Processing math: 76%
Research article Special Issues

Blow-up and boundedness in quasilinear attraction-repulsion systems with nonlinear signal production


  • In this paper, we consider the quasilinear parabolic-elliptic-elliptic attraction-repulsion system

    {ut=(D(u)u)χ(uv)+ξ(uw),xΩ,t>0,0=Δvμ1(t)+f1(u),xΩ,t>0,0=Δwμ2(t)+f2(u),xΩ,t>0

    under homogeneous Neumann boundary conditions in a smooth bounded domain ΩRn, n2. The nonlinear diffusivity D and nonlinear signal productions f1,f2 are supposed to extend the prototypes

    D(s)=(1+s)m1, f1(s)=(1+s)γ1, f2(s)=(1+s)γ2, s0,γ1,γ2>0,mR.

    We proved that if γ1>γ2 and 1+γ1m>2n, then the solution with initial mass concentrating enough in a small ball centered at origin will blow up in finite time. However, the system admits a global bounded classical solution for suitable smooth initial datum when γ2<1+γ1<2n+m.

    Citation: Ruxi Cao, Zhongping Li. Blow-up and boundedness in quasilinear attraction-repulsion systems with nonlinear signal production[J]. Mathematical Biosciences and Engineering, 2023, 20(3): 5243-5267. doi: 10.3934/mbe.2023243

    Related Papers:

    [1] Naiwen Wang . Solvability of the Sylvester equation AXXB=C under left semi-tensor product. Mathematical Modelling and Control, 2022, 2(2): 81-89. doi: 10.3934/mmc.2022010
    [2] Jianhua Sun, Ying Li, Mingcui Zhang, Zhihong Liu, Anli Wei . A new method based on semi-tensor product of matrices for solving reduced biquaternion matrix equation lp=1ApXBp=C and its application in color image restoration. Mathematical Modelling and Control, 2023, 3(3): 218-232. doi: 10.3934/mmc.2023019
    [3] Wenxv Ding, Ying Li, Dong Wang, AnLi Wei . Constrainted least squares solution of Sylvester equation. Mathematical Modelling and Control, 2021, 1(2): 112-120. doi: 10.3934/mmc.2021009
    [4] Hongli Lyu, Yanan Lyu, Yongchao Gao, Heng Qian, Shan Du . MIMO fuzzy adaptive control systems based on fuzzy semi-tensor product. Mathematical Modelling and Control, 2023, 3(4): 316-330. doi: 10.3934/mmc.2023026
    [5] Xueling Fan, Ying Li, Wenxv Ding, Jianli Zhao . H-representation method for solving reduced biquaternion matrix equation. Mathematical Modelling and Control, 2022, 2(2): 65-74. doi: 10.3934/mmc.2022008
    [6] Daizhan Cheng, Zhengping Ji, Jun-e Feng, Shihua Fu, Jianli Zhao . Perfect hypercomplex algebras: Semi-tensor product approach. Mathematical Modelling and Control, 2021, 1(4): 177-187. doi: 10.3934/mmc.2021017
    [7] Yuyang Zhao, Yang Liu . Output controllability and observability of mix-valued logic control networks. Mathematical Modelling and Control, 2021, 1(3): 145-156. doi: 10.3934/mmc.2021013
    [8] Lei Wang, Xinyun Liu, Ting Li, Jiandong Zhu . Skew-symmetric games and symmetric-based decomposition of finite games. Mathematical Modelling and Control, 2022, 2(4): 257-267. doi: 10.3934/mmc.2022024
    [9] Daizhan Cheng, Ying Li, Jun-e Feng, Jianli Zhao . On numerical/non-numerical algebra: Semi-tensor product method. Mathematical Modelling and Control, 2021, 1(1): 1-11. doi: 10.3934/mmc.2021001
    [10] Weiwei Han, Zhipeng Zhang, Chengyi Xia . Modeling and analysis of networked finite state machine subject to random communication losses. Mathematical Modelling and Control, 2023, 3(1): 50-60. doi: 10.3934/mmc.2023005
  • In this paper, we consider the quasilinear parabolic-elliptic-elliptic attraction-repulsion system

    {ut=(D(u)u)χ(uv)+ξ(uw),xΩ,t>0,0=Δvμ1(t)+f1(u),xΩ,t>0,0=Δwμ2(t)+f2(u),xΩ,t>0

    under homogeneous Neumann boundary conditions in a smooth bounded domain ΩRn, n2. The nonlinear diffusivity D and nonlinear signal productions f1,f2 are supposed to extend the prototypes

    D(s)=(1+s)m1, f1(s)=(1+s)γ1, f2(s)=(1+s)γ2, s0,γ1,γ2>0,mR.

    We proved that if γ1>γ2 and 1+γ1m>2n, then the solution with initial mass concentrating enough in a small ball centered at origin will blow up in finite time. However, the system admits a global bounded classical solution for suitable smooth initial datum when γ2<1+γ1<2n+m.



    The concept of type-2 fuzzy sets (T2 FSs) was first proposed by Zadeh [1] and a detailed introduction was given in [2]. T2 FSs are an extension of the type-1 fuzzy set (T1 FS) and further considers the fuzziness of the fuzzy set. Since the definition of T2 FSs was proposed, most scholars have mainly studied the operations and properties of T2 FSs [3,4]. Until the 1990s, Prof. Mendel redefined T2 FSs and proposed the type-2 fuzzy logic system (T2 FLS) [5,6].

    As an extension of T1 FSs, T2 FSs overcome the limitations of T1 FSs in dealing with the uncertainties of actual objects. However the definition of T2 FSs is complicated, and the corresponding graph must be a spatial graph. Due to the complexity of the expression of T2 FSs, Mendel introduces the definition of interval T2 FSs (IT2 FSs) as a special case of T2 FSs. The secondary membership grade of IT2 FSs is constant one, which is more simpler than T2 FSs. In general, IT2 fuzzy logic system (IT2 FLS) are used in most theories and applications [7,8].

    In the field of fuzzy control, solving fuzzy relation equations (FREs) plays an important role in the design of fuzzy controller and fuzzy logic reasoning. Most algorithms for solving FREs can obtain some specific solutions, such as the minimum or maximum solution [9], or can describe the solution theoretically [10]. In the existing methods, most of them are used for solving type-1 fuzzy relation equations (T1 FREs), while few methods are used for solving interval type-2 fuzzy relation equations (IT2 FREs). The main work of this paper is to propose a new method to obtain the entire solution set of IT2 FREs.

    On the other hand, Prof. Cheng proposed a new matrix product-semi-tensor product (STP) of matrices, which is the generalization of the conventional matrix product and retains almost all the main properties of the conventional matrix product. As a novel mathematical technique for handling logical operations, STP has been successfully applied to logical systems [11,12,13,14] and, based on this, a new algorithm for solving FREs has been devised. For example, in T1 FREs, the STP is used to solve fuzzy relation equalities and fuzzy relation inequalities [15,16,17,18]. In type-2 fuzzy relational equations (T2 FREs), only some simple algorithms have been proposed to study the solution of type-2 single-valued fuzzy relation equations and type-2 symmetry-valued fuzzy relation equations [19,20]. However, the ordinary STP cannot be used directly to solve IT2 FREs. Therefore, we extend the STP to interval matrices and propose the STP of interval matrices, then discuss the solutions of IT2 FREs.

    In the rest of this paper, section two introduces the basic concepts of the STP of interval matrices. Section three mainly gives the relevant definitions of interval-valued logic and gives its matrix representation. Section four discusses the solvability of IT2 FREs and designs an algorithm to solve IT2 FREs. Section five explains the viability of the proposed algorithm with a numerical example. Section six gives a brief summary of the paper.

    First, in order to express conveniently, we introduce some notations used throughout the paper.

    I[0,1]:={[α_,¯α]|0α_¯α1},

    where α_,¯αR. If α=[α_,α_](or α=[¯α,¯α]), this is a point interval and α degenerates into a real number.

    I([0,1]m):={[A_,¯A]|A_¯A}.

    A_=(α_i)m and ¯A=(¯αi)m are two m-dimensional vectors and [a_i,¯ai]I[0,1], i=1m.

    I([0,1]m×n):={[A_,¯A]|A_¯A}.

    A_=(α_ij)m×n and ¯A=(¯αij)m×n are two m×n dimensional matrices and [α_ij,¯αij]I[0,1], i=1m, j=1n.

    δir : the ith column of unit matrix In.

    [δir,δjr] : a bounded closed interval, where δin represents its lower bound and δjn represents its upper bound, abbreviated as δr[i,j].

    Coli(M): the ith column of interval matrix M.

    Rowj(M): the jth row of interval matrix M.

    Next, we define , and ¬ in I[0,1].

    Definition 2.1. [21] (1) Let

    α=[α_,¯α],  β=[β_,¯β]I[0,1],

    then,

    αβ=[max(α_,β_),max(¯α,¯β)], (2.1)
    αβ=[min(α_,β_),min(¯α,¯β)]. (2.2)

    (2) Let

    A=[a_ij,¯aij]I([0,1]m×n),
    B=[b_jk,¯bjk]I([0,1]n×p),

    then their max-min composition operation is defined as

    AB=C=[c_ik,¯cik]I([0,1]m×p), (2.3)

    where

    [c_ik,¯cik]=([a_i1,¯ai1][b_1k,¯b1k])([a_i2,¯ai2][b_2k,¯b2k])  ([a_in,¯ain][b_nk,¯bnk]),

    where i=1,,m, j=1,,k.

    Definition 2.2. [22] Let

    A=[a_ij,¯aij],   
    B=[b_ij,¯bij]I([0,1]m×n),

    then the partial order , and = are defined as

    (1) If a_ijb_ij,¯aij¯bij, we say AB.

    (2) If a_ijb_ij,¯aij¯bij, we say AB.

    (3) If a_ij=b_ij,¯aij=¯bij, we say A=B.

    Property 2.1. [15] Let

    A=[a_ij,¯aij],  B=[b_ij,¯bij]I([0,1]m×n),
    C=[c_jk,¯cjk],  D=[d_jk,¯djk]I([0,1]n×p).

    Assume AB and CD, then

    ACBD.

    Definition 2.3. [22] (1) Let

    α=[α_,¯α],  β=[β_,¯β]I[0,1],

    then the four operations of intervals α and β are as follows.

    1) Addition operation

    α+β=[α_,¯α]+[β_,¯β]=[α_+β_,¯α+¯β]. (2.4)

    2) Subtraction operation

    αβ=[α_,¯α][β_,¯β]=[α_¯β,¯αβ_]. (2.5)

    3) Multiplication operation

    α×β=[α_,¯α]×[β_,¯β]=[α_β_,¯α¯β]. (2.6)

    4) Division operation

    α/β=[α_,¯α]/[β_,¯β]=[min(α_/β_,α_/¯β,¯α/β_,¯α/¯β),max(α_/β_,α_/¯β,¯α/β_,¯α/¯β)]. (2.7)

    Note that 0β=[β_,¯β].

    (2) If

    α=[α_,¯α]I[0,1], 
    A=[a_ij,¯aij]m×nI([0,1]m×n),

    then the product of interval α and interval matrix A is

    α×A:=([α_,¯α]×[a_ij,¯aij])m×n. (2.8)

    (3) If

    A=[a_ij,¯aij]m×nI([0,1]m×n),
    B=[b_jk,¯bjk]n×pI([0,1]n×p),

    then the product of interval matrices A and B is

    A×B=C=[c_ik,¯cik]n×p=[[c_11,¯c11][c_1p,¯c1p][c_n1,¯cn1][c_np,¯cnp]], (2.9)

    where

    [c_ik,¯cik]=mj=1[a_ij,¯aij]×[b_jk,¯bjk]=[a_i1,¯ai1]×[b_1k,¯b1k]+[a_i2,¯ai2]×[b_2k,¯b2k]++[a_im,¯aim]×[b_mk,¯bmk].

    Based on Definition 2.3, we give the relevant definition of the STP of interval matrices.

    Definition 2.4. (1) If

    A=[a_ij,¯aij]m×nI([0,1]m×n),
    B=[b_kl,¯bkl]p×qI([0,1]p×q),

    then the kronecker product of interval matrices A and B is

    AB=[a11×Ba1n×Bam1×Bamn×B]. (2.10)

    (2) If

    A=[a_ij,¯aij]m×nI([0,1]m×n),
    B=[b_kl,¯bkl]p×qI([0,1]p×q),

    then the STP of interval matrices A and B is

    AB=(AItn)×(BItp), (2.11)

    where t=lcm(n,p) is the least common multiple of n and p.

    (3) If

    A=[a_ij,¯aij]m×nI([0,1]m×n),
    B=[b_kl,¯bkl]p×nI([0,1]p×n),

    then the khatri-rao product of interval matrices A and B is

    AB=[Col1(A)Col1(B) Col2(A)Col2(B)Coln(A)Coln(B)]. (2.12)

    Remark 2.1. In Definition 2.4, if n=p, then the STP of interval matrices degenerates to the ordinary interval matrix multiplication. Therefore, the STP of interval matrices is a generalization of interval matrices multiplication. In the context, the STP of interval matrices is , which is omitted by default.

    Example 2.1. Given the interval matrices A and B,

    A=[[0.2,0.4][0.4,0.5][0.6,1.0][0.8,0.9]],  B=[[0,1][0.2,0.3][0.4,0.6][0.6,0.7][0.8,0.9][1,1][0.7,0.9][0.3,0.4]].

    The kronecker product of the interval matrix A and the unit interval matrix I2 is

    AI2=[[0.2,0.4][0,0][0.4,0.5][0,0][0,0][0.2,0.4][0,0][0.4,0.5][0.6,1.0][0,0][0.8,0.9][0,0][0,0][0.6,1.0][0,0][0.8,0.9]].

    The STP of interval matrices A and B is

    ABΔ=(AI2)×B=[[0.16,0.70][0.28,0.47][0.32,1.54][0.60,0.93][0.44,0.81][0.32,0.60][1.04,1.71][0.84,1.36]].

    The khatri-rao product of interval matrices A and B is

    AB=[Col1(A)×Col1(B)Col2(A)×Col2(B)]=[[0.00,0.40][0.04,0.12][0.08,0.24][0.12,0.28][0.32,0.45][0.40,0.50][0.28,0.45][0.12,0.20][0.00,1.00][0.12,0.30][0.24,0.60][0.36,0.70][0.64,0.81][0.80,0.90][0.56,0.81][0.24,0.32]]T.

    According to the definition of STP of interval matrices, we can get the following properties.

    Property 2.2. (1) Let A,BI([0,1]m×n),CI([0,1]p×q), then

    (A+B)C=AC+BC,C(A+B)=CA+CB. (2.13)

    (2) Let AI([0,1]m×n),BI([0,1]p×q) and CI([0,1]r×s), then

    (AB)C=A(BC). (2.14)

    (3) Let AI([0,1]m×n), CI([0,1]s) and RI([0,1]s) are column and row interval vectors, respectively, then

    CA=(IsA)C,RA=(AIs)R. (2.15)

    Let the interval type-2 fuzzy relation ˜RF(V×W), where the domain V={v1,v2,,vn} and W={w1,w2,,wp}, then the matrix form of interval type-2 fuzzy relation ˜R can be defined as

    M˜R=[f˜R(v1,w1)μ˜R(v1,w1)f˜R(v1,wp)μ˜R(v1,wp)f˜R(vn,w1)μ˜R(vn,w1)f˜R(vn,wp)μ˜R(vn,wp)]. (2.16)

    μ˜R(vi,wk) and f˜R(vi,wk) represent the primary membership grade and secondary membership grade of IT2 FSs, respectively. For primary membership grade, it is composed of upper membership grade and lower membership grade; that is,

    μ˜R(vi,wk)=[μ_˜R(vi,wk),¯μ˜R(vi,wk)].

    The secondary membership grade of IT2 FSs equals one; that is, f˜R(vi,wk)=1, then the matrix form of interval type-2 fuzzy relation ˜R can be further described as

    M˜R=[1[μ_˜R(v1,w1),¯μ˜R(v1,w1)]1[μ_˜R(v1,ws),¯μ˜R(v1,wp)]1[μ_˜R(vn,w1),¯μ˜R(vn,w1)]1[μ_˜R(vn,ws),¯μ˜R(vn,wp)]]. (2.17)

    Two common types of FREs exist in practical application [20]. One type is that the fuzzy relation is unknown, which is commonly used for designing fuzzy controllers. The other type is that the fuzzy input is unknown, which is commonly used for diagnosing diseases based on the symptom similarity. In terms of the aforementioned situations, it can be assumed that there are similar two types of IT2 FREs, as shown in Figures 1 and 2.

    Figure 1.  Interval type-2 fuzzy relation unknown.
    Figure 2.  Interval type-2 fuzzy input unknown.

    Type 1: assume ˜AF(U×V),˜BF(U×W). We seek an interval type-2 fuzzy relation ˜XF(V×W) such that it satisfies

    ˜A˜X=˜B. (2.18)

    Type 2: assume ˜RF(V×W),˜BF(U×W). We seek an interval type-2 fuzzy input ˜XF(U×V) such that it satisfies

    ˜X˜R=˜B. (2.19)

    Remark 2.2. Take a transpose of both sides of (2.19) to get ˜RT˜XT=˜BT. (2.19) is equivalent to (2.18), so we only need to consider the solvability of (2.18).

    Definition 3.1. (1)

    If={[α_,¯α]|0α_¯α1}

    is called the domain of interval-valued fuzzy logic, and the interval-valued fuzzy logic variable is PIf. When α=[0,0] (orα=[1,1]), α degenerates into a classical logic variable.

    (2)

    Ik={[α_1,¯α1],[α_2,¯α2],,[α_k,¯αk]},  [α_i,¯αi]If,

    i=1,,k, then Ik is called the domain of k-valued interval-valued fuzzy logic.

    (3) Mapping

    f:Ik×Ik××IkrIk

    is called r-ary k-valued interval-valued logic function.

    If

    Ik={[α_1,¯α1],[α_2,¯α2],,[α_k,¯αk]},

    put the different upper and lower bounds of all interval-valued fuzzy logic variables in Ik into the ordered set Θ. If Θ does not contain zero and one, it needs to add zero or one:

    Θ={ap|p=1,,s;0a1<a2<<as1}.

    In order to facilitate matrix calculation, each variable in Ik is represented as an interval vector. If α_i=am (1ms,mZ+) and ¯αi=an (1ns,nZ+), then the lower bound α_i can be represented by vector δms and the upper bound ¯αi can be represented by vector δns. Therefore,

    [α_i,¯αi][δms,δns]=δs[m,n].

    Similar to the proof of theorem in paper [23], we can obtain Theorem 3.1.

    Theorem 3.1. f is a r-ary k-valued interval-valued logic function, then there exists a unique structural matrix Mf, whose algebraic form is

    f(x1,x2,,xr)=Mfri=1[x_i,¯xi]. (3.1)

    Remark 3.1. Structure matrix is also a special interval matrix that can be used to replace , and ¬ for algebraic operations.

    In the following, we give the structure matrix of , and ¬.

    Let

    Ik={[α_1,¯α1],[α_2,¯α2],,[α_k,¯αk]}.

    The ordered set Θ generated by Ik contains s different elements. To simply represent the structure matrix of , and ¬, we introduce a set of s-dimensional vectors

    Uv=(1 2v1vvsv+1),Vv=(vvv v+1 v+2s),  v=1,,s.

    (1) The structure matrix of :

    Msd=[M_sd,¯Msd],   M_sd=¯Msd=δs[U1U2Us].

    When s = 3, we have

    M3d=δ3[[1,1][1,1][1,1][1,1][2,2]  [2,2][1,1][2,2][3,3]].

    (2) The structure matrix of :

    Msc=[M_sc,¯Msc],   M_sc=¯Msc=δs[U1U2Us].

    When s = 3, we have

    M3c=δ3[[1,1][2,2][3,3][2,2][2,2]      [3,3][3,3][3,3][3,3]].

    Definition 4.1. [20] In (2.17), the matrix constructed by the primary membership grade μ˜R(vj,wk) is called primary fuzzy matrix of interval type-2 fuzzy relation, denoted as ˜Rμ(μ˜R(vj,wk)) and abbreviated as ˜Rμ:

    ˜Rμ=[[μ_˜R(v1,w1),¯μ˜R(v1,w1)][μ_˜R(v1,wp),¯μ˜R(v1,wp)][μ_˜R(vn,w1),¯μ˜R(vn,w1)][μ_˜R(vn,wp),¯μ˜R(vn,wp)]].

    Similarly, in (2.17), the matrix constructed by the secondary membership grade f˜R(vj,wk) is called secondary fuzzy matrix of interval type-2 fuzzy relation, denoted as ˜Rf(f˜R(vj,wk)) and abbreviated as ˜Rf:

    ˜Rf=[1111].

    Clearly, (2.18) is composed of the primary fuzzy matrix equation and secondary fuzzy matrix equation.

    Definition 4.2. The IT2 FRE (2.18) can be divided into two parts: primary fuzzy matrix equation and secondary fuzzy matrix equation.

    (1) The primary fuzzy matrix equation is

    ˜Aμ˜Xμ=˜Bμ, (4.1)

    where ˜AμI([0,1]m×n), ˜BμI([0,1]m×p), ˜XμI([0,1]n×p) and ˜Xμ is unknown.

    If

    ˜Xμ=[X_μ,¯Xμ]I([0,1]n×p)

    satisfies (4.1), then we call that ˜Xμ is the solution of (4.1). X_μ, ¯Xμ are lower and upper bound matrices of ˜Xμ, respectively.

    If

    ˜Hμ=[H_μ,¯Hμ]

    is a solution of (4.1), and for any solution ˜Xμ of (4.1), there is ˜Xμ˜Hμ, then ˜Hμ is called the maximum solution of (4.1).

    If

    ˜Jμ=[J_μ,¯Jμ]

    is a solution of (4.1), and for any solution ˜Xμ of (4.1), there is ˜Xμ˜Jμ, then ˜Jμ is called the minimal solution of (4.1).

    If

    ˜Qμ=[Q_μ,¯Qμ]

    is a solution of (4.1), and for any solution ˜Xμ of (4.1), as long as ˜Xμ˜Qμ is satisfied, there is ˜Xμ=˜Qμ, then ˜Qμ is called the minimum solution of (4.1).

    (2) The secondary fuzzy matrix equation is

    ˜Af˜Xf=˜Bf, (4.2)

    where ˜AfMm×n, ˜BfMm×p, ˜XfMn×p and ˜Xf is unknown.

    The matrix ˜Xf satisfying (4.2) is called the solution of this equation. In (4.2), the elements of ˜Af and ˜Bf are all one, then the elements of ˜Xf are all one.

    The primary fuzzy matrix Eq (4.1) is equivalent to

    {A_μX_μ=B_μ,¯Aμ¯Xμ=¯Bμ,X_μ¯Xμ. (4.3)

    The conditions for the establishment of (4.3) are relatively difficult, so we first need to determine whether (4.1) has solutions.

    Lemma 4.1. [24] Let

    A=(aij)m×n,   B=(bik)m×p.

    The T1 FRE AX=B has solutions if, and only if, ATαB is a solution of this equation and ATαB is the maximum solution of this equation. The α composition operation between fuzzy matrices is

    ATαB=ni=1(aji)α(bik),

    where (aki)α(bij)={bij,aki>bij,1,akibij.

    Theorem 4.1. If the primary fuzzy matrix Eq (4.1) has solutions then

    ˜Hμ=[h_ik,¯hik]n×p={[H_μ,¯Hμ],   h_ik¯hik,[H_μ,¯Hμ],   h_ik>¯hik. (4.4)

    is a solution of this equation and ˜Hμ is the maximum solution of this equation.

    In (4.4),

    H_=A_TαB_=(h_ik)n×p,   ¯H=¯AT¯αB=(¯hik)n×p,

    when

     h_ik¯hik,  H_=(h_ik)n×p,  ¯H=(¯hik)n×p.

    When  h_ik>¯hik, we replace all elements of H_ that do not satisfy h_ik¯hik with ¯hik; thus, generating a new lower bound matrix H_μ.

    Proof. The primary fuzzy matrix Eq (4.1) has solutions, then T1 FREs

    A_μX_μ=B_μand¯Aμ¯Xμ=¯Bμ

    must have solutions. Lemma 4.1 implies that H_μ and ¯Hμ are solutions of T1 FREs

    A_μX_μ=B_μand¯Aμ¯Xμ=¯Bμ,

    respectively. H_μ and ¯Hμ must exist in either of the following two cases.

    (1) For  h_ij¯hij, we known that H_μ¯Hμ. H_μ and ¯Hμ are solutions of T1 FREs

    A_μX_μ=B_μand¯Aμ¯Xμ=¯Bμ,

    respectively. Hence,

    ˜Hμ=[H_μ,¯Hμ]

    satisfies (4.3) and ˜Hμ is a solution of the primary fuzzy matrix equation.

    From Lemma 4.1, it follows that H_μ and ¯Hμ are maximum solutions of T1 FREs

    A_μX_μ=B_μand¯Aμ¯Xμ=¯Bμ,

    respectively. Clearly, X_μH_μ and ¯Xμ¯Hμ, so

    ˜Hμ=[H_μ,¯Hμ]

    is the maximum solution of the primary fuzzy matrix equation.

    (2) For  h_ij>¯hij, we know that the newly generated matrix is H_μ and the matrix satisfies

    ˜AμH_μ=˜BμandH_μ¯Hμ.

    According to

    ˜AμH_μ=˜Bμ,

    H_μ is a solution of T1 FRE

    A_μX_μ=B_μ.

    From Lemma 4.1, it follows that ¯Hμ is a solution of T1 FRE ¯Aμ¯Xμ=¯Bμ, respectively. Hence,

    ˜Hμ=[H_μ,¯Hμ]

    satisfies (4.3) and ˜Hμ is a solution of the primary fuzzy matrix equation.

    From Lemma 4.1, it is known that H_μ and ¯Hμ are, respectively, maximum solutions of T1 FREs

    A_μX_μ=B_μand¯Aμ¯Xμ=¯Bμ.

    According to the requirement that X_μ¯Xμ, we construct a new matrix H_μ based on H_μ. Clearly, X_μH_μ and ¯Xμ¯Hμ, so

    ˜Hμ=[H_μ,¯Hμ]

    is the maximum solution of the primary fuzzy matrix equation.

    In summary, ˜Hμ is a solution of the primary fuzzy matrix Eq (4.1) and is the maximum solution of this equation.

    If the primary fuzzy matrix Eq (4.1) has solutions, the next step is to explore how to construct parameter set solutions I(˜Xμ) and I(˜Xμ) of this equation.

    First, take all the elements in ˜Aμand ˜Bμ and place the different upper and lower bounds of these elements in the the ordered set Θ:

    Θ={ξi|i=1,,r;0=ξ1<ξ2<<ξr=1}.

    Construct an ordered interval-valued set Ψ by the ordered set Θ, defined as

    Ψ={[ξ1,ξ1],[ξ1,ξ2],,[ξ1,ξr];[ξ2,ξ2],[ξ2,ξ3],,[ξ2,ξr];;[ξr,ξr]}.

    Next, according to the order interval-valued set Ψ, we define two mappings necessary to construct the parameter set solution I(˜Xμ) and I(˜Xμ) of primary fuzzy matrix Eq (4.1).

    Definition 4.3. Assuming xIf, [ξi,ξj]Ψ.

    (1) I: [x_,¯x]Ψ is

    I(x)=I([x_,¯x])=max{[ξi,ξj]Ψ|ξix_,ξj¯x}. (4.5)

    (2) I: [x_,¯x]Ψ is

    I(x)=I([x_,¯x])=min{[ξi,ξj]Ψ|ξix_,ξj¯x}. (4.6)

    Note that 1) When x_=ξiΞ, ¯x=ξjΞ,

    I(x)=I(x)=[ξi,ξj].

    2) When x_Ξ, ¯x=ξjΞ, there exists a unique i such that ξi<x<ξi+1, then

    I(x)=[ξi,ξj],I(x)=[ξi+1,ξj].

    3) When x_=ξiΞ, ¯xΞ, there exists a unique j such that ξj<x<ξj+1, then

    I(x)=[ξi,ξj],I(x)=[ξi,ξj+1].

    4) When x_Ξ, ¯xΞ, there exists a unique i and j such that ξi<x<ξi+1, ξj<x<ξj+1, then

    I(x)=[ξi,ξj],I(x)=[ξi+1,ξj+1].

    By Definition 4.3, it is not difficult to derive the following properties.

    Property 4.1. Let

    ˜Aμ=[a_ij,¯aij]I([0,1]m×n),
    ˜Bμ=[b_ik,¯bik]I([0,1]m×p),

    then,

    (1) I(aij)=I(aij)=aij;I(bik)=I(bik)=bik.

    (2) I(˜Aμ)=I(˜Aμ=˜Aμ;I(˜Bμ)=I(˜Bμ)=˜Bμ.

    (3) I(˜Aμ˜Xμ)=I(˜Bμ)=˜Bμ;I(˜Aμ˜Xμ)=I(˜Bμ)=˜Bμ.

    (4) ˜XμI(˜Xμ),I(˜Xμ)˜Xμ.

    Property 4.2. Let x,yIf, xi,yiIf, i=1,,n, then

    (1) I(x)I(y)=I(xy); I(x)I(y)=I(xy).

    (2) I(x)I(y)=I(xy); I(x)I(y)=I(xy).

    (3) ni=1[I(xi)I(yi)]=I[ni=1(xiyi)].

    (4) ni=1[I(xi)I(yi)]=I[ni=1(xiyi)].

    Property 4.3. Let

    ˜Aμ=[a_ij,¯aij]I([0,1]m×n),
    ˜Xμ=[x_jk,¯xjk]I([0,1]n×p),

    then,

    (1) I(˜Aμ˜Xμ)=I(˜Aμ)I(˜Xμ).

    (2) I(˜Aμ˜Xμ)=I(˜Aμ)I(˜Xμ).

    Theorem 4.2. ˜Xμ is a solution of the primary fuzzy matrix Eq (4.1) if, and only if, I(˜Xμ) is a solution of the primary fuzzy matrix equation.

    Proof. (Necessity) Assuming that ˜Xμ is a solution of the primary fuzzy matrix equation, it is clear that ˜Aμ˜Xμ=˜Bμ. By Property 4.1, it follows that

    I(˜Aμ˜Xμ)=I(˜Bμ)=˜Bμ. (4.7)

    According to the Property 4.3, we know that

    I(˜Aμ˜Xμ)=I(˜Aμ)I(˜Xμ).

    From (4.7) we have

    I(˜Aμ)I(˜Xμ)=˜Bμ. (4.8)

    By the Property 4.1, it is not difficult to obtain I(˜Aμ)=˜Aμ. From (4.8) we have

    \begin{eqnarray} {\widetilde A_\mu } \circ {I^*}\left( {{{\widetilde X}_\mu }} \right){\rm{ = }}{\widetilde B_\mu }. \end{eqnarray} (4.9)

    Formula (4.9) shows that {I^*}\left({{{\widetilde X}_\mu }} \right) is a solution of the primary fuzzy matrix equation.

    (Sufficiency) Assuming that {I^*}\left({{{\widetilde X}_\mu }} \right) is a solution of the primary fuzzy matrix equation, it is clear that {\widetilde A_\mu } \circ {I^*}\left({{{\widetilde X}_\mu }} \right){\rm{ = }}{\widetilde B_\mu } . By Property 4.1, it follows that

    \begin{eqnarray} \widetilde X_\mu \le {I^*}(\widetilde X_\mu ). \end{eqnarray} (4.10)

    Using Property 2.1, we can get

    \begin{eqnarray} \widetilde B_\mu \le \widetilde A_\mu \circ \widetilde X_\mu \le \widetilde A_\mu \circ {I^*}(\widetilde X_\mu ). \end{eqnarray} (4.11)

    Formula (4.11) shows that \widetilde X_\mu is a solution of the primary fuzzy matrix equation.

    Therefore, the conclusion is correct.

    Similarly, {\widetilde X_\mu } is a solution of the primary fuzzy matrix Eq (4.1) if, and only if, {I_*}\left({{{\widetilde X}_\mu }} \right) is a solution of the primary fuzzy matrix equation.

    By Theorem 4.2, we can obtain the following corollary.

    Corollary 4.1. (1) The interval matrix {\widetilde H_\mu } is the maximum solution of primary fuzzy matrix Eq (4.1) if, and only if, {I^*}\left({{{\widetilde H}_\mu }} \right) is the maximum solution of this equation.

    (2) The interval matrix {\widetilde J_\mu } is the minimum solution of primary fuzzy matrix Eq (4.1) if, and only if, {I_*}\left({{{\widetilde J}_\mu }} \right) is the minimum solution of this equation.

    (3) The interval matrix {\widetilde Q_\mu } is the minimal solution of primary fuzzy matrix Eq (4.1) if, and only if, {I_* }\left({{{\widetilde Q}_\mu }} \right) is the minimal solution of this equation.

    If the primary fuzzy matrix Eq (4.1) has solutions, we next explore how to obtain parameter set solutions of this equation. By Theorem 4.2, the ordered interval-valued set \Psi is sufficient to inscribe the entire parameter set solutions of the primary fuzzy matrix equation.

    First, the primary fuzzy matrix equation can be rewritten to

    \begin{eqnarray} {\widetilde A_\mu } \circ Co{l_k}({\widetilde X_\mu }) = Co{l_k}({\widetilde B_\mu }), \end{eqnarray} (4.12)

    where k = 1, \cdots, p.

    In (4.12), the kth equality is equivalent to

    \begin{eqnarray} \begin{aligned} &\left( {\left[ {{{\underline a }_{i1}}, {{\overline a }_{i1}}} \right] \wedge \left[ {{{\underline x }_{1k}}, {{\overline x }_{1k}}} \right]} \right) \vee \left( {\left[ {{{\underline a }_{i2}}, {{\overline a }_{i2}}} \right] \wedge \left[ {{{\underline x }_{2k}}, {{\overline x }_{2k}}} \right]} \right)\\ &\vee \cdots \vee \left( {\left[ {{{\underline a }_{in}}, {{\overline a }_{in}}} \right] \wedge \left[ {{{\underline x }_{nk}}, {{\overline x }_{nk}}} \right]} \right) = \left[ {{{\underline b }_{ik}}, {{\overline b }_{ik}}} \right], \\ \end{aligned} \end{eqnarray} (4.13)

    where i = 1, \cdots, m.

    Second, the logical form of the primary fuzzy matrix equation is converted to algebraic form.

    For simplicity of presentation, let

    {a_{ij}} = \left[ {{{\underline a }_{ij}}, {{\overline a }_{ij}}} \right], {x_{jk}} = \left[ {{{\underline x }_{jk}}, {{\overline x }_{jk}}} \right], \ \ \ j = 1, \cdots , n.

    With the help of Theorem 3.1, the left hand side (LHS) of (4.13) can be expressed in algebraic form:

    \begin{eqnarray} \begin{aligned} LHS = &{\left( {M_d^s} \right)^{n - 1}}\left[ {\left( {M_c^s{a_{i1}}{x_{1k}}} \right)\left( {M_c^s{a_{i2}}{x_{2k}}} \right)} \right.\\ &\ {\cdots \left( {M_c^s{a_{in}}{x_{nk}}} \right)} ], \end{aligned} \end{eqnarray} (4.14)

    where i = 1, \cdots, m.

    By Property 2.2, we know that

    \begin{eqnarray} {x_{1k}}\left( {M_c^s{a_{i2}}{x_{2k}}} \right) = \left( {{I_s} \otimes M_c^s{a_{i2}}} \right){x_{1k}}{x_{2k}}. \end{eqnarray} (4.15)

    According to (4.15), (4.14) is simplified to

    \begin{eqnarray} \begin{aligned} LHS{\rm{ = }}&{\left( {M_d^s} \right)^{n - 1}}\left[ {\left( {M_c^s{a_{i1}}} \right)\left( {{I_s} \otimes M_c^s{a_{i2}}} \right){x_{1k}}{x_{2k}}} \right.\\ &\left( {M_c^s{a_{i3}}{x_{3k}}} \right)\left. { \cdots \left( {M_c^s{a_{in}}{x_{nk}}} \right)} \right]. \end{aligned} \end{eqnarray} (4.16)

    From Property 2.2, it follows that

    \begin{eqnarray} {x_{1k}}{x_{2k}}\left( {M_c^s{a_{i3}}{x_{3k}}} \right) = \left( {{I_{{s^2}}} \otimes M_c^s{a_{i3}}} \right){x_{1k}}{x_{2k}}{x_{3k}}. \end{eqnarray} (4.17)

    According to (4.17), (4.16) is further simplified to

    \begin{eqnarray} \begin{aligned} LHS{\rm{ = }}&{\left( {M_d^s} \right)^{n - 1}}\left[ {\left( {M_c^s{a_{i1}}} \right)\left( {{I_s} \otimes M_c^s{a_{i2}}} \right)} \right.\\ &\left. {\left( {{I_{{s^2}}} \otimes M_c^s{a_{i2}}} \right){x_{1k}}{x_{2k}}{x_{3k}} \cdots \left( {M_c^s{a_{in}}{x_{nk}}} \right)} \right]. \end{aligned} \end{eqnarray} (4.18)

    Repeating the process of (4.15)–(4.18), (4.14) is finally expressed as

    \begin{eqnarray} \begin{aligned} LHS = &{\left( {M_d^s} \right)^{n - 1}}\left[ {\left( {M_c^s{a_{i1}}} \right)\left( {{I_s} \otimes M_c^s{a_{i2}}} \right)\left( {{I_{{s^2}}} \otimes M_c^s{a_{i2}}} \right)} \right.\\ &\left. { \cdots \left( {{I_{{s^{n - 1}}}} \otimes M_c^s{a_{in}}} \right) \ltimes _{j = 1}^n{x_{jk}}} \right]\\ = & {\left( {M_d^s} \right)^{n - 1}}\left[ {\left( {M_c^s\left[ {{{\underline a }_{i1}}, {{\overline a }_{i1}}} \right]} \right)\left( {{I_s} \otimes M_c^s\left[ {{{\underline a }_{i2}}, {{\overline a }_{i2}}} \right]} \right)} \right.\\ &\left. { \cdots \left( {{I_{{s^{n - 1}}}} \otimes M_c^s\left[ {{{\underline a }_{in}}, {{\overline a }_{in}}} \right]} \right)} \right] \ltimes _{j = 1}^n\left[ {{{\underline x }_{jk}}, {{\overline x }_{jk}}} \right]\\ : = & {L_i}[{\underline x_k}, {\overline x_k}], \end{aligned} \end{eqnarray} (4.19)

    where i = 1, \cdots, m, and

    \begin{aligned} {L_i} = & {\left( {M_d^s} \right)^{n - 1}}M_c^s\left[ {{\underline a_{i1}}, {\overline a_{i1}}} \right]\left( {{I_s} \otimes M_c^s\left[ {{\underline a_{i2}}, {\overline a_{i2}}} \right]} \right)\\ &\cdots \left( {{I_{{s^{n - 1}}}} \otimes M_c^s\left[ {{a_{in}}, {a_{in}}} \right]} \right) \ltimes _{j = 1}^n\left[ {{\underline x_{jk}}, {\overline x_{jk}}} \right], \\ [{\underline x_k}, {\overline x_k}] = & \ltimes _{j = 1}^n\left[ {{\underline x_{jk}}, {\overline x_{jk}}} \right], \end{aligned}

    then (4.19) can be simplified to

    \begin{eqnarray} {L_i}[{\underline x_k}, {\overline x_k}] = [{\underline b_{ik}}, {\overline b_{ik}}], \end{eqnarray} (4.20)

    where i = 1, \cdots, m.

    Equation (4.20) is equivalent to

    \begin{eqnarray} L[{\underline x_k}, {\overline x_k}] = [{\underline b_k}, {\overline b_k}], \end{eqnarray} (4.21)

    where

    \begin{aligned} L& = {L_1} * {L_2} * \cdots * {L_m}, \\ [{\underline b_k}, {\overline b_k}] & = \ltimes _{i = 1}^m[{\underline b_{ik}}, {\overline b_{ik}}], \end{aligned}

    where "*" denotes the khatri-rao product of interval matrices.

    According to the above procedure, the value of the kth row of {\widetilde X_\mu } can be determined. Let k = 1, 2, \cdots, p , and we can obtain the parameter set solutions of the primary fuzzy matrix equation.

    A specific algorithm for solving all solutions of IT2 FRE (2.18) is given in the following.

    Algorithm 4.1. The following steps are used to solve the solution set of IT2 FRE (2.18).

    Step. 1. Decompose IT2 FRE (2.18) to construct the primary fuzzy matrix Eq (4.1).

    Step. 2. Use Theorem 4.1 to determine if there are solutions to the primary fuzzy matrix equation. If the primary fuzzy matrix equation has solutions, then proceed as follows; otherwise, IT2 FRE (equ:IT2 FRE(a)) has no solution.

    Step. 3. Construct an ordered set \Theta from {\widetilde A_\mu} and {\widetilde B_\mu}

    \Theta {\rm{ = }}\left\{ {{\xi _i}|i = 1, \cdots , r;0{\rm{ = }}{\xi _1} < {\xi _2} < \cdots < {\xi _r}{\rm{ = }}1} \right\}.

    We specify

    {\xi _i} \sim \delta _r^i, {\xi _j} \sim \delta _r^j, \quad \left[ {{\xi _i}, {\xi _j}} \right] = {\delta _r}\left[ {i, j} \right].

    The elements in {\widetilde A_\mu} and {\widetilde B_\mu} can be represented as vectors to facilitate algebraic operations.

    Step. 4. Construct (4.12) and convert it into the form of (4.21) to solve for the parameter set solutions of Co{l_k}\left({{{\widetilde X}_\mu }} \right).

    Step. 5. Let k = 1, 2, \cdots, p , and we can get all parameter set solutions of \left({{{\widetilde X}_\mu }} \right) . Determine the maximum and minimum (or minimal) solutions of the primary fuzzy matrix equation.

    Step. 6. Finally, based on the solution set of the primary fuzzy matrix equation and secondary fuzzy matrix equation, the solution set \widetilde X of IT2 FRE is constructed.

    Consider the following IT2 FRE,

    \begin{eqnarray} \widetilde X \circ \widetilde R = \widetilde B, \end{eqnarray} (5.1)

    where

    \begin{array}{l} \widetilde X = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\left[ {{{\underline x }_{11}}, {{\overline x }_{11}}} \right]}}}&{\frac{1}{{\left[ {{{\underline x }_{12}}, {{\overline x }_{12}}} \right]}}}\\ {\frac{1}{{\left[ {{{\underline x }_{21}}, {{\overline x }_{21}}} \right]}}}&{\frac{1}{{\left[ {{{\underline x }_{22}}, {{\overline x }_{22}}} \right]}}} \end{array}} \right], \ \ \widetilde R = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{[0.3, 0.7]}}}&{\frac{1}{{[0.2, 0.3]}}}\\ {\frac{1}{{[0.1, 0.5]}}}&{\frac{1}{{[0.5, 0.7]}}} \end{array}} \right], \\ \widetilde B = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{[0.1, 0.5]}}}&{\frac{1}{{[0.1, 0.3]}}}\\ {\frac{1}{{[0.2, 0.5]}}}&{\frac{1}{{[0.5, 0.7]}}} \end{array}} \right]. \end{array}

    First, taking a transpose on both sides of (5.1), we get

    \begin{eqnarray} {\widetilde R^T} \circ {\widetilde X^T} = {\widetilde B^T}. \end{eqnarray} (5.2)

    By decomposing IT2 FRE (5.2), we can obtain the primary fuzzy matrix equation and the secondary fuzzy matrix equation. From Definition 4.1, we only need to solve the primary fuzzy matrix equation to obtain the solution set of IT2 FRE. The primary fuzzy matrix equation of (5.2) can be expressed as

    \begin{eqnarray} {\widetilde R_\mu }^T \circ {\widetilde X_\mu }^T = {\widetilde B_\mu }^T, \end{eqnarray} (5.3)

    where

    \begin{array}{l} \widetilde R_\mu ^T = \left[ {\begin{array}{*{20}{l}} {[0.3, 0.7]}&{[0.1, 0.5}\\ {[0.2, 0.3]}&{[0.5, 0.7]} \end{array}} \right], \ \ \widetilde X_\mu ^T = \left[ {\begin{array}{*{20}{c}} {\left[ {{{\underline x }_{11}}, {{\overline x }_{11}}} \right]}&{\left[ {{{\underline x }_{21}}, {{\overline x }_{21}}} \right]}\\ {\left[ {{{\underline x }_{12}}, {{\overline x }_{12}}} \right]}&{\left[ {{{\underline x }_{22}}, {{\overline x }_{22}}} \right]} \end{array}} \right], \\ \widetilde B_\mu ^T = \left[ {\begin{array}{*{20}{l}} {[0.1, 0.5]}&{[0.2, 0.5]}\\ {[0.1, 0.3]}&{[0.5, 0.7]} \end{array}} \right]. \end{array}

    Next, use Theorem 4.1 to determine if (5.3) has solutions.

    \begin{aligned} {\underline H _\mu }& = {\left( {{{\underline A }_\mu }^T} \right)^T}\alpha \left( {{{\underline B }_\mu }^T} \right)\\ & = {\left[ {\begin{array}{*{20}{c}} {0.3}&{0.1}\\ {0.2}&{0.5} \end{array}} \right]^T}\alpha \left[ {\begin{array}{*{20}{c}} {0.1}&{0.2}\\ {0.1}&{0.5} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {0.1}&{0.2}\\ {0.1}&{1} \end{array}} \right], \\ {\overline H _\mu }& = {\left( {{{\overline A }_\mu }^T} \right)^T}\alpha \left( {{{\overline B }_\mu }^T} \right)\\ & = {\left[ {\begin{array}{*{20}{c}} {0.7}&{0.5}\\ {0.3}&{0.7} \end{array}} \right]^T}\alpha \left[ {\begin{array}{*{20}{c}} {0.5}&{0.5}\\ {0.3}&{0.7} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {0.5}&{0.5}\\ {0.3}&1 \end{array}} \right], \\ {\widetilde H_\mu } & = \left[ {\begin{array}{*{20}{c}} {\left[ {0.1, 0.5} \right]}&{\left[ {0.2, 0.5} \right]}\\ {\left[ {0.1, 0.3} \right]}&{\left[ {1, 1} \right]} \end{array}} \right], \\ {\widetilde R_\mu }^T \circ {\widetilde H_\mu }& = \left[ {\begin{array}{*{20}{c}} {\left[ {0.1, 0.5} \right]}&{\left[ {0.2, 0.5} \right]}\\ {\left[ {0.1, 0.3} \right]}&{\left[ {0.5, 0.7} \right]} \end{array}} \right] = {\widetilde B_\mu }^T. \end{aligned}

    According to the above calculation, {\underline H _\mu } \le {\overline H _\mu } , {\widetilde H_\mu } is a solution of (5.3) and {\widetilde H_\mu } is the maximum solution of this equation.

    Let

    Co{l_1}\left( {{{\widetilde X}_\mu^T }} \right) = {\left[ [\underline x _{11}, \overline x _{11}]\ [\underline x _{21}, \overline x _{21}]\right]^T},

    which needs to satisfy the following logical equation.

    \begin{eqnarray} \left\{ \begin{array}{l} \left( {\left[ {0.3, 0.7} \right] \wedge \left[ {{{\underline x }_{11}}, {{\overline x }_{11}}} \right]} \right) \vee \left( {\left[ {0.1, 0.5} \right] \wedge \left[ {{{\underline x }_{21}}, {{\overline x }_{21}}} \right]} \right) = \left[ {0.1, 0.5} \right], \\ \left( {\left[ {0.2, 0.3} \right] \wedge \left[ {{{\underline x }_{11}}, {{\overline x }_{11}}} \right]} \right) \vee \left( {\left[ {0.5, 0.7} \right] \wedge \left[ {{{\underline x }_{21}}, {{\overline x }_{21}}} \right]} \right) = \left[ {0.1, 0.3} \right]. \end{array} \right. \end{eqnarray} (5.4)

    However, solving (5.4) directly is relatively difficult, so it needs to be converted into algebraic form.

    Construct the ordered set \Theta based on {\widetilde A_\mu } and {\widetilde B_\mu } :

    \Theta {\rm{ = }}\left\{ {0, 0.1, 0.2, 0.3, 0.5, 1} \right\}.

    Represent the elements in \Theta as vectors

    \begin{array}{l} 1 \sim \delta _7^1;\ \ 0.7 \sim \delta _7^2;\ \ 0.5 \sim \delta _7^3;\ \ 0.3 \sim \delta _7^4;\\ 0.2 \sim \delta _7^5;\ \ 0.1 \sim \delta _7^6;\ \ 0 \sim \delta _7^7. \end{array}

    Convert (5.4) into an algebraic equation

    \left\{ \begin{array}{l} M_d^7\left( {M_c^7{\delta _7}\left[ {4, 2} \right]\left[ {{{\underline x }_{11}}, {{\overline x }_{11}}} \right]} \right)\left( {M_c^7{\delta _7}\left[ {6, 3} \right]\left[ {{{\underline x }_{21}}, {{\overline x }_{21}}} \right]} \right) = {\delta _7}\left[ {6, 3} \right], \\ M_d^7\left( {M_c^7{\delta _7}\left[ {5, 4} \right]\left[ {{{\underline x }_{11}}, {{\overline x }_{11}}} \right]} \right)\left( {M_c^7{\delta _7}\left[ {3, 2} \right]\left[ {{{\underline x }_{21}}, {{\overline x }_{21}}} \right]} \right) = {\delta _7}\left[ {6, 4} \right]. \end{array} \right.

    Let

    \left[ {\underline x_1 , \overline x_1 } \right] = \left[ {{{\underline x }_{11}}, {{\overline x }_{11}}} \right] \ltimes \left[ {{{\underline x }_{21}}, {{\overline x }_{21}}} \right],

    which is equivalent to

    \left\{ \begin{array}{l} M_d^7M_c^7{\delta _7}\left[ {4, 2} \right]\left( {{I_7} \otimes M_c^7{\delta _7}\left[ {6, 3} \right]} \right)\left[ {\underline x_1 , \overline x_1 } \right] = {\delta _7}\left[ {6, 3} \right], \\ M_d^7M_c^7{\delta _7}\left[ {5, 4} \right]\left( {{I_7} \otimes M_c^7{\delta _7}\left[ {3, 2} \right]} \right)\left[ {\underline x_1 , \overline x_1 } \right] = {\delta _7}\left[ {6, 4} \right].\end{array} \right.

    Let

    {L_1} = M_d^7M_c^7\left[ {\delta _7^4, \delta _7^2} \right]\left( {{I_7} \otimes M_c^7\left[ {\delta _7^6, \delta _7^3} \right]} \right),
    {L_2} = M_d^7M_c^7\left[ {\delta _7^5, \delta _7^4} \right]\left( {{I_7} \otimes M_c^7\left[ {\delta _7^3, \delta _7^2} \right]} \right).

    This leads to

    \begin{eqnarray} L \ltimes [\underline x_1 , \overline x_1] = [\underline b_1 , \overline b_1]. \end{eqnarray} (5.5)

    The MATLAB program provided in the literature [15] is improved so that it can calculate the STP of the interval matrix. (5.5) is calculated as

    \begin{aligned} \begin{aligned} L = & {L_1}*{L_2}\\ = &{\delta _{49}}\left[ {[24, 9][24, 9][24, 10][25, 11][26, 11][26, 11][26, 11]} \right.\\ &{\rm{ }}[24, 9][24, 9][24, 10][25, 11][26, 11][26, 11][26, 11]\\ &{\rm{ }}[24, 16][24, 16][24, 17][25, 18][26, 18][26, 18][26, 18]\\ &{\rm{ }}[24, 16][24, 16][24, 17][25, 25][26, 25][26, 25][26, 25]\\ &{\rm{ }}[31, 16][31, 16][31, 17][32, 25][33, 33][33, 33][33, 33]\\ &{\rm{ }}[38, 16][38, 16][38, 17][39, 25][40, 33][41, 41][41, 41]\\ &{\rm{ }}{[38, 16][38, 16][38, 17][39, 25][40, 33][41, 41][49, 49] ]}, \\ [\underline b_1 , \overline b_1] = & \left[ {\delta _7^6, \delta _7^3} \right] \ltimes \left[ {\delta _7^6, \delta _7^4} \right] = \left[ {\delta _{49}^{41}, \delta _{49}^{18}} \right]. \end{aligned} \end{aligned}

    Solving for (5.5), we get

    [\underline x_1 , \overline x_1] = [\delta _{49}^i, \delta _{49}^j],

    where i = 41, 42, 48, \ j = 18, 19, 20, 21.

    From the values of [\underline x_1, \overline x_1] , there are 3 \times 4 = 12 parameter set solutions for Co{l_1}\left({\widetilde X}_\mu^T \right) , two of which do not satisfy {\underline {\rm{x}} _{i1}} \le {\overline x _{i1}}\left({i = 1, 2} \right) ; then

    \begin{aligned} &\left( {{{\widetilde X}_\mu^T }} \right)_1^1 = {\delta _7}{\left[ {\left[ {6, 3} \right]\left[ {6, 4} \right]} \right]^T} \sim {\left[ {[0.1, 0.5][0.1, 0.3]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_1^2 = {\delta _7}{\left[ {\left[ {6, 3} \right]\left[ {6, 5} \right]} \right]^T} \sim {\left[ {[0.1, 0.5][0.1, 0.2]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_1^3 = {\delta _7}{\left[ {\left[ {6, 3} \right]\left[ {6, 6} \right]} \right]^T} \sim {\left[ {[0.1, 0.5][0.1, 0.1]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_1^4 = {\delta _7}{\left[ {\left[ {6, 3} \right]\left[ {7, 4} \right]} \right]^T} \sim {\left[ {[0.1, 0.5][0, 0.3]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_1^5 = {\delta _7}{\left[ {\left[ {6, 3} \right]\left[ {7, 5} \right]} \right]^T} \sim {\left[ {[0.1, 0.5][0, 0.2]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_1^6 = {\delta _7}{\left[ {\left[ {6, 3} \right]\left[ {7, 6} \right]} \right]^T} \sim {\left[ {[0.1, 0.5][0, 0.1]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_1^7 = {\delta _7}{\left[ {\left[ {6, 3} \right]\left[ {7, 7} \right]} \right]^T} \sim {\left[ {[0.1, 0.5][0, 0.0]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_1^8 = {\delta _7}{\left[ {\left[ {7, 3} \right]\left[ {6, 4} \right]} \right]^T} \sim {\left[ {[0, 0.5][0.1, 0.3]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_1^9 = {\delta _7}{\left[ {\left[ {7, 3} \right]\left[ {6, 5} \right]} \right]^T} \sim {\left[ {[0, 0.5][0.1, 0.2]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_1^{10} = {\delta _7}{\left[ {\left[ {7, 3} \right]\left[ {6, 6} \right]} \right]^T} \sim {\left[ {[0, 0.5][0.1, 0.1]} \right]^T}. \end{aligned}

    Assuming

    Co{l_2}\left( {{{\widetilde X}_\mu^T }} \right) = {\left[ [\underline x_{12} , \overline x_{12}] \ [\underline x_{22} , \overline x_{22}]\right]^T},

    we have

    \begin{eqnarray} L \ltimes [\underline x_2 , \overline x_2] = [\underline b_2 , \overline b_2], \end{eqnarray} (5.6)

    where the value of L has been obtained in (5.5),

    \begin{eqnarray*} [\underline b_2 , \overline b_2] & = {\delta _7}\left[ {5, 3} \right] \ltimes {\delta _7}\left[ {3, 2} \right] = {\delta _{49}}\left[ {31, 16} \right]. \end{eqnarray*}

    Solving for (5.6), we get

    [\underline x_2 , \overline x_2] = [\delta _{49}^i, \delta _{49}^j],

    where i = 29, 30, 31 , j = 15, 16, 22, 23, 29, 30, 36.

    Depending on the value of [\underline x_2, \overline x_2] , it follows that Co{l_2}\left({{{\widetilde X}_\mu^T }}\right) has 3 \times 7 = 21 parameter set solutions, six of which do not satisfy {\underline {\rm{x}} _{i2}} \le {\overline x _{i2}}\left({i = 1, 2} \right) ; then

    \begin{aligned} &\left( {{{\widetilde X}_\mu^T }} \right)_2^1 = {\delta _7}{\left[ {\left[ {5, 3} \right]\left[ {1, 1} \right]} \right]^T} \sim {\left[ {[0.2, 0.5][1, 1]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_2^2 = {\delta _7}{\left[ {\left[ {5, 4} \right]\left[ {1, 1} \right]} \right]^T} \sim {\left[ {[0.2, 0.3][1, 1]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_2^3 = {\delta _7}{\left[ {\left[ {5, 5} \right]\left[ {1, 1} \right]} \right]^T} \sim {\left[ {[0.2, 0.2][1, 1]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_2^4 = {\delta _7}{\left[ {\left[ {5, 3} \right]\left[ {2, 1} \right]} \right]^T} \sim {\left[ {[0.2, 0.5][0.7, 1]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_2^5 = {\delta _7}{\left[ {\left[ {5, 3} \right]\left[ {2, 2} \right]} \right]^T} \sim {\left[ {[0.2, 0.5][0.7, 0.7]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_2^6 = {\delta _7}{\left[ {\left[ {5, 4} \right]\left[ {2, 1} \right]} \right]^T} \sim {\left[ {[0.2, 0.3][0.7, 1]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_2^7 = {\delta _7}{\left[ {\left[ {5, 4} \right]\left[ {2, 2} \right]} \right]^T} \sim {\left[ {[0.2, 0.3][0.7, 0.7]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_2^8 = {\delta _7}{\left[ {\left[ {5, 5} \right]\left[ {2, 1} \right]} \right]^T} \sim {\left[ {[0.2, 0.2][0.7, 1]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_2^9 = {\delta _7}{\left[ {\left[ {5, 5} \right]\left[ {2, 2} \right]} \right]^T} \sim {\left[ {[0.2, 0.2][0.7, 0.7]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_2^{10} = {\delta _7}{\left[ {\left[ {5, 3} \right]\left[ {3, 1} \right]} \right]^T} \sim {\left[ {[0.2, 0.5][0.5, 1]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_2^{11} = {\delta _7}{\left[ {\left[ {5, 3} \right]\left[ {3, 2} \right]} \right]^T} \sim {\left[ {[0.2, 0.5][0.5, 0.7]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_2^{12} = {\delta _7}{\left[ {\left[ {5, 4} \right]\left[ {3, 1} \right]} \right]^T} \sim {\left[ {[0.2, 0.3][0.5, 1]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_2^{13} = {\delta _7}{\left[ {\left[ {5, 4} \right]\left[ {3, 2} \right]} \right]^T} \sim {\left[ {[0.2, 0.3][0.5, 0.7]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_2^{14} = {\delta _7}{\left[ {\left[ {5, 5} \right]\left[ {3, 1} \right]} \right]^T} \sim {\left[ {[0.2, 0.2][0.5, 1]} \right]^T};\\ &\left( {{{\widetilde X}_\mu^T }} \right)_2^{15} = {\delta _7}{\left[ {\left[ {5, 5} \right]\left[ {3, 2} \right]} \right]^T} \sim {\left[ {[0.2, 0.2][0.5, 0.7]} \right]^T}. \end{aligned}

    In summary, we can conclude that:

    (1) The primary fuzzy matrix Eq (5.3) has a total of 10 \times 15 = 150 parameter set solutions.

    (2) The maximum solution of this equation is

    {\widetilde H_\mu } = \left[ {\left( {{{\widetilde X}_\mu^T }} \right)_1^1, \left( {{{\widetilde X}_\mu^T }} \right)_2^1} \right] = \left[ {\begin{array}{*{20}{c}} {\left[ {0.1, 0.5} \right]}&{\left[ {0.2, 0.5} \right]}\\ {\left[ {0.1, 0.3} \right]}&{\left[ {1, 1} \right]} \end{array}} \right].

    (3) The equation has no minimum solution and only two minimal solutions,

    \begin{aligned} {\left( {{{\widetilde Q}_\mu }} \right)_1}& = \left[ {\left( {{X_\mu^T }} \right)_1^7, \left( {{X_\mu^T }} \right)_2^{15}} \right] = \left[ {\begin{array}{*{20}{c}} {\left[ {0.1, 0.5} \right]}&{\left[ {0.2, 0.2} \right]}\\ {\left[ {0, 0} \right]}&{\left[ {0.5, 0.7} \right]} \end{array}} \right], \\ {\left( {{{\widetilde Q}_\mu }} \right)_2} & = \left[ {\left( {{X_\mu^T }} \right)_1^{10}, \left( {{X_\mu^T }} \right)_2^{15}} \right] = \left[ {\begin{array}{*{20}{c}} {\left[ {0, 0.5} \right]}&{\left[ {0.2, 0.2} \right]}\\ {\left[ {0.1, 0.1} \right]}&{\left[ {0.5, 0.7} \right]} \end{array}} \right]. \end{aligned}

    (4) Based on the maximum and minimal solutions of the primary fuzzy matrix equation, we can work out all the parameter set solutions of the primary fuzzy matrix equation.

    \begin{aligned} {\left( {{{\widetilde X}_\mu^T }} \right)_1} & = \left[ {\begin{array}{*{20}{c}} {[0.1, 0.5]}&{\left[ {0.2, 0.2 \le {{\overline x }_{12}} \le 0.5} \right]}\\ {\left[ {0 \le {{\underline x }_{21}} \le 0.1, 0 \le {{\overline x }_{21}} \le 0.3} \right]}&{\left[ {0.5 \le {{\underline x }_{22}} \le 1, 0.7 \le {{\overline x }_{22}} \le 1} \right]} \end{array}} \right], \\ {\left( {{{\widetilde X}_\mu^T }} \right)_2} & = \left[ {\begin{array}{*{20}{c}} {[0 \le {{\underline x }_{11}} \le 0.1, 0.5]}&{\left[ {0.2, 0.2 \le {{\overline x }_{12}} \le 0.5} \right]}\\ {\left[ {0.1, 0.1 \le {{\overline x }_{21}} \le 0.3} \right]}&{\left[ {0.5 \le {{\underline x }_{22}} \le 1, 0.7 \le {{\overline x }_{22}} \le 1} \right]} \end{array}} \right]. \end{aligned}

    (5) The solution set of IT2 FRE is

    \begin{array}{l} {(\widetilde X_\mu ^T)_1} = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{[0.1, 0.5]}}}&{\frac{1}{{\left[ {0 \le {{\underline x }_{21}} \le 0.1, 0 \le {{\overline x }_{21}} \le 0.3} \right]}}}\\ {\frac{1}{{\left[ {0.2, 0.2 \le {{\overline x }_{12}} \le 0.5} \right]}}}&{\frac{1}{{\left[ {0.5 \le {{\underline x }_{22}} \le 1, 0.7 \le {{\overline x }_{22}} \le 1} \right]}}} \end{array}} \right], \\ {(\widetilde X_\mu ^T)_2} = \left[ {\begin{array}{*{20}{c}} {\frac{1}{{\left[ {0 \le {{\underline x }_{11}} \le 0.1, 0.5} \right]}}}&{\frac{1}{{\left[ {0.1, 0.1 \le {{\overline x }_{21}} \le 0.3} \right]}}}\\ {\frac{1}{{\left[ {0.2, 0.2 \le {{\overline x }_{12}} \le 0.5} \right]}}}&{\frac{1}{{\left[ {0.5 \le {{\underline x }_{22}} \le 1, 0.7 \le {{\overline x }_{22}} \le 1} \right]}}} \end{array}} \right]. \end{array}

    This paper focused on the solution of IT2 FRE \widetilde A \circ \widetilde X = \widetilde B . First, the STP of interval matrices and its properties were introduced, and the matrix representation of the interval-valued logic was given. Then, the IT2 FRE was considered as the primary fuzzy matrix equation and secondary fuzzy matrix equation. The solution of secondary fuzzy matrix is known, so only the primary fuzzy matrix equation needs to be solved. Moreover, the solvability of the primary matrix equation was studied, and a specific algorithm for solving IT2 FREs based on the STP of interval matrices was given. Finally, a numerical example was given to verify the effectiveness of the proposed method.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported in part by the Research Fund for the Taishan Scholar Project of Shandong Province of China under Grant tstp20221103, and in part by the National Natural Science Foundation of China under Grant 62273201.

    The authors declare that there are no conflicts of interest in this paper.



    [1] E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5
    [2] S. Ishida, K. Seki, T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differ. Equation, 256 (2014), 2993–3010. https://doi.org/10.1016/j.jde.2014.01.028 doi: 10.1016/j.jde.2014.01.028
    [3] Y. S. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equation, 252 (2012), 692–715. https://doi.org/10.1016/j.jde.2011.08.019 doi: 10.1016/j.jde.2011.08.019
    [4] Y. F. Wang, J. Liu, Boundedness in quasilinear fully parabolic Keller-Segel system with logistic source, Nonlinear Anal. Real World Appl., 38 (2017), 113–130. https://doi.org/10.1016/j.nonrwa.2017.04.010 doi: 10.1016/j.nonrwa.2017.04.010
    [5] J. S. Zheng, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source, J. Differ. Equation, 259 (2015), 120–140. https://doi.org/10.1016/j.jde.2015.02.003 doi: 10.1016/j.jde.2015.02.003
    [6] A. Blanchet, P. Laurencot, The parabolic-parabolic Keller-Segel system with critical diffusion as a gradient flow in \mathbb{R}^{d}, d\geq3, Commun. Partial Differ. Equation, 38 (2013), 658–686. https://doi.org/10.1080/03605302.2012.757705 doi: 10.1080/03605302.2012.757705
    [7] T. Cie\acute{s}lak, C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabloic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differ. Equation, 252 (2012), 5832–5851. https://doi.org/10.1016/j.jde.2012.01.045 doi: 10.1016/j.jde.2012.01.045
    [8] T. Cie\acute{s}lak, C. Stinner, New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models, J. Differ. Equation, 258 (2015), 2080–2113. https://doi.org/10.1016/j.jde.2014.12.004 doi: 10.1016/j.jde.2014.12.004
    [9] T. Hashira, S. Ishida, T. Yokota, Finite-time blow-up for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, J. Differ. Equation, 264 (2018), 6459–6485. https://doi.org/10.1016/j.jde.2018.01.038 doi: 10.1016/j.jde.2018.01.038
    [10] P. Laurencot, N. Mizoguchi, Finite-time blowup for the parabolic-parabolic Keller-Segel system with nonlinear critical diffusion, Ann. Inst. H. Poincar\acute{e} Anal. Non Lin\acute{e}aire., 34 (2017), 197–220. https://doi.org/10.1016/j.anihpc.2015.11.002 doi: 10.1016/j.anihpc.2015.11.002
    [11] M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748–767. https://doi.org/10.1016/j.matpur.2013.01.020 doi: 10.1016/j.matpur.2013.01.020
    [12] V. Calvez, J. A. Carrillo, Volume effects in the Keller-Segel model:energy estimates preventing blow-up, J. Math. Pures Appl., 86 (2006), 155–175. https://doi.org/10.1016/j.matpur.2006.04.002 doi: 10.1016/j.matpur.2006.04.002
    [13] T. Cie\acute{s}lak, P. Laurencot, Finite time blow-up for radially symmetric solutions to a critical quasilinear Smoluchowski-Poisson system, C. R. Math. Acad. Sci. Paris., 347 (2009), 237–242. https://doi.org/10.1016/j.crma.2009.01.016 doi: 10.1016/j.crma.2009.01.016
    [14] T. Cie\acute{s}lak, M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057–1076. https://doi.org/10.1088/0951-7715/21/5/009 doi: 10.1088/0951-7715/21/5/009
    [15] M. Winkler, K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., 72 (2010), 1044–1064. https://doi.org/10.1016/j.na.2009.07.045 doi: 10.1016/j.na.2009.07.045
    [16] Y. Li, Finite-time blow-up in quasilinear parabolic-elliptic chemotaxis system with nonlinear signal production, Math. Anla. Appl., 480 (2019), 123376. https://doi.org/10.1016/j.jmaa.2019.123376 doi: 10.1016/j.jmaa.2019.123376
    [17] C. J. Wang, L. X. Zhao, X. C. Zhu, A blow-up result for attraction- repulsion system with nonlinear signal production and generalized logistic source, J. Math. Anal. Appl., 518 (2023), 126679. https://doi.org/10.1016/j.jmaa.2022.126679 doi: 10.1016/j.jmaa.2022.126679
    [18] W. W. Wang, Y. X. Li, Boundedness and finite-time blow-up in a chemotaxis system with nonlinear signal production, Nonlinear Anal. RWA., 59 (2021), 103237. https://doi.org/10.1016/j.nonrwa.2020.103237 doi: 10.1016/j.nonrwa.2020.103237
    [19] M. Winkler, A critical blow-up exponent in a chemotaxis system with nonlinear signal production, Nonlinearity, 31 (2018), 2031–2056. https://doi.org/10.1088/1361-6544/aaaa0e doi: 10.1088/1361-6544/aaaa0e
    [20] P. Liu, J. P. Shi, Z. A. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst-Series B., 18 (2013), 2597–2625. https://doi.org/10.3934/dcdsb.2013.18.2597 doi: 10.3934/dcdsb.2013.18.2597
    [21] M. Luca, A. C. Ross, L. E. Keshet, Chemotactic signalling, microglia, and Alzheimer's disease senile plague: is there a connection?, Bull. Math. Biol., 65 (2003), 693–730. https://doi.org/10.1016/s0092-8240(03)00030-2 doi: 10.1016/s0092-8240(03)00030-2
    [22] B. Perthame, C. Schmeiser, M. Tang, N. Vauchelet, Travelling plateaus for a hyperbolic Keller-Segel system with attraction and repulsion: existene and branching instabilites, Nonlinearity, 24 (2011), 1253–1270. https://doi.org/10.1088/0951-7715/24/4/012 doi: 10.1088/0951-7715/24/4/012
    [23] Y. S. Tao, Z. A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Mod. Meth. Appl. Sci., 23 (2013), 1–36. https://doi.org/10.1142/s0218202512500443 doi: 10.1142/s0218202512500443
    [24] Y. Li, Y. X. Li, Blow-up of nonradial solutions to attraction-repulsion chemotaxis system in two dimensions, Nonlinear Anal. RWA., 30 (2016), 170–183. https://doi.org/10.1016/j.nonrwa.2015.12.003 doi: 10.1016/j.nonrwa.2015.12.003
    [25] G. Viglialoro, Explicit lower bound of blow-up time for an attraction-repulsion chemotaxis system, J. Math. Anal. Appl., 479 (2019), 1069–1077. https://doi.org/10.1016/j.jmaa.2019.06.067 doi: 10.1016/j.jmaa.2019.06.067
    [26] H. Y. Jin, Z. A. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differ. Equ., 260 (2016), 162–196. https://doi.org/10.1016/j.jde.2015.08.040 doi: 10.1016/j.jde.2015.08.040
    [27] H. Zhong, C. L. Mu, K. Lin, Global weak solution and boundedness in a three-dimensional competing chemotaxis, Discrete Contin. Dyn. Syst., 38 (2018), 3875–3898. https://doi.org/10.3934/dcds.2018168 doi: 10.3934/dcds.2018168
    [28] J. Liu, Z. A. Wang, Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension, J. Biol. Dyn., 6 (2012), 31–41. https://doi.org/10.1080/17513758.2011.571722 doi: 10.1080/17513758.2011.571722
    [29] H. Y. Jin, Boundedness of the attraction-repulsion Keller-Segel system, J. Math. Anal. Appl., 422 (2015), 1463–1478. https://doi.org/10.1016/j.jmaa.2014.09.049 doi: 10.1016/j.jmaa.2014.09.049
    [30] H. Y. Jin, Z. A. Wang, Global stabilization of the full attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst., 40 (2020), 3509–3527. https://doi.org/10.3934/dcds.2020027 doi: 10.3934/dcds.2020027
    [31] H. Y. Jin, Z. A. Wang, Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model, Math. Meth. Appl. Sci., 38 (2015), 444–457. https://doi.org/10.1002/mma.3080 doi: 10.1002/mma.3080
    [32] Y. Chiyo, M. Marras, Y. Tanaka, T. Yokota, Blow-up phenomena in a parabolic-elliptic-elliptic attraction-repulsion chemotaxis system with superlinear logistic degradation, Nonlinear Anal. RWA., 212 (2021), 112550. https://doi.org/10.1016/j.na.2021.112550 doi: 10.1016/j.na.2021.112550
    [33] Y. Chiyo, T. Yokota, Boundedness and finite-time blow-up in a quasilinear parabolic-elliptic-elliptic attraction-repulsion chemotaxis system, Z. Angew. Math. Phys., 73 (2022), 1–21. https://doi.org/10.1007/s00033-022-01695-y doi: 10.1007/s00033-022-01695-y
    [34] X. C. Gao, J. Zhou, M. Tian, Global boundedness and asymptotic behavior for an attraction-repulsion chemotaxis system with logistic source, Acta Math. Sci. Ser. A (Chin. Ed.), 37 (2017), 113–121.
    [35] D. Li, C. L. Mu, K. Lin, L. C. Wang, Large time behavior of solution to an attraction-repulsion chemotaxis system with logistic source in three dimensions, J. Math. Anla. Appl., 448 (2017), 914–936. https://doi.org/10.1016/j.jmaa.2016.11.036 doi: 10.1016/j.jmaa.2016.11.036
    [36] X. Li, Z. Y. Xiang, On an attraction-repulsion chemotaxis system with logistic source, IMA J. Appl. Math., 81 (2016), 165–198. https://doi.org/10.1093/imamat/hxv033 doi: 10.1093/imamat/hxv033
    [37] G. Q. Ren, B. Liu, Global dynamics for an attraction-repulsion chemotaxis model with logistic source, J. Diff. Equation, 268 (2022), 4320–4373. https://doi.org/10.1016/j.jde.2019.10.027 doi: 10.1016/j.jde.2019.10.027
    [38] S. J. Shi, Z. R. Liu, H. Y. Jin, Boundedness and large time behavior of an attraction-repulsion chemotaxis model with logistic source, Kinet. Relat. Mod., 10 (2017), 855–878. https://doi.org/10.3934/krm.2017034 doi: 10.3934/krm.2017034
    [39] M. Winkler, Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation, Z. Angew. Math Phys., 69 (2018), 40–64. https://doi.org/10.1007/s00033-018-0935-8 doi: 10.1007/s00033-018-0935-8
    [40] Q. S. Zhang, Y. X. Li, An attraction-repulsion chemotaxis system with logistic source, Z. Angew. Math. Mech., 96 (2016), 570–584. https://doi.org/10.1002/zamm.201400311 doi: 10.1002/zamm.201400311
    [41] E. Nakaguchi, M. Efendiev, On a new dimension estimate of the global attractor for chemotaxis-growth systems, Osaka J. Math., 45 (2008), 273–281.
    [42] E. Nakaguchi, K. Osaki, Global existence of solutions to a parabolic-parabolic system for chemotaxis with weak degradation, Nonlinear Anal., 74 (2011), 286–297. https://doi.org/10.1016/j.na.2010.08.044 doi: 10.1016/j.na.2010.08.044
    [43] E. Nakaguchi, K. Osaki, Global solutions and exponential attractors of a parabolic-parabolic system for chemotaxis with subquadratic degradation, Discrete Contin. Dyn. Syst. Ser. B., 18 (2013), 2627–2646. https://doi.org/10.3934/dcdsb.2013.18.2627 doi: 10.3934/dcdsb.2013.18.2627
    [44] M. Liu, Y. X. Li, Finite-time blowup in attraction-repulsion systems with nonlinear signal production, Nonlinear Anal. RWA., 61 (2021), 103305. https://doi.org/10.1016/j.nonrwa.2021.103305 doi: 10.1016/j.nonrwa.2021.103305
    [45] T. Black, Sublinear signal production in two-dimensional Keller-Segel-Stokes system, Nonlinear Anal. RWA., 31 (2016), 593–609. https://doi.org/10.1016/j.nonrwa.2016.03.008 doi: 10.1016/j.nonrwa.2016.03.008
    [46] D. M. Liu, Y. S. Tao, Boundedness in a chemotaxis system with nonlinear signal production, Appl. Math. J. Chinese Univser., 31 (2016), 379–388. https://doi.org/10.1007/s11766-016-3386-z doi: 10.1007/s11766-016-3386-z
    [47] T. Senba, T. Suzuki, Parabolic system of chemotaxis: blow-up in a infinite time, Methods Appl. Anal., 8 (2001), 349–367.
    [48] Y. S. Tao, M. Winkler, A chemotaxis-haptotaxis system with haptoattractant remodeling: boundedness enforced by mild saturation of signal production, Commun. Pure Appl. Anal., 18 (2019), 2047–2067. https://doi.org/10.3934/cpaa.2019092 doi: 10.3934/cpaa.2019092
    [49] O. A. Ladyzenskaja, V. A. Solonnikov, N. N. Uralceva, Linear and quasilinear equations of parabolic type, in Translated form Russian by S. Smith. Translations of Mathematical Monographs, American Mathematical Society, (1968).
    [50] G. M. Lieberman, Hölder continuity of the gradient of solutions of uniformly parabolic equations with conormal boundary conditions, Ann. Mat. Pura Appl., 148 (1987), 77–99. https://doi.org/10.1007/bf01774284 doi: 10.1007/bf01774284
    [51] N. D. Alikakos, L^{p} bounds of solutions of reaction-diffusion equations, Commun. Partial Differ. Equation, 4 (1978), 827–868. https://doi.org/10.1080/03605307908820113 doi: 10.1080/03605307908820113
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1978) PDF downloads(85) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog