This paper is concerned the determination of trajectories for the three-dimensional Navier-Stokes equations with nonlinear damping subject to periodic boundary condition. By using the energy estimate of Galerkin approximated equation, the finite number of determining modes and asymptotic determined functionals have been shown via the Grashof numbers for the non-autonomous and autonomous damped Navier-Stokes fluid flow respectively.
Citation: Wei Shi, Xinguang Yang, Xingjie Yan. Determination of the 3D Navier-Stokes equations with damping[J]. Electronic Research Archive, 2022, 30(10): 3872-3886. doi: 10.3934/era.2022197
[1] | Jianjun Huang, Xuhong Huang, Ronghao Kang, Zhihong Chen, Junhan Peng . Improved insulator location and defect detection method based on GhostNet and YOLOv5s networks. Electronic Research Archive, 2024, 32(9): 5249-5267. doi: 10.3934/era.2024242 |
[2] | Ye Yu, Zhiyuan Liu . A data-driven on-site injury severity assessment model for car-to-electric-bicycle collisions based on positional relationship and random forest. Electronic Research Archive, 2023, 31(6): 3417-3434. doi: 10.3934/era.2023173 |
[3] | Min Li, Ke Chen, Yunqing Bai, Jihong Pei . Skeleton action recognition via graph convolutional network with self-attention module. Electronic Research Archive, 2024, 32(4): 2848-2864. doi: 10.3934/era.2024129 |
[4] | Linan Fang, Ting Wu, Yongxing Qi, Yanzhao Shen, Peng Zhang, Mingmin Lin, Xinfeng Dong . Improved collision detection of MD5 with additional sufficient conditions. Electronic Research Archive, 2022, 30(6): 2018-2032. doi: 10.3934/era.2022102 |
[5] | Hui Xu, Jun Kong, Mengyao Liang, Hui Sun, Miao Qi . Video behavior recognition based on actional-structural graph convolution and temporal extension module. Electronic Research Archive, 2022, 30(11): 4157-4177. doi: 10.3934/era.2022210 |
[6] | Lei Pan, Chongyao Yan, Yuan Zheng, Qiang Fu, Yangjie Zhang, Zhiwei Lu, Zhiqing Zhao, Jun Tian . Fatigue detection method for UAV remote pilot based on multi feature fusion. Electronic Research Archive, 2023, 31(1): 442-466. doi: 10.3934/era.2023022 |
[7] | Chang Yu, Qian Ma, Jing Li, Qiuyang Zhang, Jin Yao, Biao Yan, Zhenhua Wang . FF-ResNet-DR model: a deep learning model for diabetic retinopathy grading by frequency domain attention. Electronic Research Archive, 2025, 33(2): 725-743. doi: 10.3934/era.2025033 |
[8] | Miao Luo, Yousong Chen, Dawei Gao, Lijun Wang . Inversion study of vehicle frontal collision and front bumper collision. Electronic Research Archive, 2023, 31(2): 776-792. doi: 10.3934/era.2023039 |
[9] | Tong Li, Lanfang Lei, Zhong Wang, Peibei Shi, Zhize Wu . An efficient improved YOLOv10 algorithm for detecting electric bikes in elevators. Electronic Research Archive, 2025, 33(6): 3673-3698. doi: 10.3934/era.2025163 |
[10] | Jinjiang Liu, Yuqin Li, Wentao Li, Zhenshuang Li, Yihua Lan . Multiscale lung nodule segmentation based on 3D coordinate attention and edge enhancement. Electronic Research Archive, 2024, 32(5): 3016-3037. doi: 10.3934/era.2024138 |
This paper is concerned the determination of trajectories for the three-dimensional Navier-Stokes equations with nonlinear damping subject to periodic boundary condition. By using the energy estimate of Galerkin approximated equation, the finite number of determining modes and asymptotic determined functionals have been shown via the Grashof numbers for the non-autonomous and autonomous damped Navier-Stokes fluid flow respectively.
[1] |
A. M. Alghamdi, S. Gala, M. A. Ragusa, Regularity criterion for weak solutions to the Navier-Stokes involving one velocity and one vorticity components, Siberian Electron. Math. Rep., 19 (2022), 309–315. https://doi.org/10.33048/semi.2022.19.025 doi: 10.33048/semi.2022.19.025
![]() |
[2] |
A. Choucha, S. Boulaaras, D. Ouchenane, Exponential decay and global existence of solutions of a singular nonlocal viscoelastic system with distributed delay and damping terms, Filomat, 35 (2021), 795–826. https://doi.org/10.2298/FIL2103795C doi: 10.2298/FIL2103795C
![]() |
[3] |
C. S. Dou, Z. S. Zhao, Analytical solution to 1D compressible Navier-Stokes equations, J. Funct. Spaces, 2021 (2021), 6339203. https://doi.org/10.1155/2021/6339203 doi: 10.1155/2021/6339203
![]() |
[4] | C. Foias, O. Manley, R. Rosa, R. Temam, Navier-Stokes Equations and Turbulence, Cambridge University Press, Cambridge, 2001. |
[5] | J. L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969. |
[6] | J. C. Robinson, J. L. Rodrigo, W. Sadowski, The Three-Dimensional Navier-Stokes Equations, Cambridge University Press, Cambridge, 2016. |
[7] | R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, Philadelphia, PA, 1995. |
[8] |
J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, J. Nonlinear Sci., 7 (1997), 475–502. https://doi.org/10.1007/s003329900037 doi: 10.1007/s003329900037
![]() |
[9] |
A. Cheskidov, C. Foias, On global attractors of the 3D Navier-Stokes equations, J. Differ. Equations, 231 (2006), 714–754. https://doi.org/10.1016/j.jde.2006.08.021 doi: 10.1016/j.jde.2006.08.021
![]() |
[10] |
X. Cai, Q. Jiu, Weak and strong solutions for the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 343 (2008), 799–809. https://doi.org/10.1016/j.jmaa.2008.01.041 doi: 10.1016/j.jmaa.2008.01.041
![]() |
[11] |
F. Li, B. You, Pullback exponential attractors for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 55–80. https://doi.org/10.3934/dcdsb.2019172 doi: 10.3934/dcdsb.2019172
![]() |
[12] |
F. Li, B. You, Y. Xu, Dynamics of weak solutions for the three dimensional Navier-Stokes equations with nonlinear damping, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 4267–4284. https://doi.org/10.3934/dcdsb.2018137 doi: 10.3934/dcdsb.2018137
![]() |
[13] |
D. Pardo, J. Valero, Á. Giménez, Global attractors for weak solutions of the three-dimensional Navier-Stokes equations with damping, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 3569–3590. https://doi.org/10.3934/dcdsb.2018279 doi: 10.3934/dcdsb.2018279
![]() |
[14] |
X. L. Song, Y. R. Hou, Attractors for the three-dimensional incompressible Navier-Stokes equations with damping, Discrete Contin. Dyn. Syst., 31 (2011), 239–252. https://doi.org/10.3934/dcds.2011.31.239 doi: 10.3934/dcds.2011.31.239
![]() |
[15] |
C. Foias, O. P. Manley, R. Temam, Y. M. Trève, Asymptotic analysis of the Navier-Stokes equations, Physica D, 9 (1983), 157–188. https://doi.org/10.1016/0167-2789(83)90297-X doi: 10.1016/0167-2789(83)90297-X
![]() |
[16] |
D. A. Jones, E. S. Titi, Upper bounds on the number of determining modes, nodes, and volume elements for the Navier-Stokes equations, Indiana Univ. Math. J., 42 (1993), 875–887. https://doi.org/10.1512/iumj.1993.42.42039 doi: 10.1512/iumj.1993.42.42039
![]() |
[17] |
P. Constantin, P. Foias, R. Temam, On the dimension of the attractors in two-dimensional turbulence, Physica D, 30 (1988), 284–296. https://doi.org/10.1016/0167-2789(88)90022-X doi: 10.1016/0167-2789(88)90022-X
![]() |
[18] |
R. Selmi, A. Châabani, Well-posedness, stability and determining modes to 3D Burgers equation in Gevrey class, Z. Angew. Math. Phys., 71 (2020), 162. https://doi.org/10.1007/s00033-020-01389-3 doi: 10.1007/s00033-020-01389-3
![]() |
[19] | J. C. Kuang, Applied Inequalities (Changyong Budengshi), 2 edition, Hunan Education Publishing House, 1993. |
[20] |
B. L. Guo, P. C. Zhu, Partial regularity of suitable weak solutions to the system of the incompressible Non-Newtonian fluids, J. Differ. Equations, 178 (2002), 281–297. https://doi.org/10.1006/jdeq.2000.3958 doi: 10.1006/jdeq.2000.3958
![]() |
[21] | V. Kalantarov, A. Kostianko, S. Zelik, Determining functionals and finite-dimensional reduction for dissipative PDEs revisited, preprint, arXiv: 2111.04125. |
1. | Gregory Roth, Paul L. Salceanu, Sebastian J. Schreiber, Robust Permanence for Ecological Maps, 2017, 49, 0036-1410, 3527, 10.1137/16M1066440 | |
2. | Jude D. Kong, Paul Salceanu, Hao Wang, A stoichiometric organic matter decomposition model in a chemostat culture, 2018, 76, 0303-6812, 609, 10.1007/s00285-017-1152-3 | |
3. | Muhammad Dur-e-Ahmad, Mudassar Imran, Adnan Khan, Analysis of a Mathematical Model of Emerging Infectious Disease Leading to Amphibian Decline, 2014, 2014, 1085-3375, 1, 10.1155/2014/145398 | |
4. | Paul L. Salceanu, Robust uniform persistence in discrete and continuous nonautonomous systems, 2013, 398, 0022247X, 487, 10.1016/j.jmaa.2012.09.005 | |
5. | Azmy S. Ackleh, Robert J. Sacker, Paul Salceanu, On a discrete selection–mutation model, 2014, 20, 1023-6198, 1383, 10.1080/10236198.2014.933819 | |
6. | Mudassar Imran, Muhammad Usman, Muhammad Dur-e-Ahmad, Adnan Khan, Transmission Dynamics of Zika Fever: A SEIR Based Model, 2017, 0971-3514, 10.1007/s12591-017-0374-6 | |
7. | Azmy S. Ackleh, John Cleveland, Horst R. Thieme, Population dynamics under selection and mutation: Long-time behavior for differential equations in measure spaces, 2016, 261, 00220396, 1472, 10.1016/j.jde.2016.04.008 | |
8. | AZMY S. ACKLEH, J. M. CUSHING, PAUL L. SALCEANU, ON THE DYNAMICS OF EVOLUTIONARY COMPETITION MODELS, 2015, 28, 08908575, 380, 10.1111/nrm.12074 | |
9. | Mudassar Imran, Muhammad Usman, Tufail Malik, Ali R. Ansari, Mathematical analysis of the role of hospitalization/isolation in controlling the spread of Zika fever, 2018, 255, 01681702, 95, 10.1016/j.virusres.2018.07.002 | |
10. | Azmy S. Ackleh, Paul L. Salceanu, Competitive exclusion and coexistence in ann-species Ricker model, 2015, 9, 1751-3758, 321, 10.1080/17513758.2015.1020576 | |
11. | Azmy S. Ackleh, Paul Salceanu, Amy Veprauskas, A nullcline approach to global stability in discrete-time predator–prey models, 2021, 27, 1023-6198, 1120, 10.1080/10236198.2021.1963440 | |
12. | Térence Bayen, Henri Cazenave-Lacroutz, Jérôme Coville, Stability of the chemostat system including a linear coupling between species, 2023, 28, 1531-3492, 2104, 10.3934/dcdsb.2022160 | |
13. | Qihua Huang, Paul L. Salceanu, Hao Wang, Dispersal-driven coexistence in a multiple-patch competition model for zebra and quagga mussels, 2022, 28, 1023-6198, 183, 10.1080/10236198.2022.2026342 | |
14. | Hayriye Gulbudak, Paul L. Salceanu, Gail S. K. Wolkowicz, A delay model for persistent viral infections in replicating cells, 2021, 82, 0303-6812, 10.1007/s00285-021-01612-3 | |
15. | J. C. Macdonald, H. Gulbudak, Forward hysteresis and Hopf bifurcation in an Npzd model with application to harmful algal blooms, 2023, 87, 0303-6812, 10.1007/s00285-023-01969-7 |