[1]
|
D. J. Gubler, Dengue and dengue hemorrhagic fever, Clin. Microbiol. Rev., 11 (1998), 480–496.
|
[2]
|
S. B. Halstead, Dengue, The Lancet, 370 (2007), 1644–1652.
|
[3]
|
WHO, Dengue and severe dengue, Fact sheet No. 117, Available from: http://www.who.int/mediacentre/factsheets/fs117/en/(accessed 2 February 2018).
|
[4]
|
A. Gulland, WHO urges countries in dengue belt to look out for Zika, BMJ, 352 (2016), i595.
|
[5]
|
G. W. Dick, S. F. Kitchen and A. J. Haddow, Zika virus (I). Isolations and serological specificity, Trans. R. Soc. Trop. Med. Hyg., 46 (1952), 509–520.
|
[6]
|
A. J. Johnson, O. L. Kosoy, J. J. Laven, et al., Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007, Emerg. Infect. Dis., 14 (2008), 1232–1239.
|
[7]
|
V. M. Cao-Lormeau, C. Roche, A. Teissier, et al., Zika virus, French Polynesia, South Pacific, 2013, Emerg. Infect. Dis., 20 (2014), 1085–1086.
|
[8]
|
G. S. Campos, A. C. Bandeira and S. I. Sardi, Zika virus outbreak, Bahia, Brazil, Emerg. Infect. Dis., 21 (2015), 1885–1886.
|
[9]
|
WHO, Zika situation report, Available from: http://www.who.int/emergencies/zika-virus/situation-report/20-january-2017/en/(accessed 20 January 2017).
|
[10]
|
I. Kautner, M. J. Robinson and U. Kuhnle, Dengue virus infection: Epidemiology, pathogenesis, clinical presentation, diagnosis, and prevention, J. Pediatr., 131 (1997), 516–524.
|
[11]
|
B. Atkinson, P. Hearn, B. Afrough, et al., Detection of Zika virus in semen, Emerg. Infect. Dis., 22 (2016), 940.
|
[12]
|
A. C. Gourinat, O. O'Connor, E. Calvez, et al., Detection of Zika virus in urine, Emerg. Infect. Dis., 21 (2015), 84–86.
|
[13]
|
D. Musso, C. Roche, T. X. Nhan, et al., Detection of Zika virus in saliva, J. Clin. Virol., 68 (2015), 53–55.
|
[14]
|
J. Moreira, T. M. Peixoto, A. M. Siqueira, et al., Sexually acquired Zika virus: a systematic review, Clin. Microbiol. Infec. 23 (2017), 296–305.
|
[15]
|
A. Davidson, S. Slavinski, K. Komoto, et al., Suspected female-tomale sexual transmission of Zika virus–New York City, 2016, MMWR Morb Mortal Wkly Rep., 65 (2016), 716–717.
|
[16]
|
D. Gao, Y. Lou, D. He, et al., Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: A mathematical modeling analysis, Sci. Rep., 6 (2016), 28070.
|
[17]
|
F. B. Agusto, S. Bewick and W. F. Fagan, Mathematical model for Zika virus dynamics with sexual transmission route, Ecol. Complex., 29 (2017), 61–81.
|
[18]
|
F. Brauer, C. Castillo-Chavez, A. Mubayi, et al., Some models for epidemics of vector-transmitted diseases, Inf. Dis. Model., 1 (2016), 79–87.
|
[19]
|
D. Baca-Carrasco and J. X. Velasco-Hernández, Sex, mosquitoes and epidemics: an evaluation of Zika disease dynamics, Bull. Math. Biol., 78 (2016), 2228–2242.
|
[20]
|
C. R. Kim, M. Counotte and K. Bernstein, Investigating the sexual transmission of Zika virus, Lancet Glob. Healthy, 6 (2018), e24–e25.
|
[21]
|
O. Maxian, A. Neufeld, E. J. Talis, et al., Childs Zika virus dynamics: When does sexual transmission matter? Epidemics, 21 (2017), 48–55.
|
[22]
|
S. K. Sasmal, I. Ghosh, A. Huppert, et al., Modeling the Spread of Zika Virus in a Stage-Structured Population: Effect of Sexual Transmission, Bull. Math. Biol., 80 (2018), 3038–3067.
|
[23]
|
C. M. Saad-Roy, J. Ma and P. van den Driessche, The effect of sexual transmission on Zika virus dynamics, J. Math. Biol., 77 (2018), 1917–1941.
|
[24]
|
C. M. Saad-Roy, P. van den Driessche and J. Ma, Estimation of Zika virus prevalence by appearance of microcephaly, BMC Infect. Dis., 16 (2016), 754.
|
[25]
|
S. Towers, F. Brauer, C. Castillo-Chavez, et al., Estimate of the reproduction number of the 2015 Zika virus outbreakin Barranquilla, Colombia, and estimation of the relative role of sexual transmission, Epidemics, 17 (2016), 50–55.
|
[26]
|
Y. A. Terefe, H. Gaff, M. Kamga, et al., Mathematics of a model for Zika transmission dynamics, Theor. Biosci., 137 (2018), 209–218.
|
[27]
|
A. Allard, B. M. Althouse and L. Hébert-Dufresne, The risk of sustained sexual transmission of Zika is underestimated, PLoS Pathog., 13 (2017), e1006633.
|
[28]
|
M. Dupont-Rouzeyrol, O. O'Connor, E. Calvez, et al., Co-infection with Zika and Dengue Viruses in 2 Patients, New Caledonia, 2014, Emerg. Infect. Dis., 95 (2015), 381–382.
|
[29]
|
R. Pessôa, J. V. Patriota, M. D. L. de Souza, et al., Investigation Into an Outbreak of Dengue-like Illness in Pernambuco, Brazil, Revealed a Cocirculation of Zika, Chikungunya, and Dengue Virus Type 1,Medicine, 95 (2016), e3201.
|
[30]
|
C. S. Vinodkumar, N. K. Kalapannavar, K. G. Basavarajappa, et al., Episode of coexisting infections with multiple dengue virus serotypes in central Karnataka, India, J. Infect. Public Heal., 6 (2013), 302–306.
|
[31]
|
B. Tang, Y. Xiao and J. Wu, Implication of vaccination against dengue for Zika outbreak, Sci. Rep., 6 (2016), 35623.
|
[32]
|
J. J. Tewa, J. L. Dimi and S. Bowong, Lyapunov functions for a dengue disease transmission model, Chaos, Solitons & Fractals, 39 (2009), 936–941.
|
[33]
|
M. Andraud, N. Hens, C. Marais, et al., Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches, PLoS One, 7 (2012), e49085.
|
[34]
|
B. Adams, E. C. Holmes, C. Zhang, et al., Cross-protective immunity can account for the alternating epidemic pattern of dengue virus serotypes circulating in Bangkok, Proc. Natl. Acad. Sci. USA, 103 (2006), 14234–14239.
|
[35]
|
M. Recker, K. B. Blyuss, C. P. Simmons, et al., Immunological serotype interactions and their effect on the epidemiological pattern of dengue, Proc. R. Soc. Lond. B. Biol. Sci., 276 (2009), 2541–2548.
|
[36]
|
H. J. Wearing and P. Rohani, Ecological and immunological determinants of dengue epidemics, Proc. Natl. Acad. Sci. USA, 103 (2006), 11802–11807.
|
[37]
|
O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley, Chichester, 2000.
|
[38]
|
P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48.
|
[39]
|
Y. N. Xiao, T. T. Zhao and S. Y. Tang, Dynamics of an infectious disease with media/psychology induced non-sooth incidence, Math. Biosci. Eng., 10 (2013), 445–461.
|
[40]
|
L. Esteva and C. Vargas, Analysis of a dengue disease transmission model, Math. Biosci., 150 (1998), 131–151.
|
[41]
|
D. Gao, T. C. Porco and S. G. Ruan, Coinfection dynamics of two diseases in a single host population, J. Math. Anal. Appl., 442 (2016), 171–188.
|
[42]
|
D. A. Cummings, I. B. Schwartz, L. Billings, et al., Dynamic effects of antibody-dependent enhancement on the fitness of viruses, Proc. Natl. Acad. Sci. USA, 102 (2005), 15259–15264.
|
[43]
|
W. Dejnirattisai, A. Jumnainsong, N. Onsirisakul, et al., Cross-reacting antibodies enhance dengue virus infection in humans, Science, 328 (2010), 745–748.
|
[44]
|
N. Ferguson, R. Anderson and S. Gupta, The effect of antibody-dependent enhancement on the transmission dynamics and persistence of multiple-strain pathogens, Proc. Natl. Acad. Sci. USA, 96 (1999), 790–794.
|
[45]
|
S. B. Halstead, Pathogenesis of dengue: challenges to molecular biology, Science, 239 (1988), 476–481.
|
[46]
|
A. S. Charles and R. C. Christofferson, Utility of a dengue-derived monoclonal antibody to enhance Zika infection in vitro, PLoS Curr., 8 (2016).
|
[47]
|
W. Dejnirattisai, P. Supasa, W. Wongwiwat, et al., Dengue virus sero-cross-reactivity drives antibody dependent enhancement of infection with zika virus, Nat. Immunol., 17 (2016), 1102–1108.
|
[48]
|
L. Priyamvada, L. Priyamvada, K. M. Quicke, et al., Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus, Proc. Natl. Acad. Sci. USA, 113 (2016), 7852–7857.
|
[49]
|
A. B. Kawiecki and R. C. Christofferson, Zika Virus-Induced Antibody Response Enhances Dengue Virus Serotype 2 Replication In Vitro, J. Infect. Dis., 214 (2016), 1357–1360.
|
[50]
|
S. M. Blower and H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example, Int. Stat. Rev., 62 (1994), 229–243.
|
[51]
|
S. Marino, B. Ian, I. B. Hogue, et al., A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178–196.
|
[52]
|
S. Y. Tang, Y. N. Xiao, Y. Lin, et al., Campus quarantine (Fengxiao) for curbing emergent infectious diseases: Lessons from mitigating A/H1N1 in Xi'an, China, J. Theor. Biol., 295 (2012), 47–58.
|
[53]
|
M. Besnard, S. Lastère, A. Teissier, et al., Evidence of perinatal transmission of Zika virus, French Polynesia, December 2013 and February 2014, Euro. Surveill., 19 (2014), 20751.
|
[54]
|
B. G. S. A. Pradeep and W. Ma, Global stability of a delayed mosquito-transmitted disease model with stage structure, Electron. J. Differ. Equ., 2015 (2015), 1–19.
|
[55]
|
H. Wei, X. Li and M. Martcheva, An epidemic model of a vector-borne disease with direct transmission and time delay, J. Math. Anal. Appl., 342 (2008) 895–908.
|