In this paper, we consider the quasilinear parabolic-elliptic-elliptic attraction-repulsion system
{ut=∇⋅(D(u)∇u)−χ∇⋅(u∇v)+ξ∇⋅(u∇w),x∈Ω,t>0,0=Δv−μ1(t)+f1(u),x∈Ω,t>0,0=Δw−μ2(t)+f2(u),x∈Ω,t>0
under homogeneous Neumann boundary conditions in a smooth bounded domain Ω⊂Rn, n≥2. The nonlinear diffusivity D and nonlinear signal productions f1,f2 are supposed to extend the prototypes
D(s)=(1+s)m−1, f1(s)=(1+s)γ1, f2(s)=(1+s)γ2, s≥0,γ1,γ2>0,m∈R.
We proved that if γ1>γ2 and 1+γ1−m>2n, then the solution with initial mass concentrating enough in a small ball centered at origin will blow up in finite time. However, the system admits a global bounded classical solution for suitable smooth initial datum when γ2<1+γ1<2n+m.
Citation: Ruxi Cao, Zhongping Li. Blow-up and boundedness in quasilinear attraction-repulsion systems with nonlinear signal production[J]. Mathematical Biosciences and Engineering, 2023, 20(3): 5243-5267. doi: 10.3934/mbe.2023243
[1] | Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding . The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28(4): 1395-1418. doi: 10.3934/era.2020074 |
[2] | Shu Wang, Mengmeng Si, Rong Yang . Dynamics of stochastic 3D Brinkman-Forchheimer equations on unbounded domains. Electronic Research Archive, 2023, 31(2): 904-927. doi: 10.3934/era.2023045 |
[3] | Lingrui Zhang, Xue-zhi Li, Keqin Su . Dynamical behavior of Benjamin-Bona-Mahony system with finite distributed delay in 3D. Electronic Research Archive, 2023, 31(11): 6881-6897. doi: 10.3934/era.2023348 |
[4] | Pan Zhang, Lan Huang, Rui Lu, Xin-Guang Yang . Pullback dynamics of a 3D modified Navier-Stokes equations with double delays. Electronic Research Archive, 2021, 29(6): 4137-4157. doi: 10.3934/era.2021076 |
[5] | Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao . Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, 2021, 29(3): 2489-2516. doi: 10.3934/era.2020126 |
[6] | Wei Shi, Xinguang Yang, Xingjie Yan . Determination of the 3D Navier-Stokes equations with damping. Electronic Research Archive, 2022, 30(10): 3872-3886. doi: 10.3934/era.2022197 |
[7] | Keqin Su, Rong Yang . Pullback dynamics and robustness for the 3D Navier-Stokes-Voigt equations with memory. Electronic Research Archive, 2023, 31(2): 928-946. doi: 10.3934/era.2023046 |
[8] | Nisachon Kumankat, Kanognudge Wuttanachamsri . Well-posedness of generalized Stokes-Brinkman equations modeling moving solid phases. Electronic Research Archive, 2023, 31(3): 1641-1661. doi: 10.3934/era.2023085 |
[9] | Zhiqing Li, Wenbin Zhang, Yuanfei Li . Structural stability for Forchheimer fluid in a semi-infinite pipe. Electronic Research Archive, 2023, 31(3): 1466-1484. doi: 10.3934/era.2023074 |
[10] | Wenlong Sun . The boundedness and upper semicontinuity of the pullback attractors for a 2D micropolar fluid flows with delay. Electronic Research Archive, 2020, 28(3): 1343-1356. doi: 10.3934/era.2020071 |
In this paper, we consider the quasilinear parabolic-elliptic-elliptic attraction-repulsion system
{ut=∇⋅(D(u)∇u)−χ∇⋅(u∇v)+ξ∇⋅(u∇w),x∈Ω,t>0,0=Δv−μ1(t)+f1(u),x∈Ω,t>0,0=Δw−μ2(t)+f2(u),x∈Ω,t>0
under homogeneous Neumann boundary conditions in a smooth bounded domain Ω⊂Rn, n≥2. The nonlinear diffusivity D and nonlinear signal productions f1,f2 are supposed to extend the prototypes
D(s)=(1+s)m−1, f1(s)=(1+s)γ1, f2(s)=(1+s)γ2, s≥0,γ1,γ2>0,m∈R.
We proved that if γ1>γ2 and 1+γ1−m>2n, then the solution with initial mass concentrating enough in a small ball centered at origin will blow up in finite time. However, the system admits a global bounded classical solution for suitable smooth initial datum when γ2<1+γ1<2n+m.
The delay effect originates from the boundary controllers in engineering. The dynamics of a system with boundary delay could be described mathematically by a differential equation with delay term subject to boundary value condition such as [20]. There are many results available in literatures on the well-posedness and pullback dynamics of fluid flow models with delays especially the 2D Navier-Stokes equations, which can be seen in [1], [2], [8] and references therein. Inspired by these works, in this paper, we study the stability of pullback attractors for 3D Brinkman-Forchheimer (BF) equation with delay, which is also a continuation of our previous work in [6]. The existence and structure of attractors are significant to understand the large time behavior of solutions for non-autonomous evolutionary equations. Furthermore, the asymptotic stability of trajectories inside invariant sets determines many important properties of trajectories. The 3D Brinkman-Forchheimer equation with delay is given below:
{∂u∂t−νΔu+αu+β|u|u+γ|u|2u+∇p=f(t,ut)+g(x,t),∇⋅u=0, u(t,x)|∂Ω=0,u|t=τ=uτ(x), x∈Ω,uτ(θ,x)=u(τ+θ,x)=ϕ(θ), θ∈(−h,0), h>0. | (1) |
Here,
(1). a general delay
or
(2). the special application of
f(t,ut)=F(u(t−ρ(t))) | (2) |
for a smooth function
The BF equation describes the conservation law of fluid flow in a porous medium that obeys the Darcy's law. The physical background of 3D BF model can be seen in [14], [9], [18], [19]. For the dynamic systems of problem
(a) For problem (1) with delay
(b) For problem (1) with special application of
(c) The asymptotic stability of trajectories inside pullback attractors is further research of the results established in [6]. However, the stability of pullback attractors for (1) with infinite delay is still unknown.
In this section, we give some notations and the equivalent abstract form of (1) in this section.
Denoting
By the Helmholz-Leray projection defined above, (1) can be transformed to the abstract equivalent form
{∂u∂t+νAu+P(αu+β|u|u+γ|u|2u)=Pf(t,ut)+Pg(t,x),u|∂Ω=0,u|t=τ=uτ(x),uτ(θ,x)=ϕ(θ,x) for θ∈(−h,0), | (3) |
then we show our results for (3) with
We also define some Banach spaces on delayed interval as
‖ϕ‖CH=supθ∈[−h,0]‖ϕ(θ)‖H, ‖ϕ‖CV=supθ∈[−h,0]‖ϕ(θ)‖V, |
respectively. The Lebesgue integrable spaces on delayed interval can be denoted as
Some assumptions on the external forces and parameters which will be imposed in our main results are the following:
‖f(t,ξ)−f(t,η)‖H≤Lf‖ξ−η‖CH, for ξ,η∈CH. |
∫tτ‖f(r,ur)−f(r,vr)‖2Hdr≤C2f∫tτ−h‖u(r)−v(r)‖2Hdr, for τ≤t. | (4) |
∫t−∞eηs‖g(s,⋅)‖2V′ds<∞. | (5) |
holds for any
Lemma 3.1. (The Gronwall inequality with differential form) Let
ddtm(t)≤v(t)m(t)+h(t), m(t=τ)=mτ, t≥τ. | (6) |
Then
m(t)≤mτe∫tτv(s)ds+∫tτh(s)e∫tsv(σ)dσds, t≥τ. | (7) |
In this part, we shall present some retarded integral inequalities from Li, Liu and Ju [5]. Consider the following retarded integral inequalities:
‖y(t)‖X≤E(t,τ)‖yτ‖X+∫tτK1(t,s)‖ys‖Xds+∫∞tK2(t,s)‖ys‖Xds+ρ, ∀ t≥τ, | (8) |
where
Let
κ(K1,K2)=supt≥τ(∫tτK1(t,s)ds+∫∞tK2(t,s)ds). |
We assume that
limt→+∞E(t+s,s)=0 | (9) |
uniformly with respect to
Lemma 3.2. (The retarded Gronwall inequality) Denoting
(1) If
‖yt‖X<μρ+ε, | (10) |
for
(2) If
‖yt‖X≤M‖y0‖Xe−λt+γρ, t≥τ | (11) |
for all bounded functions
(3) If
Proof. See Li, Liu and Ju [5].
Remark 1. (The special case:
The minimal family of pullback attractors will be stated here in preparation for our main result.
Lemma 3.3. (1) (See [7], [11]) Assume that
(|a|β−2a−|b|β−2b)⋅(a−b)≥γ0|a−b|β, |
where
(2) The following
|xq−yq|≤Cq(|x|q−1+|y|q−1)|x−y| |
for the integer
Theorem 3.4. Assume that the external forces
Proof. Step 1. Existence of local approximate solution.
By the property of the Stokes operator
Awi=λiwi, i=1,2,⋯. | (12) |
Let
{(∂tum,wj)+ν(∇um,∇wj)+(αum+β|um|um+γ|um|2um,wj)=(f(t,umt),wj)+⟨g,wj⟩,um(τ)=Pmuτ=uτm,umτ(θ,x)=Pmϕ(θ)=ϕm(θ) for θ∈[−h,0], | (13) |
Then it is easy to check that (13) is equivalent to an ordinary differential equations with unknown variable function
Step 2. Uniform estimates of approximate solutions.
Multiplying (13) by
12ddt‖um‖2H+ν‖um‖2V+α‖um‖2H+β‖um‖3L3(Ω)+γ‖um‖4L4(Ω)≤|(g(t)+f(s,umt(s)),um)|≤α‖um‖2H+ν2‖um‖2V+12ν‖g(t)‖2V′+14α‖f(t,umt)‖2H. | (14) |
Integrating in time, using the hypotheses on
‖um‖2H+ν∫tτ‖um‖2Vds+2β∫tτ‖um‖3L3(Ω)ds+2γ∫tτ‖um‖4L4(Ω)ds≤‖uτ‖2H+C2f4α∫0−h‖ϕ(s)‖2Hds+12ν∫tτ‖g(s)‖2V′ds+C2f4α∫tτ‖um‖2Hds. | (15) |
Using the Gronwall Lemma of integrable form, we conclude that
{um} is bounded in the spaceL∞(τ,T;H)∩L2(τ−h,T;V)∩L3(τ,T;L3(Ω))∩L4(τ,T;L4(Ω)). |
Step 3. Compact argument and passing to limit for deriving the global weak solutions.
In this step, we shall prove
dumdt=−νAum−αum−β|um|um−γ|um|2um+P(g(t)+f(t,umt) | (16) |
and assumptions
By virtue of the Aubin-Lions Lemma, we obtain that
{um(t)⇀u(t) weakly * in L∞(τ,T;H),um(t)→u(t) stongly in L2(τ,T;H),um(t)⇀u(t) weakly in L2(τ,T;V),dum/dt⇀du/dt weakly in L2(τ,T;V′),f(⋅,um⋅)⇀f(⋅,u⋅) weakly in L2(τ,T;H),um⇀u(t) weakly in L3(τ,T;L3(Ω)),um⇀u(t) weakly in L4(τ,T;L4(Ω)) | (17) |
which coincides with the initial data
For the purpose of passing to limit in (13), denoting
∫Tτ(β|um|um−β|u|u,wj)ds≤Cλ1β‖um‖4L4(τ,T;L4(Ω))‖um−u‖4L4(τ,T;L4(Ω))+Cβ‖um−u‖L∞(τ,T;H)‖u‖2L2(τ−h,T;H) |
and
∫Tτ(γ|um|2um−γ|u|2u,wj)ds≤Cγ‖um‖2L2(τ,T;V)‖um−u‖4L4(τ,T;L4(Ω))+Cγ‖um−u‖4L4(τ,T;L4(Ω))(‖u‖2L2(τ−h,T;V)+‖um‖4L4(τ,T;L4(Ω))) | (18) |
and the convergence of delayed external force
Thus, passing to the limit of (13), we conclude that
Proposition 1. Assume that the external forces
Proof. Taking inner product of (3) with
12ddt‖A1/2u‖2H+ν‖Au‖2H+α‖A1/2u‖2H+β∫Ω|u|u⋅Audx+γ∫Ω|u|2u⋅Audx=(f(t,ut),Au)+(g(t),Au). | (19) |
According to Lemma 3.3, the nonlinear terms have the following estimates
|β(|u|u,Au)|≤ν2‖Au‖2H+β4ν‖u‖4L4 | (20) |
and
γ∫Ω|u|2u⋅Audx=γ2∫Ω|∇(|u|2)|2dx+γ∫Ω|u|2|∇u|2dx | (21) |
and
(f(t,ut),Au)+(g(t),Au)≤12ν‖f(t,ut)‖2H+12ν‖g(t)‖2H+ν2‖Au‖2H, | (22) |
hence, we conclude that
ddt‖A1/2u‖2H+2α‖A1/2u‖2H+γ∫Ω|∇(|u|2)|2dx+2γ∫Ω|u|2|∇u|2dx≤β2ν‖u‖4L4+1ν‖f(t,ut)‖2H+1ν‖g(t)‖2H. | (23) |
Letting
‖A1/2u(t)‖2H+2α∫ts‖A1/2u(r)‖2Hdr≤‖A1/2u(s)‖2H+β2ν∫ts‖u(r)‖4L4dr+2ν∫ts‖f(r,ur)‖2Hdr+2ν∫ts‖g(r)‖2Hdr | (24) |
and
∫ts‖f(r,ur)‖2Hdr≤L2f‖ϕ(θ)‖2L2H+L2f∫ts‖u(r)‖2Hdr. | (25) |
Then integrating with
‖A1/2u(t)‖2H≤∫tt−1‖A1/2u(s)‖2Hds+β2ν∫tt−1‖u(r)‖4L4dr+2L2fν‖ϕ(θ)‖2L2H+2L2fν∫tτ‖u(r)‖2Hdr+2ν∫tt−1‖g(r)‖2Hdr≤C[‖ϕ‖2L2H+‖uτ‖2H]+C∫tτ‖g‖2Hds+2L2fνλ1∫tτ‖u(r)‖2Vdr, | (26) |
which means the uniform boundedness of the global weak solution
Proposition 2. Assume the hypotheses in Theorem 3.4 hold. Then the global weak solution
Proof. Using the same energy estimates as above, we can deduce the uniqueness easily, here we skip the details.
To description of pullback attractors, the functional space
∫tτeηs‖f(s,us)‖2Hds<C2f∫tτ−heηs‖u(s)‖2Hds. | (27) |
for any
Proposition 3. For given
Lemma 3.5. Assume that
‖u(t)‖2H≤e−8ηCfα(t−τ)(‖uτ‖2H+Cf‖ϕ(r)‖2L2H)+e−8ηCfαtν−ηλ−1∫tτeηr‖g(r)‖2V′dr | (28) |
and
ν∫ts‖u(r)‖2Vdr≤‖u(s)‖2H+8Cfα‖us‖2L2H+1ν∫ts‖g(r)‖2V′dr+8Cfα∫ts‖u(r)‖2Hdr, | (29) |
β∫ts‖u(r)‖3L3(Ω)dr≤‖u(s)‖2H+8Cfα‖us‖2L2H+1ν∫ts‖g(r)‖2V′dr+8Cfα∫ts‖u(r)‖2Hdr, | (30) |
γ∫ts‖u(r)‖4L4(Ω)dr≤‖u(s)‖2H+8Cfα‖us‖2L2H+1ν∫ts‖g(r)‖2V′dr+8Cfα∫ts‖u(r)‖2Hdr. | (31) |
Proof. By the energy estimate of (1) and using Young's inequality, we arrive at
ddt‖u‖2H+2ν‖u‖2V+2α‖u‖2H+2β‖u‖3L3(Ω)+2γ‖u‖2L4(Ω)≤1ν−ηλ−1‖g‖2V′+(ν−ηλ−1)‖u‖2V+2α‖u‖2H+8α‖f(t,ut)‖2H, | (32) |
where
Multiplying the above inequality by
ddt(eηt‖u‖2H)+eηtνλ1‖u‖2H+2βeηt‖u‖3L3(Ω)+2γeηt‖u‖2L4(Ω)≤1ν−ηλ−1eηt‖g‖2V′+8Cfαeηt‖f(t,ut)‖2H. |
Thus integrating with respect to time variable, it yields
eηt‖u‖2H+νλ1∫tτeηr‖u(r)‖2Hdr≤eητ(‖uτ‖2H+Cf∫0−h‖ϕ(r)‖2Hdr)+1ν−ηλ−1∫tτeηr‖g(r)‖2V′dr+8Cfα∫tτeηr‖u(r)‖2Hdr | (33) |
and by the Gronwall Lemma, we can derive the estimate in our theorem.
Using the energy estimate of (1) again, we can check that
ddt‖u‖2H+2ν‖u‖2V+2α‖u‖2H+2β‖u‖3L3(Ω)+2γ‖u‖2L4(Ω)≤1ν‖g‖2V′+ν‖u‖2V+2α‖u‖2H+8α‖f(t,ut)‖2H, | (34) |
Integrating from
Based on Lemma 3.5, we can present the pullback dissipation based on the following universes for the tempered dynamics.
Definition 3.6. (Universe). (1) We will denote by
limτ→−∞(eητsup(ξ,ζ)∈D(τ)‖(ξ,ζ)‖2MH)=0. | (35) |
(2)
Remark 2. The universes
Proposition 4. (The
D0(t)=¯BH(0,ρH(t))×(¯BL2V(0,ρL2H(t))∩¯BCH(0,ρCH(t))) |
is the pullback
ρ2H(t)=1+e−8ηCfα(t−h)ν−ηλ−1∫t−∞eηr‖g(r)‖2V′dr,ρ2L2V(t)=1ν[1+‖uτ‖2H+8Cfα‖ϕ‖2L2H+‖g(r)‖2L2(t−h,t;V′)ν+8Cfhαρ2H(t)]. |
Moreover, the pullback
Proof. Using the estimates in Lemma 3.5, choosing any
‖u(t,τ;uτ,ϕ)‖2H≤ρ2H(t)=1+e−8ηCfα(t−h)ν−ηλ−1∫t−∞eηr‖g(r)‖2V′dr | (36) |
holds for any
Theorem 3.7. Assume that
Proof. Step 1. Weak convergence of the sequence
For arbitrary fixed
By using the similar energy estimate in Theorem 3.4 and technique in Proposition 4, there exists a pullback time
‖(un)′‖L2(t−h−1,t;V′)≤ν‖un‖L2(t−h−1,t;V)+αλ−11‖un‖L2(t−h−1,t;V)+β‖un‖L4(t−h−1,t;L4(Ω))+Cλ1,|Ω|γ‖un‖L2(t−h−1,t;V)+Cα‖f(t,unt)‖L2(t−h−1,t;H)+Cν‖g‖L2(t−h−1,t;V′). | (37) |
From the hypotheses
{un⇀u weakly * in L∞(t−3h−1,t;H),un⇀u weakly in L2(t−2h−1,t;V),(un)′⇀u′ weakly in L2(t−h−1,t;V′),um⇀u(t) weakly in L3(t−2h−1,t;L3(Ω)),um⇀u(t) weakly in L4(t−2h−1,t;L4(Ω)),un→u stongly in L2(t−h−1,t;H),un(s)→u(s) stongly in H, a.e. s∈(t−h−1,t). | (38) |
By Theorem 3.4, from the hypothesis on
\begin{eqnarray} f(\cdot, u^n_{\cdot}) \rightharpoonup f(\cdot,u_{\cdot})\ \mbox{weakly in} \ L^2(t-h-1,t;H). \end{eqnarray} | (39) |
Thus, from (38) and (39), we can conclude that
From the uniform bounded estimate of
\begin{eqnarray} u^n\rightarrow u\ \mbox{strongly in}\ C([t-h-1,t];H). \end{eqnarray} | (40) |
Therefore, we can conclude that
\begin{eqnarray} u^n(s_n) \rightharpoonup u(s)\ \ \mbox{weakly in } H \end{eqnarray} | (41) |
for any
\begin{eqnarray} \liminf\limits_{n\rightarrow\infty}\|u^{n}(s_n)\|_{H}\geq \|u(s)\|_{H}. \end{eqnarray} | (42) |
Step 2. The strong convergence of corresponding sequences via energy equation method:
The asymptotic compactness of sequence
\begin{eqnarray} \|u^{n}(s_n)-u(s)\|_{H}\rightarrow 0\ \mbox{as}\ n\rightarrow+\infty, \end{eqnarray} | (43) |
which is equivalent to prove (42) combining with
\begin{eqnarray} \limsup\limits_{n\rightarrow\infty}\|u^{n}(s_n)\|_H\leq \|u(s)\|_H \end{eqnarray} | (44) |
for a sequence
Using the energy estimate to all
\begin{eqnarray} &&\|u^n(s_2)\|^2_H+\nu \int^{s_2}_{s_1}\|u^n(r)\|^2_Vdr+2\beta \int^{s_2}_{s_1}\|u^n(r)\|^3_{\mathbb{L}^4(\Omega)}dr+2\gamma \int^{s_2}_{s_1}\|u^n(r)\|^4_{\mathbb{L}^4(\Omega)}\\ &\leq& \frac{2C_f^2}{\alpha}\int^{s_2}_{s_2}\|u^n_r\|^2_Hdr+\frac{8}{\nu}\int^{s_2}_{s_1}\|g(r)\|^2_{V'}dr \end{eqnarray} | (45) |
and
\begin{eqnarray} &&\|u(s_2)\|^2_H+\nu \int^{s_2}_{s_1}\|u(r)\|^2_Vdr+2\beta \int^{s_2}_{s_1}\|u(r)\|^3_{\mathbb{L}^4(\Omega)}dr+2\gamma \int^{s_2}_{s_1}\|u(r)\|^4_{\mathbb{L}^4(\Omega)}\\ &\leq& \frac{2C_f^2}{\alpha}\int^{s_2}_{s_2}\|u_r\|^2_Hdr+\frac{8}{\nu}\int^{s_2}_{s_1}\|g(r)\|^2_{V'}dr. \end{eqnarray} | (46) |
Then, we define the functionals
\begin{eqnarray} J_n(s)& = &\frac{1}{2}\|u^n\|^2_H-\int^{s}_{t-h-1}\langle g(r),u^n(r)\rangle dr-\int^{s}_{t-h-1}(f(r,u^n_r),u^n(r))dr \end{eqnarray} | (47) |
and
\begin{eqnarray} J(t)& = &\frac{1}{2}\|u(s)\|^2_H-\int^{s}_{t-h-1}\langle g(r),u(r)\rangle dr-\int^{s}_{t-h-1}(f(r,u_r),u(r))dr. \end{eqnarray} | (48) |
Combining the convergence in (38), observing that
\begin{eqnarray} &&\int^t_{t-h-1}\langle g(r),u^n(r)\rangle dr\rightarrow 2\int^t_{t-h-1}\langle g(r),u(r)\rangle dr \end{eqnarray} | (49) |
and
\begin{eqnarray} &&\int^t_{t-h-1}(f(r,u^n_r),u^n(r))dr\rightarrow 2\int^t_{t-h-1}(f(r,u_r),u(r))dr \end{eqnarray} | (50) |
as
\begin{eqnarray} J_n(s)\rightarrow J(s)\ \ \mbox{a.e.} s\in (t-h-1,t), \end{eqnarray} | (51) |
i.e., for
\begin{eqnarray} |J_n(s_k)-J(s_k)|\leq \frac{\varepsilon}{2}. \end{eqnarray} | (52) |
Since
\begin{eqnarray} |J(s_{k})-J(s)|\leq \frac{\varepsilon}{2}, \end{eqnarray} | (53) |
Choosing
\begin{eqnarray} |J_n(s_n)-J(s)|\leq |J_n(s_n)-J(s_n)|+|J(s_n)-J(s)| < \varepsilon. \end{eqnarray} | (54) |
Therefore, for any
\begin{eqnarray} \limsup\limits_{n\rightarrow\infty}J_n(s_n)\leq J(s), \end{eqnarray} | (55) |
which implies
\begin{eqnarray} \limsup\limits_{n\rightarrow \infty}\|u^n(s_n)\|_H \leq \|u(s)\|_H. \end{eqnarray} | (56) |
we conclude the strong convergence
Step 3. The strong convergence:
Combining the energy estimates in (45) and (46), noting the energy functionals
\begin{eqnarray} \|u^n(s)\|_{L^2(t-h,t;V)}\rightarrow \|u(s)\|_{L^2(t-h,t;V)}. \end{eqnarray} | (57) |
Hence jointing with the weak convergence in (38), we can derive that
Step 4. The
By using the results from Steps 2 to 4 and noting the definition of universe, we can conclude that the processes is
Remark 3. Using the similar technique, we can derive the processes
Theorem 3.8. Assume that
\begin{eqnarray} \mathcal{A}_{\mathcal{D}^{M_H}_{F}}(t) \subset \mathcal{A}_{\mathcal{D}^{M_H}_{\eta}}(t). \end{eqnarray} | (58) |
Proof. From Proposition 3, we observe that the process
Based on the universes defined in Definition 3.6, the relation between
Definition 3.9. The pullback attractors is asymptotically stable if the trajectories inside attractor reduces to a single orbit as
Theorem 3.10. Assume that
\mathit{\mbox{G}}(t)\leq K_0, |
where
\begin{equation} K_0 = \Big\{[\nu^2\lambda_1(2\nu\lambda_1+\alpha)]\Big/\Big[4C_{|\Omega|}\beta \Big(\frac{L_f^2}{\alpha}\frac{2-\frac{L^2_f}{\alpha}}{1-\frac{2L^2_f}{\alpha}}+\frac{1}{\alpha}\Big)\Big]\Big\}^{1/2},\nonumber \end{equation} |
here
Proof. Let
\begin{eqnarray} u(\tau+\theta)|_{\theta\in [-h,0]} = \phi(\theta),\ \ \ u|_{t = \tau} = u_{\tau} \end{eqnarray} | (59) |
and
\begin{eqnarray} v(\tau+\theta)|_{\theta\in [-h,0]} = \tilde{\phi}(\theta), \ \ v|_{t = \tau} = \tilde{u}_{\tau} \end{eqnarray} | (60) |
respectively. Denoting
\begin{eqnarray} (u,u_t) = U(t,\tau)(u_{\tau},\varphi)\ \ \mbox{and}\ \ (v,v_t) = U(t,\tau)(\tilde{u}_{\tau},\tilde{\varphi}) \end{eqnarray} | (61) |
as two trajectories inside the pullback attractors, letting
\begin{equation} \begin{cases} \frac{\partial w}{\partial t}+\nu A w +P\Big(\alpha w+\beta(|u|u-|v|v)+\gamma (|u|^2u-|v|^2v)\Big)&\\ \quad = P(f(t, u_t)-f(t,v_t)),& \\ w|_{\partial\Omega} = 0,& \\ w(t = \tau) = u_{\tau}-\tilde{u}_{\tau},&\\ w(\tau+\theta) = \phi(\theta)-\tilde{\phi}(\theta),\ \theta\in [-h,0].& \end{cases} \end{equation} | (62) |
Taking inner product of (62) with
\begin{eqnarray} \gamma(|u|^2u-|v|^2v, u-v)\geq \gamma \gamma_0 \|u-v\|^4_{\bf{L}^4} \end{eqnarray} | (63) |
and
\begin{eqnarray} &&\frac{1}{2}\frac{d}{d t}\|w\|^2_H+\nu\|w\|^2_V+\alpha \|w\|_H^2+\gamma \gamma_0 \|w\|^4_{\bf{L}^4}\\ &\leq& \Big|\beta(|u|u-|v|v,w)\Big|+\Big|(f(t,u_t)-f(t,v_t),w)\Big|\\ &\leq&\beta\Big(\int_{\Omega}|u|^2|w|dx+\int_{\Omega}|w||v|^2dx\Big)+\frac{\alpha}{2}\|w\|^2_H+\frac{L_f^2}{2\alpha}\|w_t\|^2_H \end{eqnarray} |
\begin{eqnarray} &\leq& \beta(\|u\|^2_{\bf{L}^4}+\|v\|^2_{\bf{L}^4})\|w\|^2_{H}+\frac{\alpha}{2}\|w\|^2_H+\frac{L_f^2}{2\alpha}\|w_t\|^2_H\\ &\leq& C_{|\Omega|}\beta(\|u\|^2_{V}+\|v\|^2_{V})\|w\|^2_{H}+\frac{\alpha}{2}\|w\|^2_H+\frac{L_f^2}{2\alpha}\|w_t\|^2_H. \end{eqnarray} | (64) |
Using the Poincaré inequality and Lemma 3.1, noting that if
\begin{eqnarray} 2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V) > 0, \end{eqnarray} | (65) |
then we can obtain
\begin{eqnarray} \|w\|^2_H&\leq& e^{\int^t_{\tau}[2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)-(2\nu\lambda_1+\alpha)]ds}\Big[\|u_{\tau}-\tilde{u}_{\tau}\|^2_H+\\ &&+\frac{L_f^2}{\alpha}\int^t_{\tau}e^{-\int^t_{s}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]d\sigma}\|w_t\|^2_Hds\Big]. \end{eqnarray} | (66) |
Denoting
\begin{eqnarray} E(t,\tau) = e^{-\int^t_{\tau}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]ds} \end{eqnarray} | (67) |
and
\begin{eqnarray} K_1(t,s) = \frac{L_f^2}{\alpha}e^{-\int^t_{s}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]d\sigma} \end{eqnarray} | (68) |
and
\begin{eqnarray} \Theta = \sup\limits_{t\geq s\geq \tau}E(t,s),\ \ \ \ \kappa(K_1,0) = \sup\limits_{t\geq\tau}\int^t_{\tau}K_1(t,s)ds, \end{eqnarray} | (69) |
by virtue of Lemma 3.2, choosing
\begin{eqnarray} \|w_t\|^2_H&\leq& M\|u_{\tau}-\tilde{u}_{\tau}\|^2_H e^{-\lambda (t-\tau)}. \end{eqnarray} | (70) |
Substituting (70) into (64), using Lemma 3.1 again, we can conclude the following estimate
\begin{eqnarray} \|w\|^2_H &\leq& \|u_{\tau}-\tilde{u}_{\tau}\|^2_He^{-\int^t_{\tau}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]ds}\\ &&+\frac{L_f^2}{\alpha}M\|u_{\tau}-\tilde{u}_{\tau}\|^2_H e^{-\lambda (t-\tau)}\int^t_{\tau}e^{-\int^t_{s}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]d\sigma}ds.\\ \end{eqnarray} | (71) |
From (70) and (71), if we fixed
\begin{equation} 2\nu\lambda_1+\alpha > 2C_{|\Omega|}\beta \langle \|u\|^2_V+\|v\|^2_V\rangle_{\leq t}, \end{equation} | (72) |
where
\begin{equation} \langle h \rangle_{\leq t} = \limsup\limits_{\tau\rightarrow -\infty}\frac{1}{t-\tau}\int^t_{\tau}h(r)dr. \end{equation} | (73) |
Since
\begin{eqnarray} &&\frac{1}{2}\frac{d}{dt}\|u\|^2_H+\nu\|A^{1/2}u\|^2_H+\alpha\|u\|^2_H+\beta \|u\|^3_{\bf{L}^3}+\gamma \|u\|^4_{\bf{L}^4}\\ &\leq&\alpha \|u\|^2_H+\frac{1}{2\alpha}\Big[\|f(t,u_t)\|^2_H+\|g\|^2_{H}\Big]\\ &\leq&\alpha \|u\|^2_H+\frac{L_f^2}{2\alpha}\|u_t\|^2_H+\frac{1}{2\alpha}\|g\|^2_{H}. \end{eqnarray} | (74) |
Using the Poincaré inequality and Lemma 3.1, then we can obtain
\begin{eqnarray} \|u\|^2_H&\leq& e^{-2\nu\lambda_1(t-\tau)}\|u_{\tau}\|^2_H+\\ &&+\frac{L_f^2}{\alpha}\int^t_{\tau}e^{-2\nu\lambda_1(t-s)}\|u_s\|^2_Hds+\frac{1}{\alpha}\int^t_{\tau}e^{-2\nu\lambda_1(t-s)}\|g\|^2_Hds. \end{eqnarray} | (75) |
Denoting
\begin{eqnarray} E(t,\tau) = e^{-2\nu\lambda_1(t-\tau)} \end{eqnarray} | (76) |
and
\begin{eqnarray} K_1(t,s) = \frac{L_f^2}{\alpha}e^{-2\nu\lambda_1(t-s)} \end{eqnarray} | (77) |
and
\begin{equation} \rho = \frac{1}{\alpha}\int^t_{\tau}e^{-2\nu\lambda_1(t-s)}\|g\|^2_Hds, \end{equation} | (78) |
letting
\begin{eqnarray} \Theta = \sup\limits_{t\geq s\geq \tau}E(t,s),\ \ \ \ \kappa(K_1,0) = \sup\limits_{t\geq\tau}\int^t_{\tau}K_1(t,s)ds, \end{eqnarray} | (79) |
by virtue of Lemma 3.2, choosing
\begin{eqnarray} \|u_t\|^2_H&\leq& \hat{M}\|u_{\tau}\|^2_H e^{-\lambda (t-\tau)}+\frac{2-\frac{L^2_f}{\alpha}}{1-\frac{2L^2_f}{\alpha}}\int^t_{\tau}e^{-2\nu\lambda_1(t-s)}\|g\|^2_Hds\\ &\leq& \hat{M}\|u_{\tau}\|^2_H e^{-\lambda (t-\tau)}+\frac{2-\frac{L^2_f}{\alpha}}{1-\frac{2L^2_f}{\alpha}}\int^t_{\tau}\|g\|^2_Hds. \end{eqnarray} | (80) |
Substituting (80) into (75), using Lemma 3.1 again, we can conclude the following estimate
\begin{eqnarray} \|u\|^2_H &\leq& C\|u_{\tau}\|^2_He^{-\lambda (t-\tau)}+\Big(\frac{L_f^2}{\alpha}\frac{2-\frac{L^2_f}{\alpha}}{1-\frac{2L^2_f}{\alpha}}+\frac{1}{\alpha}\Big)\int^t_{\tau}\|g\|^2_Hds. \end{eqnarray} | (81) |
Integrating (74) from
\begin{eqnarray} &&\|u\|^2_H+2\nu\int^t_{\tau}\|u\|^2_Vds+2\beta\int^t_{\tau} \|u\|^3_{\bf{L}^3}ds+2\gamma \int^t_{\tau}\|u\|^4_{\bf{L}^4}ds\\ &\leq& \Big[\frac{1}{\alpha}\|\phi\|^2_{L^2_H}+\|u_{\tau}\|^2_H\Big]+\frac{L_f^2}{\alpha}\int^{t}_{\tau}\|u_t(s)\|^2_Hds+\frac{1}{\alpha}\int^t_{\tau}\|g\|^2_{H}ds. \end{eqnarray} | (82) |
By the estimate of (80) and (81), we derive
\begin{eqnarray} \int^t_{\tau}\|u(r)\|^4_{\bf{L}^4}dr\leq C\Big[\frac{1}{\alpha}\|\phi\|^2_{L^2_H}+\|u_{\tau}\|^2_H\Big]+\Big(\frac{L_f^2}{\alpha}\frac{2-\frac{L^2_f}{\alpha}}{1-\frac{2L^2_f}{\alpha}}+\frac{1}{\alpha}\Big)\int^t_{\tau}\|g\|^2_{H}ds \end{eqnarray} | (83) |
and
\begin{eqnarray} \int^t_{\tau}\|u(r)\|^2_{V}dr\leq C\Big[\frac{1}{\alpha}\|\phi\|^2_{L^2_H}+\|u_{\tau}\|^2_H\Big]+\Big(\frac{L_f^2}{\alpha}\frac{2-\frac{L^2_f}{\alpha}}{1-\frac{2L^2_f}{\alpha}}+\frac{1}{\alpha}\Big)\int^t_{\tau}\|g\|^2_{H}ds. \end{eqnarray} | (84) |
Combining (72), (73) with (84), we conclude that
\begin{eqnarray} && \langle \|u\|^2_V+\|v\|^2_V\rangle|_{\leq t}\leq 2 \Big(\frac{L_f^2}{\alpha}\frac{2-\frac{L^2_f}{\alpha}}{1-\frac{2L^2_f}{\alpha}}+\frac{1}{\alpha}\Big)\langle \|g\|^2_H\rangle|_{\leq t} \end{eqnarray} | (85) |
and hence the asymptotic stability holds provided that
\begin{eqnarray} 4C_{|\Omega|}\beta \Big(\frac{L_f^2}{\alpha}\frac{2-\frac{L^2_f}{\alpha}}{1-\frac{2L^2_f}{\alpha}}+\frac{1}{\alpha}\Big)\langle \|g\|^2_H\rangle|_{\leq t} \leq 2\nu\lambda_1+\alpha. \end{eqnarray} | (86) |
If we define the generalized Grashof number as
\begin{eqnarray} G(t)\leq \Big\{(2\nu\lambda_1+\alpha)\Big/\Big[4C_{|\Omega|}\nu^2\beta\lambda_1 \Big(\frac{L_f^2}{\alpha}\frac{2-\frac{L^2_f}{\alpha}}{1-\frac{2L^2_f}{\alpha}}+\frac{1}{\alpha}\Big)\Big]\Big\}^{1/2} = K_0, \end{eqnarray} | (87) |
which completes the proof for our first result.
Remark 4. Theorem 3.10 is a further research for the existence of pullback attractor in [6].
We first state some hypothesis on the external forces and sub-linear operator.
\Big|\frac{d\rho}{dt}\Big|\leq\rho^{\ast} < 1, \ \ \forall t\geq 0. |
\begin{eqnarray} \|F(y)\|^2_H\leq a(t)\|y\|^2_H+b(t), \ \ \forall t\geq\tau, y\in H. \end{eqnarray} | (88) |
\begin{eqnarray} \|F(u)-F(v)\|_H\leq L(R)\kappa^\frac{1}{2}(t)\|u-v\|_H, \ u,v\in H. \end{eqnarray} | (89) |
holds for
\begin{eqnarray} \int^{t}_{-\infty}e^{ms}\|g(s,\cdot)\|^{2}_Hds < \infty, \ \ \forall t\in\mathbb{R}. \end{eqnarray} | (90) |
\begin{eqnarray} \frac{\nu}{2}-\frac{\|a\|_{L^q_{loc}(\mathbb{R})}}{1-\rho^\ast} > 0. \end{eqnarray} | (91) |
In this part, the well-posedness and pullback attractors for problem (1) with sub-linear operator will be stated for our discussion in sequel.
Assume that the initial date
\begin{equation} \begin{cases} u(t)+\int^t_\tau P(\nu Au+\alpha u+\beta|u|u+\gamma |u|^2u)ds &\\ \quad = u(\tau) +\int^t_\tau P\Big(F\big(u(s-\rho(s))\big)+g(s,x)\Big)ds,& \\ w|_{\partial\Omega} = 0,& \\ u(t = \tau) = u_{\tau},&\\ u(\tau+t) = \phi(t),\ t\in [-h,0],& \end{cases} \end{equation} | (92) |
which possesses a global mild solution as the following theorem.
Theorem 4.1. Assume that the external forces
\begin{eqnarray} &&\|u(t)\|^{2}_H+2\nu\int^t_{\tau}\|u(s)\|^{2}_Vds+2\alpha \int^t_{\tau}\|u(s)\|^{2}_Hds\\ &&+2\beta\int^t_{\tau}\|u(s)\|^{3}_{\bf{L}^3}ds+2\gamma\int^t_{\tau}\|u(s)\|^{4}_{\bf{L}^4}ds\\ & = &\|u_{\tau}\|^{2}_H+2\int^t_{\tau}\Big[\big(F(u(s-\rho(s))),u(s)\big)+2(g(s,x),u(s))\Big]ds. \end{eqnarray} | (93) |
Moreover, we can define a continuous process
Proof. Using the Galerkin method and compact argument as in Section 3.3, we can easily derive the result.
After obtaining the existence of the global well-posedness, we establish the existence of the pullback attractors to (1) with sub-linear operator.
Theorem 4.2. (The pullback attractors in
Proof. Using the similar technique as in Section3.3, we can obtain the existence of pullback attractors, here we skip the details.
Theorem 4.3. We assume that the external forces
Then the trajectories inside pullback attractors
\begin{equation} \mathit{\mbox{G}}(t)\leq \tilde{K}_0, \end{equation} | (94) |
where
\begin{equation} \tilde{K}_0 = \Big\{(2\nu\lambda_1+\alpha)\Big/\Big[2C_{|\Omega|}\beta\nu\lambda_1 (\frac{1}{\alpha^2(1-\rho^*)}+\|\tilde{a}(t)\|_{L^1})\Big]\Big\}^{1/2} > 0,\nonumber \end{equation} |
here
Proof. Step 1. The inequality for asymptotic stability of trajectories.
Let
\begin{eqnarray} u(\theta+\tau)|_{\theta\in [-h,0]} = \phi(\theta)|_{\theta\in[-h,0]},\ \ u|_{t = \tau} = u_{\tau} \end{eqnarray} | (95) |
and
\begin{eqnarray} v(\theta+\tau)|_{\theta\in [-h,0]} = \tilde{\phi}(\theta)|_{\theta\in[-h,0]},\ \ v|_{t = \tau} = \tilde{u}_{\tau} \end{eqnarray} | (96) |
respectively, then
\begin{eqnarray} (u,u_t) = (U(t,\tau)u_{\tau},U(t,\tau)\phi),\ \ (v,v_t) = (U(t,\tau)\tilde{u}_{\tau},U(t,\tau)\tilde{\phi}). \end{eqnarray} | (97) |
If we denote
\begin{equation} \begin{cases} \frac{\partial w}{\partial t}+\nu A w +P\Big(\alpha w+\beta(|u|u-|v|v)+\gamma (|u|^2u-|v|^2v)\Big)&\\ \quad = P\Big(F\big(u(t-\rho(t))\big)-F\big(v(t-\rho(t))\big)\Big),& \\ w|_{\partial\Omega} = 0,& \\ w(t = \tau) = u_{\tau}-\tilde{u}_{\tau},&\\ w(\tau+\theta) = \phi(\theta)-\tilde{\phi}(\theta),\ \theta\in [-h,0].& \end{cases} \end{equation} | (98) |
Multiplying (98) with
\begin{eqnarray} &&\frac{1}{2}\frac{d}{d t}\|w\|^2_H+\nu\|w\|^2_V+\alpha \|w\|_H^2+\gamma \gamma_0 \|w\|^4_{\bf{L}^4}\\ &\leq& |\beta(|u|u-|v|v,w)|+\Big|\Big(F\big(u(t-\rho(t))\big)-F\big(v(t-\rho(t))\big),w\Big)\Big|\\ &\leq& C_{|\Omega|}\beta(\|u\|^2_{V}+\|u\|^2_{V})\|w\|^2_{H}+\frac{\alpha}{2}\|w\|^2_H\\ &&+\frac{1}{\alpha}\|F\big(u(t-\rho(t))\big)-F\big(v(t-\rho(t))\big)\|^2_H\\ &\leq& C_{|\Omega|}\beta(\|u\|^2_{V}+\|u\|^2_{V})\|w\|^2_{H}+\frac{\alpha}{2}\|w\|^2_H\\ &&+\frac{L^2(R)\kappa(t)}{\alpha}\|w(t-\rho(t))\|^2_H. \end{eqnarray} | (99) |
Using the Poincaré inequality and Lemma 3.1, noting that if
\begin{eqnarray} 2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V) > 0, \end{eqnarray} | (100) |
then we can obtain
\begin{eqnarray} \|w\|^2_H&\leq& e^{\int^t_{\tau}[2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)-(2\nu\lambda_1+\alpha)]ds}\Big[\|u_{\tau}-\tilde{u}_{\tau}\|^2_H+\\ &&+\frac{L^2(R)\|\kappa(t)\|_{L^{\infty}}}{\alpha}\int^t_{\tau}e^{-\int^t_{s}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]d\sigma}\\ && \quad \times\|w(t-\rho(t))\|^2_Hds\Big]. \end{eqnarray} | (101) |
Denoting
\begin{eqnarray} E(t,\tau) = e^{-\int^t_{\tau}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]ds} \end{eqnarray} | (102) |
and
\begin{eqnarray} K_1(t,s) = \frac{L^2(R)\|\kappa(t)\|_{L^{\infty}}}{\alpha}e^{-\int^t_{s}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]d\sigma} \end{eqnarray} | (103) |
and
\begin{eqnarray} \Theta = \sup\limits_{t\geq s\geq \tau}E(t,s),\ \ \ \ \kappa(K_1,0) = \sup\limits_{t\geq\tau}\int^t_{\tau}K_1(t,s)ds, \end{eqnarray} | (104) |
by virtue of Lemma 3.2, choosing
\begin{eqnarray} \|w(t-\rho(t))\|^2_H&\leq& \tilde{M}\|u_{\tau}-\tilde{u}_{\tau}\|^2_H e^{-\tilde{\lambda} (t-\tau)}. \end{eqnarray} | (105) |
Substituting (105) into (99), using Lemma 3.1 again, we can conclude the following estimate
\begin{eqnarray} \|w\|^2_H &\leq& \|u_{\tau}-\tilde{u}_{\tau}\|^2_He^{-\int^t_{\tau}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]ds}\\ &&+\frac{L^2(R)\|\kappa(t)\|_{L^{\infty}}}{\alpha}\tilde{M}\|u_{\tau}-\tilde{u}_{\tau}\|^2_H e^{-\tilde{\lambda} (t-\tau)}\\ && \quad \times\int^t_{\tau}e^{-\int^t_{s}[2\nu\lambda_1+\alpha-2C_{|\Omega|}\beta(\|u\|^2_V+\|v\|^2_V)]d\sigma}ds. \end{eqnarray} | (106) |
From the result in last section, we can find that the pullback attractors is asymptotically stable as
\begin{equation} 2\nu\lambda_1+\alpha > 2C_{|\Omega|}\beta \langle \|u\|^2_V+\|v\|^2_V\rangle_{\leq t}. \end{equation} | (107) |
Step 2.Some energy estimate for (1) with sub-linear operator.
Multiplying (3) with
\begin{eqnarray} &&\frac{1}{2}\frac{d}{dt}\|u\|^2_H+\nu\|A^{1/2}u\|^2_H+\alpha\|u\|^2_H+\beta \|u\|^3_{\bf{L}^3}+\gamma \|u\|^4_{\bf{L}^4}\\ &\leq&\alpha \|u\|^2_H+\frac{1}{2\alpha}\Big[\|f\big(t,u(t-\rho(t))\big)\|^2_H+\|g\|^2_{H}\Big]. \end{eqnarray} | (108) |
Moreover, let
\begin{equation} d\theta = (1-\rho'(s))ds,\ a(t)\rightarrow \tilde{a}(\bar{t})\in L^p(\tau,T), \end{equation} | (109) |
which means
\begin{align} &\int^t_\tau\|f(s,u(s-\rho(s)))\|^2_Hds\\ \leq&\int^t_\tau a(s)\|u(s-\rho(s))\|^2_Hds+\int^T_\tau b(s)ds\\ \leq& \ \dfrac{1}{1-\rho^*}\int_{\tau-\rho(\tau)}^{t-\rho(t)} \tilde{a}(s)\|u(s)\|^2_Hds+\int^t_\tau b(s)ds\\ \leq& \ \dfrac{1}{1-\rho^*}\left(\int_{-\rho(\tau)}^{0}\tilde{a}(t+\tau)\|\phi(t)\|^2_Hdt +\int^t_\tau\tilde{a}(s)\|u(s)\|^2_Hds\right)+\int^t_\tau b(s)ds\\ \leq& \dfrac{1}{1-\rho^*}\left(\|\phi(t)\|^2_{L^{2q}_{H}}\|\tilde{a}\|_{L^q(\tau-h,\tau)} +\int^t_\tau\tilde{a}(s)\|u(s)\|^2_Hds\right)+\int^t_\tau b(s)ds, \end{align} | (110) |
Integrating (108) with time variable from
\begin{eqnarray} &&\|u\|^2_H+2\nu\int^t_{\tau}\|u\|^2_Vds+2\beta\int^t_{\tau} \|u\|^3_{\bf{L}^3}ds+2\gamma \int^t_{\tau}\|u\|^4_{\bf{L}^4}ds\\ &\leq& \dfrac{\|\tilde{a}\|_{L^q(\tau-h,\tau)}}{\alpha(1-\rho^*)}\|\phi(t)\|^2_{L^{2q}_{H}}+\|u_{\tau}\|^2_H+\frac{1}{\alpha(1-\rho^*)}\int^{t}_{\tau}\tilde{a}(s)\|u(s)\|^2_Hds\\ &&+\frac{1}{\alpha}\int^t_{\tau}\|g\|^2_{H}ds+\frac{1}{\alpha}\int^t_\tau b(s)ds, \end{eqnarray} | (111) |
then we can achieve that
\begin{eqnarray} \|u(t)\|^2_H&\leq& \Big[\dfrac{\|\tilde{a}\|_{L^q(\tau-h,\tau)}}{\alpha(1-\rho^*)}\|\phi(t)\|^2_{L^{2q}_{H}}+\|u_{\tau}\|^2_H\Big]e^{-\chi_{\sigma}(t,\tau)}\\ &&+\frac{1}{\alpha}\int^t_{\tau}\|g\|^2_{H}e^{-\chi_{\sigma}(t,s)}ds+\frac{1}{\alpha}\int^t_{\tau}b(s)e^{-\chi_{\sigma}(t,s)}ds, \end{eqnarray} | (112) |
where the new variable index
\begin{eqnarray} \chi_{\sigma}(t,s) = (2\nu\lambda_1-\sigma)(t-s)-\frac{1}{\alpha(1-\rho^*)}\int^t_{s}\tilde{a}(r)dr, \end{eqnarray} | (113) |
which satisfies the relations
\begin{eqnarray} \chi_{\sigma}(0,t)-\chi_{\sigma}(0,s) = -\chi_{\sigma}(t,s) \end{eqnarray} | (114) |
and
\begin{eqnarray} \chi_{\sigma}(0,r)\leq \chi_{\sigma}(0,t)+\Big(2\nu\lambda_1-\delta\Big)h,\ \ \mbox{if}\ 2\nu\lambda_1+\alpha-\delta > 0 \end{eqnarray} | (115) |
for
Moreover, using the variable index introduced above, we can conclude that
\begin{eqnarray} &&2\nu\int^t_{\tau}\|u(r)\|^2_{V}dr\\ &\leq& \dfrac{\|\tilde{a}\|_{L^q(\tau-h,\tau)}}{\alpha(1-\rho^*)}\|\phi(t)\|^2_{L^{2q}_{H}}+\|u_{\tau}\|^2_H\\ &&+\frac{1}{\alpha}\int^t_{\tau}\|g\|^2_{H}ds+\frac{1}{\alpha}\int^t_\tau b(s)ds\\ &&+\frac{1}{\alpha(1-\rho^*)}\Big[\dfrac{\|\tilde{a}\|_{L^q(\tau-h,\tau)}}{\alpha(1-\rho^*)}\|\phi(t)\|^2_{L^{2q}_{H}}+\|u_{\tau}\|^2_H\Big]\int^t_{\tau}\tilde{a}(s)e^{-\chi_{\sigma}(s,\tau)}ds\\ &&+\frac{1}{\alpha^2(1-\rho^*)}\int^t_{\tau}\|g(s)\|^2_{H}ds\int^t_{\tau}\tilde{a}(s)ds+\frac{\|b\|_{L^1(\tau,T)}}{\alpha^2(1-\rho^*)}\int^t_{\tau}\tilde{a}(s)ds. \end{eqnarray} | (116) |
Step 3. The sufficient condition for asymptotic stability of trajectories inside pullback attractors.
Combining (107) with (116), we conclude that
\begin{eqnarray} &&2C_{|\Omega|}\beta\langle \|u\|^2_V+\|v\|^2_V\rangle|_{\leq t}\\ &\leq& \frac{2C_{|\Omega|}\beta}{\nu}\Big[\Big(\frac{1}{\alpha^2(1-\rho^*)}+\int^t_{\tau}\tilde{a}(s)ds\Big)\langle \|g(t)\|_H^2\rangle|_{\leq t} \\ &&+\frac{1}{\alpha}\langle \|b(t)\|_{L^1}\rangle|_{\leq t}+\frac{\|b\|_{L^1(\tau,T)}}{\alpha^2(1-\rho^*)}\langle \|\tilde{a}(t)\|_{L^1}\rangle|_{\leq t}\Big]. \end{eqnarray} | (117) |
and hence the asymptotic stability holds provided that
\begin{eqnarray} &&\Big(\frac{1}{\alpha^2(1-\rho^*)}+\|\tilde{a}(t)\|_{L^1}\Big)\langle \|g(t)\|_H^2\rangle|_{\leq t}+\frac{1}{\alpha}\langle \|b(t)\|_{L^1}\rangle|_{\leq t}+\frac{\|b\|_{L^1(\tau,T)}}{\alpha^2(1-\rho^*)}\langle \|\tilde{a}(t)\|_{L^1}\rangle|_{\leq t}\\ &&\leq \frac{\nu(2\nu\lambda_1+\alpha)}{2C_{|\Omega|}\beta}. \end{eqnarray} | (118) |
If we define the generalized Grashof number as
\begin{eqnarray} G(t)\leq \Big\{(2\nu\lambda_1+\alpha)\Big/\Big[2C_{|\Omega|}\beta\nu\lambda_1 (\frac{1}{\alpha^2(1-\rho^*)}+\|\tilde{a}(t)\|_{L^1})\Big]\Big\}^{1/2} = \tilde{K}_0, \end{eqnarray} | (119) |
which completes the proof for our first result.
Remark 5. If we denote
\begin{eqnarray} \limsup\limits_{\tau\rightarrow -\infty}\frac{1}{t-\tau}\int^t_{\tau}b(r)dr = b_0\in [0,+\infty) \end{eqnarray} | (120) |
and
\begin{eqnarray} \limsup\limits_{\tau\rightarrow -\infty}\frac{1}{t-\tau}\int^t_{\tau}\tilde{a}(r)dr = \tilde{a}_0\in [0,+\infty), \end{eqnarray} | (121) |
such that there exists some
\begin{eqnarray} \frac{\nu(2\nu\lambda_1+\alpha)}{2C_{|\Omega|}\beta} > \frac{b_0}{\alpha}+\frac{\|b\|_{L^1(\tau,T)}\tilde{\alpha}_0}{\alpha^2(1-\rho^*)}+\delta \end{eqnarray} | (122) |
holds. Then more precise sufficient condition for the asymptotic stability of pullback attractors is
\begin{eqnarray} G(t)\leq \Big[\frac{\frac{\nu(2\nu\lambda_1+\alpha)}{2C_{|\Omega|}\beta}-\frac{b_0}{\alpha}-\frac{\|b\|_{L^1(\tau,T)}\tilde{\alpha}_0}{\alpha^2(1-\rho^*)}}{\nu^2\lambda_1(\frac{1}{\alpha^2(1-\rho^*)}+\|\tilde{a}(t)\|_{L^1})}\Big]^{1/2} \end{eqnarray} | (123) |
which has smaller upper boundedness than (119).
The structure and stability of 3D BF equations with delay are investigated in this paper. A future research in the pullback dynamics of (1) is to study the geometric property of pullback attractors, such as the fractal dimension.
Xin-Guang Yang was partially supported by the Fund of Young Backbone Teacher in Henan Province (No. 2018GGJS039) and Henan Overseas Expertise Introduction Center for Discipline Innovation (No. CXJD2020003). Xinjie Yan was partly supported by Excellent Innovation Team Project of "Analysis Theory of Partial Differential Equations" in China University of Mining and Technology (No. 2020QN003). Ling Ding was partly supported by NSFC of China (Grant No. 1196302).
The authors want to express their most sincere thanks to refrees for the improvement of this manuscript. The authors also want to thank Professors Tomás Caraballo (Universidad de Sevilla), Desheng Li (Tianjin University) and Shubin Wang (Zhengzhou University) for fruitful discussion on this subject.
[1] |
E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5
![]() |
[2] |
S. Ishida, K. Seki, T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differ. Equation, 256 (2014), 2993–3010. https://doi.org/10.1016/j.jde.2014.01.028 doi: 10.1016/j.jde.2014.01.028
![]() |
[3] |
Y. S. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equation, 252 (2012), 692–715. https://doi.org/10.1016/j.jde.2011.08.019 doi: 10.1016/j.jde.2011.08.019
![]() |
[4] |
Y. F. Wang, J. Liu, Boundedness in quasilinear fully parabolic Keller-Segel system with logistic source, Nonlinear Anal. Real World Appl., 38 (2017), 113–130. https://doi.org/10.1016/j.nonrwa.2017.04.010 doi: 10.1016/j.nonrwa.2017.04.010
![]() |
[5] |
J. S. Zheng, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source, J. Differ. Equation, 259 (2015), 120–140. https://doi.org/10.1016/j.jde.2015.02.003 doi: 10.1016/j.jde.2015.02.003
![]() |
[6] |
A. Blanchet, P. Laurencot, The parabolic-parabolic Keller-Segel system with critical diffusion as a gradient flow in \mathbb{R}^{d}, d\geq3, Commun. Partial Differ. Equation, 38 (2013), 658–686. https://doi.org/10.1080/03605302.2012.757705 doi: 10.1080/03605302.2012.757705
![]() |
[7] |
T. Cie\acute{s}lak, C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabloic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differ. Equation, 252 (2012), 5832–5851. https://doi.org/10.1016/j.jde.2012.01.045 doi: 10.1016/j.jde.2012.01.045
![]() |
[8] |
T. Cie\acute{s}lak, C. Stinner, New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models, J. Differ. Equation, 258 (2015), 2080–2113. https://doi.org/10.1016/j.jde.2014.12.004 doi: 10.1016/j.jde.2014.12.004
![]() |
[9] |
T. Hashira, S. Ishida, T. Yokota, Finite-time blow-up for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, J. Differ. Equation, 264 (2018), 6459–6485. https://doi.org/10.1016/j.jde.2018.01.038 doi: 10.1016/j.jde.2018.01.038
![]() |
[10] |
P. Laurencot, N. Mizoguchi, Finite-time blowup for the parabolic-parabolic Keller-Segel system with nonlinear critical diffusion, Ann. Inst. H. Poincar\acute{e} Anal. Non Lin\acute{e}aire., 34 (2017), 197–220. https://doi.org/10.1016/j.anihpc.2015.11.002 doi: 10.1016/j.anihpc.2015.11.002
![]() |
[11] |
M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748–767. https://doi.org/10.1016/j.matpur.2013.01.020 doi: 10.1016/j.matpur.2013.01.020
![]() |
[12] |
V. Calvez, J. A. Carrillo, Volume effects in the Keller-Segel model:energy estimates preventing blow-up, J. Math. Pures Appl., 86 (2006), 155–175. https://doi.org/10.1016/j.matpur.2006.04.002 doi: 10.1016/j.matpur.2006.04.002
![]() |
[13] |
T. Cie\acute{s}lak, P. Laurencot, Finite time blow-up for radially symmetric solutions to a critical quasilinear Smoluchowski-Poisson system, C. R. Math. Acad. Sci. Paris., 347 (2009), 237–242. https://doi.org/10.1016/j.crma.2009.01.016 doi: 10.1016/j.crma.2009.01.016
![]() |
[14] |
T. Cie\acute{s}lak, M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057–1076. https://doi.org/10.1088/0951-7715/21/5/009 doi: 10.1088/0951-7715/21/5/009
![]() |
[15] |
M. Winkler, K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., 72 (2010), 1044–1064. https://doi.org/10.1016/j.na.2009.07.045 doi: 10.1016/j.na.2009.07.045
![]() |
[16] |
Y. Li, Finite-time blow-up in quasilinear parabolic-elliptic chemotaxis system with nonlinear signal production, Math. Anla. Appl., 480 (2019), 123376. https://doi.org/10.1016/j.jmaa.2019.123376 doi: 10.1016/j.jmaa.2019.123376
![]() |
[17] |
C. J. Wang, L. X. Zhao, X. C. Zhu, A blow-up result for attraction- repulsion system with nonlinear signal production and generalized logistic source, J. Math. Anal. Appl., 518 (2023), 126679. https://doi.org/10.1016/j.jmaa.2022.126679 doi: 10.1016/j.jmaa.2022.126679
![]() |
[18] |
W. W. Wang, Y. X. Li, Boundedness and finite-time blow-up in a chemotaxis system with nonlinear signal production, Nonlinear Anal. RWA., 59 (2021), 103237. https://doi.org/10.1016/j.nonrwa.2020.103237 doi: 10.1016/j.nonrwa.2020.103237
![]() |
[19] |
M. Winkler, A critical blow-up exponent in a chemotaxis system with nonlinear signal production, Nonlinearity, 31 (2018), 2031–2056. https://doi.org/10.1088/1361-6544/aaaa0e doi: 10.1088/1361-6544/aaaa0e
![]() |
[20] |
P. Liu, J. P. Shi, Z. A. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst-Series B., 18 (2013), 2597–2625. https://doi.org/10.3934/dcdsb.2013.18.2597 doi: 10.3934/dcdsb.2013.18.2597
![]() |
[21] |
M. Luca, A. C. Ross, L. E. Keshet, Chemotactic signalling, microglia, and Alzheimer's disease senile plague: is there a connection?, Bull. Math. Biol., 65 (2003), 693–730. https://doi.org/10.1016/s0092-8240(03)00030-2 doi: 10.1016/s0092-8240(03)00030-2
![]() |
[22] |
B. Perthame, C. Schmeiser, M. Tang, N. Vauchelet, Travelling plateaus for a hyperbolic Keller-Segel system with attraction and repulsion: existene and branching instabilites, Nonlinearity, 24 (2011), 1253–1270. https://doi.org/10.1088/0951-7715/24/4/012 doi: 10.1088/0951-7715/24/4/012
![]() |
[23] |
Y. S. Tao, Z. A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Mod. Meth. Appl. Sci., 23 (2013), 1–36. https://doi.org/10.1142/s0218202512500443 doi: 10.1142/s0218202512500443
![]() |
[24] |
Y. Li, Y. X. Li, Blow-up of nonradial solutions to attraction-repulsion chemotaxis system in two dimensions, Nonlinear Anal. RWA., 30 (2016), 170–183. https://doi.org/10.1016/j.nonrwa.2015.12.003 doi: 10.1016/j.nonrwa.2015.12.003
![]() |
[25] |
G. Viglialoro, Explicit lower bound of blow-up time for an attraction-repulsion chemotaxis system, J. Math. Anal. Appl., 479 (2019), 1069–1077. https://doi.org/10.1016/j.jmaa.2019.06.067 doi: 10.1016/j.jmaa.2019.06.067
![]() |
[26] |
H. Y. Jin, Z. A. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differ. Equ., 260 (2016), 162–196. https://doi.org/10.1016/j.jde.2015.08.040 doi: 10.1016/j.jde.2015.08.040
![]() |
[27] |
H. Zhong, C. L. Mu, K. Lin, Global weak solution and boundedness in a three-dimensional competing chemotaxis, Discrete Contin. Dyn. Syst., 38 (2018), 3875–3898. https://doi.org/10.3934/dcds.2018168 doi: 10.3934/dcds.2018168
![]() |
[28] |
J. Liu, Z. A. Wang, Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension, J. Biol. Dyn., 6 (2012), 31–41. https://doi.org/10.1080/17513758.2011.571722 doi: 10.1080/17513758.2011.571722
![]() |
[29] |
H. Y. Jin, Boundedness of the attraction-repulsion Keller-Segel system, J. Math. Anal. Appl., 422 (2015), 1463–1478. https://doi.org/10.1016/j.jmaa.2014.09.049 doi: 10.1016/j.jmaa.2014.09.049
![]() |
[30] |
H. Y. Jin, Z. A. Wang, Global stabilization of the full attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst., 40 (2020), 3509–3527. https://doi.org/10.3934/dcds.2020027 doi: 10.3934/dcds.2020027
![]() |
[31] |
H. Y. Jin, Z. A. Wang, Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model, Math. Meth. Appl. Sci., 38 (2015), 444–457. https://doi.org/10.1002/mma.3080 doi: 10.1002/mma.3080
![]() |
[32] |
Y. Chiyo, M. Marras, Y. Tanaka, T. Yokota, Blow-up phenomena in a parabolic-elliptic-elliptic attraction-repulsion chemotaxis system with superlinear logistic degradation, Nonlinear Anal. RWA., 212 (2021), 112550. https://doi.org/10.1016/j.na.2021.112550 doi: 10.1016/j.na.2021.112550
![]() |
[33] |
Y. Chiyo, T. Yokota, Boundedness and finite-time blow-up in a quasilinear parabolic-elliptic-elliptic attraction-repulsion chemotaxis system, Z. Angew. Math. Phys., 73 (2022), 1–21. https://doi.org/10.1007/s00033-022-01695-y doi: 10.1007/s00033-022-01695-y
![]() |
[34] | X. C. Gao, J. Zhou, M. Tian, Global boundedness and asymptotic behavior for an attraction-repulsion chemotaxis system with logistic source, Acta Math. Sci. Ser. A (Chin. Ed.), 37 (2017), 113–121. |
[35] |
D. Li, C. L. Mu, K. Lin, L. C. Wang, Large time behavior of solution to an attraction-repulsion chemotaxis system with logistic source in three dimensions, J. Math. Anla. Appl., 448 (2017), 914–936. https://doi.org/10.1016/j.jmaa.2016.11.036 doi: 10.1016/j.jmaa.2016.11.036
![]() |
[36] |
X. Li, Z. Y. Xiang, On an attraction-repulsion chemotaxis system with logistic source, IMA J. Appl. Math., 81 (2016), 165–198. https://doi.org/10.1093/imamat/hxv033 doi: 10.1093/imamat/hxv033
![]() |
[37] |
G. Q. Ren, B. Liu, Global dynamics for an attraction-repulsion chemotaxis model with logistic source, J. Diff. Equation, 268 (2022), 4320–4373. https://doi.org/10.1016/j.jde.2019.10.027 doi: 10.1016/j.jde.2019.10.027
![]() |
[38] |
S. J. Shi, Z. R. Liu, H. Y. Jin, Boundedness and large time behavior of an attraction-repulsion chemotaxis model with logistic source, Kinet. Relat. Mod., 10 (2017), 855–878. https://doi.org/10.3934/krm.2017034 doi: 10.3934/krm.2017034
![]() |
[39] |
M. Winkler, Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation, Z. Angew. Math Phys., 69 (2018), 40–64. https://doi.org/10.1007/s00033-018-0935-8 doi: 10.1007/s00033-018-0935-8
![]() |
[40] |
Q. S. Zhang, Y. X. Li, An attraction-repulsion chemotaxis system with logistic source, Z. Angew. Math. Mech., 96 (2016), 570–584. https://doi.org/10.1002/zamm.201400311 doi: 10.1002/zamm.201400311
![]() |
[41] | E. Nakaguchi, M. Efendiev, On a new dimension estimate of the global attractor for chemotaxis-growth systems, Osaka J. Math., 45 (2008), 273–281. |
[42] |
E. Nakaguchi, K. Osaki, Global existence of solutions to a parabolic-parabolic system for chemotaxis with weak degradation, Nonlinear Anal., 74 (2011), 286–297. https://doi.org/10.1016/j.na.2010.08.044 doi: 10.1016/j.na.2010.08.044
![]() |
[43] |
E. Nakaguchi, K. Osaki, Global solutions and exponential attractors of a parabolic-parabolic system for chemotaxis with subquadratic degradation, Discrete Contin. Dyn. Syst. Ser. B., 18 (2013), 2627–2646. https://doi.org/10.3934/dcdsb.2013.18.2627 doi: 10.3934/dcdsb.2013.18.2627
![]() |
[44] |
M. Liu, Y. X. Li, Finite-time blowup in attraction-repulsion systems with nonlinear signal production, Nonlinear Anal. RWA., 61 (2021), 103305. https://doi.org/10.1016/j.nonrwa.2021.103305 doi: 10.1016/j.nonrwa.2021.103305
![]() |
[45] |
T. Black, Sublinear signal production in two-dimensional Keller-Segel-Stokes system, Nonlinear Anal. RWA., 31 (2016), 593–609. https://doi.org/10.1016/j.nonrwa.2016.03.008 doi: 10.1016/j.nonrwa.2016.03.008
![]() |
[46] |
D. M. Liu, Y. S. Tao, Boundedness in a chemotaxis system with nonlinear signal production, Appl. Math. J. Chinese Univser., 31 (2016), 379–388. https://doi.org/10.1007/s11766-016-3386-z doi: 10.1007/s11766-016-3386-z
![]() |
[47] | T. Senba, T. Suzuki, Parabolic system of chemotaxis: blow-up in a infinite time, Methods Appl. Anal., 8 (2001), 349–367. |
[48] |
Y. S. Tao, M. Winkler, A chemotaxis-haptotaxis system with haptoattractant remodeling: boundedness enforced by mild saturation of signal production, Commun. Pure Appl. Anal., 18 (2019), 2047–2067. https://doi.org/10.3934/cpaa.2019092 doi: 10.3934/cpaa.2019092
![]() |
[49] | O. A. Ladyzenskaja, V. A. Solonnikov, N. N. Uralceva, Linear and quasilinear equations of parabolic type, in Translated form Russian by S. Smith. Translations of Mathematical Monographs, American Mathematical Society, (1968). |
[50] |
G. M. Lieberman, Hölder continuity of the gradient of solutions of uniformly parabolic equations with conormal boundary conditions, Ann. Mat. Pura Appl., 148 (1987), 77–99. https://doi.org/10.1007/bf01774284 doi: 10.1007/bf01774284
![]() |
[51] |
N. D. Alikakos, L^{p} bounds of solutions of reaction-diffusion equations, Commun. Partial Differ. Equation, 4 (1978), 827–868. https://doi.org/10.1080/03605307908820113 doi: 10.1080/03605307908820113
![]() |
1. | Qiangheng Zhang, Yangrong Li, Regular attractors of asymptotically autonomous stochastic 3D Brinkman-Forchheimer equations with delays, 2021, 20, 1534-0392, 3515, 10.3934/cpaa.2021117 | |
2. | Pan Zhang, Lan Huang, Rui Lu, Xin-Guang Yang, Pullback dynamics of a 3D modified Navier-Stokes equations with double delays, 2021, 29, 2688-1594, 4137, 10.3934/era.2021076 | |
3. | Shu Wang, Mengmeng Si, Rong Yang, Dynamics of stochastic 3D Brinkman-Forchheimer equations on unbounded domains, 2023, 31, 2688-1594, 904, 10.3934/era.2023045 | |
4. | Yang Liu, Chunyou Sun, Inviscid limit for the damped generalized incompressible Navier-Stokes equations on \mathbb{T}^2 , 2021, 14, 1937-1632, 4383, 10.3934/dcdss.2021124 | |
5. | Shu Wang, Mengmeng Si, Rong Yang, Random attractors for non-autonomous stochastic Brinkman-Forchheimer equations on unbounded domains, 2022, 21, 1534-0392, 1621, 10.3934/cpaa.2022034 | |
6. | Wenjing Liu, Rong Yang, Xin-Guang Yang, Dynamics of a 3D Brinkman-Forchheimer equation with infinite delay, 2021, 20, 1553-5258, 1907, 10.3934/cpaa.2021052 | |
7. | Ling-Rui Zhang, Xin-Guang Yang, Ke-Qin Su, Asymptotic Stability for the 2D Navier–Stokes Equations with Multidelays on Lipschitz Domain, 2022, 10, 2227-7390, 4561, 10.3390/math10234561 | |
8. | Xiaona Cui, Wei Shi, Xuezhi Li, Xin‐Guang Yang, Pullback dynamics for the 3‐D incompressible Navier–Stokes equations with damping and delay, 2021, 44, 0170-4214, 7031, 10.1002/mma.7239 | |
9. | Zhengwang Tao, Xin-Guang Yang, Yan Lin, Chunxiao Guo, Determination of Three-Dimensional Brinkman—Forchheimer-Extended Darcy Flow, 2023, 7, 2504-3110, 146, 10.3390/fractalfract7020146 | |
10. | Yonghai Wang, Minhui Hu, Yuming Qin, Upper semicontinuity of pullback attractors for a nonautonomous damped wave equation, 2021, 2021, 1687-2770, 10.1186/s13661-021-01532-7 | |
11. | Xueli SONG, Xi DENG, Baoming QIAO, Dimension Estimate of the Global Attractor for a 3D Brinkman- Forchheimer Equation, 2023, 28, 1007-1202, 1, 10.1051/wujns/2023281001 | |
12. | Songmao He, Xin-Guang Yang, Asymptotic behavior of 3D Ladyzhenskaya-type fluid flow model with delay, 2024, 0, 1937-1632, 0, 10.3934/dcdss.2024135 | |
13. | Lingrui Zhang, Xue-zhi Li, Keqin Su, Dynamical behavior of Benjamin-Bona-Mahony system with finite distributed delay in 3D, 2023, 31, 2688-1594, 6881, 10.3934/era.2023348 | |
14. | Xinfeng Ge, Keqin Su, Stability of thermoelastic Timoshenko system with variable delay in the internal feedback, 2024, 32, 2688-1594, 3457, 10.3934/era.2024160 | |
15. | Keqin Su, Xin-Guang Yang, Alain Miranville, He Yang, Dynamics and robustness for the 2D Navier–Stokes equations with multi-delays in Lipschitz-like domains, 2023, 134, 18758576, 513, 10.3233/ASY-231845 | |
16. | Lingrui Zhang, Xue-zhi Li, Keqin Su, Dynamical behavior of Benjamin-Bona-Mahony system with finite distributed delay in 3D, 2023, 31, 2688-1594, 6881, 10.3934/era.20233348 |