (µ + γ + α) +
σ2

2
S 2 f 2(N) − ℓ1A + ℓ1µN + ℓ1αI + ℓ2cA + ℓ2γI − ℓ2(µ + δ)R

≤ − β f (
A
µ

)S + ℓ1µS + ℓ1µR − ℓ2(µ + δ)R + (µ + γ + α) +
σ2

2
A2

µ2 f 2(
A
µ

)

− ℓ1A + ℓ2cA + (ℓ1µ + ℓ1α + ℓ2γ)I

=(µ + γ + α) +
σ2

2
A2

µ2 f 2(
A
µ

) − ℓ1A + ℓ2cA + (ℓ1µ + ℓ1α + ℓ2γ)I

= − β f (
A
µ

)
A(δ + (1 − c)µ)

µ(µ + δ)
+ (µ + γ + α) +

σ2

2
A2

µ2 f 2(
A
µ

) + (ℓ1µ + ℓ1α + ℓ2γ)I

= − (µ + γ + α)(Rs
0 − 1) + (ℓ1µ + ℓ1α + ℓ2γ)I.

Similarly, we obtain

A ∗V2 = − (
aA
S
− βI f (N) − µ +

δR
S
−
σ2

2
I2 f 2(N))

≤ −
aA
S
+ β

A
µ

f (
A

α + µ
) + µ +

σ2

2
A2

µ2 f 2(
A

α + µ
),

A ∗V3 = µ −
αI

A
µ
− N

,

A ∗V4 = −
A − µN − αI

N − A
µ+α

≤ µ + α −
αI

N − A
µ+α

and

A ∗V5 = −
cA + γI − (µ + δ)R

R − cA
µ+δ

= µ + δ −
γI

R − cA
µ+δ

.
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Therefore

A ∗V ≤ − M(µ + γ + α)(Rs
0 − 1) + M(ℓ1µ + ℓ1α + ℓ2γ)I −

aA
S
−

αI
A
µ
− N
−

αI
N − A

µ+α

−
γI

R − cA
µ+δ

+
βA
µ

f (
A

α + µ
) + 4µ + α + δ +

σ2

2
A2

µ2 f 2(
A

α + µ
).

Define
Dϵ = {(S , I,R) ∈ Γ : ϵ ≤ S , ϵ ≤ I,

cA
µ + δ

+ ϵ2 ≤ R,
A

µ + α
+ ϵ2 ≤ N ≤

A
µ
− ϵ2},

where ϵ ∈ (0, 1) is sufficiently small satisfying

−
aA
ϵ
+ M(ℓ1µ + ℓ1α + ℓ2γ)

A
µ
+ β

A
µ

f (
A

α + µ
) + 4µ + α + δ +

σ2

2
A2

µ2 f 2(
A

α + µ
) < −1, (4.9)

ϵ <
1

M(ℓ1µ + ℓ1α + ℓ2γ)
, (4.10)

−
γ

ϵ
+ M(ℓ1µ + ℓ1α + ℓ2γ)

A
µ
+ β

A
µ

f (
A

α + µ
) + 4µ + α + δ +

σ2

2
A2

µ2 f 2(
A

α + µ
) < −1. (4.11)

−
α

ϵ
+ M(ℓ1µ + ℓ1α + ℓ2γ)

A
µ
+ β

A
µ

f (
A

α + µ
) + 4µ + α + δ +

σ2

2
A2

µ2 f 2(
A

α + µ
) < −1. (4.12)

Denote

D1 = {(S , I,R) ∈ Γ : S < ϵ}, D2 = {(S , I,R) ∈ Γ : I < ϵ}, D3 = {(S , I,R) ∈ Γ : I ≥ ϵ,R <
cA
µ + δ

+ ϵ2},

D4 = {(S , I,R) ∈ Γ : I ≥ ϵ,
A
µ
− ϵ2 < N}, D5 = {(S , I,R) ∈ Γ : I ≥ ϵ,N <

A
µ + α

+ ϵ2}.

Then we prove that A ∗V(S , I,R) < −1 for any (S , I,R) ∈ Γ \ Dϵ = D1
⋃

D2
⋃

D3
⋃

D4
⋃

D5.
Case 1. For any (S , I,R) ∈ D1, from (4.9),

A ∗V ≤ −
aA
S
+ M(ℓ1µ + ℓ1α + ℓ2γ)

A
µ
+ β

A
µ

f (
A

α + µ
) + 4µ + α + δ +

σ2

2
A2

µ2 f 2(
A

α + µ
)

< −
aA
ϵ
+ M(ℓ1µ + ℓ1α + ℓ2γ)

A
µ
+ β

A
µ

f (
A

α + µ
) + 4µ + α + δ +

σ2

2
A2

µ2 f 2(
A

α + µ
)

< − 1.

Thus
A ∗V < −1 for any (S , I,R) ∈ D1.

Case 2. For any (S , I,R) ∈ D2, from (4.8) and (4.10),

A ∗V ≤ − M(µ + γ + α)(Rs
0 − 1) + M(ℓ1µ + ℓ1α + ℓ2γ)ϵ + β

A
µ

f (
A

α + µ
) + 4µ + α + δ +

σ2

2
A2

µ2 f 2(
A

α + µ
)

< − 2 + 1
= − 1.
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Therefore
A ∗V < −1 for any (S , I,R) ∈ D2.

Case 3. For any (S , I,R) ∈ D3, from (4.11),

A ∗V ≤ −
γI

R − cA
µ+δ

+ M(ℓ1µ + ℓ1α + ℓ2γ)I + β
A
µ

f (
A

α + µ
) + 4µ + α + δ +

σ2

2
A2

µ2 f 2(
A

α + µ
)

< −
γϵ

ϵ2 + M(ℓ1µ + ℓ1α + ℓ2γ)
A
µ
+ β

A
µ

f (
A

α + µ
) + 4µ + α + δ +

σ2

2
A2

µ2 f 2(
A

α + µ
)

= −
γ

ϵ
+ M(ℓ1µ + ℓ1α + ℓ2γ)

A
µ
+ β

A
µ

f (
A

α + µ
) + 4µ + α + δ +

σ2

2
A2

µ2 f 2(
A

α + µ
)

< − 1.

Hence
A ∗V < −1 for any (S , I,R) ∈ D3.

Case 4. For any (S , I,R) ∈ D4, from (4.12),

A ∗V ≤ −
αI

A
µ
− N
+ M(ℓ1µ + ℓ1α + ℓ2γ)I + β

A
µ

f (
A

α + µ
) + 4µ + α + δ +

σ2

2
A2

µ2 f 2(
A

α + µ
)

≤ −
α

ϵ
+ M(ℓ1µ + ℓ1α + ℓ2γ)

A
µ
+ β

A
µ

f (
A

α + µ
) + 4µ + α + δ +

σ2

2
A2

µ2 f 2(
A

α + µ
)

< − 1,

Then
A ∗V < −1 for any (S , I,R) ∈ D4.

Case 5. For any (S , I,R) ∈ D5, from (4.12),

A ∗V ≤ −
αI

N − A
µ+α

+ M(ℓ1µ + ℓ1α + ℓ2γ)I + β
A
µ

f (
A

α + µ
) + 4µ + α + δ +

σ2

2
A2

µ2 f 2(
A

α + µ

≤ −
α

ϵ
+ M(ℓ1µ + ℓ1α + ℓ2γ)

A
µ
+ β

A
µ

f (
A

α + µ
) + 4µ + α + δ +

σ2

2
A2

µ2 f 2(
A

α + µ
)

< − 1.

Thus
A ∗V < −1 for any (S , I,R) ∈ D5.

In summary,
sup

(S ,I,R)∈Γ\Dϵ

A ∗V(S , I,R) < −1.

Using similar arguments to those in [27], we can obtain that {P(t)}t≥0 is asymptotically stable.
Next, we consider the case b > 0, define

E = − ln S − ln I − ln(R −
cA
µ + δ

) − ln(N −
A

µ + α
) − ln(

A
µ
− N).
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Obviously, E has a minimum point (S 1∗, I1∗,R1∗) in the interior of Γ. Then we define

W = − ln S − ln I − ln(R −
cA
µ + δ

) − ln(N −
A

µ + α
) − ln(

A
µ
− N) − E(S 1∗, I1∗,R1∗).

Then we have

A ∗W ≤ −
aA
S
−

bA
I
−

γI
R − cA

µ+δ

−
αI

A
µ
− N
−

αI
N − A

µ+α

+ 5µ + 2α + γ + δ +
βA
µ

f (
A

µ + α
) +

σ2A2

µ2 f 2(
A

µ + α
).

Similarly, define

Uϵ1 = {(S , I,R) ∈ Γ : ϵ1 ≤ S , ϵ1 ≤ I,
cA
µ + δ

+ ϵ2
1 ≤ R,

A
µ + α

+ ϵ2
1 ≤ N ≤

A
µ
− ϵ2

1 },

where ϵ1 ∈ (0, 1) is sufficiently small satisfying

−
aA
ϵ1
+ 5µ + 2α + γ + δ +

βA
µ

f (
A

µ + α
) +

σ2A2

µ2 f 2(
A

µ + α
) < −1,

−
bA
ϵ1
+ 5µ + 2α + γ + δ +

βA
µ

f (
A

µ + α
) +

σ2A2

µ2 f 2(
A

µ + α
) < −1,

−
γ

ϵ1
+ 5µ + 2α + γ + δ +

βA
µ

f (
A

µ + α
) +

σ2A2

µ2 f 2(
A

µ + α
) < −1,

−
α

ϵ1
+ 5µ + 2α + γ + δ +

βA
µ

f (
A

µ + α
) +

σ2A2

µ2 f 2(
A

µ + α
) < −1.

For convenience, we divide Γ \ Uϵ1 as

U1 = {(S , I,R) ∈ Γ : S < ϵ1}, U2 = {(S , I,R) ∈ Γ : I < ϵ1}, U3 = {(S , I,R) ∈ Γ : I ≥ ϵ1,R <
cA
µ + δ

+ϵ2
1 },

U4 = {(S , I,R) ∈ Γ : I ≥ ϵ1,
A
µ
− ϵ2

1 < N}, U5 = {(S , I,R) ∈ Γ : I ≥ ϵ1,N <
A

µ + α
+ ϵ2

1 }.

The rest of the proof is omitted here due to it is similar to the case of b = 0. This completes the proof.
□

Remark 4.1. The stationary distribution of the correct solution refers to the long-term behavior
of a stochastic system when the probability of the disease persisting is not zero. In other words,
if the random threshold Rs

0 is greater than 1, the disease may not be eradicated and will persist in
the population. In this case, the stable distribution of the correct solution refers to the probability
distribution of infected individuals in the population over time once the system has reached a steady
state. This distribution is said to be stationary because it does not change over time, while the correct
solution refers to the non-zero probability of individuals being infected.

Remark 4.2. According to Theorems 3.1 and 4.1, if Rs
0 < 1, the disease will become extinct under

mild additional conditions, whereas if Rs
0 > 1, the disease will be stochastically persistent. The value

of Rs
0 can determine the extinction of the disease or not, and thus it can be considered as a threshold

for the stochastic system (1.2).
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5. Numerical simulations

In this section, we give several numerical examples to support our results. Employing Milstein’s
high-order method [32], the discretized system is



S k+1 =S k + [aA − β f (Nk)S kIk − µS k + δRk]∆t − σ f (Nk)S kIk
√
∆tϱk

+
1
2
σ2 f (Nk)S k(Ik)2( f ′(Nk)S k + f (Nk))(ϱ2

k − 1)∆t,

Ik+1 =Ik + [bA + β f (Nk)S kIk − (µ + γ + α)Ik]∆t + σ f (Nk)S kIk
√
∆tϱk

+
1
2
σ2 f (Nk)Ik(S k)2( f ′(Nk)Ik + f (Nk))(ϱ2

k − 1)∆t,

Rk+1 =Rk + [cA + γI − (µ + δ)Rk]∆t,

(5.1)

where the time increment ∆t > 0, ϱk for k = 1, 2, ..., n are Gaussian random variables following the
standard normal distribution.

5.1. Threshold dynamics with the standard incidence

In this part, we focus on the dynamical behavior of system (1.2) with standard incidence. Let

f (N) =
λ

N
.

Assume

A = 6, a = 0.9, β = 0.1, α = 0.2, µ = 0.02, δ = 0.1,
λ = 10, γ = 0.5, S (0) = 500, I(0) = 1, R(0) = 1,

(5.2)

Parameters b, c and σ will take different values in different examples.

Example 1. (Stationary distribution) Let b = 0 and c = 0.1, then we obtain R0 = 1.3657 > 1.
From [3], the disease of the deterministic system (1.1) will persist in a long term (Figure 1).

For system (1.2), let σ = 0.01 and one obtains

Rs
0 = R0 −

σ2 f 2( A
µ
)A2

2(µ + γ + α)µ2 = 1.3588 > 1.

From Theorem 4.1, system (1.2) admits an ergodic stationary distribution (Figure 1).

For the case with b = 0.1 and c = 0, we choose σ = 0.075 such that Rs
0 = R0−

σ2 f 2( A
µ )A2

2(µ+γ+α)µ2 = 0.9983 <
1. From Theorem 4.1, system (1.2) admits an ergodic stationary distribution (Figure 2).
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Figure 1. The pictures on the left present the numbers of S , I and R of system (1.2) with
b = 0 and Rs

0 = 1.3588, and its deterministic system (1.1) with R0 = 1.3657. The pictures
on the right show the corresponding frequency histogram of S , I and R with 50,000 iteration
points, respectively. The run time of our code is about 1.6488 seconds on a standard computer
with a 2.0 GHz processor and 8 GB of RAM.
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Figure 2. The pictures on the left present the numbers of S , I and R of system (1.2) with
b = 0.1 and Rs

0 = 0.9983, and its deterministic system (1.1) with R0 = 1.3657. The pictures
on the right show the corresponding frequency histogram of S , I and R with 50,000 iteration
points, respectively. The run time of our code is about 1.7667 seconds.

Example 2. (Extinction) Let b = 0, c = 0.1, σ = 0.1, and the other parameters are shown in (5.2)
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such that

σ2 −max{
β2

2(µ + γ + α)
,

βµ

f ( A
µ
)A
} = 1.7347 × 10−18 > 0,

then from Theorem 3.1, the disease of system (1.2) will become extinct, see Figure 3.

Let b = 0, c = 0.1 and σ = 0.08 and the other parameters are shown in (5.2) such that

Rs
0 = R0 −

σ2 f 2( A
µ
)A2

2(µ + γ + α)µ2 = 0.9318 < 1,

and σ2 −
βµ

f ( A
µ )A
= −0.0036 < 0. According to Theorem 3.1, the disease of system (1.2) will be

extinct (Figure 4).
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Figure 3. The pictures present the numbers of S , I and R of system (1.2) with b = 0 and
σ = 0.1, and its deterministic system (1.1) with R0 = 1.3763 > 1.
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Figure 4. The phase diagram presents the numbers of S , I and R of system (1.2) with b = 0,
σ = 0.08 and Rs

0 = 0.9318, and its deterministic system (1.1) with R0 = 1.3763 > 1.

5.2. Threshold dynamics with the mass action incidence

In this part, we investigate the threshold dynamics of deterministic system (1.1) and stochastic
system (1.2) with mass action incidence. Let

f (N) = λ.

where λ is a positive constant. Assume

A = 10, a = 0.9, α = 0.2, µ = 0.02, δ = 0.2, λ = 1, S (0) = 500, I(0) = 1, R(0) = 1. (5.3)

Parameters β, b, c and σ will take different values in different examples.
Example 3. (Stationary distribution) First, consider the persistence of the disease of system (1.2)

with β = 0.002, b = 0 and c = 0.1. Then we obtain R0 = 1.3763 > 1. From [3], the disease of the
deterministic system (1.1) will persist in a long term, see Figure 1.

For the stochastic system (1.2), let σ = 0.0002 and we obtain

Rs
0 = R0 −

σ2 f 2( A
µ
)A2

2(µ + γ + α)µ2 = 1.37626 > 1.

From Theorem 4.1, the stochastic system (1.2) admits an ergodic stationary distribution. See Figure 5.
For the case with b = 0.1 and c = 0, we choose β = 0.001 and σ = 0.0002 such that Rs

0 =

R0−
σ2 f 2( A

µ )A2

2(µ+γ+α)µ2 = 0.6944 < 1. From Theorem 4.1, system (1.2) admits an ergodic stationary distribution.
See Figure 6.
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Figure 5. The pictures on the left present the numbers of S , I and R of system (1.2) with
b = 0 and Rs

0 = 1.37626, and its deterministic system (1.1) with R0 = 1.3763. The pictures
on the right show the corresponding frequency histogram of S , I and R with 50,000 iteration
points, respectively. The run time of our code is about 1.6803 seconds.
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Figure 6. The pictures on the left present the numbers of S , I and R of the stochastic
system (1.2) with b = 0.1 and Rs

0 = 0.6944, and its deterministic system (1.1) with
R0 = 1.3763. The pictures on the right show the corresponding frequency histogram
of S , I and R with 50,000 iteration points, respectively. The run time of our code is
about 1.7259 seconds.

Example 4. (Extinction) Let b = 0, c = 0.1, β = 0.0015 and σ = 0.002, and the other parameters
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are shown in (5.3) such that

σ2 −max{
β2

2(µ + γ + α)
,

βµ

f ( A
µ
)A
} = 10−6 > 0,

thus from Theorem 3.1, the disease of system (1.2) will be extinct exponentially in a long
term (Figure 7).

Let b = 0, c = 0.1, β = 0.0014 and σ = 0.0015 and the other parameters are shown in (5.3) such that

Rs
0 = R0 −

σ2 f 2( A
µ
)A2

2(µ + γ + α)µ2 = 0.9634 < 1,

and σ2 −
βµ

f ( A
µ )A
= −5.5 × 10−7 < 0. According to Theorem 3.1, the disease of system (1.2) will be

extinct exponentially in a long term (Figure 8).
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Figure 7. The phase diagram presents the numbers of S , I and R of system (1.2) with b = 0,
c = 0.1, β = 0.0015 and σ = 0.002, and its deterministic system (1.1) with R0 = 1.0322.
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Figure 8. The phase diagram presents the numbers of S , I and R of system (1.2) with b = 0,
c = 0.1, β = 0.0014, σ = 0.0015 and Rs

0 = 0.9634, and its deterministic system (1.1) with
R0 = 0.9634.

6. Conclusions

In this study, we present a stochastic SIRS epidemic model with constant immigration and general
incidence rate. Our results show that the threshold parameter

Rs
0 = R0 −

σ2 f 2( A
µ
)A2

2(µ + γ + α)µ2

for this model is lower than its deterministic counterpart (Rs
0 < 1 < R0). In this scenario, the

deterministic system may have an endemic state, while the stochastic system leads to disease
extinction with probability one (Theorem 3.1). On the other hand, if Rs

0 > 1, the distribution of
solution converge in L1 to an invariant density (Theorem 4.1), indicating that environmental
fluctuations can positively impact the control of infectious diseases. Moreover, if there is a constant
influx of infected population, i.e. b > 0, the stationary distribution will always exist and the disease
will persist. We contend that conducting a comprehensive analysis of the influence of migration on
the dynamics of our model will yield valuable insights into the intricate interplay between migration
and disease transmission.
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