As an indispensable part of large Computer Numerical Control machine tool, rolling bearing faults diagnosis is particularly important. However, due to the imbalanced distribution and partially missing of collected monitoring data, such diagnostic issue generally emerging in manufacturing industry is still hardly to be solved. Thus, a multilevel recovery diagnosis model for rolling bearing faults from imbalanced and partially missing monitoring data is formulated in this paper. Firstly, a regulable resampling plan is designed to handle the imbalanced distribution of data. Secondly, a multilevel recovery scheme is formed to deal with partially missing. Thirdly, an improved sparse autoencoder based multilevel recovery diagnosis model is built to identify the health status of rolling bearings. Finally, the diagnostic performance of the designed model is verified by artificial faults and practical faults tests, respectively.
Citation: Jing Yang, Guo Xie, Yanxi Yang, Qijun Li, Cheng Yang. A multilevel recovery diagnosis model for rolling bearing faults from imbalanced and partially missing monitoring data[J]. Mathematical Biosciences and Engineering, 2023, 20(3): 5223-5242. doi: 10.3934/mbe.2023242
[1] | Subhajit Das, Sandip Bhattacharya, Debaprasad Das, Hafizur Rahaman . A survey on pristine and intercalation doped graphene nanoribbon interconnect for future VLSI circuits. AIMS Materials Science, 2021, 8(2): 247-260. doi: 10.3934/matersci.2021016 |
[2] | Yaorong Su, Weiguang Xie, Jianbin Xu . Towards low-voltage organic thin film transistors (OTFTs) with solution-processed high-k dielectric and interface engineering. AIMS Materials Science, 2015, 2(4): 510-529. doi: 10.3934/matersci.2015.4.510 |
[3] | M. P. Lavin-Lopez, L. Sanchez-Silva, J. L. Valverde, A. Romero . CVD-graphene growth on different polycrystalline transition metals. AIMS Materials Science, 2017, 4(1): 194-208. doi: 10.3934/matersci.2017.1.194 |
[4] | Shuhan Jing, Adnan Younis, Dewei Chu, Sean Li . Resistive Switching Characteristics in Electrochemically Synthesized ZnO Films. AIMS Materials Science, 2015, 2(2): 28-36. doi: 10.3934/matersci.2015.2.28 |
[5] | Shuwei Lin, Yitai Fu, Yunsen Sang, Yi Li, Baozong Li, Yonggang Yang . Characterization of Chiral Carbonaceous Nanotubes Prepared from Four Coiled Tubular 4,4-biphenylene-silica Nanoribbons. AIMS Materials Science, 2014, 1(1): 1-10. doi: 10.3934/matersci.2013.1.1 |
[6] | Felicia Ullstad, Jay R. Chan, Harry Warring, Natalie Plank, Ben Ruck, Joe Trodahl, Franck Natali . Ohmic contacts of Au and Ag metals to n-type GdN thin films. AIMS Materials Science, 2015, 2(2): 79-85. doi: 10.3934/matersci.2015.2.79 |
[7] | Raghvendra K Pandey, William A Stapleton, Mohammad Shamsuzzoha, Ivan Sutanto . Voltage biased Varistor-Transistor Hybrid Devices: Properties and Applications. AIMS Materials Science, 2015, 2(3): 243-259. doi: 10.3934/matersci.2015.3.243 |
[8] | K.Pandey Raghvendra, A.Stapleto Williamn, Shamsuzzoha Mohammad, Sutanto Ivan . Voltage biased Varistor-Transistor Hybrid Devices: Properties and Applications. AIMS Materials Science, 2015, 2(3): 243-259. doi: 10.3934/matersci.2015.243 |
[9] | Gennaro Gelao, Roberto Marani, Anna Gina Perri . Analysis and design of current mode logic based on CNTFET. AIMS Materials Science, 2023, 10(6): 965-980. doi: 10.3934/matersci.2023052 |
[10] | Vishanth Uppu, Kunal Mishra, Libin K. Babu, Ranji Vaidyanathan . Understanding the influence of graphene and nonclay on the microcracks developed at cryogenic temperature. AIMS Materials Science, 2019, 6(4): 559-566. doi: 10.3934/matersci.2019.4.559 |
As an indispensable part of large Computer Numerical Control machine tool, rolling bearing faults diagnosis is particularly important. However, due to the imbalanced distribution and partially missing of collected monitoring data, such diagnostic issue generally emerging in manufacturing industry is still hardly to be solved. Thus, a multilevel recovery diagnosis model for rolling bearing faults from imbalanced and partially missing monitoring data is formulated in this paper. Firstly, a regulable resampling plan is designed to handle the imbalanced distribution of data. Secondly, a multilevel recovery scheme is formed to deal with partially missing. Thirdly, an improved sparse autoencoder based multilevel recovery diagnosis model is built to identify the health status of rolling bearings. Finally, the diagnostic performance of the designed model is verified by artificial faults and practical faults tests, respectively.
Power supply voltage drop (IR-drop) has been one of most important challenges of power interconnects in sub nanometer designs [1,2,3,4]. It becomes even more challenging for the high density and high performance designs in which it has adverse effects on timing. The increase in chip operating temperature has two-fold effects on timing. Firstly, it increases the interconnect resistance which in turn increases the interconnect delay. Secondly, due to the increase in resistance there is more IR-drop which also increases the gate delay. Therefore, it is very essential to analyze the effects of temperature on IR-drop in sub nanometer designs, since the resistivity of the traditional copper based interconnects increases significantly in nanometer dimensions [5]. GNR is one of the most promising material for interconnect modeling for future generation technologies [5,6] due to its excellent properties compared with copper in nanometer dimensions. Recent studies [6,7,8,9,10] on GNR show its superiority over the traditional copper based interconnects. The compact resistance modeling with only absolute temperature (300 K) in MLGNR stacks is proposed by Sansiri Tanachutiwat et al. reported in [11]. The temperature independent IR-Drop induced delay-fault model and simultaneous switching noise for MLGNR interconnects has been investigated by D. Das et al. reported in [12,13,14]. The temperature dependent comparisons of delay between CNT and Cu have been investigated in [15,16]. However, as per our knowledge no investigation has been carried out to analyze the effects of the temperature on IR-drop in multi layer graphene nanoribbon (MLGNR) interconnect till date. Motivated by the previous work, we have proposed a temperature dependent resistive model of multi layer graphene nanoribbon (MLGNR) interconnect. Using the proposed model, we have analyzed the power supply voltage drop (IR-drop) and delay in MLGNR based power interconnects. The rest of the paper is organized as follows. Section 2 and 3 presents the proposed temperature dependent resistive model of MLGNR and Cu interconnect. The results and conclusions are presented in the Sections 4 and 5.
A multilayer GNR (MLGNR) structure is shown in Figure 1 is used for modeling power interconnects in nanoscale design. The width, thickness, and height of the MLGNR structure are denoted by w, t, and ht, respectively. The separation between two MLGNR structures is denoted by sp. In our interconnect design, we have considered width (w)=16 nm and thickness (t)=32 nm for 16 nm International technology roadmap for semiconductors (ITRS) technology node [5]. The total number of SLGNR present in proposed MLGNR structure is given by [7].
Nlayer=1+Integer[t/δ] | (1) |
The interlayer spacing (δ) between two consecutive graphene layers is 0.34 nm which is called as van der walls gap. Using (1) we obtain the total number of SLGNR present in proposed MLGNR structure as Nlayer=95 for 16 nm technology node. The total resistance of MLGNR is given by.
RTotal−MLGNR=RQ(1+lMLGNRλeffective)+Rc | (2) |
where lMLGNR is the length of MLGNR based interconnect and λeffective is the effective electron mean free path (MFP) of MLGNR. The quantum resistance (RQ) of SLGNR is 12.94 kΩ. The contact resistance is assumed as 100 Ω·µm. The quantum resistance for MLGNR expressed as [7]
RQ=h/2.e2Nch.Nlayer=12.94kΩNch.Nlayer | (3) |
In (3) Nch is the number of conducting channels in SLGNR, Nlayer is the number of layer present in MLGNR, h is the Planck’s constant, and e is the electronic charge. The number of conducting channel present in SLGNR is given by [8,10]
Nch=nc∑j=1[1+e(Ej,n−EF)/kBT]−1+nc∑j=1[1+e(EF+Ej,h)/kBT]−1 | (4) |
where j=(1, 2, 3, …) is a positive integer, EF is Fermi energy, kB is the Boltzmann’s constant, T is temperature, and nc and nv are the number of conduction and valance sub-bands. Ej, n and Ej, h are the minimum energy of electron and hole in jth conduction sub-band as given by [8]
Ej=ΔE|j+β|,whereΔE=hvf2w | (5) |
ΔE is the sub-band energy in metallic GNR and β value is zero for metallic GNR and it is 1/3 in semiconducting GNR [8,10]. The Fermi potential for metallic GNR has been consider between 0.21 eV to 0.4 eV reported in [8,10]. The Fermi potential may varies in stacked multilayered GNR in each layer. Therefore, the value of Fermi energy for the inner layer GNR is derived as [11].
EF,m=EFe−δm/Ψ | (6) |
In (6), “m” is the position of the layer in stacked MLGNR structure, δ=0.34 nm and Ψ=0.387 nm is the fitting parameter reported in [11]. The average of all Fermi potential for top, bottom and inner layers (total Nlayer ≅ 95) is equal to 0.3 eV. The number of conducting channels (Nch) is 6 for metallic SLGNR of width 16 nm for EF=0.3 eV. The effective MFP of SLGNR interconnects depends on three important parameters: electron-electron scattering (λe), acoustic phonon scattering (λap) and remote interfacial phonon scattering (λrip). Electron-electron scattering independent with temperature variation, but remaining two parameters vary with temperature which adversely affects on the interconnect delay due to change in resistance followed by temperature variation. Th e electron-electron scattering λe can be expressed as [11]
λe=λdefect+wNch∑i=1√Nchi−1 | (7) |
where, λdefect is the MFP of SLGNR due to the defects exists inside the graphene layer. Here, “i” is an integer variable which varies from 1 to Nch=6 and “w” is the interconnect width of MLGNR interconnect. The value of λdefect is assumed to be 1 µm [11]. The MFP due to acoustic phonon scattering λap can be expressed as [11]
λap=h2ρsvs2vf2wπ2D2AkBT | (8) |
In (8), vf is the Fermi velocity of GNR (=8 × 105 m/s), vs is the sound velocity of GNR (=2.1 × 104 m/s), DA is the acoustic deformation potential, kB is the Boltzmann constant, ρs is the 2D mass density of graphene, and T is the temperature. The MFP due to remote interfacial phonon scattering λrip is expressed as [11]
λrip=αE1.02Fw(eE0kT−1) | (9) |
where α is the fitting parameter, EF is the Fermi potential, and E0=104 mV. The temperature dependent effective MFP of SLGNR is given by applying Matthiessen’s rule [11]
λeffective=[(λe)−1+(λap)−1+(λrip)−1]−1 | (10) |
The values of λe, λap, λrip, and λeffective, for different temperature are shown in Figure 2. Substituting the effective MFP of SLGNR in (2) we obtain the temperature dependent resistance of MLGNR in (11). The temperature dependent resistance values for different length and different temperatures for GNR interconnect is shown in Figure 3.
RTotal−MLGNR=RQ[1+lMLGNR(λeλap+λapλrip+λripλe)(λeλapλrip)] | (11) |
The temperature dependent resistive model of Cu based nanointerconnect is explained in this section. To implement this model, surface roughness scattering and grain boundary scattering phenomena are considered. The surface roughness scattering based resistivity model first proposed by Fuchs [17] and Sondheim [18] (FS-model) which is given by (12)
ρFSρO=1+34λOw(1−P) | (12) |
where ρo is the resistivity of the bulk material, w is width of the nanointerconnect, λo is the mean free path of the conduction electrons, and P (=0.6) is the Fuchs scattering parameter. The grain boundary scattering based resistivity model is proposed by Mayadas and Shatzkes (MS-model) [19] which is given by (13)
ρMSρO=[1−32α+3α2−3α3ln(1+1α)]−1 | (13) |
Where,
α=λOD(R1−P) |
Here D is the mean grain size and R is the reflection coefficient in the grain edges or boundaries with values in between 0 and 1. In our model, we have considered the mean grain size is equivalent to film width and R=0.33. The total resistivity of Cu nanointerconnect can be measured by combined effects of surface roughness and grain boundary scattering as given in (14)
ρCu=ρFS+ρMS | (14) |
In (14) we have shown the temperature independent resistivity of Cu nanointerconnect. In general, the electrical resistivity of Cu nanointerconnects increases with temperature due to electron-phonon interactions mechanism [20]. As the temperature increase linearly, the resistance of Cu nanointerconnect also increases linearly. For Cu nanointerconnects, the temperature dependent resistivity ρcu(T) follows a power law function of temperature which is given by the Bloch-Grüneisen model given in (15) [20,21,22]
ρCu(T)=ρCu(0)+4R(ΘR)[TΘR]n∫ΘRT0xn(ex−1)(1−e−x)dx | (15) |
Here,
R(ΘR)=ηe2[π3(3π2)1/3η24n2/3cellaMkBΘR] |
ΘR, is the Debye temperature used for resistivity calculation of Cu interconnect in nanometer dimension [20,21,22]. The Debye temperature ΘR, is taken ~320 K for bulk non-magnetic material like Cu [22]. In our analysis, the residual resistivity ρCu(0) in (15) has been ignored because it is temperature independent parameter and occurs due to presence of defect scattering [22]. Here η=Planck’s constant divided by 2π, ncell=number of electron’s present in an atom which participate in current conduction, the atomic mass M=(atomic weight)/NA, where NA is the Avogadro’s number, a=(volume/atom)1/3, kB is Boltzmann’s constant, and e is the electron charge. Here “n” is an integer which depends on the characteristics of interaction. In general the value of “n” lies between 2-5.
1. n=5 signifies that the resistance variation is due to scattering of electrons by phonons (for simple metals like Cu) [23];
2. n=3 signifies that the resistance variation is due to s-d (spin density) electron scattering (for transition metals or dilute alloys) [23];
3. n=2 signifies that the resistance variation is due to electron-electron collisions or interaction. [23];
In our analysis we have considered the 1st condition. Thus, the temperature dependent resistance of Cu nanointerconnect is given by (16)
RCu(T)=ρCu(T).lwt | (16) |
where l=length, w=width, and t=thickness of Cu nanointerconnect. Here “w” is 16 nm and “t” is 32 nm for 16 nm ITRS technology node for Cu interconnect same as MLGNR interconnect. Length of Cu nanointerconnect is varied from 10 µm to 100 µm. The temperature dependent resistance values of Cu nanointerconnect for different lengths at different temperature are shown in Figure 3.
Using the temperature dependent resistance model as discussed in previous section, we have calculated the resistance for different interconnect length and different temperature. In Figure 3 we have shown the temperature dependent resistance of MLGNR and Cu interconnect for different interconnect length (5 µm to 50 µm) for 16 nm technology node. MLGNR shows ~2-5x less resistance than that of Cu as shown in Figure 3. In Figure 2, with the increase in temperature, the effective mean free path reduces, and hence the scattering induced ohomic part of the total resistance of MLGNR increases. The IR-drop analysis is performed in MLGNR and Cu interconnects for 5 μm (local), 20 μm (intermediate) and 50 μm (global) interconnect lengths. The analysis is performed using equivalent circuit model shown in Figure 4.
In Figure 4, ten identical CMOS inverters are connected in series with temperature dependent resistance for both MLGNR and Cu. In our analysis, we have assumed the supply voltage as 0.7 V, the input voltage swing is from 0 to 0.7 V for all stages and pulse rise/fall time is assumed as 100 ps. The CMOS inverters are designed for 16 nm ITRS technology node using the Shttps://www.aimspress.com/aimspress-data/aimsmates/2016/4/PICE models from predictive technology model [24]. MOSFET model parameters are defined in Table 1. The simulations are performed using the Cadence spectra simulator. All the inverters are switched simultaneously so that they draw current from the power supply. As a result the power supply voltage decreases progressively away from the power pad. The decrease in power supply causes increase in propagation delay through the gate. As the temperature increases, the resistance of the power interconnects increases which causes more interconnect delay. With temperature as the IR-drop increases, the gates suffer more delay problem. Therefore, increase in temperature has twofold increase in delay: one due to increase in interconnect (RC) delay and the other due to increase in IR-drop. Figure 5-7 illustrate the IR-drop in GNR and Cu interconnects for local, intermediate, and global lengths. It is observed that the IR-drop increases with the increase in temperature both for MLGNR and Cu interconnects but MLGNR shows ~1.5-3.5× less IR-drop than Cu at local, intermediate and global lengths. The IR-Drop analyzed data shown in Table 2,Table 3 and Table 4, where maximum, minimum and average IR-Drop of MLGNR and Cu interconnects are present. The total propagation delay of MLGNR and Cu interconnect shown in Table 5. In our analysis, we also find out that MLGNR interconnect can reduce delay up to ~1.5-3× compared with Cu interconnect.
Model Parameters [24] | n-MOS(Si) | p-MOS(Si) |
Channel Length (L) | 16 nm | |
Channel Width (W) | 64 nm | 128 nm |
Threshold Voltage (VTH0) | 0.47 volt | −0.43 volt |
Dielectric Constant (εox for Sio2) | εox = 3.9 × ε0,Where ε0 = 8.85 × 10−12 F/m | |
Oxide Thickness(tox) | 0.95 nm | 1 nm |
Gate Oxide Capacitance (Cox) | 0.29 fF | 0.28 fF |
Junction Depth (Xj) | 5 nm |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | Maximum Peak IR-Drop of MLGNR | Maximum Peak IR-Drop of Cu | ||||||||||||
1st | 7.04 | 7.32 | 7.76 | 8.40 | 9.23 | 10.20 | 11.30 | 13.81 | 18.41 | 22.46 | 26.08 | 29.34 | 32.33 | 35.10 |
2nd | 13.25 | 13.77 | 14.60 | 15.79 | 17.34 | 19.16 | 21.21 | 25.92 | 34.55 | 42.17 | 48.97 | 55.11 | 60.77 | 65.93 |
3rd | 18.68 | 19.41 | 20.57 | 22.25 | 24.41 | 26.98 | 29.86 | 36.47 | 48.64 | 59.41 | 69.05 | 77.82 | 85.88 | 93.29 |
4th | 23.36 | 24.28 | 25.72 | 27.81 | 30.52 | 33.72 | 37.31 | 45.60 | 60.87 | 74.43 | 86.61 | 97.72 | 107.94 | 117.41 |
5th | 27.33 | 28.39 | 30.09 | 32.52 | 35.70 | 39.43 | 43.63 | 53.34 | 71.25 | 87.24 | 101.70 | 114.88 | 127.04 | 138.35 |
6th | 30.61 | 31.80 | 33.69 | 36.41 | 39.96 | 44.15 | 48.86 | 59.72 | 79.87 | 97.93 | 114.25 | 129.29 | 143.18 | 156.11 |
7th | 33.21 | 34.51 | 36.56 | 39.51 | 43.35 | 47.90 | 53.02 | 64.83 | 86.78 | 106.46 | 124.45 | 140.87 | 156.21 | 170.55 |
8th | 35.15 | 36.53 | 38.69 | 41.82 | 45.88 | 50.69 | 56.11 | 68.64 | 91.94 | 112.94 | 132.03 | 149.76 | 166.17 | 181.48 |
9th | 36.45 | 37.87 | 40.11 | 43.35 | 47.56 | 52.55 | 58.17 | 71.18 | 95.37 | 117.25 | 137.19 | 155.68 | 172.75 | 188.97 |
10th | 37.09 | 38.54 | 40.82 | 44.12 | 48.40 | 53.47 | 59.20 | 72.44 | 97.07 | 119.39 | 139.79 | 158.62 | 176.19 | 192.74 |
No of Stages | Minimum Peak IR-Drop of MLGNR | Minimum Peak IR-Drop of Cu | ||||||||||||
1st | 1.18 | 1.23 | 1.31 | 1.43 | 1.59 | 1.79 | 2.02 | 2.55 | 3.54 | 4.47 | 5.36 | 6.19 | 6.98 | 7.74 |
2nd | 2.24 | 2.33 | 2.49 | 2.71 | 3.02 | 3.40 | 3.83 | 4.84 | 6.72 | 8.49 | 10.18 | 11.75 | 13.27 | 14.73 |
3rd | 3.17 | 3.31 | 3.53 | 3.85 | 4.30 | 4.83 | 5.44 | 6.87 | 9.55 | 12.07 | 14.45 | 16.69 | 18.88 | 20.93 |
4th | 3.99 | 4.16 | 4.44 | 4.85 | 5.41 | 6.08 | 6.85 | 8.64 | 12.03 | 15.20 | 18.18 | 21.05 | 23.78 | 26.42 |
5th | 4.69 | 4.89 | 5.21 | 5.71 | 6.36 | 7.15 | 8.06 | 10.15 | 14.15 | 17.89 | 21.37 | 24.79 | 27.97 | 31.15 |
6th | 5.27 | 5.50 | 5.86 | 6.42 | 7.16 | 8.04 | 9.06 | 11.41 | 15.91 | 20.12 | 24.07 | 27.89 | 31.54 | 35.09 |
7th | 5.73 | 5.98 | 6.38 | 6.99 | 7.80 | 8.75 | 9.86 | 12.42 | 17.32 | 21.91 | 26.23 | 30.37 | 34.39 | 38.23 |
8th | 6.08 | 6.34 | 6.77 | 7.42 | 8.27 | 9.28 | 10.46 | 13.17 | 18.37 | 23.25 | 27.85 | 32.23 | 36.53 | 40.59 |
9th | 6.31 | 6.58 | 7.03 | 7.71 | 8.59 | 9.64 | 10.86 | 13.67 | 19.08 | 24.14 | 28.93 | 33.47 | 37.96 | 42.21 |
10th | 6.43 | 6.70 | 7.16 | 7.85 | 8.75 | 9.82 | 11.06 | 13.92 | 19.43 | 24.59 | 29.47 | 34.09 | 38.67 | 43.02 |
No of Stages | Average IR-Drop of MLGNR | Average IR-Drop of Cu | ||||||||||||
1st | 4.11 | 4.27 | 4.53 | 4.91 | 5.41 | 5.99 | 6.66 | 8.18 | 10.97 | 13.46 | 15.72 | 17.76 | 19.65 | 21.42 |
2nd | 7.74 | 8.05 | 8.54 | 9.25 | 10.18 | 11.28 | 12.52 | 15.38 | 20.63 | 25.33 | 29.57 | 33.43 | 37.02 | 40.33 |
3rd | 10.92 | 11.36 | 12.05 | 13.05 | 14.35 | 15.90 | 17.65 | 21.67 | 29.09 | 35.74 | 41.75 | 47.25 | 52.38 | 57.11 |
4th | 13.67 | 14.22 | 15.08 | 16.33 | 17.96 | 19.90 | 22.08 | 27.12 | 36.45 | 44.81 | 52.39 | 59.38 | 65.86 | 71.91 |
5th | 16.01 | 16.64 | 17.65 | 19.11 | 21.03 | 23.29 | 25.84 | 31.74 | 42.70 | 52.56 | 61.53 | 69.83 | 77.50 | 84.75 |
6th | 17.94 | 18.00 | 19.77 | 21.41 | 23.56 | 26.09 | 28.96 | 35.56 | 47.89 | 59.02 | 69.16 | 78.59 | 87.36 | 95.60 |
7th | 19.47 | 20.24 | 21.47 | 23.25 | 25.57 | 28.32 | 31.44 | 38.62 | 52.05 | 64.18 | 75.34 | 85.62 | 95.30 | 104.39 |
8th | 20.61 | 21.43 | 22.73 | 24.62 | 27.07 | 29.98 | 33.28 | 40.90 | 55.15 | 68.09 | 79.94 | 90.99 | 101.35 | 111.03 |
9th | 21.38 | 22.22 | 23.57 | 25.53 | 28.07 | 31.09 | 34.51 | 42.42 | 57.22 | 70.69 | 83.06 | 94.57 | 105.35 | 115.59 |
10th | 21.76 | 22.62 | 23.99 | 25.98 | 28.57 | 31.64 | 35.13 | 43.18 | 58.25 | 71.99 | 84.63 | 96.35 | 107.43 | 117.88 |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | Maximum Peak IR-Drop of MLGNR | Maximum Peak IR-Drop of Cu | ||||||||||||
1st | 18.76 | 19.53 | 20.73 | 22.42 | 24.54 | 26.98 | 29.550 | 36.53 | 45.66 | 53.24 | 59.90 | 65.91 | 71.52 | 76.76 |
2nd | 35.22 | 36.66 | 38.89 | 42.10 | 46.08 | 50.67 | 55.50 | 68.66 | 85.83 | 100.02 | 112.40 | 123.57 | 133.86 | 143.45 |
3rd | 49.57 | 51.63 | 54.82 | 59.30 | 65.01 | 71.49 | 78.38 | 97.18 | 121.74 | 142.15 | 159.91 | 175.86 | 190.47 | 204.12 |
4th | 62.05 | 64.60 | 68.60 | 74.29 | 81.48 | 89.63 | 98.43 | 122.30 | 153.86 | 180.08 | 202.92 | 223.39 | 241.75 | 257.80 |
5th | 72.62 | 75.66 | 80.40 | 87.08 | 95.52 | 105.27 | 115.73 | 144.25 | 182.19 | 213.81 | 241.34 | 264.33 | 283.27 | 299.31 |
6th | 81.45 | 84.87 | 90.14 | 97.75 | 107.38 | 118.40 | 130.28 | 162.87 | 206.46 | 242.96 | 272.94 | 295.93 | 314.48 | 329.98 |
7th | 88.49 | 92.17 | 98.03 | 106.25 | 116.77 | 128.87 | 141.92 | 178.00 | 226.45 | 266.87 | 296.76 | 319.25 | 337.19 | 352.06 |
8th | 93.74 | 97.68 | 103.9 | 112.73 | 123.96 | 136.91 | 150.92 | 189.68 | 241.95 | 284.23 | 313.66 | 335.60 | 352.97 | 367.26 |
9th | 97.23 | 101.3 | 107.8 | 117.03 | 128.75 | 142.26 | 156.87 | 197.40 | 252.44 | 295.44 | 324.46 | 345.97 | 362.91 | 376.79 |
10th | 98.96 | 103.2 | 109.7 | 119.17 | 131.14 | 144.92 | 159.82 | 201.38 | 257.80 | 300.94 | 329.72 | 351.00 | 367.71 | 381.38 |
No of Stages | Minimum Peak IR-Drop of MLGNR | Minimum Peak IR-Drop of Cu | ||||||||||||
1st | 3.62 | 3.79 | 4.07 | 4.46 | 4.98 | 5.59 | 6.25 | 8.15 | 10.90 | 13.29 | 15.45 | 17.43 | 19.22 | 20.86 |
2nd | 6.87 | 7.20 | 7.72 | 8.47 | 9.46 | 10.61 | 11.85 | 15.50 | 20.74 | 25.42 | 29.68 | 33.56 | 37.11 | 40.50 |
3rd | 9.77 | 10.23 | 10.96 | 12.04 | 13.44 | 15.05 | 16.85 | 22.07 | 29.65 | 36.45 | 42.66 | 48.41 | 53.75 | 58.81 |
4th | 12.30 | 12.88 | 13.79 | 15.17 | 16.92 | 18.93 | 21.24 | 27.86 | 37.47 | 46.25 | 54.35 | 61.91 | 69.05 | 75.84 |
5th | 14.46 | 15.14 | 16.24 | 17.85 | 19.89 | 22.30 | 25.01 | 32.82 | 44.33 | 54.86 | 64.64 | 73.97 | 82.82 | 91.31 |
6th | 16.26 | 17.02 | 18.28 | 20.08 | 22.37 | 25.11 | 28.14 | 36.95 | 50.10 | 62.19 | 73.58 | 84.38 | 94.85 | 104.92 |
7th | 17.70 | 18.53 | 19.91 | 21.86 | 24.34 | 27.36 | 30.64 | 40.33 | 54.70 | 68.18 | 80.88 | 93.07 | 104.88 | 116.36 |
8th | 18.78 | 19.67 | 21.13 | 23.20 | 25.83 | 29.05 | 32.52 | 42.89 | 58.29 | 72.67 | 86.50 | 99.77 | 112.64 | 125.29 |
9th | 19.49 | 20.43 | 21.94 | 24.09 | 26.83 | 30.17 | 33.76 | 44.59 | 60.69 | 75.80 | 90.24 | 104.33 | 118.00 | 131.35 |
10th | 19.85 | 20.81 | 22.35 | 24.53 | 27.34 | 30.73 | 34.40 | 45.44 | 61.89 | 77.37 | 92.19 | 106.61 | 120.72 | 134.47 |
No of Stages | Average IR-Drop of MLGNR | Average IR-Drop of Cu | ||||||||||||
1st | 11.19 | 11.66 | 12.40 | 13.44 | 14.76 | 16.28 | 17.90 | 22.34 | 28.28 | 33.26 | 37.67 | 41.67 | 45.37 | 48.81 |
2nd | 21.04 | 21.93 | 23.30 | 25.28 | 27.77 | 30.64 | 33.67 | 42.08 | 53.28 | 62.72 | 71.04 | 78.56 | 85.48 | 91.97 |
3rd | 29.67 | 30.93 | 32.89 | 35.67 | 39.22 | 43.27 | 47.61 | 59.62 | 75.69 | 89.30 | 101.28 | 112.13 | 122.11 | 131.46 |
4th | 37.17 | 38.74 | 41.19 | 44.73 | 49.20 | 54.28 | 59.83 | 75.08 | 95.66 | 113.16 | 128.63 | 142.65 | 155.40 | 166.82 |
5th | 43.54 | 45.40 | 48.32 | 52.46 | 57.70 | 63.78 | 70.37 | 88.53 | 113.26 | 134.33 | 152.99 | 169.15 | 183.04 | 195.31 |
6th | 48.85 | 50.94 | 54.21 | 58.91 | 64.87 | 71.75 | 79.21 | 99.91 | 128.28 | 152.57 | 173.26 | 190.15 | 204.66 | 217.45 |
7th | 53.09 | 55.35 | 58.97 | 64.05 | 70.55 | 78.11 | 86.28 | 109.16 | 140.57 | 167.52 | 188.82 | 206.16 | 221.03 | 234.21 |
8th | 56.26 | 58.67 | 62.51 | 67.96 | 74.89 | 82.98 | 91.72 | 116.28 | 150.12 | 178.45 | 200.08 | 217.68 | 232.80 | 246.27 |
9th | 58.36 | 60.86 | 64.87 | 70.56 | 77.79 | 86.21 | 95.31 | 120.99 | 156.56 | 185.62 | 207.35 | 225.15 | 240.45 | 254.07 |
10th | 59.40 | 62.00 | 66.02 | 71.85 | 79.24 | 87.82 | 97.11 | 123.41 | 159.84 | 189.15 | 210.95 | 228.80 | 244.21 | 257.92 |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | Maximum Peak IR-Drop of MLGNR | Maximum Peak IR-Drop of Cu | ||||||||||||
1st | 34.38 | 35.59 | 37.45 | 40.05 | 43.30 | 46.93 | 50.81 | 61.60 | 75.60 | 87.74 | 98.66 | 108.77 | 118.06 | 126.79 |
2nd | 64.59 | 66.85 | 70.42 | 75.31 | 81.41 | 88.20 | 95.54 | 115.58 | 141.31 | 163.38 | 183.20 | 201.39 | 218.29 | 234.07 |
3rd | 91.33 | 94.64 | 99.65 | 106.70 | 115.41 | 125.18 | 135.65 | 164.42 | 201.07 | 232.16 | 258.20 | 280.07 | 298.95 | 315.48 |
4th | 114.9 | 119.1 | 125.5 | 134.49 | 145.67 | 158.28 | 171.77 | 208.71 | 254.33 | 287.89 | 314.12 | 335.66 | 353.96 | 369.79 |
5th | 135.4 | 140.3 | 148.1 | 158.91 | 172.36 | 187.45 | 203.77 | 248.10 | 295.87 | 328.67 | 353.73 | 374.09 | 391.27 | 406.10 |
6th | 152.7 | 158.4 | 167.3 | 179.70 | 195.12 | 212.65 | 231.32 | 279.77 | 326.67 | 357.97 | 381.54 | 400.58 | 416.64 | 430.55 |
7th | 166.7 | 173.1 | 182.9 | 196.73 | 213.86 | 233.40 | 254.31 | 303.48 | 348.89 | 378.61 | 400.79 | 418.68 | 433.80 | 446.96 |
8th | 177.5 | 184.2 | 194.8 | 209.71 | 228.34 | 249.37 | 271.72 | 320.23 | 364.22 | 392.61 | 413.67 | 430.66 | 445.09 | 457.70 |
9th | 184.6 | 191.9 | 203.0 | 218.59 | 238.06 | 260.20 | 283.05 | 330.91 | 373.84 | 401.28 | 421.58 | 437.97 | 451.93 | 464.19 |
10th | 188.3 | 195.7 | 207.0 | 223.00 | 243.08 | 265.75 | 288.63 | 336.11 | 378.48 | 405.43 | 425.34 | 441.43 | 455.17 | 467.25 |
No of Stages | Minimum Peak IR-Drop of MLGNR | Minimum Peak IR-Drop of Cu | ||||||||||||
1st | 7.54 | 7.88 | 8.42 | 9.18 | 10.16 | 11.30 | 12.51 | 15.99 | 20.49 | 24.26 | 27.48 | 30.31 | 32.95 | 35.32 |
2nd | 14.35 | 14.99 | 16.0 | 17.49 | 19.37 | 21.52 | 23.94 | 30.75 | 39.75 | 47.40 | 54.12 | 60.18 | 65.74 | 70.90 |
3rd | 20.39 | 21.31 | 22.8 | 24.91 | 27.60 | 30.76 | 34.23 | 44.26 | 57.71 | 69.44 | 79.94 | 89.68 | 98.75 | 107.30 |
4th | 25.71 | 26.92 | 28.8 | 31.42 | 34.92 | 38.91 | 43.40 | 56.47 | 74.28 | 90.26 | 104.90 | 118.61 | 131.65 | 144.19 |
5th | 30.32 | 31.73 | 33.9 | 37.12 | 41.19 | 46.06 | 51.43 | 67.28 | 89.39 | 109.51 | 128.42 | 146.31 | 163.65 | 180.43 |
6th | 34.16 | 35.73 | 38.2 | 41.88 | 46.55 | 52.01 | 58.23 | 76.55 | 102.66 | 126.85 | 149.76 | 171.80 | 193.21 | 214.11 |
7th | 37.23 | 38.93 | 41.7 | 45.68 | 50.87 | 56.93 | 63.74 | 84.27 | 113.78 | 141.50 | 168.02 | 193.71 | 218.74 | 243.18 |
8th | 39.53 | 41.38 | 44.4 | 48.53 | 54.11 | 60.65 | 68.00 | 90.13 | 122.39 | 153.04 | 182.47 | 211.03 | 238.86 | 266.08 |
9th | 41.06 | 43.03 | 46.1 | 50.50 | 56.28 | 63.12 | 70.85 | 94.18 | 128.38 | 160.99 | 192.37 | 222.98 | 252.78 | 281.88 |
10th | 41.83 | 43.85 | 47.0 | 51.49 | 57.36 | 64.36 | 72.27 | 96.21 | 131.37 | 165.02 | 197.50 | 229.03 | 259.87 | 289.99 |
No of Stages | Average IR-Drop of MLGNR | Average IR-Drop of Cu | ||||||||||||
1st | 20.96 | 21.73 | 22.93 | 24.61 | 26.73 | 29.11 | 31.66 | 38.79 | 48.04 | 56.00 | 63.07 | 69.54 | 75.50 | 81.05 |
2nd | 39.47 | 40.92 | 43.21 | 46.40 | 50.39 | 54.86 | 59.74 | 73.16 | 90.53 | 105.39 | 118.66 | 130.78 | 142.01 | 152.48 |
3rd | 55.86 | 57.97 | 61.23 | 65.80 | 71.50 | 77.97 | 84.94 | 104.34 | 129.39 | 150.80 | 169.07 | 184.87 | 198.85 | 211.39 |
4th | 70.30 | 73.01 | 77.14 | 82.95 | 90.29 | 98.59 | 107.58 | 132.59 | 164.30 | 189.07 | 209.51 | 227.13 | 242.80 | 256.99 |
5th | 82.86 | 86.01 | 91.00 | 98.01 | 106.77 | 116.75 | 127.60 | 157.69 | 192.63 | 219.09 | 241.07 | 260.20 | 277.46 | 293.26 |
6th | 93.43 | 97.06 | 102.7 | 110.79 | 120.83 | 132.33 | 144.77 | 178.16 | 214.66 | 242.41 | 265.65 | 286.19 | 304.92 | 322.33 |
7th | 101.96 | 106.01 | 112.3 | 121.20 | 132.36 | 145.16 | 159.02 | 193.87 | 231.33 | 260.05 | 284.40 | 306.19 | 326.27 | 345.07 |
8th | 108.51 | 112.79 | 119.5 | 129.12 | 141.22 | 155.01 | 169.86 | 205.18 | 243.30 | 272.82 | 298.07 | 320.84 | 341.97 | 361.89 |
9th | 112.83 | 117.46 | 124.5 | 134.54 | 147.17 | 161.66 | 176.95 | 212.54 | 251.11 | 281.13 | 306.97 | 330.47 | 352.35 | 373.03 |
10th | 115.06 | 119.77 | 127.0 | 137.24 | 150.22 | 165.05 | 180.45 | 216.16 | 254.92 | 285.22 | 311.42 | 335.23 | 357.52 | 378.62 |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | MLGNR interconnect delay(5 μm-Local length) | Cu interconnect delay(5 μm-Local length) | ||||||||||||
1st | 3.74 | 3.75 | 3.76 | 3.77 | 3.78 | 3.79 | 3.82 | 3.86 | 3.94 | 4.03 | 4.12 | 4.20 | 4.28 | 4.37 |
2nd | 6.05 | 6.06 | 6.09 | 6.11 | 6.16 | 6.21 | 6.27 | 6.41 | 6.68 | 6.94 | 7.21 | 7.47 | 7.73 | 8.00 |
3rd | 8.01 | 8.08 | 8.09 | 8.18 | 8.32 | 8.42 | 8.58 | 8.95 | 9.65 | 10.30 | 10.87 | 11.48 | 12.03 | 12.60 |
4th | 9.82 | 9.89 | 10.04 | 10.23 | 10.44 | 10.72 | 11.02 | 11.72 | 13.15 | 14.55 | 15.65 | 16.70 | 17.60 | 18.45 |
5th | 12.48 | 12.64 | 12.80 | 13.11 | 13.50 | 13.95 | 14.50 | 15.80 | 17.80 | 19.65 | 21.10 | 22.40 | 23.50 | 24.65 |
6th | 16.25 | 16.45 | 16.70 | 17.10 | 17.65 | 18.30 | 18.95 | 20.35 | 22.65 | 24.90 | 26.70 | 28.15 | 29.85 | 31.15 |
7th | 19.95 | 20.15 | 20.50 | 21.05 | 21.75 | 22.55 | 23.25 | 25.05 | 27.70 | 30.30 | 32.70 | 34.20 | 36.05 | 37.80 |
8th | 24.00 | 24.30 | 24.75 | 25.40 | 26.15 | 26.70 | 27.65 | 29.65 | 32.95 | 36.15 | 38.70 | 40.60 | 42.95 | 45.40 |
9th | 27.75 | 28.10 | 28.60 | 29.25 | 30.30 | 31.15 | 32.30 | 34.45 | 38.40 | 42.30 | 45.15 | 47.70 | 50.50 | 54.05 |
10th | 31.70 | 32.10 | 32.65 | 33.35 | 34.60 | 35.65 | 37.00 | 39.35 | 44.00 | 48.70 | 52.25 | 56.30 | 59.90 | 62.65 |
No of Stages | MLGNR interconnect delay(20 μm-Intermediate length) | Cu interconnect delay(20 μm-Intermediate length) | ||||||||||||
1st | 3.96 | 3.97 | 3.99 | 4.03 | 4.08 | 4.14 | 4.21 | 4.41 | 4.72 | 5.03 | 5.32 | 5.60 | 5.90 | 6.20 |
2nd | 6.70 | 6.75 | 6.83 | 6.94 | 7.09 | 7.27 | 7.49 | 8.13 | 9.13 | 10.15 | 11.09 | 12.20 | 12.80 | 13.70 |
3rd | 9.72 | 9.86 | 10.04 | 10.30 | 10.60 | 11.05 | 11.50 | 12.90 | 14.95 | 16.50 | 17.95 | 19.40 | 20.90 | 22.40 |
4th | 13.25 | 13.50 | 13.95 | 14.55 | 15.20 | 15.95 | 16.75 | 18.85 | 21.75 | 24.15 | 26.70 | 28.40 | 30.50 | 32.50 |
5th | 18.00 | 18.35 | 18.85 | 19.65 | 20.50 | 21.40 | 22.50 | 25.65 | 29.30 | 32.20 | 35.75 | 38.20 | 41.10 | 44.00 |
6th | 22.90 | 23.30 | 24.00 | 24.90 | 26.00 | 27.10 | 28.25 | 32.15 | 36.90 | 40.75 | 45.00 | 47.60 | 51.30 | 56.60 |
7th | 27.90 | 28.30 | 29.00 | 30.20 | 31.80 | 33.05 | 34.30 | 38.90 | 45.15 | 49.60 | 55.95 | 60.90 | 65.20 | 69.20 |
8th | 33.20 | 33.65 | 34.50 | 36.10 | 37.90 | 39.15 | 40.80 | 46.50 | 54.45 | 62.00 | 66.80 | 72.30 | 79.60 | 86.10 |
9th | 38.65 | 39.15 | 40.25 | 42.25 | 44.25 | 45.65 | 47.90 | 55.60 | 64.60 | 73.10 | 82.45 | 90.10 | 98.10 | 106.00 |
10th | 44.30 | 44.95 | 46.30 | 48.70 | 50.80 | 53.20 | 56.60 | 64.35 | 78.55 | 88.95 | 99.15 | 108.00 | 118.00 | 128.00 |
No of Stages | MLGNR interconnect delay(50 μm-Global length) | Cu interconnect delay(50 μm-Global length) | ||||||||||||
1st | 4.34 | 4.38 | 4.43 | 4.52 | 4.64 | 4.77 | 4.93 | 5.40 | 6.10 | 6.80 | 7.51 | 8.20 | 8.80 | 9.20 |
2nd | 7.92 | 8.040 | 8.23 | 8.49 | 8.84 | 9.26 | 9.77 | 11.40 | 13.40 | 15.00 | 16.21 | 17.40 | 18.50 | 19.60 |
3rd | 12.45 | 12.70 | 13.05 | 13.64 | 14.40 | 15.20 | 16.05 | 18.30 | 22.10 | 25.40 | 27.69 | 29.70 | 31.80 | 34.50 |
4th | 18.20 | 18.55 | 19.10 | 19.87 | 20.90 | 22.15 | 23.60 | 27.20 | 32.00 | 36.90 | 39.84 | 42.90 | 46.90 | 50.30 |
5th | 24.35 | 24.90 | 26.00 | 26.68 | 27.85 | 29.95 | 31.85 | 36.40 | 43.40 | 48.80 | 53.52 | 61.00 | 67.80 | 72.60 |
6th | 30.75 | 31.40 | 32.65 | 33.66 | 34.80 | 37.90 | 40.10 | 45.70 | 55.20 | 65.30 | 70.41 | 77.20 | 87.20 | 96.00 |
7th | 37.30 | 38.20 | 39.50 | 41.15 | 42.85 | 46.10 | 48.90 | 57.50 | 68.20 | 79.50 | 90.76 | 100.10 | 111.00 | 121.50 |
8th | 44.65 | 45.85 | 47.25 | 49.07 | 51.35 | 56.25 | 60.00 | 68.20 | 85.70 | 99.60 | 113.05 | 122.00 | 136.00 | 150.50 |
9th | 53.05 | 54.60 | 56.90 | 59.10 | 62.50 | 66.05 | 70.60 | 84.40 | 104.00 | 121.00 | 136.61 | 151.00 | 168.50 | 184.50 |
10th | 62.10 | 63.50 | 65.40 | 69.76 | 73.60 | 79.90 | 85.55 | 102.00 | 126.50 | 150.00 | 169.75 | 188.00 | 211.00 | 233.00 |
In this work, we have proposed a temperature dependent resistive model of MLGNR and Cu interconnect and analyzed the effect of temperature on power supply voltage drop (IR-drop). It is observed that with the increase in temperature, the resistance is increased for both MLGNR and Cu, but MLGNR shows significantly less increase than the Cu interconnects ( ~2-5× times lesser), which exhibits less power supply voltage variation and hence less impact on the timing of the circuits. It also reduces the power dissipation of MLGNR based power interconnects as compared with Cu.
This work is partially supported by the DIT, Government of West Bengal, India under VLSI Design Project.
The authors declare that there is no conflict of interest regarding the publication of this manuscript.
[1] |
P. Yang, Z. Li, Y. Yu, J. Shi, M. Sun, Studies on fault diagnosis of dissolved oxygen sensor based on GA-SVM, Math. Biosci. Eng., 18 (2021), 386–399. https://doi.org/10.3934/mbe.2021021 doi: 10.3934/mbe.2021021
![]() |
[2] |
J. Yang, G. Xie, Y. Yang, X. Li, L. Mu, S. Takahashi, H. Mochizuki, An improved deep network for intelligent diagnosis of machinery faults with similar features, IEEJ, 14 (2019), 1851–1864. https://doi.org/10.1002/tee.23012 doi: 10.1002/tee.23012
![]() |
[3] |
G. Xie, J. Yang, Y. Yang, An improved sparse autoencoder and multi-level denoising strategy for diagnosing early multiple intermittent faults, IEEE Trans. Syst. Man Cybern.: Syst., 52 (2022), 869–880. https://doi.org/10.1109/TSMC.2020.3005433 doi: 10.1109/TSMC.2020.3005433
![]() |
[4] |
Y. Zhou, A. Kumar, C. Parkash, G. Vashishtha, H. Tang, J. Xiang, A novel entropy-based sparsity measure for prognosis of bearing defects and development of a sparsogram to select sensitive filtering band of an axial piston pump, Measurement, 203 (2022), 111997. https://doi.org/10.1016/j.measurement.2022.111997 doi: 10.1016/j.measurement.2022.111997
![]() |
[5] |
N. Xu, G. Zhang, L. Yang, Z. Shen, M. Xu, L. Chang, Research on thermoeconomic fault diagnosis for marine low speed two stroke diesel engine, Math. Biosci. Eng., 19 (2022), 5393–5408. https://doi.org/10.3934/mbe.2022253 doi: 10.3934/mbe.2022253
![]() |
[6] |
J. Yang, G. Xie, Y. Yang, A key-factor denoising strategy for quasi periodic non-stationary incipient faults diagnosis, Measurement, 197 (2022), 111304. https://doi.org/10.1016/j.measurement.2022.111304 doi: 10.1016/j.measurement.2022.111304
![]() |
[7] |
J. Yang, G. Xie, Y. Yang, Y. Zhang, W. Liu, Deep model integrated with data correlation analysis for multiple intermittent faults diagnosis, ISA Trans., 95 (2019), 306–319. https://doi.org/10.1016/j.isatra.2019.05.021 doi: 10.1016/j.isatra.2019.05.021
![]() |
[8] |
J. Yang, Y. Yang, G. Xie, Diagnosis of incipient fault based on sliding-scale resampling strategy and improved deep autoencoder, IEEE Sens. J., 20 (2020), 8336–8348. https://doi.org/10.1109/JSEN.2020.2976523 doi: 10.1109/JSEN.2020.2976523
![]() |
[9] |
Y. Wang, D. Zhao, Y. Li, S. X. Ding, Unbiased minimum variance fault and state estimation for linear discrete time-varying two-dimensional systems, IEEE Trans. Autom. Control, 62 (2017), 5463–5469. https://doi.org/10.1109/TAC.2017.2697210 doi: 10.1109/TAC.2017.2697210
![]() |
[10] |
R. Sun, Y. Han, Y. Wang, Design of generalized fault diagnosis observer and active adaptive fault tolerant controller for aircraft control system, Math. Biosci. Eng., 19 (2022), 5591–5609. https://doi.org/10.3934/mbe.2022262 doi: 10.3934/mbe.2022262
![]() |
[11] |
R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, R. X. Gao, Deep learning and its applications to machine health monitoring, Mech. Syst. Signal Process., 115 (2019), 213–237. https://doi.org/10.1016/j.ymssp.2018.05.050 doi: 10.1016/j.ymssp.2018.05.050
![]() |
[12] |
W. Li, X. Zhong, H. Shao, B. Cai, X. Yang, Multi-mode data augmentation and fault diagnosis of rotating machinery using modified ACGAN designed with new framework, Adv. Eng. Inf., 52 (2022), 101552. https://doi.org/10.1016/j.aei.2022.101552 doi: 10.1016/j.aei.2022.101552
![]() |
[13] |
X. Chen, G. Cheng, H. Li, M. Zhang, Diagnosing planetary gear faults using the fuzzy entropy of LMD and ANFIS, J. Mech. Sci. Technol., 30 (2016), 2453–2462. https://doi.org/10.1007/s12206-016-0505-y doi: 10.1007/s12206-016-0505-y
![]() |
[14] |
M. R. Praveen, M. Saimurugan, Health monitoring of a gear box using vibration signal analysis, Appl. Mech. Mater., 813–814 (2015), 1012–1017. https://doi.org/10.4028/www.scientific.net/AMM.813-814.1012 doi: 10.4028/www.scientific.net/AMM.813-814.1012
![]() |
[15] |
A. E. Prosvirin, M. Islam, J. Kim, J. Kim, Rub-impact fault diagnosis using an effective IMF selection technique in ensemble empirical mode decomposition and hybrid feature models, Sensors, 18 (2018), 2040. https://doi.org/10.3390/s18072040 doi: 10.3390/s18072040
![]() |
[16] |
Y. Wang, G. Xu, L. Liang, K. Jiang, Detection of weak transient signals based on wavelet packet transform and manifold learning for rolling element bearing fault diagnosis, Mech. Syst. Signal Process., 54–55 (2015), 259–276. https://doi.org/10.1016/j.ymssp.2014.09.002 doi: 10.1016/j.ymssp.2014.09.002
![]() |
[17] |
Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature, 521 (2015), 436–444. https://doi.org/10.1038/nature14539 doi: 10.1038/nature14539
![]() |
[18] |
Y. Zhou, G. Zhi, W. Chen, Q. Qian, D. He, B. Sun, et. al., A new tool wear condition monitoring method based on deep learning under small samples, Measurement, 189 (2022), 110622. https://doi.org/10.1016/j.measurement.2021.110622 doi: 10.1016/j.measurement.2021.110622
![]() |
[19] |
S. Jia, Z. Yu, A. Onken, Y. Tian, T. Huang, J. K. Liu, Neural system identification with spike-triggered non-negative matrix factorization, IEEE Trans. Cybern., 52 (2022), 4772–4783. https://doi.org/10.1109/TCYB.2020.3042513 doi: 10.1109/TCYB.2020.3042513
![]() |
[20] |
J. Yang, Y. Bai, G. Li, M. Liu, X. Liu, A novel method of diagnosing premature ventricular contraction based on sparse auto-encoder and softmax regression, Bio.-Med. Mater. Eng., 26 (2015), 1549–1558. https://doi.org/10.3233/BME-151454 doi: 10.3233/BME-151454
![]() |
[21] | J. Deng, Z. Zhang, E. Marchi, B. Schuller, Sparse autoencoder-based feature transfer learning for speech emotion recognition, in 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, (2013), 511–516. https://doi.org/10.1109/ACⅡ.2013.90 |
[22] |
J. Yang, G. Xie, Yanxi Yang, An improved ensemble fusion autoencoder model for fault diagnosis from imbalanced and incomplete data, Control Eng. Pract., 98 (2020), 104358. https://doi.org/10.1016/j.conengprac.2020.104358 doi: 10.1016/j.conengprac.2020.104358
![]() |
[23] |
R. Liu, B. Yang, E. Zio, X. Chen, Artificial intelligence for fault diagnosis of rotating machinery: A review, Mech. Syst. Signal Process., 108 (2018), 33–47. https://doi.org/10.1016/j.ymssp.2018.02.016 doi: 10.1016/j.ymssp.2018.02.016
![]() |
[24] |
C. Lu, Z. Wang, W. Qin, J. Ma, Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification, Signal Process., 130 (2017), 377–388. https://doi.org/10.1016/j.sigpro.2016.07.028 doi: 10.1016/j.sigpro.2016.07.028
![]() |
[25] |
M. Sohaib, C. Kim, J. Kim, A hybrid feature model and deep-learning-based bearing fault diagnosis, Sensors, 17 (2017), 2876–2891. https://doi.org/10.3390/s17122876 doi: 10.3390/s17122876
![]() |
[26] |
J. Sun, C. Yan, J. Wen, Intelligent bearing fault diagnosis method combining compressed data acquisition and deep learning, IEEE Trans. Instrum. Meas., 67 (2018), 185–195. https://doi.org/10.1109/TIM.2017.2759418 doi: 10.1109/TIM.2017.2759418
![]() |
[27] |
G. Liu, H. Bao, B. Han, A stacked autoencoder-based deep neural network for achieving gearbox fault diagnosis, Math. Probl. Eng., 2018 (2018), 1–10. https://doi.org/10.1155/2018/5105709 doi: 10.1155/2018/5105709
![]() |
[28] |
Y. Qian, Y. Liang, M. Li, G. Feng, X. Shi, A resampling ensemble algorithm for classification of imbalance problems, Neurocomputing, 143 (2014), 57–67. https://doi.org/10.1016/j.neucom.2014.06.021 doi: 10.1016/j.neucom.2014.06.021
![]() |
[29] |
S. Cateni, V. Colla, M. Vannucci, A method for resampling imbalanced datasets in binary classification tasks for real-world problems, Neurocomputing, 135 (2014), 32–41. https://doi.org/10.1016/j.neucom.2013.05.059 doi: 10.1016/j.neucom.2013.05.059
![]() |
[30] |
X. Han, R. Cui, Y. Lan, Y. Kang, J. Deng, N. Jia, A Gaussian mixture model based combined resampling algorithm for classification of imbalanced credit data sets, Int. J. Mach. Learn. Cybern., 10 (2019), 3687–3699. https://doi.org/10.1007/s13042-019-00953-2 doi: 10.1007/s13042-019-00953-2
![]() |
[31] | K. Loparo, Case western reserve university bearing data center, 2013. Available from: http://csegroups.case.edu/bearingdatacenter/pages. |
[32] |
Y. Qi, C. Shen, D. Wang, J. Shi, X. Jiang, Z. Zhu, Stacked sparse autoencoder-based deep network for fault diagnosis of rotating machinery, IEEE Access, 5 (2017), 15066–15079. https://doi.org/10.1109/ACCESS.2017.2728010 doi: 10.1109/ACCESS.2017.2728010
![]() |
[33] |
Z. Liu, X. Chen, Z. He, Z. Shen, LMD method and multi-class RWSVM of fault diagnosis for rotating machinery using condition monitoring information, Sensors, 13 (2013), 8679–8694. https://doi.org/10.3390/s130708679 doi: 10.3390/s130708679
![]() |
[34] |
F. Zhou, Y. Gao, C. Wen, A novel multimode fault classification method based on deep learning, J. Control Sci. Eng., 2017 (2017), 1–14. https://doi.org/10.1155/2017/3583610 doi: 10.1155/2017/3583610
![]() |
[35] | C. Lessmeier, J. K. Kimotho, D. Zimmer, W. Sextro, Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: A benchmark data set for data-driven classification, in 2016 European Conference of the Prognostics and Health Management Society, (2016), 1–18. |
1. | Sandip Bhattacharya, Debaprasad Das, Hafizur Rahaman, Analysis of Simultaneous Switching Noise and IR-Drop in Side-Contact Multilayer Graphene Nanoribbon Power Distribution Network, 2018, 27, 0218-1266, 1850001, 10.1142/S0218126618500019 | |
2. | Sandip Bhattacharya, Subhajit Das, Arnab Mukhopadhyay, Debaprasad Das, Hafizur Rahaman, Analysis of a temperature-dependent delay optimization model for GNR interconnects using a wire sizing method, 2018, 17, 1569-8025, 1536, 10.1007/s10825-018-1251-4 | |
3. | Subhajit Das, Debaprasad Das, Hafizur Rahaman, Electro-thermal RF modeling and performance analysis of graphene nanoribbon interconnects, 2018, 17, 1569-8025, 1695, 10.1007/s10825-018-1245-2 | |
4. | Subhajit Das, Debaprasad Das, Hafizur Rahaman, 2018, Performance modeling of intercalation doped graphene-nanoribbon interconnects, 978-1-5386-5122-3, 1, 10.1109/ISDCS.2018.8379685 | |
5. | Sandip Bhattacharya, Debaprasad Das, Hafizur Rahaman, Analysis of Temperature-Dependent Crosstalk for Graphene Nanoribbon and Copper Interconnects, 2019, 0377-2063, 1, 10.1080/03772063.2019.1674193 |
Model Parameters [24] | n-MOS(Si) | p-MOS(Si) |
Channel Length (L) | 16 nm | |
Channel Width (W) | 64 nm | 128 nm |
Threshold Voltage (VTH0) | 0.47 volt | −0.43 volt |
Dielectric Constant (εox for Sio2) | εox = 3.9 × ε0,Where ε0 = 8.85 × 10−12 F/m | |
Oxide Thickness(tox) | 0.95 nm | 1 nm |
Gate Oxide Capacitance (Cox) | 0.29 fF | 0.28 fF |
Junction Depth (Xj) | 5 nm |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | Maximum Peak IR-Drop of MLGNR | Maximum Peak IR-Drop of Cu | ||||||||||||
1st | 7.04 | 7.32 | 7.76 | 8.40 | 9.23 | 10.20 | 11.30 | 13.81 | 18.41 | 22.46 | 26.08 | 29.34 | 32.33 | 35.10 |
2nd | 13.25 | 13.77 | 14.60 | 15.79 | 17.34 | 19.16 | 21.21 | 25.92 | 34.55 | 42.17 | 48.97 | 55.11 | 60.77 | 65.93 |
3rd | 18.68 | 19.41 | 20.57 | 22.25 | 24.41 | 26.98 | 29.86 | 36.47 | 48.64 | 59.41 | 69.05 | 77.82 | 85.88 | 93.29 |
4th | 23.36 | 24.28 | 25.72 | 27.81 | 30.52 | 33.72 | 37.31 | 45.60 | 60.87 | 74.43 | 86.61 | 97.72 | 107.94 | 117.41 |
5th | 27.33 | 28.39 | 30.09 | 32.52 | 35.70 | 39.43 | 43.63 | 53.34 | 71.25 | 87.24 | 101.70 | 114.88 | 127.04 | 138.35 |
6th | 30.61 | 31.80 | 33.69 | 36.41 | 39.96 | 44.15 | 48.86 | 59.72 | 79.87 | 97.93 | 114.25 | 129.29 | 143.18 | 156.11 |
7th | 33.21 | 34.51 | 36.56 | 39.51 | 43.35 | 47.90 | 53.02 | 64.83 | 86.78 | 106.46 | 124.45 | 140.87 | 156.21 | 170.55 |
8th | 35.15 | 36.53 | 38.69 | 41.82 | 45.88 | 50.69 | 56.11 | 68.64 | 91.94 | 112.94 | 132.03 | 149.76 | 166.17 | 181.48 |
9th | 36.45 | 37.87 | 40.11 | 43.35 | 47.56 | 52.55 | 58.17 | 71.18 | 95.37 | 117.25 | 137.19 | 155.68 | 172.75 | 188.97 |
10th | 37.09 | 38.54 | 40.82 | 44.12 | 48.40 | 53.47 | 59.20 | 72.44 | 97.07 | 119.39 | 139.79 | 158.62 | 176.19 | 192.74 |
No of Stages | Minimum Peak IR-Drop of MLGNR | Minimum Peak IR-Drop of Cu | ||||||||||||
1st | 1.18 | 1.23 | 1.31 | 1.43 | 1.59 | 1.79 | 2.02 | 2.55 | 3.54 | 4.47 | 5.36 | 6.19 | 6.98 | 7.74 |
2nd | 2.24 | 2.33 | 2.49 | 2.71 | 3.02 | 3.40 | 3.83 | 4.84 | 6.72 | 8.49 | 10.18 | 11.75 | 13.27 | 14.73 |
3rd | 3.17 | 3.31 | 3.53 | 3.85 | 4.30 | 4.83 | 5.44 | 6.87 | 9.55 | 12.07 | 14.45 | 16.69 | 18.88 | 20.93 |
4th | 3.99 | 4.16 | 4.44 | 4.85 | 5.41 | 6.08 | 6.85 | 8.64 | 12.03 | 15.20 | 18.18 | 21.05 | 23.78 | 26.42 |
5th | 4.69 | 4.89 | 5.21 | 5.71 | 6.36 | 7.15 | 8.06 | 10.15 | 14.15 | 17.89 | 21.37 | 24.79 | 27.97 | 31.15 |
6th | 5.27 | 5.50 | 5.86 | 6.42 | 7.16 | 8.04 | 9.06 | 11.41 | 15.91 | 20.12 | 24.07 | 27.89 | 31.54 | 35.09 |
7th | 5.73 | 5.98 | 6.38 | 6.99 | 7.80 | 8.75 | 9.86 | 12.42 | 17.32 | 21.91 | 26.23 | 30.37 | 34.39 | 38.23 |
8th | 6.08 | 6.34 | 6.77 | 7.42 | 8.27 | 9.28 | 10.46 | 13.17 | 18.37 | 23.25 | 27.85 | 32.23 | 36.53 | 40.59 |
9th | 6.31 | 6.58 | 7.03 | 7.71 | 8.59 | 9.64 | 10.86 | 13.67 | 19.08 | 24.14 | 28.93 | 33.47 | 37.96 | 42.21 |
10th | 6.43 | 6.70 | 7.16 | 7.85 | 8.75 | 9.82 | 11.06 | 13.92 | 19.43 | 24.59 | 29.47 | 34.09 | 38.67 | 43.02 |
No of Stages | Average IR-Drop of MLGNR | Average IR-Drop of Cu | ||||||||||||
1st | 4.11 | 4.27 | 4.53 | 4.91 | 5.41 | 5.99 | 6.66 | 8.18 | 10.97 | 13.46 | 15.72 | 17.76 | 19.65 | 21.42 |
2nd | 7.74 | 8.05 | 8.54 | 9.25 | 10.18 | 11.28 | 12.52 | 15.38 | 20.63 | 25.33 | 29.57 | 33.43 | 37.02 | 40.33 |
3rd | 10.92 | 11.36 | 12.05 | 13.05 | 14.35 | 15.90 | 17.65 | 21.67 | 29.09 | 35.74 | 41.75 | 47.25 | 52.38 | 57.11 |
4th | 13.67 | 14.22 | 15.08 | 16.33 | 17.96 | 19.90 | 22.08 | 27.12 | 36.45 | 44.81 | 52.39 | 59.38 | 65.86 | 71.91 |
5th | 16.01 | 16.64 | 17.65 | 19.11 | 21.03 | 23.29 | 25.84 | 31.74 | 42.70 | 52.56 | 61.53 | 69.83 | 77.50 | 84.75 |
6th | 17.94 | 18.00 | 19.77 | 21.41 | 23.56 | 26.09 | 28.96 | 35.56 | 47.89 | 59.02 | 69.16 | 78.59 | 87.36 | 95.60 |
7th | 19.47 | 20.24 | 21.47 | 23.25 | 25.57 | 28.32 | 31.44 | 38.62 | 52.05 | 64.18 | 75.34 | 85.62 | 95.30 | 104.39 |
8th | 20.61 | 21.43 | 22.73 | 24.62 | 27.07 | 29.98 | 33.28 | 40.90 | 55.15 | 68.09 | 79.94 | 90.99 | 101.35 | 111.03 |
9th | 21.38 | 22.22 | 23.57 | 25.53 | 28.07 | 31.09 | 34.51 | 42.42 | 57.22 | 70.69 | 83.06 | 94.57 | 105.35 | 115.59 |
10th | 21.76 | 22.62 | 23.99 | 25.98 | 28.57 | 31.64 | 35.13 | 43.18 | 58.25 | 71.99 | 84.63 | 96.35 | 107.43 | 117.88 |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | Maximum Peak IR-Drop of MLGNR | Maximum Peak IR-Drop of Cu | ||||||||||||
1st | 18.76 | 19.53 | 20.73 | 22.42 | 24.54 | 26.98 | 29.550 | 36.53 | 45.66 | 53.24 | 59.90 | 65.91 | 71.52 | 76.76 |
2nd | 35.22 | 36.66 | 38.89 | 42.10 | 46.08 | 50.67 | 55.50 | 68.66 | 85.83 | 100.02 | 112.40 | 123.57 | 133.86 | 143.45 |
3rd | 49.57 | 51.63 | 54.82 | 59.30 | 65.01 | 71.49 | 78.38 | 97.18 | 121.74 | 142.15 | 159.91 | 175.86 | 190.47 | 204.12 |
4th | 62.05 | 64.60 | 68.60 | 74.29 | 81.48 | 89.63 | 98.43 | 122.30 | 153.86 | 180.08 | 202.92 | 223.39 | 241.75 | 257.80 |
5th | 72.62 | 75.66 | 80.40 | 87.08 | 95.52 | 105.27 | 115.73 | 144.25 | 182.19 | 213.81 | 241.34 | 264.33 | 283.27 | 299.31 |
6th | 81.45 | 84.87 | 90.14 | 97.75 | 107.38 | 118.40 | 130.28 | 162.87 | 206.46 | 242.96 | 272.94 | 295.93 | 314.48 | 329.98 |
7th | 88.49 | 92.17 | 98.03 | 106.25 | 116.77 | 128.87 | 141.92 | 178.00 | 226.45 | 266.87 | 296.76 | 319.25 | 337.19 | 352.06 |
8th | 93.74 | 97.68 | 103.9 | 112.73 | 123.96 | 136.91 | 150.92 | 189.68 | 241.95 | 284.23 | 313.66 | 335.60 | 352.97 | 367.26 |
9th | 97.23 | 101.3 | 107.8 | 117.03 | 128.75 | 142.26 | 156.87 | 197.40 | 252.44 | 295.44 | 324.46 | 345.97 | 362.91 | 376.79 |
10th | 98.96 | 103.2 | 109.7 | 119.17 | 131.14 | 144.92 | 159.82 | 201.38 | 257.80 | 300.94 | 329.72 | 351.00 | 367.71 | 381.38 |
No of Stages | Minimum Peak IR-Drop of MLGNR | Minimum Peak IR-Drop of Cu | ||||||||||||
1st | 3.62 | 3.79 | 4.07 | 4.46 | 4.98 | 5.59 | 6.25 | 8.15 | 10.90 | 13.29 | 15.45 | 17.43 | 19.22 | 20.86 |
2nd | 6.87 | 7.20 | 7.72 | 8.47 | 9.46 | 10.61 | 11.85 | 15.50 | 20.74 | 25.42 | 29.68 | 33.56 | 37.11 | 40.50 |
3rd | 9.77 | 10.23 | 10.96 | 12.04 | 13.44 | 15.05 | 16.85 | 22.07 | 29.65 | 36.45 | 42.66 | 48.41 | 53.75 | 58.81 |
4th | 12.30 | 12.88 | 13.79 | 15.17 | 16.92 | 18.93 | 21.24 | 27.86 | 37.47 | 46.25 | 54.35 | 61.91 | 69.05 | 75.84 |
5th | 14.46 | 15.14 | 16.24 | 17.85 | 19.89 | 22.30 | 25.01 | 32.82 | 44.33 | 54.86 | 64.64 | 73.97 | 82.82 | 91.31 |
6th | 16.26 | 17.02 | 18.28 | 20.08 | 22.37 | 25.11 | 28.14 | 36.95 | 50.10 | 62.19 | 73.58 | 84.38 | 94.85 | 104.92 |
7th | 17.70 | 18.53 | 19.91 | 21.86 | 24.34 | 27.36 | 30.64 | 40.33 | 54.70 | 68.18 | 80.88 | 93.07 | 104.88 | 116.36 |
8th | 18.78 | 19.67 | 21.13 | 23.20 | 25.83 | 29.05 | 32.52 | 42.89 | 58.29 | 72.67 | 86.50 | 99.77 | 112.64 | 125.29 |
9th | 19.49 | 20.43 | 21.94 | 24.09 | 26.83 | 30.17 | 33.76 | 44.59 | 60.69 | 75.80 | 90.24 | 104.33 | 118.00 | 131.35 |
10th | 19.85 | 20.81 | 22.35 | 24.53 | 27.34 | 30.73 | 34.40 | 45.44 | 61.89 | 77.37 | 92.19 | 106.61 | 120.72 | 134.47 |
No of Stages | Average IR-Drop of MLGNR | Average IR-Drop of Cu | ||||||||||||
1st | 11.19 | 11.66 | 12.40 | 13.44 | 14.76 | 16.28 | 17.90 | 22.34 | 28.28 | 33.26 | 37.67 | 41.67 | 45.37 | 48.81 |
2nd | 21.04 | 21.93 | 23.30 | 25.28 | 27.77 | 30.64 | 33.67 | 42.08 | 53.28 | 62.72 | 71.04 | 78.56 | 85.48 | 91.97 |
3rd | 29.67 | 30.93 | 32.89 | 35.67 | 39.22 | 43.27 | 47.61 | 59.62 | 75.69 | 89.30 | 101.28 | 112.13 | 122.11 | 131.46 |
4th | 37.17 | 38.74 | 41.19 | 44.73 | 49.20 | 54.28 | 59.83 | 75.08 | 95.66 | 113.16 | 128.63 | 142.65 | 155.40 | 166.82 |
5th | 43.54 | 45.40 | 48.32 | 52.46 | 57.70 | 63.78 | 70.37 | 88.53 | 113.26 | 134.33 | 152.99 | 169.15 | 183.04 | 195.31 |
6th | 48.85 | 50.94 | 54.21 | 58.91 | 64.87 | 71.75 | 79.21 | 99.91 | 128.28 | 152.57 | 173.26 | 190.15 | 204.66 | 217.45 |
7th | 53.09 | 55.35 | 58.97 | 64.05 | 70.55 | 78.11 | 86.28 | 109.16 | 140.57 | 167.52 | 188.82 | 206.16 | 221.03 | 234.21 |
8th | 56.26 | 58.67 | 62.51 | 67.96 | 74.89 | 82.98 | 91.72 | 116.28 | 150.12 | 178.45 | 200.08 | 217.68 | 232.80 | 246.27 |
9th | 58.36 | 60.86 | 64.87 | 70.56 | 77.79 | 86.21 | 95.31 | 120.99 | 156.56 | 185.62 | 207.35 | 225.15 | 240.45 | 254.07 |
10th | 59.40 | 62.00 | 66.02 | 71.85 | 79.24 | 87.82 | 97.11 | 123.41 | 159.84 | 189.15 | 210.95 | 228.80 | 244.21 | 257.92 |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | Maximum Peak IR-Drop of MLGNR | Maximum Peak IR-Drop of Cu | ||||||||||||
1st | 34.38 | 35.59 | 37.45 | 40.05 | 43.30 | 46.93 | 50.81 | 61.60 | 75.60 | 87.74 | 98.66 | 108.77 | 118.06 | 126.79 |
2nd | 64.59 | 66.85 | 70.42 | 75.31 | 81.41 | 88.20 | 95.54 | 115.58 | 141.31 | 163.38 | 183.20 | 201.39 | 218.29 | 234.07 |
3rd | 91.33 | 94.64 | 99.65 | 106.70 | 115.41 | 125.18 | 135.65 | 164.42 | 201.07 | 232.16 | 258.20 | 280.07 | 298.95 | 315.48 |
4th | 114.9 | 119.1 | 125.5 | 134.49 | 145.67 | 158.28 | 171.77 | 208.71 | 254.33 | 287.89 | 314.12 | 335.66 | 353.96 | 369.79 |
5th | 135.4 | 140.3 | 148.1 | 158.91 | 172.36 | 187.45 | 203.77 | 248.10 | 295.87 | 328.67 | 353.73 | 374.09 | 391.27 | 406.10 |
6th | 152.7 | 158.4 | 167.3 | 179.70 | 195.12 | 212.65 | 231.32 | 279.77 | 326.67 | 357.97 | 381.54 | 400.58 | 416.64 | 430.55 |
7th | 166.7 | 173.1 | 182.9 | 196.73 | 213.86 | 233.40 | 254.31 | 303.48 | 348.89 | 378.61 | 400.79 | 418.68 | 433.80 | 446.96 |
8th | 177.5 | 184.2 | 194.8 | 209.71 | 228.34 | 249.37 | 271.72 | 320.23 | 364.22 | 392.61 | 413.67 | 430.66 | 445.09 | 457.70 |
9th | 184.6 | 191.9 | 203.0 | 218.59 | 238.06 | 260.20 | 283.05 | 330.91 | 373.84 | 401.28 | 421.58 | 437.97 | 451.93 | 464.19 |
10th | 188.3 | 195.7 | 207.0 | 223.00 | 243.08 | 265.75 | 288.63 | 336.11 | 378.48 | 405.43 | 425.34 | 441.43 | 455.17 | 467.25 |
No of Stages | Minimum Peak IR-Drop of MLGNR | Minimum Peak IR-Drop of Cu | ||||||||||||
1st | 7.54 | 7.88 | 8.42 | 9.18 | 10.16 | 11.30 | 12.51 | 15.99 | 20.49 | 24.26 | 27.48 | 30.31 | 32.95 | 35.32 |
2nd | 14.35 | 14.99 | 16.0 | 17.49 | 19.37 | 21.52 | 23.94 | 30.75 | 39.75 | 47.40 | 54.12 | 60.18 | 65.74 | 70.90 |
3rd | 20.39 | 21.31 | 22.8 | 24.91 | 27.60 | 30.76 | 34.23 | 44.26 | 57.71 | 69.44 | 79.94 | 89.68 | 98.75 | 107.30 |
4th | 25.71 | 26.92 | 28.8 | 31.42 | 34.92 | 38.91 | 43.40 | 56.47 | 74.28 | 90.26 | 104.90 | 118.61 | 131.65 | 144.19 |
5th | 30.32 | 31.73 | 33.9 | 37.12 | 41.19 | 46.06 | 51.43 | 67.28 | 89.39 | 109.51 | 128.42 | 146.31 | 163.65 | 180.43 |
6th | 34.16 | 35.73 | 38.2 | 41.88 | 46.55 | 52.01 | 58.23 | 76.55 | 102.66 | 126.85 | 149.76 | 171.80 | 193.21 | 214.11 |
7th | 37.23 | 38.93 | 41.7 | 45.68 | 50.87 | 56.93 | 63.74 | 84.27 | 113.78 | 141.50 | 168.02 | 193.71 | 218.74 | 243.18 |
8th | 39.53 | 41.38 | 44.4 | 48.53 | 54.11 | 60.65 | 68.00 | 90.13 | 122.39 | 153.04 | 182.47 | 211.03 | 238.86 | 266.08 |
9th | 41.06 | 43.03 | 46.1 | 50.50 | 56.28 | 63.12 | 70.85 | 94.18 | 128.38 | 160.99 | 192.37 | 222.98 | 252.78 | 281.88 |
10th | 41.83 | 43.85 | 47.0 | 51.49 | 57.36 | 64.36 | 72.27 | 96.21 | 131.37 | 165.02 | 197.50 | 229.03 | 259.87 | 289.99 |
No of Stages | Average IR-Drop of MLGNR | Average IR-Drop of Cu | ||||||||||||
1st | 20.96 | 21.73 | 22.93 | 24.61 | 26.73 | 29.11 | 31.66 | 38.79 | 48.04 | 56.00 | 63.07 | 69.54 | 75.50 | 81.05 |
2nd | 39.47 | 40.92 | 43.21 | 46.40 | 50.39 | 54.86 | 59.74 | 73.16 | 90.53 | 105.39 | 118.66 | 130.78 | 142.01 | 152.48 |
3rd | 55.86 | 57.97 | 61.23 | 65.80 | 71.50 | 77.97 | 84.94 | 104.34 | 129.39 | 150.80 | 169.07 | 184.87 | 198.85 | 211.39 |
4th | 70.30 | 73.01 | 77.14 | 82.95 | 90.29 | 98.59 | 107.58 | 132.59 | 164.30 | 189.07 | 209.51 | 227.13 | 242.80 | 256.99 |
5th | 82.86 | 86.01 | 91.00 | 98.01 | 106.77 | 116.75 | 127.60 | 157.69 | 192.63 | 219.09 | 241.07 | 260.20 | 277.46 | 293.26 |
6th | 93.43 | 97.06 | 102.7 | 110.79 | 120.83 | 132.33 | 144.77 | 178.16 | 214.66 | 242.41 | 265.65 | 286.19 | 304.92 | 322.33 |
7th | 101.96 | 106.01 | 112.3 | 121.20 | 132.36 | 145.16 | 159.02 | 193.87 | 231.33 | 260.05 | 284.40 | 306.19 | 326.27 | 345.07 |
8th | 108.51 | 112.79 | 119.5 | 129.12 | 141.22 | 155.01 | 169.86 | 205.18 | 243.30 | 272.82 | 298.07 | 320.84 | 341.97 | 361.89 |
9th | 112.83 | 117.46 | 124.5 | 134.54 | 147.17 | 161.66 | 176.95 | 212.54 | 251.11 | 281.13 | 306.97 | 330.47 | 352.35 | 373.03 |
10th | 115.06 | 119.77 | 127.0 | 137.24 | 150.22 | 165.05 | 180.45 | 216.16 | 254.92 | 285.22 | 311.42 | 335.23 | 357.52 | 378.62 |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | MLGNR interconnect delay(5 μm-Local length) | Cu interconnect delay(5 μm-Local length) | ||||||||||||
1st | 3.74 | 3.75 | 3.76 | 3.77 | 3.78 | 3.79 | 3.82 | 3.86 | 3.94 | 4.03 | 4.12 | 4.20 | 4.28 | 4.37 |
2nd | 6.05 | 6.06 | 6.09 | 6.11 | 6.16 | 6.21 | 6.27 | 6.41 | 6.68 | 6.94 | 7.21 | 7.47 | 7.73 | 8.00 |
3rd | 8.01 | 8.08 | 8.09 | 8.18 | 8.32 | 8.42 | 8.58 | 8.95 | 9.65 | 10.30 | 10.87 | 11.48 | 12.03 | 12.60 |
4th | 9.82 | 9.89 | 10.04 | 10.23 | 10.44 | 10.72 | 11.02 | 11.72 | 13.15 | 14.55 | 15.65 | 16.70 | 17.60 | 18.45 |
5th | 12.48 | 12.64 | 12.80 | 13.11 | 13.50 | 13.95 | 14.50 | 15.80 | 17.80 | 19.65 | 21.10 | 22.40 | 23.50 | 24.65 |
6th | 16.25 | 16.45 | 16.70 | 17.10 | 17.65 | 18.30 | 18.95 | 20.35 | 22.65 | 24.90 | 26.70 | 28.15 | 29.85 | 31.15 |
7th | 19.95 | 20.15 | 20.50 | 21.05 | 21.75 | 22.55 | 23.25 | 25.05 | 27.70 | 30.30 | 32.70 | 34.20 | 36.05 | 37.80 |
8th | 24.00 | 24.30 | 24.75 | 25.40 | 26.15 | 26.70 | 27.65 | 29.65 | 32.95 | 36.15 | 38.70 | 40.60 | 42.95 | 45.40 |
9th | 27.75 | 28.10 | 28.60 | 29.25 | 30.30 | 31.15 | 32.30 | 34.45 | 38.40 | 42.30 | 45.15 | 47.70 | 50.50 | 54.05 |
10th | 31.70 | 32.10 | 32.65 | 33.35 | 34.60 | 35.65 | 37.00 | 39.35 | 44.00 | 48.70 | 52.25 | 56.30 | 59.90 | 62.65 |
No of Stages | MLGNR interconnect delay(20 μm-Intermediate length) | Cu interconnect delay(20 μm-Intermediate length) | ||||||||||||
1st | 3.96 | 3.97 | 3.99 | 4.03 | 4.08 | 4.14 | 4.21 | 4.41 | 4.72 | 5.03 | 5.32 | 5.60 | 5.90 | 6.20 |
2nd | 6.70 | 6.75 | 6.83 | 6.94 | 7.09 | 7.27 | 7.49 | 8.13 | 9.13 | 10.15 | 11.09 | 12.20 | 12.80 | 13.70 |
3rd | 9.72 | 9.86 | 10.04 | 10.30 | 10.60 | 11.05 | 11.50 | 12.90 | 14.95 | 16.50 | 17.95 | 19.40 | 20.90 | 22.40 |
4th | 13.25 | 13.50 | 13.95 | 14.55 | 15.20 | 15.95 | 16.75 | 18.85 | 21.75 | 24.15 | 26.70 | 28.40 | 30.50 | 32.50 |
5th | 18.00 | 18.35 | 18.85 | 19.65 | 20.50 | 21.40 | 22.50 | 25.65 | 29.30 | 32.20 | 35.75 | 38.20 | 41.10 | 44.00 |
6th | 22.90 | 23.30 | 24.00 | 24.90 | 26.00 | 27.10 | 28.25 | 32.15 | 36.90 | 40.75 | 45.00 | 47.60 | 51.30 | 56.60 |
7th | 27.90 | 28.30 | 29.00 | 30.20 | 31.80 | 33.05 | 34.30 | 38.90 | 45.15 | 49.60 | 55.95 | 60.90 | 65.20 | 69.20 |
8th | 33.20 | 33.65 | 34.50 | 36.10 | 37.90 | 39.15 | 40.80 | 46.50 | 54.45 | 62.00 | 66.80 | 72.30 | 79.60 | 86.10 |
9th | 38.65 | 39.15 | 40.25 | 42.25 | 44.25 | 45.65 | 47.90 | 55.60 | 64.60 | 73.10 | 82.45 | 90.10 | 98.10 | 106.00 |
10th | 44.30 | 44.95 | 46.30 | 48.70 | 50.80 | 53.20 | 56.60 | 64.35 | 78.55 | 88.95 | 99.15 | 108.00 | 118.00 | 128.00 |
No of Stages | MLGNR interconnect delay(50 μm-Global length) | Cu interconnect delay(50 μm-Global length) | ||||||||||||
1st | 4.34 | 4.38 | 4.43 | 4.52 | 4.64 | 4.77 | 4.93 | 5.40 | 6.10 | 6.80 | 7.51 | 8.20 | 8.80 | 9.20 |
2nd | 7.92 | 8.040 | 8.23 | 8.49 | 8.84 | 9.26 | 9.77 | 11.40 | 13.40 | 15.00 | 16.21 | 17.40 | 18.50 | 19.60 |
3rd | 12.45 | 12.70 | 13.05 | 13.64 | 14.40 | 15.20 | 16.05 | 18.30 | 22.10 | 25.40 | 27.69 | 29.70 | 31.80 | 34.50 |
4th | 18.20 | 18.55 | 19.10 | 19.87 | 20.90 | 22.15 | 23.60 | 27.20 | 32.00 | 36.90 | 39.84 | 42.90 | 46.90 | 50.30 |
5th | 24.35 | 24.90 | 26.00 | 26.68 | 27.85 | 29.95 | 31.85 | 36.40 | 43.40 | 48.80 | 53.52 | 61.00 | 67.80 | 72.60 |
6th | 30.75 | 31.40 | 32.65 | 33.66 | 34.80 | 37.90 | 40.10 | 45.70 | 55.20 | 65.30 | 70.41 | 77.20 | 87.20 | 96.00 |
7th | 37.30 | 38.20 | 39.50 | 41.15 | 42.85 | 46.10 | 48.90 | 57.50 | 68.20 | 79.50 | 90.76 | 100.10 | 111.00 | 121.50 |
8th | 44.65 | 45.85 | 47.25 | 49.07 | 51.35 | 56.25 | 60.00 | 68.20 | 85.70 | 99.60 | 113.05 | 122.00 | 136.00 | 150.50 |
9th | 53.05 | 54.60 | 56.90 | 59.10 | 62.50 | 66.05 | 70.60 | 84.40 | 104.00 | 121.00 | 136.61 | 151.00 | 168.50 | 184.50 |
10th | 62.10 | 63.50 | 65.40 | 69.76 | 73.60 | 79.90 | 85.55 | 102.00 | 126.50 | 150.00 | 169.75 | 188.00 | 211.00 | 233.00 |
Model Parameters [24] | n-MOS(Si) | p-MOS(Si) |
Channel Length (L) | 16 nm | |
Channel Width (W) | 64 nm | 128 nm |
Threshold Voltage (VTH0) | 0.47 volt | −0.43 volt |
Dielectric Constant (εox for Sio2) | εox = 3.9 × ε0,Where ε0 = 8.85 × 10−12 F/m | |
Oxide Thickness(tox) | 0.95 nm | 1 nm |
Gate Oxide Capacitance (Cox) | 0.29 fF | 0.28 fF |
Junction Depth (Xj) | 5 nm |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | Maximum Peak IR-Drop of MLGNR | Maximum Peak IR-Drop of Cu | ||||||||||||
1st | 7.04 | 7.32 | 7.76 | 8.40 | 9.23 | 10.20 | 11.30 | 13.81 | 18.41 | 22.46 | 26.08 | 29.34 | 32.33 | 35.10 |
2nd | 13.25 | 13.77 | 14.60 | 15.79 | 17.34 | 19.16 | 21.21 | 25.92 | 34.55 | 42.17 | 48.97 | 55.11 | 60.77 | 65.93 |
3rd | 18.68 | 19.41 | 20.57 | 22.25 | 24.41 | 26.98 | 29.86 | 36.47 | 48.64 | 59.41 | 69.05 | 77.82 | 85.88 | 93.29 |
4th | 23.36 | 24.28 | 25.72 | 27.81 | 30.52 | 33.72 | 37.31 | 45.60 | 60.87 | 74.43 | 86.61 | 97.72 | 107.94 | 117.41 |
5th | 27.33 | 28.39 | 30.09 | 32.52 | 35.70 | 39.43 | 43.63 | 53.34 | 71.25 | 87.24 | 101.70 | 114.88 | 127.04 | 138.35 |
6th | 30.61 | 31.80 | 33.69 | 36.41 | 39.96 | 44.15 | 48.86 | 59.72 | 79.87 | 97.93 | 114.25 | 129.29 | 143.18 | 156.11 |
7th | 33.21 | 34.51 | 36.56 | 39.51 | 43.35 | 47.90 | 53.02 | 64.83 | 86.78 | 106.46 | 124.45 | 140.87 | 156.21 | 170.55 |
8th | 35.15 | 36.53 | 38.69 | 41.82 | 45.88 | 50.69 | 56.11 | 68.64 | 91.94 | 112.94 | 132.03 | 149.76 | 166.17 | 181.48 |
9th | 36.45 | 37.87 | 40.11 | 43.35 | 47.56 | 52.55 | 58.17 | 71.18 | 95.37 | 117.25 | 137.19 | 155.68 | 172.75 | 188.97 |
10th | 37.09 | 38.54 | 40.82 | 44.12 | 48.40 | 53.47 | 59.20 | 72.44 | 97.07 | 119.39 | 139.79 | 158.62 | 176.19 | 192.74 |
No of Stages | Minimum Peak IR-Drop of MLGNR | Minimum Peak IR-Drop of Cu | ||||||||||||
1st | 1.18 | 1.23 | 1.31 | 1.43 | 1.59 | 1.79 | 2.02 | 2.55 | 3.54 | 4.47 | 5.36 | 6.19 | 6.98 | 7.74 |
2nd | 2.24 | 2.33 | 2.49 | 2.71 | 3.02 | 3.40 | 3.83 | 4.84 | 6.72 | 8.49 | 10.18 | 11.75 | 13.27 | 14.73 |
3rd | 3.17 | 3.31 | 3.53 | 3.85 | 4.30 | 4.83 | 5.44 | 6.87 | 9.55 | 12.07 | 14.45 | 16.69 | 18.88 | 20.93 |
4th | 3.99 | 4.16 | 4.44 | 4.85 | 5.41 | 6.08 | 6.85 | 8.64 | 12.03 | 15.20 | 18.18 | 21.05 | 23.78 | 26.42 |
5th | 4.69 | 4.89 | 5.21 | 5.71 | 6.36 | 7.15 | 8.06 | 10.15 | 14.15 | 17.89 | 21.37 | 24.79 | 27.97 | 31.15 |
6th | 5.27 | 5.50 | 5.86 | 6.42 | 7.16 | 8.04 | 9.06 | 11.41 | 15.91 | 20.12 | 24.07 | 27.89 | 31.54 | 35.09 |
7th | 5.73 | 5.98 | 6.38 | 6.99 | 7.80 | 8.75 | 9.86 | 12.42 | 17.32 | 21.91 | 26.23 | 30.37 | 34.39 | 38.23 |
8th | 6.08 | 6.34 | 6.77 | 7.42 | 8.27 | 9.28 | 10.46 | 13.17 | 18.37 | 23.25 | 27.85 | 32.23 | 36.53 | 40.59 |
9th | 6.31 | 6.58 | 7.03 | 7.71 | 8.59 | 9.64 | 10.86 | 13.67 | 19.08 | 24.14 | 28.93 | 33.47 | 37.96 | 42.21 |
10th | 6.43 | 6.70 | 7.16 | 7.85 | 8.75 | 9.82 | 11.06 | 13.92 | 19.43 | 24.59 | 29.47 | 34.09 | 38.67 | 43.02 |
No of Stages | Average IR-Drop of MLGNR | Average IR-Drop of Cu | ||||||||||||
1st | 4.11 | 4.27 | 4.53 | 4.91 | 5.41 | 5.99 | 6.66 | 8.18 | 10.97 | 13.46 | 15.72 | 17.76 | 19.65 | 21.42 |
2nd | 7.74 | 8.05 | 8.54 | 9.25 | 10.18 | 11.28 | 12.52 | 15.38 | 20.63 | 25.33 | 29.57 | 33.43 | 37.02 | 40.33 |
3rd | 10.92 | 11.36 | 12.05 | 13.05 | 14.35 | 15.90 | 17.65 | 21.67 | 29.09 | 35.74 | 41.75 | 47.25 | 52.38 | 57.11 |
4th | 13.67 | 14.22 | 15.08 | 16.33 | 17.96 | 19.90 | 22.08 | 27.12 | 36.45 | 44.81 | 52.39 | 59.38 | 65.86 | 71.91 |
5th | 16.01 | 16.64 | 17.65 | 19.11 | 21.03 | 23.29 | 25.84 | 31.74 | 42.70 | 52.56 | 61.53 | 69.83 | 77.50 | 84.75 |
6th | 17.94 | 18.00 | 19.77 | 21.41 | 23.56 | 26.09 | 28.96 | 35.56 | 47.89 | 59.02 | 69.16 | 78.59 | 87.36 | 95.60 |
7th | 19.47 | 20.24 | 21.47 | 23.25 | 25.57 | 28.32 | 31.44 | 38.62 | 52.05 | 64.18 | 75.34 | 85.62 | 95.30 | 104.39 |
8th | 20.61 | 21.43 | 22.73 | 24.62 | 27.07 | 29.98 | 33.28 | 40.90 | 55.15 | 68.09 | 79.94 | 90.99 | 101.35 | 111.03 |
9th | 21.38 | 22.22 | 23.57 | 25.53 | 28.07 | 31.09 | 34.51 | 42.42 | 57.22 | 70.69 | 83.06 | 94.57 | 105.35 | 115.59 |
10th | 21.76 | 22.62 | 23.99 | 25.98 | 28.57 | 31.64 | 35.13 | 43.18 | 58.25 | 71.99 | 84.63 | 96.35 | 107.43 | 117.88 |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | Maximum Peak IR-Drop of MLGNR | Maximum Peak IR-Drop of Cu | ||||||||||||
1st | 18.76 | 19.53 | 20.73 | 22.42 | 24.54 | 26.98 | 29.550 | 36.53 | 45.66 | 53.24 | 59.90 | 65.91 | 71.52 | 76.76 |
2nd | 35.22 | 36.66 | 38.89 | 42.10 | 46.08 | 50.67 | 55.50 | 68.66 | 85.83 | 100.02 | 112.40 | 123.57 | 133.86 | 143.45 |
3rd | 49.57 | 51.63 | 54.82 | 59.30 | 65.01 | 71.49 | 78.38 | 97.18 | 121.74 | 142.15 | 159.91 | 175.86 | 190.47 | 204.12 |
4th | 62.05 | 64.60 | 68.60 | 74.29 | 81.48 | 89.63 | 98.43 | 122.30 | 153.86 | 180.08 | 202.92 | 223.39 | 241.75 | 257.80 |
5th | 72.62 | 75.66 | 80.40 | 87.08 | 95.52 | 105.27 | 115.73 | 144.25 | 182.19 | 213.81 | 241.34 | 264.33 | 283.27 | 299.31 |
6th | 81.45 | 84.87 | 90.14 | 97.75 | 107.38 | 118.40 | 130.28 | 162.87 | 206.46 | 242.96 | 272.94 | 295.93 | 314.48 | 329.98 |
7th | 88.49 | 92.17 | 98.03 | 106.25 | 116.77 | 128.87 | 141.92 | 178.00 | 226.45 | 266.87 | 296.76 | 319.25 | 337.19 | 352.06 |
8th | 93.74 | 97.68 | 103.9 | 112.73 | 123.96 | 136.91 | 150.92 | 189.68 | 241.95 | 284.23 | 313.66 | 335.60 | 352.97 | 367.26 |
9th | 97.23 | 101.3 | 107.8 | 117.03 | 128.75 | 142.26 | 156.87 | 197.40 | 252.44 | 295.44 | 324.46 | 345.97 | 362.91 | 376.79 |
10th | 98.96 | 103.2 | 109.7 | 119.17 | 131.14 | 144.92 | 159.82 | 201.38 | 257.80 | 300.94 | 329.72 | 351.00 | 367.71 | 381.38 |
No of Stages | Minimum Peak IR-Drop of MLGNR | Minimum Peak IR-Drop of Cu | ||||||||||||
1st | 3.62 | 3.79 | 4.07 | 4.46 | 4.98 | 5.59 | 6.25 | 8.15 | 10.90 | 13.29 | 15.45 | 17.43 | 19.22 | 20.86 |
2nd | 6.87 | 7.20 | 7.72 | 8.47 | 9.46 | 10.61 | 11.85 | 15.50 | 20.74 | 25.42 | 29.68 | 33.56 | 37.11 | 40.50 |
3rd | 9.77 | 10.23 | 10.96 | 12.04 | 13.44 | 15.05 | 16.85 | 22.07 | 29.65 | 36.45 | 42.66 | 48.41 | 53.75 | 58.81 |
4th | 12.30 | 12.88 | 13.79 | 15.17 | 16.92 | 18.93 | 21.24 | 27.86 | 37.47 | 46.25 | 54.35 | 61.91 | 69.05 | 75.84 |
5th | 14.46 | 15.14 | 16.24 | 17.85 | 19.89 | 22.30 | 25.01 | 32.82 | 44.33 | 54.86 | 64.64 | 73.97 | 82.82 | 91.31 |
6th | 16.26 | 17.02 | 18.28 | 20.08 | 22.37 | 25.11 | 28.14 | 36.95 | 50.10 | 62.19 | 73.58 | 84.38 | 94.85 | 104.92 |
7th | 17.70 | 18.53 | 19.91 | 21.86 | 24.34 | 27.36 | 30.64 | 40.33 | 54.70 | 68.18 | 80.88 | 93.07 | 104.88 | 116.36 |
8th | 18.78 | 19.67 | 21.13 | 23.20 | 25.83 | 29.05 | 32.52 | 42.89 | 58.29 | 72.67 | 86.50 | 99.77 | 112.64 | 125.29 |
9th | 19.49 | 20.43 | 21.94 | 24.09 | 26.83 | 30.17 | 33.76 | 44.59 | 60.69 | 75.80 | 90.24 | 104.33 | 118.00 | 131.35 |
10th | 19.85 | 20.81 | 22.35 | 24.53 | 27.34 | 30.73 | 34.40 | 45.44 | 61.89 | 77.37 | 92.19 | 106.61 | 120.72 | 134.47 |
No of Stages | Average IR-Drop of MLGNR | Average IR-Drop of Cu | ||||||||||||
1st | 11.19 | 11.66 | 12.40 | 13.44 | 14.76 | 16.28 | 17.90 | 22.34 | 28.28 | 33.26 | 37.67 | 41.67 | 45.37 | 48.81 |
2nd | 21.04 | 21.93 | 23.30 | 25.28 | 27.77 | 30.64 | 33.67 | 42.08 | 53.28 | 62.72 | 71.04 | 78.56 | 85.48 | 91.97 |
3rd | 29.67 | 30.93 | 32.89 | 35.67 | 39.22 | 43.27 | 47.61 | 59.62 | 75.69 | 89.30 | 101.28 | 112.13 | 122.11 | 131.46 |
4th | 37.17 | 38.74 | 41.19 | 44.73 | 49.20 | 54.28 | 59.83 | 75.08 | 95.66 | 113.16 | 128.63 | 142.65 | 155.40 | 166.82 |
5th | 43.54 | 45.40 | 48.32 | 52.46 | 57.70 | 63.78 | 70.37 | 88.53 | 113.26 | 134.33 | 152.99 | 169.15 | 183.04 | 195.31 |
6th | 48.85 | 50.94 | 54.21 | 58.91 | 64.87 | 71.75 | 79.21 | 99.91 | 128.28 | 152.57 | 173.26 | 190.15 | 204.66 | 217.45 |
7th | 53.09 | 55.35 | 58.97 | 64.05 | 70.55 | 78.11 | 86.28 | 109.16 | 140.57 | 167.52 | 188.82 | 206.16 | 221.03 | 234.21 |
8th | 56.26 | 58.67 | 62.51 | 67.96 | 74.89 | 82.98 | 91.72 | 116.28 | 150.12 | 178.45 | 200.08 | 217.68 | 232.80 | 246.27 |
9th | 58.36 | 60.86 | 64.87 | 70.56 | 77.79 | 86.21 | 95.31 | 120.99 | 156.56 | 185.62 | 207.35 | 225.15 | 240.45 | 254.07 |
10th | 59.40 | 62.00 | 66.02 | 71.85 | 79.24 | 87.82 | 97.11 | 123.41 | 159.84 | 189.15 | 210.95 | 228.80 | 244.21 | 257.92 |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | Maximum Peak IR-Drop of MLGNR | Maximum Peak IR-Drop of Cu | ||||||||||||
1st | 34.38 | 35.59 | 37.45 | 40.05 | 43.30 | 46.93 | 50.81 | 61.60 | 75.60 | 87.74 | 98.66 | 108.77 | 118.06 | 126.79 |
2nd | 64.59 | 66.85 | 70.42 | 75.31 | 81.41 | 88.20 | 95.54 | 115.58 | 141.31 | 163.38 | 183.20 | 201.39 | 218.29 | 234.07 |
3rd | 91.33 | 94.64 | 99.65 | 106.70 | 115.41 | 125.18 | 135.65 | 164.42 | 201.07 | 232.16 | 258.20 | 280.07 | 298.95 | 315.48 |
4th | 114.9 | 119.1 | 125.5 | 134.49 | 145.67 | 158.28 | 171.77 | 208.71 | 254.33 | 287.89 | 314.12 | 335.66 | 353.96 | 369.79 |
5th | 135.4 | 140.3 | 148.1 | 158.91 | 172.36 | 187.45 | 203.77 | 248.10 | 295.87 | 328.67 | 353.73 | 374.09 | 391.27 | 406.10 |
6th | 152.7 | 158.4 | 167.3 | 179.70 | 195.12 | 212.65 | 231.32 | 279.77 | 326.67 | 357.97 | 381.54 | 400.58 | 416.64 | 430.55 |
7th | 166.7 | 173.1 | 182.9 | 196.73 | 213.86 | 233.40 | 254.31 | 303.48 | 348.89 | 378.61 | 400.79 | 418.68 | 433.80 | 446.96 |
8th | 177.5 | 184.2 | 194.8 | 209.71 | 228.34 | 249.37 | 271.72 | 320.23 | 364.22 | 392.61 | 413.67 | 430.66 | 445.09 | 457.70 |
9th | 184.6 | 191.9 | 203.0 | 218.59 | 238.06 | 260.20 | 283.05 | 330.91 | 373.84 | 401.28 | 421.58 | 437.97 | 451.93 | 464.19 |
10th | 188.3 | 195.7 | 207.0 | 223.00 | 243.08 | 265.75 | 288.63 | 336.11 | 378.48 | 405.43 | 425.34 | 441.43 | 455.17 | 467.25 |
No of Stages | Minimum Peak IR-Drop of MLGNR | Minimum Peak IR-Drop of Cu | ||||||||||||
1st | 7.54 | 7.88 | 8.42 | 9.18 | 10.16 | 11.30 | 12.51 | 15.99 | 20.49 | 24.26 | 27.48 | 30.31 | 32.95 | 35.32 |
2nd | 14.35 | 14.99 | 16.0 | 17.49 | 19.37 | 21.52 | 23.94 | 30.75 | 39.75 | 47.40 | 54.12 | 60.18 | 65.74 | 70.90 |
3rd | 20.39 | 21.31 | 22.8 | 24.91 | 27.60 | 30.76 | 34.23 | 44.26 | 57.71 | 69.44 | 79.94 | 89.68 | 98.75 | 107.30 |
4th | 25.71 | 26.92 | 28.8 | 31.42 | 34.92 | 38.91 | 43.40 | 56.47 | 74.28 | 90.26 | 104.90 | 118.61 | 131.65 | 144.19 |
5th | 30.32 | 31.73 | 33.9 | 37.12 | 41.19 | 46.06 | 51.43 | 67.28 | 89.39 | 109.51 | 128.42 | 146.31 | 163.65 | 180.43 |
6th | 34.16 | 35.73 | 38.2 | 41.88 | 46.55 | 52.01 | 58.23 | 76.55 | 102.66 | 126.85 | 149.76 | 171.80 | 193.21 | 214.11 |
7th | 37.23 | 38.93 | 41.7 | 45.68 | 50.87 | 56.93 | 63.74 | 84.27 | 113.78 | 141.50 | 168.02 | 193.71 | 218.74 | 243.18 |
8th | 39.53 | 41.38 | 44.4 | 48.53 | 54.11 | 60.65 | 68.00 | 90.13 | 122.39 | 153.04 | 182.47 | 211.03 | 238.86 | 266.08 |
9th | 41.06 | 43.03 | 46.1 | 50.50 | 56.28 | 63.12 | 70.85 | 94.18 | 128.38 | 160.99 | 192.37 | 222.98 | 252.78 | 281.88 |
10th | 41.83 | 43.85 | 47.0 | 51.49 | 57.36 | 64.36 | 72.27 | 96.21 | 131.37 | 165.02 | 197.50 | 229.03 | 259.87 | 289.99 |
No of Stages | Average IR-Drop of MLGNR | Average IR-Drop of Cu | ||||||||||||
1st | 20.96 | 21.73 | 22.93 | 24.61 | 26.73 | 29.11 | 31.66 | 38.79 | 48.04 | 56.00 | 63.07 | 69.54 | 75.50 | 81.05 |
2nd | 39.47 | 40.92 | 43.21 | 46.40 | 50.39 | 54.86 | 59.74 | 73.16 | 90.53 | 105.39 | 118.66 | 130.78 | 142.01 | 152.48 |
3rd | 55.86 | 57.97 | 61.23 | 65.80 | 71.50 | 77.97 | 84.94 | 104.34 | 129.39 | 150.80 | 169.07 | 184.87 | 198.85 | 211.39 |
4th | 70.30 | 73.01 | 77.14 | 82.95 | 90.29 | 98.59 | 107.58 | 132.59 | 164.30 | 189.07 | 209.51 | 227.13 | 242.80 | 256.99 |
5th | 82.86 | 86.01 | 91.00 | 98.01 | 106.77 | 116.75 | 127.60 | 157.69 | 192.63 | 219.09 | 241.07 | 260.20 | 277.46 | 293.26 |
6th | 93.43 | 97.06 | 102.7 | 110.79 | 120.83 | 132.33 | 144.77 | 178.16 | 214.66 | 242.41 | 265.65 | 286.19 | 304.92 | 322.33 |
7th | 101.96 | 106.01 | 112.3 | 121.20 | 132.36 | 145.16 | 159.02 | 193.87 | 231.33 | 260.05 | 284.40 | 306.19 | 326.27 | 345.07 |
8th | 108.51 | 112.79 | 119.5 | 129.12 | 141.22 | 155.01 | 169.86 | 205.18 | 243.30 | 272.82 | 298.07 | 320.84 | 341.97 | 361.89 |
9th | 112.83 | 117.46 | 124.5 | 134.54 | 147.17 | 161.66 | 176.95 | 212.54 | 251.11 | 281.13 | 306.97 | 330.47 | 352.35 | 373.03 |
10th | 115.06 | 119.77 | 127.0 | 137.24 | 150.22 | 165.05 | 180.45 | 216.16 | 254.92 | 285.22 | 311.42 | 335.23 | 357.52 | 378.62 |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | MLGNR interconnect delay(5 μm-Local length) | Cu interconnect delay(5 μm-Local length) | ||||||||||||
1st | 3.74 | 3.75 | 3.76 | 3.77 | 3.78 | 3.79 | 3.82 | 3.86 | 3.94 | 4.03 | 4.12 | 4.20 | 4.28 | 4.37 |
2nd | 6.05 | 6.06 | 6.09 | 6.11 | 6.16 | 6.21 | 6.27 | 6.41 | 6.68 | 6.94 | 7.21 | 7.47 | 7.73 | 8.00 |
3rd | 8.01 | 8.08 | 8.09 | 8.18 | 8.32 | 8.42 | 8.58 | 8.95 | 9.65 | 10.30 | 10.87 | 11.48 | 12.03 | 12.60 |
4th | 9.82 | 9.89 | 10.04 | 10.23 | 10.44 | 10.72 | 11.02 | 11.72 | 13.15 | 14.55 | 15.65 | 16.70 | 17.60 | 18.45 |
5th | 12.48 | 12.64 | 12.80 | 13.11 | 13.50 | 13.95 | 14.50 | 15.80 | 17.80 | 19.65 | 21.10 | 22.40 | 23.50 | 24.65 |
6th | 16.25 | 16.45 | 16.70 | 17.10 | 17.65 | 18.30 | 18.95 | 20.35 | 22.65 | 24.90 | 26.70 | 28.15 | 29.85 | 31.15 |
7th | 19.95 | 20.15 | 20.50 | 21.05 | 21.75 | 22.55 | 23.25 | 25.05 | 27.70 | 30.30 | 32.70 | 34.20 | 36.05 | 37.80 |
8th | 24.00 | 24.30 | 24.75 | 25.40 | 26.15 | 26.70 | 27.65 | 29.65 | 32.95 | 36.15 | 38.70 | 40.60 | 42.95 | 45.40 |
9th | 27.75 | 28.10 | 28.60 | 29.25 | 30.30 | 31.15 | 32.30 | 34.45 | 38.40 | 42.30 | 45.15 | 47.70 | 50.50 | 54.05 |
10th | 31.70 | 32.10 | 32.65 | 33.35 | 34.60 | 35.65 | 37.00 | 39.35 | 44.00 | 48.70 | 52.25 | 56.30 | 59.90 | 62.65 |
No of Stages | MLGNR interconnect delay(20 μm-Intermediate length) | Cu interconnect delay(20 μm-Intermediate length) | ||||||||||||
1st | 3.96 | 3.97 | 3.99 | 4.03 | 4.08 | 4.14 | 4.21 | 4.41 | 4.72 | 5.03 | 5.32 | 5.60 | 5.90 | 6.20 |
2nd | 6.70 | 6.75 | 6.83 | 6.94 | 7.09 | 7.27 | 7.49 | 8.13 | 9.13 | 10.15 | 11.09 | 12.20 | 12.80 | 13.70 |
3rd | 9.72 | 9.86 | 10.04 | 10.30 | 10.60 | 11.05 | 11.50 | 12.90 | 14.95 | 16.50 | 17.95 | 19.40 | 20.90 | 22.40 |
4th | 13.25 | 13.50 | 13.95 | 14.55 | 15.20 | 15.95 | 16.75 | 18.85 | 21.75 | 24.15 | 26.70 | 28.40 | 30.50 | 32.50 |
5th | 18.00 | 18.35 | 18.85 | 19.65 | 20.50 | 21.40 | 22.50 | 25.65 | 29.30 | 32.20 | 35.75 | 38.20 | 41.10 | 44.00 |
6th | 22.90 | 23.30 | 24.00 | 24.90 | 26.00 | 27.10 | 28.25 | 32.15 | 36.90 | 40.75 | 45.00 | 47.60 | 51.30 | 56.60 |
7th | 27.90 | 28.30 | 29.00 | 30.20 | 31.80 | 33.05 | 34.30 | 38.90 | 45.15 | 49.60 | 55.95 | 60.90 | 65.20 | 69.20 |
8th | 33.20 | 33.65 | 34.50 | 36.10 | 37.90 | 39.15 | 40.80 | 46.50 | 54.45 | 62.00 | 66.80 | 72.30 | 79.60 | 86.10 |
9th | 38.65 | 39.15 | 40.25 | 42.25 | 44.25 | 45.65 | 47.90 | 55.60 | 64.60 | 73.10 | 82.45 | 90.10 | 98.10 | 106.00 |
10th | 44.30 | 44.95 | 46.30 | 48.70 | 50.80 | 53.20 | 56.60 | 64.35 | 78.55 | 88.95 | 99.15 | 108.00 | 118.00 | 128.00 |
No of Stages | MLGNR interconnect delay(50 μm-Global length) | Cu interconnect delay(50 μm-Global length) | ||||||||||||
1st | 4.34 | 4.38 | 4.43 | 4.52 | 4.64 | 4.77 | 4.93 | 5.40 | 6.10 | 6.80 | 7.51 | 8.20 | 8.80 | 9.20 |
2nd | 7.92 | 8.040 | 8.23 | 8.49 | 8.84 | 9.26 | 9.77 | 11.40 | 13.40 | 15.00 | 16.21 | 17.40 | 18.50 | 19.60 |
3rd | 12.45 | 12.70 | 13.05 | 13.64 | 14.40 | 15.20 | 16.05 | 18.30 | 22.10 | 25.40 | 27.69 | 29.70 | 31.80 | 34.50 |
4th | 18.20 | 18.55 | 19.10 | 19.87 | 20.90 | 22.15 | 23.60 | 27.20 | 32.00 | 36.90 | 39.84 | 42.90 | 46.90 | 50.30 |
5th | 24.35 | 24.90 | 26.00 | 26.68 | 27.85 | 29.95 | 31.85 | 36.40 | 43.40 | 48.80 | 53.52 | 61.00 | 67.80 | 72.60 |
6th | 30.75 | 31.40 | 32.65 | 33.66 | 34.80 | 37.90 | 40.10 | 45.70 | 55.20 | 65.30 | 70.41 | 77.20 | 87.20 | 96.00 |
7th | 37.30 | 38.20 | 39.50 | 41.15 | 42.85 | 46.10 | 48.90 | 57.50 | 68.20 | 79.50 | 90.76 | 100.10 | 111.00 | 121.50 |
8th | 44.65 | 45.85 | 47.25 | 49.07 | 51.35 | 56.25 | 60.00 | 68.20 | 85.70 | 99.60 | 113.05 | 122.00 | 136.00 | 150.50 |
9th | 53.05 | 54.60 | 56.90 | 59.10 | 62.50 | 66.05 | 70.60 | 84.40 | 104.00 | 121.00 | 136.61 | 151.00 | 168.50 | 184.50 |
10th | 62.10 | 63.50 | 65.40 | 69.76 | 73.60 | 79.90 | 85.55 | 102.00 | 126.50 | 150.00 | 169.75 | 188.00 | 211.00 | 233.00 |