In this paper, it is assumed that the Forchheimer flow goes through a semi-infinite cylinder. The nonlinear boundary condition is satisfied on the finite end of the cylinder, and the homogeneous boundary condition is satisfied on the side of the cylinder. Using the method of energy estimate, the structural stability of the solution in the semi-infinite cylinder is obtained.
Citation: Zhiqing Li, Wenbin Zhang, Yuanfei Li. Structural stability for Forchheimer fluid in a semi-infinite pipe[J]. Electronic Research Archive, 2023, 31(3): 1466-1484. doi: 10.3934/era.2023074
[1] | Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding . The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28(4): 1395-1418. doi: 10.3934/era.2020074 |
[2] | Shu Wang, Mengmeng Si, Rong Yang . Dynamics of stochastic 3D Brinkman-Forchheimer equations on unbounded domains. Electronic Research Archive, 2023, 31(2): 904-927. doi: 10.3934/era.2023045 |
[3] | Xuejiao Chen, Yuanfei Li . Spatial properties and the influence of the Soret coefficient on the solutions of time-dependent double-diffusive Darcy plane flow. Electronic Research Archive, 2023, 31(1): 421-441. doi: 10.3934/era.2023021 |
[4] | Jinheng Liu, Kemei Zhang, Xue-Jun Xie . The existence of solutions of Hadamard fractional differential equations with integral and discrete boundary conditions on infinite interval. Electronic Research Archive, 2024, 32(4): 2286-2309. doi: 10.3934/era.2024104 |
[5] | Liting Yu, Lenan Wang, Jianzhong Pei, Rui Li, Jiupeng Zhang, Shihui Cheng . Structural optimization study based on crushing of semi-rigid base. Electronic Research Archive, 2023, 31(4): 1769-1788. doi: 10.3934/era.2023091 |
[6] | Mingjun Zhou, Jingxue Yin . Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, 2021, 29(3): 2417-2444. doi: 10.3934/era.2020122 |
[7] | Wenya Qi, Padmanabhan Seshaiyer, Junping Wang . A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, 2021, 29(3): 2517-2532. doi: 10.3934/era.2020127 |
[8] | Wei Shi, Xinguang Yang, Xingjie Yan . Determination of the 3D Navier-Stokes equations with damping. Electronic Research Archive, 2022, 30(10): 3872-3886. doi: 10.3934/era.2022197 |
[9] | Pan Zhang, Lan Huang . Stability for a 3D Ladyzhenskaya fluid model with unbounded variable delay. Electronic Research Archive, 2023, 31(12): 7602-7627. doi: 10.3934/era.2023384 |
[10] | Karl Hajjar, Lénaïc Chizat . On the symmetries in the dynamics of wide two-layer neural networks. Electronic Research Archive, 2023, 31(4): 2175-2212. doi: 10.3934/era.2023112 |
In this paper, it is assumed that the Forchheimer flow goes through a semi-infinite cylinder. The nonlinear boundary condition is satisfied on the finite end of the cylinder, and the homogeneous boundary condition is satisfied on the side of the cylinder. Using the method of energy estimate, the structural stability of the solution in the semi-infinite cylinder is obtained.
The Forchheimer model equation describes the flow in a polar medium, which is widely used in fluid mechanics (see [1,2]). Increasing scholars have studied the spatial properties of the solution to the fluid equation defined on a semi-infinite cylinder, and a large number of results have emerged (see [3,4,5,6,7,8,9]).
In 2002, Payne and Song [3] have studied the following Forchheimer model
b|u|ui+(1+γT)ui=−p,i+giT, in Ω×{t>0}, | (1.1) |
ui,i=0, in Ω×{t>0}, | (1.2) |
∂tT+uiT,i=ΔT, in Ω×{t>0}, | (1.3) |
where i=1,2,3. ui,p,T represent the velocity, pressure, and temperature of the flow, respectively. gi is a known function. Δ is the Laplace operator, γ>0 is a constant, and b is the Forchheimer coefficient. For simplicity, we assume that
gigi≤1. |
In (1.1)–(1.3), Ω is defined as
Ω={(x1,x2,x3)|(x1,x2)∈D, x3≥0}, |
where D is a bounded simply-connected region on (x1,x2)-plane.
In this paper, the comma is used to indicate partial differentiation and the usual summation convection is employed, with repeated Latin subscripts summed from 1 to 3, e.g., ui,jui,j=∑3i,j=1(∂ui∂xj)2. We also use the summation convention summed from 1 to 2, e.g., uα,βuα,β=∑2α,β=1(∂uα∂xβ)2.
The Eqs (1.1)–(1.3) also satisfy the following initial-boundary conditions
ui(x1,x2,x3,t)=0, T(x1,x2,x3,t)=0, on ∂D×{x3>0}×{t>0}, | (1.4) |
ui(x1,x2,0,t)=fi(x1,x2,t), on D×{t>0}, | (1.5) |
T(x1,x2,0,t)=H(x1,x2,t), on D×{t>0}, | (1.6) |
T(x1,x2,x3,0)=0, (x1,x2,x3)∈Ω, | (1.7) |
|u|,|T|=O(1), |u3|,|∇T|,|p|=o(x−13), as x3→∞. | (1.8) |
where fi and H are differentiable functions.
In this paper, we will study the structural stability of Eqs (1.1)–(1.8) on Ω by using the spatial decay results obtained in [3]. Since the concept of structural stability was proposed by Hirsch and Smale [10], the structural stability of various types of partial differential equations defined in a bounded domain has received sufficient attention(see [11,12,13,14,15,16,17,18,19]). Some perturbations are inevitable in the process of model establishment and simplification, so it is necessary to study that whether such small perturbations of the equations themselves will cause great changes in the solutions. This gives rise to the phenomenon of structural stability.
If the bounded domain is replaced by a semi-infinite pipe, the structural stability of the partial differential equations is very interesting and has begun to attract attention. Li and Lin [20] considered the continuous dependence on the Forchheimer coefficient of Forchheimer equations in a semi-infinite pipe. Different from the studies of[11,12,13,14,15,16,17,18,19], we should consider not only the time variable but also the space variable. Therefore, the methods in the literature cannot be directly applied to the semi-infinite region. Compared with [3], we not only reconfirmed the spatial decay result of [3], but also proved the structural stability of the solution to b and γ.
We also introduce the notations:
Ωz={(x1,x2,x3)|(x1,x2)∈D,x3≥z≥0}, |
Dz={(x1,x2,x3)|(x1,x2)∈D,x3=z≥0}, |
where z is a running variable along the x3 axis.
First, to obtain the main result, we shall make frequent use of the following three inequalities.
Lemma 2.1.(see[21]) If ϕ is a Dirichlet integrable function on Ω and ∫Ωϕdx=0, then there exists a Dirichlet integrable function w=(w1,w2,w3) such that
wi,i=ϕ, in Ω, wi=0, on ∂Ω, |
and a positive constant k1 depends only on the geometry of Ω such that
∫Ωwi,jwi,jdx≤k1∫Ω(wi,i)2dx. |
Lemma 2.2.(see [3,4]) If ϕ|∂D=0, then
λ∫Dϕ2dA≤∫Dϕ,αϕ,αdA, |
where λ is the smallest positive eigenvalue of
Δ2ϑ+λϑ=0, in D, ϑ=0, on ∂D. |
Here Δ2 is a two-dimensional Laplace operator.
Now, we give a lemma which has been proved by Horgan and Wheeler [4] and has been used by Payne and Song [6].
Lemma 2.3.(see [3,4]) If ϕ is a Dirichlet integrable function and ϕ|∂D=0,ϕ→∞ (as x3→∞),
∫Ωz|ϕ|4dx≤k2(∫Ωzϕ,jϕ,jdx)2, |
where k2>0.
Lemma 2.4. If ϕ∈C10(Ω), then
∫Ωz|ϕ|6dx≤Λ(∫Ωzϕ,iϕ,idx)3, |
where [22,23] have proved that the optimal value of Λ is determined to be Λ=127(34)4.
Using the maximum principle for the temperature T, we can have the following lemma which has been used in Song [5].
Lemma 2.5. Assume that H∈L∞(Ω), then
supΩ×{t>0}|T|≤TM, |
where TM=supΩ×{t>0}H.
Second, we list some useful results which have been derived by Payne and Song [3].
Payne and Song have established a function
P(z,t)=∫t0∫Ωz(ξ−z)T,iT,idxdη+a1∫t0∫Ωz|u|3dxdη+a2∫t0∫Ωz(1+γT)|u|2dxdη, | (2.1) |
where a1 and a2 are positive constants. From Eqs (3.27) and (3.36) of [3], we know that
P(z,t)≤P(0,t)e−zk3, P(0,t)≤k4(t), | (2.2) |
where k3 is a positive constant and k4(t) is a function related to the boundary values.
Combining Eqs (2.1) and (2.2), we have the following lemma.
Lemma 2.6. Assume that H∈L∞(Ω) and ∫DfdA=0, then
a1∫t0∫Ωz|u|3dxdη+a2∫t0∫Ωz(1+γT)|u|2dxdη≤k4(t)e−zk3. |
In order to derive the main result, we need bounds for ||u||2L2(Ω) and ||u||3L2(Ω).
Lemma 2.7. Assume that fi∈H1(Ω),H,˜H∈L∞(Ω), ∫Df3dA=0 and fα,α−γf3=0 then
b∫Ω|u|3dx+∫Ω|u|2dx≤k5(t), |
where k6(t) is a positive function.
Proof. To deal with boundary terms, we set S=(S1,S2,S3), where
Si=fie−γ1x3, γ1>0. | (2.3) |
Using Eq (1.1), we have
∫Ω[b|u|ui+(1+γT)ui+p,i−giT](ui−Si)dx=0. |
Using the divergence theorem, we have
b∫Ω|u|3dx+∫Ω(1+γT)|u|2dx=b∫Ω|u|uiSidx+∫Ω(1+γT)uiSidx−∫ΩgiTuidx+∫ΩgiTSidx. | (2.4) |
Using the Hölder inequality and Young's inequality, we have
b∫Ω|u|uiSidx≤b(∫Ω|u|3dx)23(∫Ω|S|3dx)13≤23bε1∫Ω|u|3dx+13bε−21∫Ω|S|3dx, | (2.5) |
∫Ω(1+γT)uiSidx≤14∫Ω(1+γT)|u|2dx+(1+γTM)∫Ω|S|2dx, | (2.6) |
−∫ΩgiTuidx≤√TM(∫Ω(1+γT)|u|2dx∫Ωgigidx)12≤14∫Ω(1+γT)|u|2dx+TMγ∫Ωgigidx, | (2.7) |
∫ΩgiTSidx≤TM∫Ω|giSi|dx. | (2.8) |
Inserting Eqs (2.5)–(2.8) into Eq (2.4) and choosing that ε1=34, we obtain
b∫Ω|u|3dx+∫Ω(1+γT)|u|2dx≤23bε−21∫Ω|S|3dx+2(1+γTM)∫Ω|S|2dx+2TMγ∫Ωgigidx+2TM∫Ω|giSi|dx. | (2.9) |
After choosing
k5(t)=23bε−21∫Ω|S|3dx+2(1+γTM)∫Ω|S|2dx+2TMγ∫Ωgigidx+2TM∫Ω|giSi|dx, | (2.10) |
we can complete the proof of Lemma 2.7.
In this section, we derive an important lemma which leads to our main result.
Assume that (u∗i,T∗,p∗) is a solution of Eqs (1.1)–(1.8) when b=b∗. If we let
Di=ui−u∗i, Σ=T−T∗, π=p−p∗, ˜b=b−b∗, |
then (Di,Σ,π) satisfies
[b1|u|ui−b2|u∗|u∗i]+(1+γT)Di+γΣu∗i=−π,i+giΣ, in Ω×{t>0}, | (3.1) |
Di,i=0, in Ω×{t>0}, | (3.2) |
∂tΣ+uiΣ,i+DiT∗,i=ΔΣ, in Ω×{t>0}, | (3.3) |
Di=0,Σ=0, on ∂D×{x3>0}×{t>0}, | (3.4) |
Di=0,Σ=0, on D×{t>0}, | (3.5) |
Σ(x1,x2,x3,0)=0, in Ω | (3.6) |
|u|,|Σ|=O(1),|D3|,|∇Σ|,|π|=o(x−13), as x3→∞. | (3.7) |
We can have the following lemma.
Lemma 3.1. Assume that (Di,Σ,π) is a solution to Eqs (3.1)–(3.6) with ∫Df3dA=0,H∈L∞(Ω) and the boundary data (e.g., H) satisfies Eq (3.21), then
Φ(z,t)≤n∗6[−∂∂zΦ(z,t)]+n7(t)˜b2e−zk3, |
where n∗6 is the maximum of n6(t) and n6(t),n7(t) will be defined in Eq (3.39).
Proof. We define an auxiliary function
Φ1(z,t)=∫t0∫Ωze−ωηπD3dxdη, | (3.8) |
where ω>0.
Using the divergence theorem and Eq (3.1), we have
Φ1(z,t)=−∫t0∫Ωze−ωη(ξ−z)π,iDidxdη=∫t0∫Ωze−ωη(ξ−z)Di[b1|u|ui−b2|u∗|u∗i]dxdη+∫t0∫Ωze−ωη(ξ−z)(1+γT)DiDidxdη+γ∫t0∫Ωze−ωη(ξ−z)DiΣu∗idxdη−∫t0∫Ωze−ωη(ξ−z)DigiΣdxdη. | (3.9) |
Since
Di[b1|u|ui−b2|u∗|u∗i]=˜b2Di[|u|ui+|u∗|u∗i]+b1+b22Di[|u|ui−|u∗|u∗i]=˜b2[|u|ui+|u∗|u∗i]Di+b1+b24[|u|+|u∗|]DiDi+b1+b24[|u|−|u∗|]2[|u|+|u∗|], |
from Eq (3.9) we have
Φ1(z,t)=b1+b24∫t0∫Ωze−ωη(ξ−z)[|u|+|u∗|]DiDidxdη+∫t0∫Ωze−ωη(ξ−z)(1+γT)DiDidxdη+˜b2∫t0∫Ωze−ωη(ξ−z)[|u|ui+|u∗|u∗i]Didxdη+b1+b24∫t0∫Ωze−ωη(ξ−z)[|u|−|u∗|]2[|u|+|u∗|]dxdη+γ∫t0∫Ωze−ωη(ξ−z)DiΣu∗idxdη−∫t0∫Ωze−ωη(ξ−z)DigiΣdxdη. | (3.10) |
Using the Hölder inequality, Young's inequality and Lemma 2.6, we obtain
˜b2∫t0∫Ωze−ωη[|u|ui+|u∗|u∗i]Didxdη≥−˜b2(∫t0∫Ωze−ωη|u|DiDidxdη)12(∫t0∫Ωze−ωη|u|3dxdη)12+−˜b2(∫t0∫Ωze−ωη|u∗|DiDidxdη)12(∫t0∫Ωze−ωη|u|3dxdη)12≥−b1+b216∫t0∫Ωze−ωη[|u|+|u∗|]DiDidxdη−4˜b2b1+b2∫t0∫Ωze−ωη[|u|3+|u∗|3]dxdη≥−b1+b216∫t0∫Ωze−ωη[|u|+|u∗|]DiDidxdη−8˜b2a1(b1+b2)k4(t)e−zk3. | (3.11) |
Using the Hölder inequality, Young's inequality and Lemmas 2.3 and 2.7, we obtain
γ∫t0∫Ωze−ωηDiΣu∗idxdη≥−γ∫t0e−ωη(∫Ωz|u∗|DiDidx)12(∫Ωz|u∗|2dx)14(∫ΩzΣ4dx)14dη≥−γ4√k5(t)k2∫t0e−ωη(∫Ωz|u∗|DiDidx)12(∫ΩzΣ,iΣ,idx)12dη≥−b1+b216∫t0∫Ωze−ωη|u∗|DiDidxdη−4γ2√k5(t)k2b1+b2∫t0∫Ωze−ωηΣ,iΣ,idxdη, | (3.12) |
−∫t0∫Ωze−ωηDigiΣdxdη≥−12∫t0∫Ωze−ωη(1+γT)DiDidxdη−12γ∫t0∫Ωze−ωηΣ2dxdη. | (3.13) |
Calculating the differential of Eq (3.10) and then inserting Eqs (3.11)–(3.13) into Eq (3.10), we have
−∂∂zΦ1(z,t)≥b1+b28∫t0∫Ωze−ωη[|u|+|u∗|]DiDidxdη+12∫t0∫Ωze−ωη(1+γT)DiDidxdη−4γ2√k5(t)k2b1+b2∫t0∫Ωze−ωηΣ,iΣ,idxdη−12γ∫t0∫Ωze−ωηΣ2dxdη−8˜b2a1(b1+b2)k4(t)e−zk3, | (3.14) |
where we have dropped the fourth term of Eq (3.10).
Similarly, we have
Φ2(z,t)=−∫t0∫Ωze−ωηΣΣ,3dxdη+12∫t0∫Ωze−ωηu3Σ2dxdη+∫t0∫Ωze−ωηD3T∗Σdxdη≐Φ21(z,t)+Φ22(z,t)+Φ23(z,t). | (3.15) |
Using the divergence theorem and Eq (3.2), we have
Φ2(z,t)=12e−ωt∫Ωz(ξ−z)Σ2dx+∫t0∫Ωze−ωη(ξ−z)[12ωΣ2+Σ,iΣ,i]dxdη−∫t0∫Ωze−ωη(ξ−z)DiΣ,iT∗dxdη. | (3.16) |
Using the Hölder inequality and Lemma 2.5, we have
−∫t0∫Ωze−ωηDiΣ,iT∗dxdη≥−12∫t0∫Ωze−ωηΣ,iΣ,idxdη−12T2M∫t0∫Ωze−ωηDiDidxdη. | (3.17) |
Calculating the differential of Eq (3.16) and then inserting Eq (3.17) into Eq (3.16), we have
−∂∂zΦ2(z,t)=12e−ωt∫ΩzΣ2dx+∫t0∫Ωze−ωη[12ωΣ2+12Σ,iΣ,i]dxdη−12γT2M∫t0∫Ωze−ωη(1+γT)DiDidxdη. | (3.18) |
Now, we define
−∂∂zΦ(z,t)=2γT2M[−∂∂zΦ1(z,t)]+[−∂∂zΦ2(z,t)]. | (3.19) |
Combining Eqs (3.14) and (3.18), we have
−∂∂zΦ(z,t)≥b1+b24γT2M∫t0∫Ωze−ωη[|u|+|u∗|]DiDidxdη+12γT2M∫t0∫Ωze−ωη(1+γT)DiDidxdη+12e−ωt∫ΩzΣ2dx+∫t0∫Ωze−ωη[12ωΣ2+12Σ,iΣ,i]dxdη−8γ√k5(t)k2b1+b2∫t0∫Ωze−ωηΣ,iΣ,idxdη−1γ2T2M∫t0∫Ωze−ωηΣ2dxdη−16˜b2a1γ(b1+b2)T2Mk4(t)e−zk3. | (3.20) |
Choosing ω>4γ2T2M and the boundary data (e.g., H) satisfies
8γ√k5(t)k2b1+b2<14, | (3.21) |
from Eq (3.20) we obtain
−∂∂zΦ(z,t)≥b1+b24γT2M∫t0∫Ωze−ωη[|u|+|u∗|]DiDidxdη+12γT2M∫t0∫Ωze−ωη(1+γT)DiDidxdη+12e−ωt∫ΩzΣ2dx+∫t0∫Ωze−ωη[14ωΣ2+14Σ,iΣ,i]dxdη−16˜b2a1γ(b1+b2)T2Mk4(t)e−zk3. | (3.22) |
Integrating Eq (3.22) from z to ∞, we obtain
Φ(z,t)≥b1+b24γT2M∫t0∫Ωze−ωη(ξ−z)[|u|+|u∗|]DiDidxdη+12γT2M∫t0∫Ωze−ωη(ξ−z)(1+γT)DiDidxdη+12e−ωt∫Ωz(ξ−z)Σ2dx+∫t0∫Ωze−ωη(ξ−z)[14ωΣ2+14Σ,iΣ,i]dxdη−16˜b2a1γ(b1+b2)k3T2Mk4(t)e−zk3. | (3.23) |
We note that
∫DzD3dA=∫DD3dA+∫z0∫Dξ∂D3∂x3dAdξ=−∫z0∫DξDα,αdAdξ=0. |
According to Lemma 2.1, there exists a vector function w=(w1,w2,w3) such that
wi,i=D3, in Ω;wi=0, on ∂Ω. |
Therefore, using Eq (3.1) we obtain
2γT2MΦ1(z,t)=2γT2M∫t0∫Ωze−ωηπwi,idxdη=−2γT2M∫t0∫Ωze−ωηπ,iwidxdη=2γT2M∫t0∫Ωze−ωη{[b1|u|ui−b2|u∗|u∗i]+(1+γT)Di+γΣu∗i−giΣ}widxdη. | (3.24) |
Since
[b1|u|ui−b2|u∗|u∗i]wi=˜b2[|u|ui+|u∗|u∗i]wi+b1+b22[|u|+|u∗|]Diwi+b1+b22[|u|−|u∗|](ui+u∗i)wi=˜b2[|u|ui+|u∗|u∗i]wi+b1+b22[|u|+|u∗|]Diwi+b1+b22(uj−u∗j)(uj+u∗j)|u|+|u∗|(ui+u∗i)wi≤˜b2[|u|ui+|u∗|u∗i]wi+b1+b22[|u|+|u∗|]Diwi+b1+b22[|u|+|u∗|]|D||w|, |
we have
∫t0∫Ωze−ωη[b1|u|ui−b2|u∗|u∗i]widxdη≤˜b2∫t0∫Ωze−ωη[|u|ui+|u∗|u∗i]widxdη+b1+b22∫t0∫Ωze−ωη[|u|+|u∗|]Diwidxdη+b1+b22∫t0∫Ωze−ωη[|u|+|u∗|]|D||w|dxdη. | (3.25) |
Using the Hölder inequality, Lemmas 2.2, 2.3, 2.1, 2.7 and 2.6, and Young's inequality, we obtain
˜b2∫t0∫Ωze−ωη[|u|ui+|u∗|u∗i]widxdη≤˜b2∫t0e−ωη[∫Ωz[|u|3+|u∗|3]dx]23[∫Ωz(wiwi)32dx]13dη≤˜b2∫t0e−ωη[∫Ωz[|u|3+|u∗|3]dx]23[∫Ωzwiwidx]16⋅[∫Ωz(wiwi)2dx]16dη≤˜b6√k226√λ∫t0e−ωη[∫Ωz[|u|3+|u∗|3]dx]23[∫Ωzwi,αwi,αdx]16⋅[∫Ωzwi,jwi,jdx]13dη≤˜b6√k226√λ∫t0e−ωη[∫Ωz[|u|3+|u∗|3]dx]23[∫Ωzwi,jwi,jdx]12dη≤˜b6√k2√k126√λ∫t0e−ωη[∫Ω[|u|3+|u∗|3]dx]16⋅[∫Ωz[|u|3+|u∗|3]dx]12[∫ΩzD23dx]12dη≤˜b23√2k5(t)k2k143√bλ∫t0∫Ωze−ωη[|u|3+|u∗|3]dxdη+12∫t0∫Ωze−ωηD23dxdη≤˜b23√2k5(t)k2k1k4(t)2a3√bλe−zk3+12∫t0∫Ωze−ωη(1+γT)D23dxdη. | (3.26) |
Using the Hölder inequality, Lemmas 2.3, 2.1 and 2.7, and Young's inequality, we obtain
b1+b22∫t0∫Ωze−ωη[|u|+|u∗|]Diwidxdη≤b1+b22∫t0e−ωη[∫Ωz|u|DiDidx]12[∫Ωz|u|2dx]14[∫Ωz(wiwi)2dx]14dη+b1+b22∫t0e−ωη[∫Ωz|u∗|DiDidx]12[∫Ωz|u∗|2dx]14[∫Ωz(wiwi)2dx]14dη≤b1+b224√k2k5(t)∫t0e−ωη[∫Ωz|u|DiDidx]12[∫Ωzwi,jwi,jdx]12dη+b1+b224√k2k5(t)∫t0e−ωη[∫Ωz|u∗|DiDidx]12[∫Ωzwi,jwi,jdx]12dη≤b1+b244√k1k2k5(t)∫t0∫Ωze−ωη[|u|+|u∗|]DiDidxdη+b1+b224√k1k2k5(t)∫t0∫Ωze−ωη(1+γT)D23dxdη. | (3.27) |
Using the Hölder inequality, Lemmas 2.4, 2.1 and 2.7, and Young's inequality, we obtain
b1+b22∫t0∫Ωze−ωη[|u|+|u∗|]|D||w|dxdη≤b1+b22∫t0e−ωη[∫Ωz|DiDidx]12[∫Ωz|u|3dx]13[∫Ωz(wiwi)3dx]16dη+b1+b22∫t0e−ωη[∫Ωz|DiDidx]12[∫Ωz|u∗|3dx]13[∫Ωz(wiwi)3dx]16dη≤(b1+b2)3√k5(t)b6√Λ∫t0e−ωη[∫ΩzDiDidx]12[∫Ωzwi,jwi,jdx]12dη≤b1+b223√k1k5(t)b6√Λ∫t0∫Ωze−ωη(1+γT)DiDidxdη. | (3.28) |
Inserting Eqs (3.26)–(3.28) into Eq (3.25), we have
∫t0∫Ωze−ωη[b1|u|ui−b2|u∗|u∗i]widxdη≤˜b23√2k5(t)k2k1k4(t)2a3√bλe−zk3+b1+b244√k2k5(t)ε3∫t0∫Ωze−ωη[|u|+|u∗|]DiDidxdη+[b1+b223√k1k5(t)b6√Λ+b1+b224√k2k5(t)+12]⋅∫t0∫Ωze−ωη(1+γT)DiDidxdη. | (3.29) |
Using the Hölder inequality, Young's inequality and Lemmas 2.5, 2.2, 2.1, 2.7 and 2.3, we have
∫t0∫Ωze−ωη(1+γT)Diwidxdη≤(1+γTM)[∫t0∫Ωze−ωη(1+γT)DiDidxdη∫t0∫Ωze−ωηwiwidxdη]12≤(1+γTM)√λ[∫t0∫Ωze−ωη(1+γT)DiDidxdη∫t0∫Ωze−ωηwi,αwi,αdxdη]12 |
≤(1+γTM)√k1√λ[∫t0∫Ωze−ωη(1+γT)DiDidxdη∫t0∫Ωze−ωηD23dxdη]12≤(1+γTM)√k1√λ∫t0∫Ωze−ωη(1+γT)DiDidxdη, | (3.30) |
γ∫t0∫Ωze−ωηwiΣu∗idxdη≤γ∫t0e−ωη(∫Ωz(u∗3)2dx)12(∫ΩzΣ4dx)14(∫Ωz(wiwi)2dx)14dη≤γ√k5(t)k2∫t0e−ωη(∫ΩzΣ,iΣ,idx)12(∫Ωzwi,jwi,jdx)12dη≤γ√k5(t)k2k1∫t0e−ωη(∫ΩzΣ,iΣ,idx)12(∫ΩzD23dx)12dη≤√γk5(t)k2k1TM[14∫t0∫Ωze−ωηe−ωηΣ,iΣ,idxdη+1γT2M∫t0∫Ωze−ωη(1+γT)D23dxdη], | (3.31) |
∫t0∫Ωze−ωηwiΣgidxdη≤√k1γTMω[1γT2M∫t0∫Ωze−ωη(1+γT)D23dxdη+14ω∫t0∫Ωze−ωηΣ2dxdη]. | (3.32) |
Inserting Eqs (3.29)–(3.32) into Eq (3.24), we obtain
2γT2MΦ1(z,t)≤n1(t)˜b2e−zk3+n2(t)⋅(b1+b2)T2M4γ∫t0∫Ωze−ωη[|u|+|u∗|]DiDidxdη+n3(t)⋅T2M2γ∫t0∫Ωze−ωη(1+γT)DiDidxdη+n4(t)⋅14∫t0∫Ωze−ωηe−ωηΣ,iΣ,idxdη+n5(t)⋅14ω∫t0∫Ωze−ωηΣ2dxdη. | (3.33) |
where
n1(t)=2γT2M3√2k5(t)k2k1k4(t)2a3√bλ,n2(t)=24√k2k5(t),n3(t)=2[b1+b223√k1k5(t)b6√Λ+b1+b224√k2k5(t)+12]+2(1+γTM)√k1√λ+2√γk5(t)k2k1TMγ+1γT2M√k1γTMω,n4(t)=2√γk5(t)k2k1TMγ,n5(t)=1γT2M√k1γTMω. |
Now, we begin to derive a bound of Φ2(z,t) which has been defined in Eq (3.15). Using the Hölder inequality, Young's inequality, Lemmas 2.7 and 2.3, we have
Φ21(z,t)≤1√ω[14∫t0∫Ωze−ωηΣ2,3dxdη+14ω∫t0∫Ωze−ωηΣ2dxdη], | (3.34) |
Φ22(z,t)≤12∫t0e−ωη(∫Ωzu23dx)12(∫ΩzΣ4dx)12dη≤√2k5(t)k2⋅14∫t0∫Ωze−ωηΣ,iΣ,idxdη, | (3.35) |
Φ23(z,t)≤√2γω[12γT2M∫t0∫Ωze−ωη(1+γT)D23dxdη+14ω∫t0∫Ωze−ωηΣ2dxdη]. | (3.36) |
Inserting Eqs (3.34)–(3.36) into Eq (3.15), we obtain
Φ2(z,t)≤[1√ω+√2k5(t)k2]⋅14∫t0∫Ωze−ωηΣ,iΣ,idxdη+[1√ω+√2γω]⋅14ω∫t0∫Ωze−ωηΣ2dxdη+√2γω⋅12γT2M∫t0∫Ωze−ωη(1+γT)D23dxdη. | (3.37) |
Combining Eqs (3.19), (3.22), (3.33) and (3.37), we obtain
Φ(z,t)≤n6(t)[−∂∂zΦ(z,t)]+n7(t)˜b2e−zk3, | (3.38) |
where
n6(t)=max{n2(t),n3(t)+√2γω,n5(t)+1√ω+√2γω,n4(t)+1√ω+√2k5(t)k2},n7(t)=16a1γ(b1+b2)T2Mk4(t)n6(t)+n1(t). | (3.39) |
In this section, we will analysis Lemma 3.1 to derive the following theorem.
Theorem 4.1. Let (ui,T,p) and (u∗i,T∗,p∗) be solutions of the Eqs (1.1)–(1.8) in Ω, corresponding to b1 and b2, respectively. If ∫Df3dA=0, Equation (3.21) holds and fα,α−γ1f3=0,H∈L∞(Ω×{t>0}), then
(ui,T)→(u∗i,T∗), as b1→b2. |
Specifically, either the inequality
b1+b24γT2M∫t0∫Ωze−ωη(ξ−z)[|u|+|u∗|]DiDidxdη+12γT2M∫t0∫Ωze−ωη(ξ−z)(1+γT)DiDidxdη+12e−ωt∫Ωz(ξ−z)Σ2dx+∫t0∫Ωze−ωη(ξ−z)[14ωΣ2+14Σ,iΣ,i]dxdη≤16˜b2a1γ(b1+b2)k3T2Mk4(t)e−zk3+˜b2n7(t)e−1n∗6z+˜b2n7(t)n∗6ze−1n∗6z |
holds, or the inequality
b1+b24γT2M∫t0∫Ωze−ωη(ξ−z)[|u|+|u∗|]DiDidxdη+12γT2M∫t0∫Ωze−ωη(ξ−z)(1+γT)DiDidxdη+12e−ωt∫Ωz(ξ−z)Σ2dx+∫t0∫Ωze−ωη(ξ−z)[14ωΣ2+14Σ,iΣ,i]dxdη≤16˜b2a1γ(b1+b2)k3T2Mk4(t)e−zk3+˜b2n7(t)e−1n∗6z+˜b2n7(t)n∗6(1n∗6−1k3)b3(t)[e−1k3z−e−1n∗6z] |
holds.
Proof. Using Lemma 3.1, we have
∂∂z{Φ(z,t)e1n∗6z}≤˜b2n7(t)n∗6e(1n∗6−1k3)z, z≥0. | (4.1) |
Now, we consider (4.1) for two cases.
Ⅰ. If n∗6=k3, we integrate Eq (4.1) from 0 to z to obtain
Φ(z,t)≤Φ(0,t)e−1n∗6z+˜b2n7(t)n∗6ze−1n∗6z. | (4.2) |
Ⅱ. If n∗6≠k3, we integrate Eq (4.1) from 0 to z to obtain
Φ(z,t)≤Φ(0,t)e−1n∗6z+˜b2n7(t)n∗6(1n∗6−1k3)b3(t)[e−1k3z−e−1n∗6z]. | (4.3) |
From Eqs (4.2) and (4.3), to obtain the main result, we can conclude that we have to derive a bound for Φ(0,t). We choose z=0 in Lemma 3.1 to obtain
Φ(0,t)≤n∗6[−∂Φ∂z(0,t)]+˜b2n7(t). | (4.4) |
Clearly, if we want to derive a bound for Φ(0,t), we only need derive a bound for −∂Φ∂z(0,t). To do this, choosing z=0 in Eq (3.19) and combining Eqs (3.8) and (3.15), we have
−∂Φ∂z(0,t)=2γT2M∫t0∫De−ωηπD3dAdη−∫t0∫De−ωηΣΣ,3dAdη+12∫t0∫De−ωηu3Σ2dAdη+∫t0∫De−ωηD3T∗ΣdAdη. | (4.5) |
In light of the boundary conditions (3.4)–(3.6), from Eq (4.5) we can know that
−∂Φ∂z(0,t)=0. | (4.6) |
Inserting Eq (4.6) into Eq (4.4), we obtain
Φ(0,t)≤˜b2n7(t). | (4.7) |
Therefore, from Eqs (4.2), (4.3) and (4.7) we have
Φ(z,t)≤˜b2n7(t)e−1n∗6z+˜b2n7(t)n∗6ze−1n∗6z, if n∗6=k3, | (4.8) |
Φ(z,t)≤˜b2n7(t)e−1n∗6z+˜b2n7(t)n∗6(1n∗6−1k3)b3(t)[e−1k3z−e−1n∗6z], if n∗6≠k3. | (4.9) |
Combining Eqs (3.24), (4.8) and (4.9) we can complete the proof of Theorem 4.1.
Remark 4.1 Theorem 1 shows that the small perturbation of Forchheimer coefficient will not cause great changes to the solution of Eqs (1.1)–(1.8). Meanwhile, Theorem 1 also shows that the solutions of Eqs (2.12)–(2.21) decay exponentially as the space variable z→∞.
This section shows how to use the prior estimates in Section 2 and the method in Section 3 to derive the continuous dependence of the solution on γ. Assume that (u∗i,T∗,p∗) is a solution of Eqs (1.1)–(1.8) with γ=γ∗.
If we also let
Di=ui−u∗i, Σ=T−T∗, π=p−p∗, ˜γ=γ−γ∗, |
then (Di,Σ,π) satisfies
b[|u|ui−|u∗|u∗i]+˜γTui+γ2Σui+(1+γT∗)Di+γΣu∗i=−π,i+giΣ, in Ω×{t>0}, | (5.1) |
Di,i=0, in Ω×{t>0}, | (5.2) |
∂tΣ+uiΣ,i+DiT∗,i=ΔΣ, in Ω×{t>0}, | (5.3) |
Di=0,Σ=0, on ∂D×{x3>0}×{t>0}, | (5.4) |
Di=0,Σ=0, on D×{t>0}, | (5.5) |
Σ(x1,x2,x3,0)=0, in Ω | (5.6) |
|u|,|Σ|=O(1),|Di|,|∇Σ|,|π|=o(x−13), as x3→∞. | (5.7) |
We also define Φ1(z,t) as that in Eq (3.8). Similar to Eq (3.10), we have
Φ1(z,t)=b2∫t0∫Ωze−ωη(ξ−z)[|u|+|u∗|]DiDidxdη+∫t0∫Ωze−ωη(ξ−z)(1+γ2T∗)DiDidxdη+b2∫t0∫Ωze−ωη(ξ−z)[|u|−|u∗|]2[|u|+|u∗|]dxdη+γ2∫t0∫Ωze−ωη(ξ−z)DiΣu∗idxdη−∫t0∫Ωze−ωη(ξ−z)DigiΣdxdη+˜γ∫t0∫Ωze−ωη(ξ−z)TuiDidxdη. | (5.8) |
Using the Hölder inequality, Young's inequality and Lemmas 2.5 and 2.6, we obtain
˜γ∫t0∫Ωze−ωηTuiDidxdη≥−12T2M˜γ2∫t0∫Ωze−ωηuiuidxdη−12∫t0∫Ωze−ωη(1+γ2T∗)DiDidxdη≥−k4(t)2a2T2M˜γ2e−zk3−12∫t0∫Ωze−ωη(1+γ2T∗)DiDidxdη, | (5.9) |
Combining Eqs (3.12), (3.13), (5.8) and (5.9), we obtain
−∂∂zΦ1(z,t)≥b2∫t0∫Ωze−ωη[|u|+|u∗|]DiDidxdη+12∫t0∫Ωze−ωη(1+γ2T∗)DiDidxdη−4γ22√k5(t)k2b∫t0∫Ωze−ωηΣ,iΣ,idxdη−12γ∫t0∫Ωze−ωηΣ2dxdη−k4(t)2a2T2M˜γ2e−zk3. | (5.10) |
Inserting Eqs (3.18) and (5.10) into Eq (3.19), choosing ω>4T2Mγ2 and the boundary data satisfies
8(γ∗)2√k5(t)k2b≤14, | (5.11) |
we have
−∂∂zΦ(z,t)≥bγ∗T2M∫t0∫Ωze−ωη[|u|+|u∗|]DiDidxdη+1(γ∗)2T2M∫t0∫Ωze−ωη(1+γ2T∗)DiDidxdη+12e−ωt∫ΩzΣ2dx+∫t0∫Ωze−ωη[14ωΣ2+14Σ,iΣ,i]dxdη−k4(t)2a2γ∗T4M˜γ2e−zk3. | (5.12) |
Integrating Eq (5.12) from z to ∞, we obtain
Φ(z,t)≥bγ∗T2M∫t0∫Ωze−ωη(ξ−z)[|u|+|u∗|]DiDidxdη+1(γ∗)2T2M∫t0∫Ωze−ωη(1+γ2T∗)DiDidxdη+12e−ωt∫Ωz(ξ−z)Σ2dx+∫t0∫Ωze−ωη(ξ−z)[14ωΣ2+14Σ,iΣ,i]dxdη−k4(t)2a2γ∗k3T4M˜γ2e−zk3. | (5.13) |
Similar to the calculation in Eqs (3.33) and (3.37), we can get
Φ(z,t)≤n′6(t)[−∂∂zΦ(z,t)]+n′7(t)˜b2e−zk3, | (5.14) |
for n′6(t),n′7(t)>0.
After similar analysis as in the previous section, we can get the following theorem from Eq (5.14).
Theorem 5.1. Let (ui,T,p) and (u∗i,T∗,p∗) be solutions of the Eqs (1.1)–(1.8) in Ω, corresponding to b1 and b2, respectively. If ∫Df3dA=0, Equation (5.11) holds and fα,α−γ1f3=0,H∈L∞(Ω×{t>0}), then
(ui,T)→(u∗i,T∗), as b1→b2. |
Specifically, either the inequality
bγ∗T2M∫t0∫Ωze−ωη(ξ−z)[|u|+|u∗|]DiDidxdη+1(γ∗)2T2M∫t0∫Ωze−ωη(ξ−z)(1+γ∗T∗)DiDidxdη+12e−ωt∫Ωz(ξ−z)Σ2dx+∫t0∫Ωze−ωη(ξ−z)[14ωΣ2+14Σ,iΣ,i]dxdη≤k4(t)2a2γ∗k3T4M˜γ2e−zk3+˜γ2n′7(t)e−1n∗6z+˜γ2n′7(t)n∗6ze−1n∗6z |
holds, or the inequality
bγ∗T2M∫t0∫Ωze−ωη(ξ−z)[|u|+|u∗|]DiDidxdη+1(γ∗)2T2M∫t0∫Ωze−ωη(ξ−z)(1+γ∗T∗)DiDidxdη+12e−ωt∫Ωz(ξ−z)Σ2dx+∫t0∫Ωze−ωη(ξ−z)[14ωΣ2+14Σ,iΣ,i]dxdη≤k4(t)2a2γ∗k3T4M˜γ2e−zk3+˜γ2n′7(t)e−1n∗6z+˜γ2n′7(t)n∗6(1n∗6−1k3)b3(t)[e−1k3z−e−1n∗6z] |
holds.
In this paper, using a priori estimates of the solutions, we show how to control the nonlinear term, and obtain the structural stability of the solution of the Forchheimer equation in a semi-infinite cylinder. Meanwhile, the spatial decay results of the solution are also obtained. The methods in this paper can bring some inspiration for the structural stability of other nonlinear partial differential equations.
The authors express their heartfelt thanks to the editors and referees who have provided some important suggestions. This work is supported by the Tutor System Rroject of Guangzhou Huashang College (2021HSDS13) and the Key projects of universities in Guangdong Province (NATURAL SCIENCE) (2019KZDXM042).
The authors declare there is no conflict of interest. Conceptualization, and validation, Z. Li.; formal analysis, Z W. Zhang; investigation, Y. Li. All authors have read and agreed to the published version of the manuscript.
[1] | D. A. Nield, A. Bejan, Convection in Porous Media, Springer Press, New York, 1992. |
[2] | B. Straughan, Mathematical Aspects of Penetrative Convection, Pitman Research Notes in Mathematics Series, CRC Press: Boca Raton, FL, USA, (1993), 288. |
[3] |
L. E. Payne, J. C. Song, Spatial decay bounds for the Forchheimer equations, Int. J. Eng. Sci., 40 (2002), 943–956. https://doi.org/10.1016/S0020-7225(01)00102-1 doi: 10.1016/S0020-7225(01)00102-1
![]() |
[4] | C. O. Horgan, L. T. Wheeler, Spatial decay estimates for the Navier-Stokes equations with application to the problem of entry flow, SIAM J. Appl. Math., 35 (1978), 97–116. https://doi. org/10.1137/0135008 |
[5] |
J. C. Song, Spatial decay estimates in time-dependent double-diffusive darcy plane flow, J. Math. Anal. Appl., 267 (2002), 76–88. https://doi.org/10.1006/jmaa.2001.7750 doi: 10.1006/jmaa.2001.7750
![]() |
[6] |
L. E. Payne, J. C. Song, Spatial decay bounds for double diffusive convection in Brinkman flow, J. Differ. Equations, 244 (2008), 413–430. https://doi.org/10.1016/j.jde.2007.10.003 doi: 10.1016/j.jde.2007.10.003
![]() |
[7] |
Y. F. Li, X. J. Chen, Phragmén-Lindelöf type alternative results for the solutions to generalized heat conduction equations, Phys. Fluids, 34 (2022), 091901. https://doi.org/10.1063/5.0118243 doi: 10.1063/5.0118243
![]() |
[8] |
X. J. Chen, Y. F. Li, Spatial properties and the influence of the Soret coefficient on the solutions of time-dependent double-diffusive Darcy plane flow, Electron. Res. Arch., 31 (2022), 421–441. https://doi.org/10.3934/era.2023021 doi: 10.3934/era.2023021
![]() |
[9] |
Y. F. Li, X. J. Chen, Phragmén-Lindelöf alternative results in time-dependent double-diffusive Darcy plane flow, Math. Methods Appl. Sci., 45 (2022), 6982–6997. https://doi.org/10.1002/mma.8220 doi: 10.1002/mma.8220
![]() |
[10] | M. W. Hirsch, S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, New York, 1974. |
[11] |
N. L. Scott, Continuous dependence on boundary reaction terms in a porous medium of Darcy type, J. Math. Anal. Appl., 399 (2013), 667–675. https://doi.org/10.1016/j.jmaa.2012.10.054 doi: 10.1016/j.jmaa.2012.10.054
![]() |
[12] |
Y. Liu, S. Z. Xiao, Structural stability for the Brinkman fluid interfacing with a Darcy fluid in an unbounded domain, Nonlinear Anal. Real World Appl., 42 (2018), 308–333. https://doi.org/10.1016/j.nonrwa.2018.01.007 doi: 10.1016/j.nonrwa.2018.01.007
![]() |
[13] | B. Straughan, Heated and salted below porous convection with generalized temperature and solute boundary conditions, Transp. Porous Media, 131 (2020), 617–631. https://doi.org/10.1007/s11242-019-01359-y |
[14] |
Y. F. Li, S. Z. Xiao, P. Zeng, The applications of some basic mathematical inequalities on the convergence of the primitive equations of moist atmosphere, J. Math. Inequal., 15 (2021), 293–304. https://doi.org/10.1007/s11242-019-01359-y doi: 10.1007/s11242-019-01359-y
![]() |
[15] |
Y. Liu, X. L. Qin, J. C. Shi, W. J. Zhi, Structural stability of the Boussinesq fluid interfacing with a Darcy fluid in a bounded region in R2, Appl. Math. Comput., 411 (2021), 126488. https://doi.org/10.1016/j.amc.2021.126488 doi: 10.1016/j.amc.2021.126488
![]() |
[16] |
N. L. Scott, B. Straughan, Continuous dependence on the reaction terms in porous convection with surface reactions, Q. Appl. Math., 71 (2013), 501–508. https://doi.org/10.1090/S0033-569X-2013-01289-X doi: 10.1090/S0033-569X-2013-01289-X
![]() |
[17] | M. Gentile, B. Straughan, Structural stability in resonant penetrative convection in a Forchheimer porous material, Nonlinear Anal. Real World Appl., 14 (2013), 397–401. https://doi. org/10.1016/j.nonrwa.2012.07.003 |
[18] |
R. Quintanilla, Convergence and structural stability in thermoelasticity, Appl. Math. Comput., 135 (2003), 287–300. https://doi.org/10.1016/S0096-3003(01)00331-9 doi: 10.1016/S0096-3003(01)00331-9
![]() |
[19] |
B. Straughan, Continuous dependence and convergence for a Kelvin-Voigt fluid of order one, Ann. Univ. Ferrara, 68 (2022), 49–61. https://doi.org/10.1007/s11565-021-00381-7 doi: 10.1007/s11565-021-00381-7
![]() |
[20] |
Y. F. Li, C. H. Lin, Continuous dependence for the nonhomogeneous Brinkman-Forchheimer equations in a semi-infinite pipe, Appl. Math. Comput., 244 (2014), 201–208. https://doi.org/10.1016/j.amc.2014.06.082 doi: 10.1016/j.amc.2014.06.082
![]() |
[21] |
J. C. Song, Spatial decay bounds for a temperature dependent Stokes flow, J. Korean Math. Soc., 49 (2012), 1163–1174. http://dx.doi.org/10.4134/JKMS.2012.49.6.1163 doi: 10.4134/JKMS.2012.49.6.1163
![]() |
[22] |
H. A. Levine, An estimate for the best constant in a Sobolev inequality involving three integral norms, Ann. Mat. Pura Appl., 4 (1980), 181–197. https://doi.org/10.1007/BF01795392 doi: 10.1007/BF01795392
![]() |
[23] |
G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353–372. https://doi.org/10.1007/BF02418013 doi: 10.1007/BF02418013
![]() |
1. | Yuanfei Li, A study on continuous dependence of layered composite materials in binary mixtures on basic data, 2024, 32, 2688-1594, 5577, 10.3934/era.2024258 | |
2. | Yanping Wang, Yuanfei Li, Structural Stability of Pseudo-Parabolic Equations for Basic Data, 2024, 29, 2297-8747, 105, 10.3390/mca29060105 | |
3. | Naiqiao Qing, Jincheng Shi, Yan Liu, Yunfeng Wen, Spatial decay estimates for a coupled system of wave-plate type, 2025, 33, 2688-1594, 1144, 10.3934/era.2025051 |