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Abstract: In this study, a stochastic SIRS epidemic model that features constant immigration and
general incidence rate is investigated. Our findings show that the dynamical behaviors of the stochastic
system can be predicted using the stochastic threshold R). If R) < 1, the disease will become extinct
with certainty, given additional conditions. Conversely, if Rg > 1, the disease has the potential to
persist. Moreover, the necessary conditions for the existence of the stationary distribution of positive
solution in the event of disease persistence is determined. Our theoretical findings are validated through
numerical simulations.
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1. Introduction

Many well-known epidemic models [1-7] have been proposed and discussed over the years. For
instance, De la Sen et al. [8] in their study analyzed an epidemic model that incorporates delayed,
distributed disease transmission and a general vaccination policy. Weera et al. conducted a numerical
investigation of a nonlinear computer virus epidemic model with time delay effects [9]. Li et al. [3]
examined an SIRS epidemic model with a general incidence rate and constant immigration, which took
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the following form
S =aA — Bf(N)SI — uS + 6R,
[ =bA +Bf(N)ST — (u+7y +a)l, (1.1)

R =cA+yl - (u+9)R,

where N == § + I + R and the biological implications are shown in Table 1, and the infectious force
Bf(N) is a continuous and twice differentiable function of total population and § > 0 is adequate
contact rate. Furthermore, f satisfies the following hypotheses

1) f € C*((0,0); (0, c0)).
2) f'(N) <0forany N > 0.
3) [f(N)N] = 0 for any N > 0.

Table 1. Variables in model (1.1).

Variables Biological implications

Numbers of susceptible individuals
Numbers of infectious individuals
Numbers of removed individuals
Total population

Rate of input to the total population
Fraction of input to susceptible class
Fraction of input to infectious class
Fraction of input to removed class
Natural death rate

Recovery rate

Mortality due to virulence

Rate of losing immunity

LRRETEO TR~

Their research [3] found that

A A+ -0
Ro = -
’ 'Bf(ll)(ll+)’+6¥)(/1+5)ll

is the basic reproduction number. Furthermore, one gets

e If b = 0 and Ry < 1, then system (1.1) has a disease-free equilibrium E° = (% I° R%) =
A_ cA cA o .
PR 0, m), which is globally asymptotically stable (GAS).
o If Ry > 1 and b = 0, there exists a unique endemic equilibrium E* = (S*, I, R*) which is GAS.
e Otherwise if b > 0, there is no disease-free equilibrium in system (1.1) and there exists a unique
endemic equilibrium P* = (S7, I}, R}) which is locally asymptotically stable. In addition, when

a < u + 26, the endemic equilibrium P* is GAS.

However, in reality, variations in environmental factors affect the transmission coefficients of
infectious diseases. As a result, stochastic modelling is an appropriate way to model epidemics in a
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variety of situations. For example, stochastic models can account for the randomness of infectious
contacts that may occur during potential and infectious periods [10]. In comparison to deterministic
models, stochastic epidemic models can provide more realism. A growing number of authors have
recently focused on stochastic epidemic models [4-7,11-22]. Cai et al. [7] discovered that the global
dynamics of a general SIRS epidemic model can determine the existence of either a unique stationary
distribution free of disease or a unique stationary distribution with endemic disease. Liu et al. [18]
found that in a stochastic SIRS epidemic model with standard incidence, in which two threshold
parameters RS and R} exist.

Inspired by Mao et al. [23], this paper posits that fluctuations in the environment primarily manifest
as fluctuations in the transmission coeflicient,

B— B+0B@),
where B(f) is a standard Brownian motion and o® > 0 indicates its intensity. Then we have

ds (1) =[aA = Bf(N)S (D1(1) — uS (1) + 6R(D)]dt — o f(N)S (DI (1)d B(1),
dI(t) =[bA + BF(N)S(OI(t) — (u+ 7y + )(t)]dt + o f(N)S ()[(t)dB(?), (1.2)
dR(t) =[cA + yI(t) — (u + O)R(t)]dt.

Our study is based on the deterministic SIRS epidemic model, which has proven to be an effective
tool for investigating the spread of infectious diseases. Our approach incorporates two crucial elements:
constant immigration and a general incidence rate, which are essential for understanding the impact of
environmental fluctuations on disease dynamics.

One of the main strengths of our study lies in the fact that we have integrated these essential
components into a stochastic framework. This has enabled us to analyze the effects of random
fluctuations in disease transmission and immigration rates, which are significant factors that can
profoundly influence the dynamics of infectious diseases. By examining these effects, we can obtain a
more comprehensive understanding of the factors that contribute to the spread and persistence of
diseases. Furthermore, our research has established the necessary conditions for the existence of a
stationary distribution of positive solutions in the case of disease persistence. This novel contribution
to the field has significant implications for the development of effective strategies for managing and
controlling infectious diseases. Ultimately, our study provides valuable insights that can inform public
health policies and initiatives aimed at reducing the impact of infectious diseases on global health.

The purpose of this paper is to explore the impact of environmental fluctuations on disease dynamics
by analyzing the global dynamics of the stochastic SIRS epidemic model (1.2). The paper is structured
as follows: In Section 2, we provide some preliminaries. Section 3 outlines the necessary conditions for
disease extinction and persistence. We determine sufficient conditions for the existence of stationary
distributions for persistent solutions of the model in Section 4. The paper concludes with numerical
simulations and conclusions.

2. Preliminaries

In this paper, unless specified otherwise, let (Q, 7, {¥}»0, P) denote a complete probability space
with a filtration {F,},»¢ that satisfies the regular conditions. Let B(f) be defined on this complete
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probability  space. Denote a Vv b = max{a,b} forany a,b € R, and
X = {(xl,)Cg,)C3) eR3: x; > 0,x,>0,x; >0}

Lemma 1. [24] (Strong Law of Large Numbers) Let M = {M};so be a real-valued continuous local
martingale vanishing at t = 0. Then

t

Lim{M, M); = oo, a.s. = lim =0a.s.,
t—00 —00 <M, M)t
and
. (M, M), . M,
im sup . <o0a.s. = thm — =0a.s.
t—o00 —00

Theorem 1. For any (S(0), 1(0), R(0)) € X, there is a unique solution (S (t), I(t), R(t)) of system (1.2)
that remain in X with probability one.

The proof is standard and hence is omitted here.

Remark 1. From Theorem 2.1, we have
[A—(a+u)N]dt <dN <[A—uN]dt, dR>[cA—-(u+09)R]dt, te€[0,00), a.s.

This implies that
A A A
r={(S,LR)eX: <N<ZRr>E
a+u )i u+o
is a positively invariant set of system (1.2). Hence throughout this paper we always assume that the

initial value (S (0), 1(0),R(0)) e I.

}

3. Extinction

In contrast to the deterministic system (1.1), the purpose of this section is to study the dynamics of
the system (1.2) when b = 0 holds. Denote

A AG+ (1= o (DAY o (DAY
Ry = Bf(=) - s=Ro— 5.
Hu+y+a)pu+op 2Wu+y+ayu 2u+y+au
Theorem 2. Let b = 0 and (S (¢), I(t), R(t)) be a solution of system (1.2). If
( B By
Au+y+a) f(HA

0'2 > max

} (3.1)

or

R < land o < 2H (3.2)
FA
then In/ A cA A
t
limsup 22D 0 tims@) = 2 - <A limRe) = A 4.
t—00 t—00 M ,U+5 t—o00 /.l+6
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Proof. Making the use of 1td’s formula [24] to In /, we have

2
dinl = (Bf(N)S —(u+y+a)— % FA(N)S?)dt + o f(N)SdB(1).

Integrating the above equality from O to ¢ and then dividing by ¢ on both sides, one obtains

In () In1(0) _ |y #()dr L 60 (3.3)
t t t

where
2 t
A1) =BfINONS(T) —(u+y+a)— %f 2(N()S*(1), G(1) = fo o f(N(1))S (7)dB(7).

Noting that G(¢) is a local martingale (since it is a right continuous adapted process defined on
(Q, F,{F}0, P)) whose quadratic variation is

i 2
6.6) = [ @ PN e < o
0
Making the use of Lemma 2.1 leads to lim,_, @ = (0 a.s. Combining (3.1), we have
2 2 2
60 = - TGN @ - L7+ L iy im < 2 -y v
o? 207

Substituting the above inequality into (3.3) and taking the limit on both sides, we obtain

i) _ B 3.4)

lim —(u+y+a)<0as.

1m0 f 202
Consider the case o2 < j(ﬁ A
¢(r) =Bf(N(T)N(T )— —(u+y+a)- —f (N()S*(7)
NG I)Q A A2 3.5)
<pta-20) T plh ey ra
Noting that —— A o < N < = R > and substituting them into (3.5), we have
A A6+ (1 - A _A?
o) < pr R —U—f( )~y = (R~ D+ y + )
p(p +96)
From (3.2) and (3.3), we get
lim h“l(t) <(u+y+a) R —1)<0as. (3.6)
Then we have
lim I(r) = 0, a.s., 3.7

t—00
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which means that for arbitrary small € > O there are #, and Q. such that P(Q2,) > 1 — g and ol < ¢ for
t >ty and w € Q.. In view of system (1.2), we have

A-¢

A
<lmN() < — a.s.
u

—o0
Due to the arbitrariness of &, one has

t—oo

lim N(f) = 2 a.s. (3.8)

Similarly as getting equality (3.8), we have

a.s. 3.9

lim R(r) = -4
t—o0 u+o
In view of (3.7)-(3.9), we have

A A
mS () = = — <

t—00 U u+o

a.s.
O

Remark 2. According to Theorem 3.1, if Ry < 1 and o is not large, the disease will inevitably die out.
It is worth noting that the expressions R} and R, reveal that Ry < Ry. Furthermore, if o = 0, R} = R.
In simpler terms, the conditions for the disease to die out in system (1.2) are considerably easier than
those in the corresponding deterministic system (1.1).

4. Asymptotic stability

In this section, we will prove that if » = 0 and R, > 1 or b > 0, the densities of the distributions of
the solutions to system (1.2) can converge in L! to an invariant density.

Theorem 3. The distribution of (S (2), 1(¢), R(?)) has a density U(t, x,y,z) fort > 0. If b = 0 and R} > 1
or b > 0, then there is a unique density U.(x,y, z) such that

lim ffflU(t, X,¥,2) = Uu(x, y, 2)ldxdydz = 0.
—00 r

The following steps constitute the proof of Theorem 4.1 above:

First, the kernel function of (S (¢), I(¢), R(¢)) is absolutely continuous.

We demonstrate that the kernel function is positive on X.

The Markov semigroup is either sweeping with respect to compact sets or asymptotically stable.
Due to the presence of Khasminskii function, we exclude sweeping.

For definitions related to Markov semigroups and their asymptotic properties, the reader is referred
to the papers [25-31]. We will show this by Lemmas 4.1-4.5.

Lemma 2. For t > 0 and any initial value (xo,y9,20) € X, the transition probability function
P(t, x0, Y0, 20, B) has a continuous density k(t, x, y, Z; X0, Yo, 20)-
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Proof. Similar to the proof method in [31], the Lie bracket is given by

- >\ ( Ob; da; ,
[a, b]j (u) = Z ai%(”) - bi%(”) , J=1,2,3.

i=1

aA —Bf(N)ST—uS +oR -0 f(N)SI
Let ao(S,I,R) = [bA +Bf(N)ST—(u+vy+ a)I} and a,(S,I,R) = | of(N)SI |. Direct calculation
cA+ vyl —(u+90)R 0
leads to
az)
a = [agp,ar] = an ,
—oyf(N)S1

with

ar; = — (A —uN — a)aS1f (N) — o f(N)YBf (N)S’I* + (aA + 6R) + (bA — (u +y + @)])S),
ar, =0 f'(N)SI(A —uN —al) + o f(N)U(aA — Qu + 7y + a@)S + 6R) + bAS),

asg
a3 = [a,ar] = asy ,
o ySIfA(N)I - S)

and

where
as; =0*BS*PFA(N)f/ (NI = 28) + 02 f2(N)(—uS I — (aA + 6R)I* + bAS?)
— N (NSIBF (NS I + ST,
az, = fFA(N)US I + Bf (N)S?E + (aA + 6R)I?> + uS*I — bAS?) + > fF(N) f'(N)SIBf (N)S*I? + uS1).

Therefore, we have
lai @ a3| = = {oPYS TP (NI = S)az + ax) + oy f(N)S I(as; + az)} < 0.
According to Hormander Theorem [23], one obtains that P(t, xo, yo, 29, B) has a continuous density
k(z, x, y, Z; X0, Yo, Z0)-
Next, fixing a point (xo, Yo, 20) € X and a function € L*([0, T];R), we have
!
Xw(t) =Xo + f (fi (xz//(T),)’w(T), Zw(T)) - U'lﬁxw(T)yw(T)f(Nw(T)))dT,
0

Yu(t) =yo + fo (f2(xy(T), yy (1), 24(7)) = OWxy (T)yy (1) f(Ny (D))dT, (4.1)

t
2y(t) =20 + fo J3(xy (1), yy (1), 2y (7))dT,
where
Ny = xy +yy + 2y,
fi=aA -Bf(x+y+2)xy — ux + 0z,
fa=DA+Bf(x+y+2)xy—(u+y+a)y,
fr=cA+yy—(u+90)z.
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Let Dy, be the Fréchet derivative. If for some ¢ € L*([0, T];R), the rank of Dy, 1s 3, then

k(T, x,y, x; xo, o, 20) > 0 for X = X,(T). Let
V() = f(Xy () + yg' (X, (D),
where f” and g’ are the Jacobians of
fi —oxyf(x+y+2z)
f: f2’ 8= O'xyf(x+y+z) .
f 0

ForT >t >ty > 0, let O(t, ty) be a matrix function such that Q(zy, 1y) = Id, 8Qé+°)

T
Dxyyh = fo O(T, 7)g(T)h(T)dT.

Lemma 3. For each (xo, o, 20), (x,y,2) €T, there is T > 0 satistying k(T, x,y, Z; X0, Yo, Z9) > 0.

=Y(1)0(t,1y). Then

Proof. Since we only need to find a continuous control function ¢, system (4.1) can be rewritten

as follows
X, (1) = f1(xy(0), yy (1), 2y (1)) — Oxy (D)yy (1) f(Ny (1)),
Yy () = falxy(0), yy(0), 2y (1)) — TPy (0)yy (1) f(Ny (1)),
2y (1) = f3(xy(2), yy (1), 24(1)),

First, we verify that the rank of Dy, is 3. Let £ € (0, T) and

_ X[T-¢7T]
0= Onorm,my €

where y denotes the indicator function of the interval [T — &, T']. Since

[0, 71,

OT,7)=1d+¥Y(T)r-T) + %‘PZ(T)(T —T) +o((t-T)%,

we have
£2 &3
Dyyyh = ev— S W(T)v + g‘{ﬂ(T)v +o(&),
-0
where v = | o |[. Direct calculation leads to
0

B+yo)f(N)T =S) +pu
V(T =o|B+yo)f(NT=S)-(u+y+a)|,

Y
C11
YTy =0 €21 ,

oyB+yo)S —Df(N) —oyQu+y+a+0)

4.2)
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where

cii=—0o(S = I’B+yo) fAN) + oB+yo)uS = 1) + (@ +y)S)f(N)
+0(ys — 1) + (B + o)+ Y)SIf(N),

o1 =0 (S = D*(B+ o)’ FA(N) + (B + Yo )(=2(aS — pul) + (@ + Y)] = 28 (u + ) f(N)
—oB+yo)a+VSIf'(N)+o(u+y+ 0/)2.

Thus the rank of Dy, is 3.
Then let wy, = xy + yy + 2y, (4.2) becomes

x5 (1) =81 (xy (1), wy (1), 2y (7)) — oPrxy (D) Wy (T) — Xy (7) — 2y(7)) [y (7)),
Wy (1) =g2(xy (7), wy (1), 24 (7)), (4.3)
2y(7) =g3(xy (1), wy(7), 24 (7)),

where
g1 =aA - Bfw)x(w — x —2) — ux + 6z,
g =bA - (u+ a)w + a(x + 2), 4.4)
g3=cA+yw—-x)—(y+u+9)z
Let " 4
FO:{(x,w,z)EX:0<x<w, ¢ <z<wand <w<—}. 4.5
u+0o a+u u

First, we find a positive constant 7" and a differentiable function

wwz[O,T]—>( A é)

a+p
such that wy,(0) = wo, wy(T) = wi, w,,(0) = g2(xo, wo, 20) = W, W), (T) = ga(x1, w1, 21) = wi and

A= (a+wwy(t) <wy () <A —pwy(@®), te€[0,T]

We split the construction of the function wy, on three intervals [0, 7], [7,T — 7] and [T — 7, T], where

0<t<T/2 Let
1 { A A A A }
&= zmin{wy— wi — — Wy, — — Wy .

2 a+u’ ' a+pp u
Ifw¢e(;f#+9,j—l‘—9), we have
A—(a+pwy(t) < —(@+u)f <0, 0<pud <A—puw,(t), tel0,T].

Then we construct a C>-function wy: [0,7] — (a'%“ +6, f—j - 9) such that

wy(0) = wo, wy(0) = wi, wy,(1) =0,
and for 7 € [0, 7], wy, satisfies

A = (a+ 0wy () <wy(t) <A — pw, (D).
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Analogously, we can construct a C*-function wy: [T — 7, T] — (QAT# +6, :7‘ - 9) such that

wy(T) = wy, wi(T) = wi, w(T —7) =0,
and for ¢ € [T — 7, T], wy satisfies
A = (a+ wwy (1) <wy(t) <A —puwy ().

Taking T sufficiently large, then we can extend the function wy: [0, 7] UIT — 7, T] — (a'%ﬂ +0, ’3 - 9)
to a C?>-function wy, defined on the whole interval [0, T'] such that

A = (a+ wwy (1) <wy(t) <A — puwy ().

Thus, we can find C'-functions x, and z, that satisfy (4.3). Finally we can determine a continuous
function ¢. and T > 0 such that x,(0) = xo, wy(0) = wo, 24(0) = 2o, x4(T) = x, wy(T) = w, 2,(T) = z.
This completes the proof. O

Lemma 4. Ifb = 0 and R} > 1 or b > 0. For {P(t)},5, and every density g, one has

tlim f f f P(H)g(x,y,z)dxdydz = 1.
— 00 F

Proof. System (1.2) can be rewriten as

dS = g1(S,N,R)dt — 7S (N — S — R)f(N)dB(t),
dN = gx(S, N, R)d1, (4.6)
dR = g5(S, N, R)d1.

From Remark 2.1, we get

dN dR
A=(a+pN <= <A-puNand — > A~ (u+ )R for 1 € (0,0) as. (4.7)

For almost every w € Q, there is t, € #,(w) such that

A A
< N(tw) < = and R(t, w) > —
M H+6

fort > 1.
a+u

As a matter of fact, there exist three possible cases:

1) NO,w) € (a’iﬂ, :—3) In this case, our statement is obvious from (4.7).

2) NO,w) € (0, aATﬂ) Assume that our claim is not satisfied. Then there is Q' c Q with P(Q?") > 0

such that N(t,w) € (0, QATM),W e Q'. By (4.7), we obtain that for any w € Q’, N(t,w) is strictly
increasing on [0, co) and

A
lim N(t,w) = ——, we Q.
a+u

t—00

According to system (4.6), we get that lim, ., S(f,w) = lim, ., R(t,w) = 0, w € Q' and thus,
A

limHoo I(t, W) = m, we Q.
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Consider the case b = 0, making the use of Ito’s formula, we have

2
dinl = (ﬁ NS —(u+y+a)- %52 fz(N)) dt + oS f(N)dB(t).

Thus

i) —Inl©) 1 [ ’ L[
e (,Bf(N(T))S(T)_(,U+7+a/)— U—SZ(T)fZ(N(T))) dr+ 1 [ asrwmaso)

1 !
= ;fo (ﬁf(N(T))S(T) H+y+a)- —S (0 f (N(T)))d + Q
where G(¢) := f oS (1) f(N(r))dB(t). Applying Lemma 2.1, we have
lim @ =0 as.
t—oco
Thus, due to S (¢), I(¢), f(N(t)) are continuous,
lim % f (,Bf(N(T))S(T) w+y+a)— —S (T)f (N(r)|dr + hm L) =—(u+vy+a).
—0o0 0
This contradicts the assumption
. InI(r) —InI(0)
tlgg —  =0a.s.
Then let us consider the case b > 0. Since lim,_.N(t,w) = 4 and

a+

lim;., S(t,w) = lim,, R(t,w) = O for w € €, which contradicts that R(z, w) > 0 for w € Q’,
t € (0, ) and the claim follows.

3) N(O,w) € (:—l‘, o). We suppose, by contradiction, and analogous arguments to 2), that there is
Q' c Q with P(Q") > 0 such that

t—00

A
lim N(t,w) = —,we Q.
u

Firstly, consider the case b = 0, by the second and third equations of (4.6), for any w € {’, one gets

N(t, w) = e #+o)t (N(O, w) + f e IA + a(S (r,w) + R(7, W)))dT),
0

f
R(t,w) = ¢ W (R(O, w) + f e“(cA + yi(r, w))dr) )
0
For all w € ', one has

cA

lim S (t,w) = — —
u+o

t—00 u IJ+5’

lim I(t,w) =0, limR(t,w) = a.s.
t—o0 t—o00
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Therefore

rnlnI(t)—lnI(O) _ Lm lf(ﬁf(N(T))S(T)_(#”Jra) —S%(0)f (N(T)))dr+hm+)

t—00 t t—00

= lim — f (ﬁf (N@NS(T) —(u+y+a)- S (N (T))) dr

A AG+ (1 = ) o2 (A
—,Bf( ) Gt 0) —(ﬁl+7+0/)—7(;—ﬂ+5)f( )
AA5 1 - 2A
> B A=) yyray- TA g
227

u(p +06)
—(,u+)/+a/)(R8—1)
>0 a.ss.on Q.

This contradicts the assumption lim,_,, I(#) = 0 a.s. In other words, for almost all w € Q, there is
to = to(w) such that

A
< N(,w)< —fort>t,.
a+p 7
When b > 0, we get that I(t,w) > 0 for t € (0,00) and w € Q’. This contradicts the assumption
lim,_,, N(t,w) = ﬁ, w € ' and the claim holds.
Similar to the proof of 2) and 3), one obtains that for almost all w € Q, there is #; = t;(w) such that

A
R(t,w) > ¢ fort > 1.
H+0

Lemma 5. {P(t)}, is asymptotically stable or is sweeping with respect to compact sets.

Proof. In view of Lemma 4.1, {P(#)}-o 1s an integral Markov semigroup with Kkernel
k(t, x,y, z; X0, Y0, 20)- According to Lemma 4.3, it suffices to consider the restriction of {P(#)}, to the
space L'(I'). By Lemma 4.2, one gets

f P(t)gdt > 0 a.s.
0

on I, for every g € D. Then {P(t)},5, 1s asymptotically stable or is sweeping with respect to compact
sets. O

Lemma 6. Assume that b = 0 and R > 1 or b > 0, then {P()};»o is asymptotically stable.

Proof. From Lemma 4.4, {P(t)};>o satisfies the Foguel alternative. In order to exclude sweeping it is
sufficient to construct a nonnegative C>-Khasminskii function V and a closed set D, € X such that

sup «“V(S,I,R) <O.
(S,1,R)eX\D¢
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First of all, we consider the case b = 0 and R > 1. Define

A A A
H=M(-InlI-(4tN+&6LR) —InS —In(——-N)—In(N—- ——)—In(R - ¢ )
u u+a u+0o
=MV + Vo + V3 + Vy+ Vs,
where V, = —InI — €1N+€2R,V2:—lnS,V3:—ln(*—‘—N),V4:—ln(N #fa) Vs = —In(R — M
ﬁf() ﬁf()
b =
BA A orAT A ;
—f( )+4,u+a/+5+7—2f( " )SMu+y+a)Ry—1)-2. (4.8)
i) a

It is easy to find that H reaches a minimum at (S ., L., R.). Then we define
V=MVi+V,+V3+V,+Vs—H(S.,I,R),).

Thus we have

2
AV ==BSF(N)+(u+y+a)+ %SZfZ(N) — 0, A + CuN + Gl + EcA + byl — O (u + )R

A 2 A2 A
=BICS + S + R = G+ OR + (uo+y +a) + %?fz(;)

—01A + €cA + (f],u + 6 + 52’}/)1
242 A
—(u+y+a)+ U——zfz(—) — LA+ bocA + (L + O + Gy)l
u

A A0+ (1 A A
=BT ey v+ TP+ (Gt s oy

=—(u +y +a)Ry— 1)+ (Gu+ ba+ Oyl

Similarly, we obtain

2

Vo == O~ BIFN) i+ 55 - ‘T—szZ(N))

S
2A2
<—— ,3 f(—) u+ ——f(
a+,u
al
AV =pu— R
3 AN
M
A—uN - al 1
%*VALZ— K Aa S,Ll a — 2
T e T e
and A 1 0)R 1
+vl —(u+
vy AV WEOR L T
gl R- .5
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Therefore
* ) aA al al 124
JZ;VS_M(ll+y+a)(R0—1)+M(€1/1+516¥+527)1__S TA_N N_-A R_<&
I u+a pto
A A 2A2 A
_,_'B_f( )+4/,t+a+6+o-——f2( )
uooa+u 2 @27 a+p

Define

A A A
D.={S.IR)eT:e<S,e<l, - +& <R ———+S<N<Z_&,
u+o u+a Jii

where € € (0, 1) is sufficiently small satisfying

A A A 2 A? A
MGt ba+ Y A BE ()t At a+ 6+ A (———) < 1, (4.9)
€ u o ul a+tu 2w Ca+u
< 1 (4.10)
€ , :
M(€1p+€1a/+€2)/)
A A 2 A? A
Yo Mu o+ ) By v du o+ 6+ Py < 1. @.11)
€ u o a+u 2w a4+
A A A 2 A? A
L Mt ba+ by = + B~ At + S+ A (——) < — 1. (4.12)
€ u uoa+pu 2y’ Ca+u
Denote
A
D ={S,LRel':S <€}, D,={S,LRel':I<e€}, D ={S,LR) el . I >¢R< C+5 + €%},
u
A 2 2
Dy={S,I,LR)el':I>¢,——€ <N}, Ds={(S,I,R)el':I>¢,N< + €7}
p p+a
Then we prove that &7*V(S,I,R) < —1 forany (S,I,R) e T\ D, = D, |J D, \J D3 D4 Ds.
Case 1. For any (S, 1,R) € Dy, from (4.9),
A A A 2 A? A
V<L M+ ba+ 6y By v duta+ s+ T A
S u uoa+pu 2wt Ca+u
A A A 2 A? A
<=L M+ 6@+ b)) =+ B=f(———) + 4+ @ + 6+ == fH(——)
€ u uoa+u 2 u a+ U
<—-1.
Thus
/*V < —1 for any (S, 1,R) € D;.
Case 2. For any (S, 1, R) € D,, from (4.8) and (4.10),
. ) A cPA2 , A
V< -—Mu+y+a)R)—1)+ Ml u+ i+ byy)e + B—f( )+du+a+o+ ——f( )
uoa+u 2 27 Ca+pu

<-2+1
=—1.
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Therefore
"V < —1 for any (S, I,R) € D,.

Case 3. For any (S, 1, R) € D3, from (4.11),

A 2 A? A
AV < - — + M6+ G+ &y)I + B—f( )+ Au+a+6+ ——f( )
_,JLT(s uoa+pu 2 u a+u
A A 2 A? A
<= Ly M+ ba+ 6= + B f(——) + A+ @+ 6+ = ()
€ u o a+u 2w Ca+u
A A 2 A? A
=L M+ o+ )= + B (o) dut+ a+ 6+ = (——)
€ u o ul a+u 2w Ca+pu
<-1
Hence
/*V < —1 for any (S, I,R) € Ds.
Case 4. For any (S, 1,R) € Dy, from (4.12),
) al A a?Ar , A
AV < — + M+ Ca+ Lyl + B— f( Y+adu+a+o+ ——f( )
A_N uoa+u 2 W2 Ca+pu
u
A A 2 A2 A
<~ Ly M+ o+ oS 1By v duta+ o+ T2 AL
€ uo ol a+u 2 27 Ca+pu
<-1,
Then
/*V < —1 for any (S, I,R) € D,.
Case 5. For any (S, 1, R) € Ds, from (4.12),
A 2 A? A
AV <= =Tk Ml + Cia + LY +B=f(———) + 4+ @+ 6 + == 1
— e uoa+pu 2 u a+u
A A 2 A2 A
<= LM+ b+ Y+ B f(———) At a6+ = fA(———)
€ u ul a+u 2 12 Ca+u
<-1
Thus
"V < —1 for any (S, I, R) € Ds.
In summary,

sup *V(S,I,R) < —1.
(S,I,R)el'\ D,

Using similar arguments to those in [27], we can obtain that {P(¢)},»( is asymptotically stable.
Next, we consider the case b > 0, define

A A A
E=—-InS —In/—-1In(R - C—)—ln(N— ——) —In(— = N).
u+o u+a J7i
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Obviously, E has a minimum point (S 1., /1., R;.) in the interior of I'. Then we define
A A A
W=-InS —In/ - In(R - C—) —In(N———)—-In(— =N) - E(S1., 1., R1.).
u+o H+a Jii

Then we have

aA DA vl al al B A oA? A

A
GWEL— — - — - - - +5u+2a+y+0+— + 2
S 1 R-<A A_N N_ATHTATY uf(uw) W 7

u+o u H+a

Similarly, define

A A A
Uy ={(S.LR)eT: e <S,6 <I,—— + & <R, +e6 <N<—-—¢)
u+0o u+a u

where € € (0, 1) is sufficiently small satisfying

A A A2, A
e N Y
plptal p p+a

A
—a—+5,u+2a+y+6+
€1

bA A A 242 A
LY W S oL )+ T ) < -1,
€ plpral 2 uta

A A ZA? A
Y sur2a+y+o+ PRk )+ T A=) < -1,
5} uUopta pu+a
A A 2A? A
—g+5,u+2a+y+5+ﬁ—f( +O-2 £ )< —1.
€l Ho pta H H+a
For convenience, we divide I' \ U, as
A
U ={S,LRel:S<¢}, Uy ={S,LReTl:I<¢}, Us={S,LR)eT: 1 >¢,R< C+5+€12},
u
A, 2
Us={S, LR el':I1>¢,——€¢ <N}, Us={(S,LR)el': I >¢,N < + €}
K pta

The rest of the proof is omitted here due to it is similar to the case of b = 0. This completes the proof.
O

Remark 4.1. The stationary distribution of the correct solution refers to the long-term behavior
of a stochastic system when the probability of the disease persisting is not zero. In other words,
if the random threshold R; is greater than 1, the disease may not be eradicated and will persist in
the population. In this case, the stable distribution of the correct solution refers to the probability
distribution of infected individuals in the population over time once the system has reached a steady
state. This distribution is said to be stationary because it does not change over time, while the correct
solution refers to the non-zero probability of individuals being infected.

Remark 4.2. According to Theorems 3.1 and 4.1, if R; < 1, the disease will become extinct under
mild additional conditions, whereas if R > 1, the disease will be stochastically persistent. The value
of R) can determine the extinction of the disease or not, and thus it can be considered as a threshold
for the stochastic system (1.2).
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5. Numerical simulations

In this section, we give several numerical examples to support our results. Employing Milstein’s
high-order method [32], the discretized system is

S*=8* 4+ [aA — BFNM)S I* — uS* + 6RNAL — o F(N®)S*I* VAto,
b 30 FVOSH U NS E + FN @~ DA

I =1 4 [bA + BF(N)S TF = (u + v + ) [F]A + o f(NO)S*I* VAto, (5.1)
+ %sz (NOINS P (f (NI + f(N)(0; - DA,

R =RF 4 [cA + yI — (u + 6)R"As,

where the time increment At > 0, o for k = 1,2, ...,n are Gaussian random variables following the
standard normal distribution.

5.1. Threshold dynamics with the standard incidence

In this part, we focus on the dynamical behavior of system (1.2) with standard incidence. Let

A
JIN) = N

Assume

A=6, a=09, =0.1, =02, ©u=0.02, 6=0.1, (5.2)
A=10, y=0.5, §0) =500, 1(0)=1, RO) =1, ’
Parameters b, ¢ and o will take different values in different examples.

Example 1. (Stationary distribution) Let » = 0 and ¢ = 0.1, then we obtain Ry = 1.3657 > 1.
From [3], the disease of the deterministic system (1.1) will persist in a long term (Figure 1).

For system (1.2), let o = 0.01 and one obtains

0'2f2(f—l‘)A2

- m = 1.3588 > 1.

R(; :RO

From Theorem 4.1, system (1.2) admits an ergodic stationary distribution (Figure 1).

: 22
For the case with b = 0.1 and ¢ = 0, we choose o = 0.075 such that R) = Ry — ;f—"z
(H+y+a)u

1. From Theorem 4.1, system (1.2) admits an ergodic stationary distribution (Figure 2).

=0.9983 <
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Figure 1. The pictures on the left present the numbers of S, I and R of system (1.2) with
b =0 and R} = 1.3588, and its deterministic system (1.1) with Ry = 1.3657. The pictures
on the right show the corresponding frequency histogram of S, I and R with 50,000 iteration
points, respectively. The run time of our code is about 1.6488 seconds on a standard computer
with a 2.0 GHz processor and 8 GB of RAM.
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Figure 2. The pictures on the left present the numbers of S, I and R of system (1.2) with
b = 0.1 and R = 0.9983, and its deterministic system (1.1) with Ry = 1.3657. The pictures
on the right show the corresponding frequency histogram of S, I and R with 50,000 iteration
points, respectively. The run time of our code is about 1.7667 seconds.

Example 2. (Extinction) Let » = 0, ¢ = 0.1, o = 0.1, and the other parameters are shown in (5.2)
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such that

2
o —max(=—P—— Py 17347 % 107 > 0,
Auty+a) f(HA

then from Theorem 3.1, the disease of system (1.2) will become extinct, see Figure 3.

Let b =0, c =0.1 and o = 0.08 and the other parameters are shown in (5.2) such that

) 0_2 f2 (% ) AZ
Ry =Ry - ar vl 0.9318 < 1,
(H+y+au
and o? - f(ﬁé”) — = —0.0036 < 0. According to Theorem 3.1, the disease of system (1.2) will be
U
extinct (Figure 4).
600 T T T
500
© 400 — Stochastic S(t)
r_:u \ == == Deterministic S(t)
> 300 — —]
200 — B iy -
100 \ \ \ \ \ \ \ \ \
0 100 200 300 400 500 600 700 800 900 1000
Time t
150 T
Stochastic I(t)
1001 = = Deterministic I(9)| |
50— =
NP A ™l a T
0 100 200 300 400 500 600 700 800 900 1000
Time t
150 T
== Stochastic R(t)
100 — = Deterministic R() | |
2 -
D "
50 — =
00 100 200 300 400 500 600 700 800 900 1000
Time t

Figure 3. The pictures present the numbers of S, I and R of system (1.2) with » = 0 and
o = 0.1, and its deterministic system (1.1) with Ry = 1.3763 > 1.
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Stochastic S() | —|

1 \ s StoChastic R(t)
— = Deterministic R(t)
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Time t

Figure 4. The phase diagram presents the numbers of S, I and R of system (1.2) with b = 0,
o =0.08 and R = 0.9318, and its deterministic system (1.1) with Ry = 1.3763 > 1.

5.2. Threshold dynamics with the mass action incidence

In this part, we investigate the threshold dynamics of deterministic system (1.1) and stochastic
system (1.2) with mass action incidence. Let

JIN) = A
where A is a positive constant. Assume
A=10, a=09, =02, u=0.02, 6§=02, A=1, S0) =500, I(0)=1, RO)=1. (5.3)

Parameters S, b, ¢ and o will take different values in different examples.

Example 3. (Stationary distribution) First, consider the persistence of the disease of system (1.2)
with 8 = 0.002, b = 0 and ¢ = 0.1. Then we obtain Ry = 1.3763 > 1. From [3], the disease of the
deterministic system (1.1) will persist in a long term, see Figure 1.

For the stochastic system (1.2), let o = 0.0002 and we obtain

O'Zfz(%)Az

- m =1.37626 > 1.

R(S):RO

From Theorem 4.1, the stochastic system (1.2) admits an ergodic stationary distribution. See Figure 5.

For the case with b = 0.1 and ¢ = 0, we choose g = 0.001 and o = 0.0002 such that R =

szz(%)Az
Ro- 2(u+y+a’
See Figure 6.

= 0.6944 < 1. From Theorem 4.1, system (1.2) admits an ergodic stationary distribution.
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Figure 5. The pictures on the left present the numbers of S, I and R of system (1.2) with
b =0 and R) = 1.37626, and its deterministic system (1.1) with Ry = 1.3763. The pictures
on the right show the corresponding frequency histogram of S, I and R with 50,000 iteration
points, respectively. The run time of our code is about 1.6803 seconds.
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Figure 6. The pictures on the left present the numbers of S, 7 and R of the stochastic
system (1.2) with b = 0.1 and R} = 0.6944, and its deterministic system (1.1) with
Ry = 1.3763. The pictures on the right show the corresponding frequency histogram
of §, I and R with 50,000 iteration points, respectively. The run time of our code is
about 1.7259 seconds.

Example 4. (Extinction) Let » = 0, ¢ = 0.1, 8 = 0.0015 and o = 0.002, and the other parameters
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are shown in (5.3) such that

B Bu

_ -6
2(,u+y+a)’f(§)A} =107=0

0% — max{

thus from Theorem 3.1, the disease of system (1.2) will be extinct exponentially in a long
term (Figure 7).

Letb =0,c=0.1,8=0.0014 and o = 0.0015 and the other parameters are shown in (5.3) such that

2 (20 A\ A2
RS = Rom 0 o6aa <
=Ry—-————=0. <
0 2u+y +ay? ’
and 02 — % = —-5.5x 1077 < 0. According to Theorem 3.1, the disease of system (1.2) will be
u
extinct exponentially in a long term (Figure 8).
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Figure 7. The phase diagram presents the numbers of S, I and R of system (1.2) with b = 0,
¢ =0.1,8=0.0015 and o = 0.002, and its deterministic system (1.1) with Ry = 1.0322.
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Figure 8. The phase diagram presents the numbers of S, I and R of system (1.2) with b = 0,
c =0.1, 5 =0.0014, o = 0.0015 and R = 0.9634, and its deterministic system (1.1) with
Ry = 0.9634.

6. Conclusions

In this study, we present a stochastic SIRS epidemic model with constant immigration and general
incidence rate. Our results show that the threshold parameter

O'Zfz(%)Az

RO=Ry— — "
OT T 2ty + ap

for this model is lower than its deterministic counterpart (R < 1 < Rp). In this scenario, the
deterministic system may have an endemic state, while the stochastic system leads to disease
extinction with probability one (Theorem 3.1). On the other hand, if R > 1, the distribution of
solution converge in L' to an invariant density (Theorem 4.1), indicating that environmental
fluctuations can positively impact the control of infectious diseases. Moreover, if there is a constant
influx of infected population, i.e. b > 0, the stationary distribution will always exist and the disease
will persist. We contend that conducting a comprehensive analysis of the influence of migration on
the dynamics of our model will yield valuable insights into the intricate interplay between migration
and disease transmission.
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