The use of topological descriptors is the key method, regardless of great advances taking place in the field of drug design. Descriptors portray the chemical characteristic of a molecule in numerical form, that is used for QSAR/QSPR models. The numerical values related with chemical constitutions that correlate the chemical structure with the physical properties refer to topological indices. The study of chemical structure with chemical reactivity or biological activity is termed quantitative structure activity relationship, in which topological index plays a significant role. Chemical graph theory is one such significant branch of science which plays a key role in QSAR/QSPR/QSTR studies. This work is focused on computing various degree-based topological indices and regression model of nine anti-malaria drugs. Regression models are fitted for computed indices values with 6 physicochemical properties of the anti-malaria drugs are studied. Based on the results obtained, an analysis is carried out for various statistical parameters for which conclusions are drawn.
Citation: Xiujun Zhang, H. G. Govardhana Reddy, Arcot Usha, M. C. Shanmukha, Mohammad Reza Farahani, Mehdi Alaeiyan. A study on anti-malaria drugs using degree-based topological indices through QSPR analysis[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 3594-3609. doi: 10.3934/mbe.2023167
[1] | Lukáš Pichl, Taisei Kaizoji . Volatility Analysis of Bitcoin Price Time Series. Quantitative Finance and Economics, 2017, 1(4): 474-485. doi: 10.3934/QFE.2017.4.474 |
[2] | Andres Fernandez, Norman R. Swanson . Further Evidence on the Usefulness of Real-Time Datasets for Economic Forecasting. Quantitative Finance and Economics, 2017, 1(1): 2-25. doi: 10.3934/QFE.2017.1.2 |
[3] | Samuel Asante Gyamerah . Modelling the volatility of Bitcoin returns using GARCH models. Quantitative Finance and Economics, 2019, 3(4): 739-753. doi: 10.3934/QFE.2019.4.739 |
[4] | Guillermo Peña . Interest rates affect public expenditure growth. Quantitative Finance and Economics, 2023, 7(4): 622-645. doi: 10.3934/QFE.2023030 |
[5] | Abdul Haque, Huma Fatima, Ammar Abid, Muhammad Ali Jibran Qamar . Impact of firm-level uncertainty on earnings management and role of accounting conservatism. Quantitative Finance and Economics, 2019, 3(4): 772-794. doi: 10.3934/QFE.2019.4.772 |
[6] | Arifenur Güngör, Hüseyin Taştan . On macroeconomic determinants of co-movements among international stock markets: evidence from DCC-MIDAS approach. Quantitative Finance and Economics, 2021, 5(1): 19-39. doi: 10.3934/QFE.2021002 |
[7] | Cemile Özgür, Vedat Sarıkovanlık . An application of Regular Vine copula in portfolio risk forecasting: evidence from Istanbul stock exchange. Quantitative Finance and Economics, 2021, 5(3): 452-470. doi: 10.3934/QFE.2021020 |
[8] | Md Qamruzzaman, Jianguo Wei . Do financial inclusion, stock market development attract foreign capital flows in developing economy: a panel data investigation. Quantitative Finance and Economics, 2019, 3(1): 88-108. doi: 10.3934/QFE.2019.1.88 |
[9] | David Melkuev, Danqiao Guo, Tony S. Wirjanto . Applications of random-matrix theory and nonparametric change-point analysis to three notable systemic crises. Quantitative Finance and Economics, 2018, 2(2): 413-467. doi: 10.3934/QFE.2018.2.413 |
[10] | Fredrik Hobbelhagen, Ioannis Diamantis . A comparative study of symbolic aggregate approximation and topological data analysis. Quantitative Finance and Economics, 2024, 8(4): 705-732. doi: 10.3934/QFE.2024027 |
The use of topological descriptors is the key method, regardless of great advances taking place in the field of drug design. Descriptors portray the chemical characteristic of a molecule in numerical form, that is used for QSAR/QSPR models. The numerical values related with chemical constitutions that correlate the chemical structure with the physical properties refer to topological indices. The study of chemical structure with chemical reactivity or biological activity is termed quantitative structure activity relationship, in which topological index plays a significant role. Chemical graph theory is one such significant branch of science which plays a key role in QSAR/QSPR/QSTR studies. This work is focused on computing various degree-based topological indices and regression model of nine anti-malaria drugs. Regression models are fitted for computed indices values with 6 physicochemical properties of the anti-malaria drugs are studied. Based on the results obtained, an analysis is carried out for various statistical parameters for which conclusions are drawn.
The Caginalp phase-field system
∂u∂t−Δu+f(u)=θ, | (1.1) |
∂θ∂t−Δθ=−∂u∂t, | (1.2) |
has been introduced in [1] in order to describe the phase transition phenomena in certain class of material. In this context,
ψ=∫Ω(12|∇u|2+F(u)−uθ−12θ2)dx, | (1.3) |
where
H=u+θ. | (1.4) |
Then, the evolution equation for the order parameter
∂u∂t=−δuψ, | (1.5) |
where
∂H∂t=−divq, | (1.6) |
where
q=−∇θ, | (1.7) |
we obtain (1.2). Now, a well-known side effect of the Fourier heat law is the infinite speed of propagation of thermal disturbances, deemed physically unreasonable and thus called paradox of heat conduction (see, for example, [9]). In order to account for more realistic features, several variations of (1.7), based, for example, on the Maxwell-Cattaneo law or recent laws from thermomechanics, have been proposed in the context of the Caginalp phase-field system (see, for example, [19], [20], [21], [23], [24], [25], [26], [27], [28], [30], [31], [35], [36], [37], [38], [44], [45] and [46]).
A different approach to heat conduction was proposed in the Sixties (see, [47], [48] and [49]), where it was observed that two temperatures are involved in the definition of the entropy: the conductive temperature
θ=φ−Δφ. | (1.8) |
Our aim in this paper is to study a generalization of the Caginalp phase-field system based on this two temperatures theory and the usual Fourier law with a nonlinear coupling.
The purpose of our study is the following initial and boundary value problem
∂u∂t−Δu+f(u)=g(u)(φ−Δφ), | (1.9) |
∂φ∂t−Δ∂φ∂t−Δφ=−g(u)∂u∂t, | (1.10) |
u=φ=0on∂Ω, | (1.11) |
u|t=0=u0, φ|t=0=φ0. | (1.12) |
The paper is organized as follows. In Section 2, we give the derivation of the model. The Section 3 states existence, regularity and uniqueness results. In Section 4, we address the question of dissipativity properties of the system. The last section, analyzes the spatial behavior of solutions in a semi-infinite cylinder, assuming their existence.
Thoughout this paper, the same letters
In our case, to obtain equations (1.9) and (1.10), the total free energy reads in terms of the conductive temperature
ψ(u,θ)=∫Ω(12|∇u|2+F(u)−G(u)θ−12θ2)dx, | (2.1) |
where
H=G(u)+θ=G(u)+φ−Δφ, | (2.2) |
which yields thanks to (1.6), the energy equation,
∂φ∂t−Δ∂φ∂t+divq=−g(u)∂u∂t. | (2.3) |
Considering the usual Fourier law (
Remark 2.1. We can note that we still have an infinite speed of propagation here.
Before stating the existence result, we make some assumptions on nonlinearities
|G(s)|2≤c1F(s)+c2,c0,c1,c2≥0, | (3.1) |
|g(s)s|≤c3(|G(s)|2+1),c3≥0, | (3.2) |
c4sk+2−c5≤F(s)≤f(s)s+c0≤c6sk+2−c7,c4,c6>0,c5,c7≥0, | (3.3) |
|g(s)|≤c8(|s|+1),|g′(s)|≤c9c8,c9≥0, | (3.4) |
|f′(s)|≤c10(|s|k+1),c10≥0, | (3.5) |
where
Theorem 3.1. We assume that (3.1)-(3.4) hold true. For all initial data
Proof. The proof is based on the Galerkin scheme. Here, we just make formally computations to get a priori estimates, having in mind that these estimates can be rigourously justified using the Galerkin scheme see, for example, [10], [11] and [40] for details.
Multiplying (1.9) by
12ddt(‖∇u‖2+2∫ΩF(u)dx)+‖∂u∂t‖2=∫Ωg(u)∂u∂t(φ−Δφ)dx. | (3.6) |
Multiplying (1.10) by
12ddt(‖φ‖2+2‖∇φ‖2+‖Δφ‖2)+‖∇φ‖2+‖Δφ‖2=−∫Ωg(u)∂u∂t(φ−Δφ)dx. | (3.7) |
Now, summing (3.6) and (3.7), we are led to,
ddt(‖∇u‖2+2∫ΩF(u)dx+‖φ‖2+2‖∇φ‖2+‖Δφ‖2)+2(‖∂u∂t‖2+‖∇φ‖2+‖Δφ‖2)=0. | (3.8) |
Multiplying (1.9) by
12ddt‖u‖2+‖∇u‖2+∫Ωf(u)udx=∫Ωg(u)u(φ−Δφ)dx. | (3.9) |
Using (3.2)-(3.3), (3.9) becomes
12ddt‖u‖2+‖∇u‖2+c∫ΩF(u)dx≤c′∫Ω|G(u)|2dx+12(‖φ‖2+‖Δφ‖2)+c″. | (3.10) |
Adding (3.8) and (3.10), one has
dE1dt+2(‖∇u‖2+c∫ΩF(u)dx+‖∂u∂t‖2+‖∇φ‖2)+‖Δφ‖2≤c′∫Ω|G(u)|2dx+‖φ‖2+c″, | (3.11) |
where
E1=‖u‖2+‖∇u‖2+2∫ΩF(u)dx+‖φ‖2+2‖∇φ‖2+‖Δφ‖2 | (3.12) |
enjoys
E1≤c(‖u‖2H1(Ω)+‖u‖k+2k+2+‖φ‖2H2(Ω))−c′ | (3.13) |
and
E1≤c″(‖u‖2H1(Ω)+‖u‖k+2k+2+‖φ‖2H2(Ω))−c‴. | (3.14) |
Multiplying now (1.10) by
12ddt‖∇φ‖2+‖∂φ∂t‖2+‖∇∂φ∂t‖2=−∫Ωg(u)∂u∂t∂φ∂tdx. | (3.15) |
Taking into account (3.4) and using Hölder's inequality, we get
12ddt‖∇φ‖2+12‖∂φ∂t‖2+‖∇∂φ∂t‖2≤c(‖∇u‖2+1)‖∂u∂t‖2 | (3.16) |
and then, summing (3.11) and (3.16), we have
dE2dt+2(‖∇u‖2+c∫ΩF(u)dx+‖∂u∂t‖2+‖∇φ‖2+12‖Δφ‖2+12‖∂φ∂t‖2+‖∇∂φ∂t‖2)≤c∫Ω|G(u)|2dx+‖φ‖2+c″(‖∇u‖2+1)‖∂u∂t‖2+c‴, | (3.17) |
where
E2=E1+‖∇φ‖2 | (3.18) |
satisfies similar estimates as
We deduce from (3.1) and (3.17)
dE2dt+c(‖∂φ∂t‖2+‖∇∂φ∂t‖2)≤c′E2+c″, | (3.19) |
which achieve the proof.
For more regularity on solutions, we make following additional assumptions:
f(0)=0andf′(s)≥−c,c≥0. | (3.20) |
We have:
Theorem 3.2. Under assumptions of Theorem 3.1 and assuming that (3.20) is satisfied. For every initial data
Proof. As above proof, we focus on a priori estimates.
We multiply (1.10) by
12ddt‖∇φ‖2+‖∇∂φ∂t‖2+‖Δ∂φ∂t‖2=∫Ωg(u)∂u∂tΔ∂φ∂tdx. | (3.21) |
Thanks to (3.4) and Hölder's inequality:
∫Ωg(u)∂u∂tΔ∂φ∂tdx≤c∫Ω(|u|+1)|∂u∂t||Δ∂φ∂t|dx≤c(‖∇u‖2+1)‖∂u∂t‖2+12‖Δ∂φ∂t‖2 | (3.22) |
and then,
12ddt‖∇φ‖2+‖∇∂φ∂t‖2+12‖Δ∂φ∂t‖2≤c(‖∇u‖2+1)‖∂u∂t‖2. | (3.23) |
Differentiating (1.9) with respect to time, we get
∂2u∂t2−Δ∂u∂t+f′(u)∂u∂t=g′(u)∂u∂t(φ−Δφ)+g(u)(∂φ∂t−Δ∂φ∂t). | (3.24) |
Multiplying (3.24) by
12ddt‖∂u∂t‖2+‖∇∂u∂t‖2+∫Ωf′(u)|∂u∂t|2dx=∫Ωg′(u)|∂u∂t|2(φ−Δφ)dx+∫Ωg(u)∂u∂t(∂φ∂t−Δ∂φ∂t)dx. | (3.25) |
Using (1.10), we write,
∫Ωg(u)∂u∂t(∂φ∂t−Δ∂φ∂t)dx=∫Ωg(u)∂u∂t(−g(u)∂u∂t+Δφ)dx=−∫Ω|g(u)∂u∂t|2dx+∫Ωg(u)∂u∂tΔφdx. | (3.26) |
Owing to (3.26), (3.25) reads
12ddt‖∂u∂t‖2+‖∇∂u∂t‖2+∫Ωf′(u)|∂u∂t|2dx=∫Ωg′(u)|∂u∂t|2(φ−Δφ)dx+∫Ωg(u)∂u∂tΔφdx−∫Ω|g(u)∂u∂t|2dx, | (3.27) |
since
∫Ωg′(u)|∂u∂t|2(φ−Δφ)dx≤c∫Ω|∂u∂t|2(|φ|+|Δφ|)dx≤12‖∇∂u∂t‖2+c(‖φ‖2+‖Δφ‖2), | (3.28) |
∫Ωg(u)∂u∂tΔφdx=−∫Ωg′(u)∇u∂u∂t∇φdx−∫Ωg(u)∇∂u∂t∇φdx | (3.29) |
and then,
|∫Ωg′(u)∇u∂u∂t∇φdx|≤c∫Ω|∇u||∂u∂t||∇φ|dx≤16‖∇∂u∂t‖2+c‖∇u‖2‖Δφ‖2 | (3.30) |
and
|∫Ωg(u)∇∂u∂t∇φdx|≤c∫Ω(|u|+1)|∇∂u∂t||∇φ|dx≤16‖∇∂u∂t‖2+c(‖∇u‖2+1)‖∇φ‖2. | (3.31) |
Furthemore,
∫Ω|g(u)∂u∂t|2dx≤c∫Ω(|u|+1)2|∂u∂t|2dx≤c(‖∇u‖2+‖u‖2+1)‖∂u∂t‖2. | (3.32) |
Now, collecting (3.27)–(3.32) and owing to (3.20), we are led to
ddt‖∂u∂t‖2+c‖∇∂u∂t‖2≤c′(‖u‖2H1(Ω)+1)(‖∂u∂t‖2+‖φ‖2H2(Ω)). | (3.33) |
Adding (3.19),
dE3dt+c(‖∂u∂t‖2H1(Ω)+‖∂φ∂t‖2H2(Ω))≤c′E3+c″, | (3.34) |
where
E3=E2+ε1‖∇φ‖2+ε2‖∂u∂t‖2 | (3.35) |
enjoys
E3≥c(‖u‖2H(Ω)+‖u‖k+2k+2+‖φ‖2H2(Ω))−c′ | (3.36) |
and
E3≤c″(‖u‖2H(Ω)+‖u‖k+2k+2+‖φ‖2H2(Ω))−c‴. | (3.37) |
We complete the proof applying Gronwall's lemma.
We now give a uniqueness result
Theorem 3.3. Under assumptions of Theorem 3.2 and assuming that (3.5) holds true. The problem (1.9)-(1.12) has a unique solution
Proof. We suppose the existence of two solutions
∂u∂t−Δu+f(u1)−f(u2)=g(u1)(φ−Δφ)+(g(u1)−g(u2))(φ2−Δφ2), | (3.38) |
∂φ∂t−Δ∂φ∂t−Δφ=−g(u1)∂u∂t−(g(u1)−g(u2))∂u2∂t, | (3.39) |
u|∂Ω=φ|∂Ω=0, | (3.40) |
u|t=0=u01−u02,φ|t=0=φ01−φ02, | (3.41) |
with
Multiplying (3.38) by
12ddt‖∇u‖2+‖∂u∂t‖2+∫Ω(f(u1−f(u2)))∂u∂tdx=∫Ωg(u1)(φ−Δφ)∂u∂tdx+∫Ω(g(u1)−g(u2))(φ2−Δφ2)∂u∂tdx. | (3.42) |
Multiplying (3.39) by
12ddt(‖φ‖2+‖∇φ‖2)+‖∇φ‖2=−∫Ωg(u1)∂u∂tφdx−∫Ω(g(u1)−g(u2))∂u2∂tφdx. | (3.43) |
Multiplying (3.39) by
12ddt(‖∇φ‖2+‖Δφ‖2)+‖Δφ‖2=∫Ωg(u1)∂u∂tΔφdx+∫Ω(g(u1)−g(u2))∂u2∂tΔφdx. | (3.44) |
Finally, adding (3.42), (3.43) and (3.44), we get
dE4dt+‖∂u∂t‖2+‖∇φ‖2+‖Δφ‖2+∫Ω(f(u1)−f(u2))∂u∂tdx=∫Ω(g(u1)−g(u2))(φ2−Δφ2)∂u∂tdx−∫Ω(g(u1)−g(u2))(φ−Δφ)∂u2∂tdx, | (3.45) |
where
E4=‖∇u‖2+‖φ‖2+2‖∇φ‖2+‖Δφ‖2. | (3.46) |
Now, owing to (3.5), and applying Hölder's inequality for
∫Ω(f(u1)−f(u2))∂u∂tdx≤c∫Ω(|u2|k+1)|u||∂u∂t|dx≤c(‖∇u2‖2k+1)‖∇u‖2+‖∂u∂t‖2, | (3.47) |
we also get, thanks to (3.4), and applying Hölder's inequality,
∫Ω(g(u1)−g(u2))(φ2−Δφ2)∂u∂tdx≤c∫Ω|u||φ2−Δφ2||∂u∂t|dx≤c‖∇u‖2(‖φ2‖2+‖Δφ2‖2)+‖∂u∂t‖2 | (3.48) |
and
∫Ω(g(u1)−g(u2))(φ−Δφ)∂u2∂tdx≤c∫Ω|u||∂u∂t||φ−Δφ|dx≤c‖∂u2∂t‖2(‖φ‖2+‖Δφ‖2)+‖∇u‖2. | (3.49) |
From (3.45)-(3.49), we deduce a differential inequality of the type
dE4dt+c‖∂u∂t‖2≤c(‖∇u2‖2k+‖∂u2∂t‖2+‖φ2‖2+‖Δφ2‖2+1)E4. | (3.50) |
In particular,
dE4dt≤cE4 | (3.51) |
and then applying the Gronwall's lemma to (3.51), we end the proof.
This section is devoted to the existence of bounded absorbing sets for the semigroup
∀ϵ>0,|G(u)|2≤ϵF(s)+cϵ,s∈R. | (4.1) |
We then have
Theorem 4.1. Under the assumptions of the Theorem 3.3 and assuming that (4.1) holds true. Then,
Proof. Going from (3.8) and (3.10), we get, summing (3.8) and
dE5dt+2(c‖∇u‖2+δ∫ΩF(u)dx+‖∂u∂t‖2+‖∇φ‖2+‖Δφ‖2)≤2c′δ∫Ω|G(u)|2dx+δ(‖φ‖2+‖Δφ‖2)+c″≤2c′δ∫Ω|G(u)|2dx+δ(c‖∇φ‖2+‖Δφ‖2)+c″, | (4.2) |
where
E5=δ‖u‖2+‖∇u‖2+2∫ΩF(u)dx+‖φ‖2+2‖∇φ‖2+‖Δφ‖2 | (4.3) |
satisfies
E5≥c(‖u‖2H1(Ω)+‖u‖k+2k+2+‖φ‖2H2(Ω))−c′ | (4.4) |
and
E5≤c″(‖u‖2H1(Ω)+‖u‖k+2k+2+‖φ‖2H2(Ω))−c‴. | (4.5) |
From (4.2) and owing to (4.1), we obtain
dE5dt+2(c‖∇u‖2+δ∫ΩF(u)dx+‖∂u∂t‖2+‖∇φ‖2+‖Δφ‖2)≤Cϵ∫ΩF(u)dx+δ(c‖∇φ‖2+‖Δφ‖2)+C′ϵ, | (4.6) |
where
2δ≥Cϵand2>cδ, | (4.7) |
we then deduce from (4.6),
dE5dt+c(E5+‖∂u∂t‖2)≤c′, | (4.8) |
we complete the proof applying the Gronwall's lemma.
Remark 4.2. It follows from theorems 3.1, 3.2 and 4.1 that we can define the family solving operators:
S(t):Φ⟶Φ,(u0,φ0)↦(u(t),φ(t)),∀t≥0, | (4.9) |
where
The aim of this section is to study the spatial behavior of solutions in a semi-infinite cylinder, assuming that such solutions exist. This study is motivated by the possibility of extending results obtained above to the case of unbounded domains like semi-infinite cylinders. To do so, we will study the behavior of solutions in a semi-infinite cylinder denoted
u=φ=0on(0,+∞)×∂D×(0,T) | (5.1) |
and
u(0,x2,x3;t)=h(x2,x3;t),φ(0,x2,x3;t)=l(x2,x3;t)on{0}×D×(0,T), | (5.2) |
where
We also consider following initial data
u|t=0=φ|t=0=0onR. | (5.3) |
Let us suppose that such solutions exist. We consider the function
Fw(z,t)=∫t0∫D(z)e−ws(usu,1+φ(φ,1+φ,1s)+φsφ,1)dads, | (5.4) |
where
Fw(z+h,t)−Fw(z,t)=e−wt2∫R(z,z+h)(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dx+∫t0∫R(z,z+h)e−ws(|us|2+|∇φ|2+|Δφ|2)dxds+w2∫t0∫R(z,z+h)e−ws(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dxds, | (5.5) |
where
Hence,
∂Fw∂t(z,t)=e−wt2∫D(z)(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)da+∫t0∫D(z)e−ws(|us|2+|∇φ|2+|Δφ|2)dads+w2∫t0∫D(z)e−ws(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dads. | (5.6) |
We consider a second function, namely,
Gw(z,t)=∫t0∫D(z)e−ws(usu,1+φ(θ,1+φ,1s))dads, | (5.7) |
where
Similarly, we have
Gw(z+h,t)−Gw(z,t)=e−wt2∫R(z,z+h)(|u|2+|∇θ|2)dx+∫t0∫R(z,z+h)e−ws(|∇u|2+f(u)u+uΔφ+|φ|2+|∇φ|2)dxds+w2∫t0∫R(z,z+h)e−ws(|u|2+|∇θ|2)dxds+∫t0∫R(z,z+h)e−ws(G(u)−g(u)u)φdxds | (5.8) |
and then
∂Gw∂t(z,t)=e−wt2∫D(z)(|u|2+|∇θ|2)da+∫t0∫D(z)e−ws(|∇u|2+f(u)u+uΔφ+|φ|2+|∇φ|2)dads+w2∫t0∫D(z)e−ws(|u|2+|∇θ|2)dads+∫t0∫D(z)e−ws(G(u)−g(u)u)φdads. | (5.9) |
We choose
2F(u)+τu2≥C1u2,C1>0. | (5.10) |
Now, we focus on the nonliear part i.e.,
w(F(u)+τ2|u|2)+τf(u)u+τ(G(u)−g(u)u)φ+w2|φ|2. | (5.11) |
We assume that
For
w(F(u)+τ2|u|2)+τf(u)u+τ(G(u)−g(u)u)φ+w2|φ|2≥C3(|u|2+|φ|2+|Δφ|2). | (5.12) |
Taking into account previous choices, it clearly appears that the following function
Hw=Fw+τGw | (5.13) |
satisfies
∂Hw∂t(z,t)≥C4∫t0∫D(z)e−ws(|u|2+|∇u|2+|us|2+|φ|2+|∇φ|2+|Δφ|2+|∇θ|2)dads. | (5.14) |
We give now an estimate of
|Fw|≤(∫t0∫D(z)e−wsu2sdads)1/2(e−wsu2,1)1/2+(∫t0∫D(z)e−wsφ2dads)1/2(e−wsφ2,1)1/2+(∫t0∫D(z)e−wsφ2dads)1/2(e−wsφ2,1s)1/2+(∫t0∫D(z)e−wsφ2sdads)1/2(e−wsφ2,1)1/2≤C5∫t0∫D(z)e−ws(|∇u|2+|us|2+|φ|2+|∇φ|2+|φs|2+|∇φs|2)dads,C5>0. | (5.15) |
Similarly,
|Gw|≤(∫t0∫D(z)e−wsu2dads)1/2(∫t0∫D(z)e−wsu2,1dads)1/2+(∫t0∫D(z)e−wsφ2dads)1/2(∫t0∫D(z)e−wsθ2,1dads)1/2+(∫t0∫D(z)e−wsφ2sdads)1/2(∫t0∫D(z)e−wsφ2,1dads)1/2≤C6∫t0∫D(z)e−ws(|u|2+|∇u|2+|φ|2+|∇φ|2+|∇θ|2)dads,C6>0. | (5.16) |
We then deduce the existence of a positive constant
|Hw|≤C7∂Hw∂z. | (5.17) |
Remark 5.1. The inequality (5.17) is well known in the study of spatial estimates and leads to the Phragmén-Lindelöf alternative (see, e.g., [9], [39]).
In particular, if there exist
Hw(z,t)≥Hw(z0,t)eC−17(z−z0),z≥z0. | (5.18) |
The estimate (5.18) gives information in terms of measure defined in the cylinder. Actually, from (5.18), we deduce that
e−wt2∫R(0,z)(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dx+τe−wt2∫R(0,z)(|u|2+|∇θ|2)dx+∫t0∫R(0,z)e−ws(|us|2+|∇φ|2+|Δφ|2)dxds+τ∫t0∫R(0,z)e−ws(|∇u|2+f(u)u+g(u)uΔφ+|φ|2+2|∇φ|2)dxds+w2∫t0∫R(0,z)e−ws(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dxds+τw2∫t0∫R(0,z)e−ws(|u|2+|∇θ|2)dx+τ∫t0∫R(0,z)e−ws(G(u)−g(u)u)φdxds | (5.19) |
tends to infinity exponentially fast. On the other hand, if
−Hw(z,t)≤−Hw(0,t)eC−17z,z≥0, | (5.20) |
where
Ew(z,t)=e−wt2∫R(z)(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dx+τe−wt2∫R(z)(|u|2+|∇θ|2)dx+∫t0∫R(z)e−ws(|us|2+|∇φ|2+|Δφ|2)dxds+τ∫t0∫R(z)e−ws(|∇u|2+f(u)u+g(u)uΔφ+|φ|2+2|∇φ|2)dxds+w2∫t0∫R(z)e−ws(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dxds+τw2∫t0∫R(z)e−ws(|u|2+|∇θ|2)dx+τ∫t0∫R(z)e−ws(G(u)−g(u)u)φdxds | (5.21) |
and
Finally, setting
Ew(z,t)=12∫R(z)(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dx+τ12∫R(z)(|u|2+|∇θ|2)dx+∫t0∫R(z)(|us|2+|∇φ|2+|Δφ|2)dxds+τ∫t0∫R(z)(|∇u|2+f(u)u+g(u)uΔφ+|φ|2+2|∇φ|2)dxds+w2∫t0∫R(z)(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dxds+τw2∫t0∫R(z)(|u|2+|∇θ|2)dx+τ∫t0∫R(z)(G(u)−g(u)u)φdxds. | (5.22) |
We have the following result
Theorem 5.2. Let
Ew(z,t)≤Ew(0,t)ewt−C−17z,z≥0, | (5.23) |
where the energy
The author would like to thank Alain Miranville for his advices and for his careful reading of this paper.
The author declares no conflicts of interest in this paper.
[1] |
J. B. Liu, M. Arockiaraj, M. Arulperumjothi, S. Prabhu, Distance based and bond assitive topological indices of certain repurposed antiviral drug compounds tested for trating COVID-19, Int. J. Quantum Chem., 121 (2021), e26617. https://doi.org/10.1002/qua.26617 doi: 10.1002/qua.26617
![]() |
[2] | N. Makoah, G. Pradel, Antimalarial drugs resistance in Plasmodium falciparum and the current strategies to overcome them, Microb. Pathog. Strategies Combating Sci. Technol. Edu., 1 (2013), 269–282. |
[3] |
A. Rauf, M. Naeem, A. Aslam, Quantitative structure-property relationship of edge weighted and degree- based entropy of benzene derivatives, Int. J. Quantum Chem., 122 (2022), e26839. https://doi.org/10.1002/qua.26839. doi: 10.1002/qua.26839
![]() |
[4] | H. Ali, U. Babar, S. H. Arshad, A. Sajjad, On some neighbourhood degree-based indices of graphs derived from honeycomb structure, Konuralp J. Math., 9 (2021), 164–175. |
[5] |
K. Roy, Topological descriptors in drug design and modeling studies, Mol. Diversity, 8 (2004), 321–323. https://doi.org/10.1023/b:modi.0000047519.35591.b7 doi: 10.1023/b:modi.0000047519.35591.b7
![]() |
[6] |
J. M. Sigarreta, Extremal problems on exponential vertex-degree-based topological indices, Math. Biosci. Eng., 19 (2022), 6985–6995. https://doi.rog/10.3934/mbe.2022329 doi: 10.3934/mbe.2022329
![]() |
[7] |
J. M. Sigarreta, Mathematical properties of variable topological indices, Symmetry, 13 (2021), 43. https://doi.org/10.3390/sym13010043 doi: 10.3390/sym13010043
![]() |
[8] |
W. Gao, W. Wang, M. R. Farahani, Topological indices study of molecular structure in anticancer drugs, J. Chem., 2016 (2016), 3216327. https://doi.org/10.1155/2016/3216327 doi: 10.1155/2016/3216327
![]() |
[9] |
J. F. Zhong, A. Rauf, M. Naeem, J. Rahman, A. Aslam, Quantitative structure-property relationships (QSPR) of valency based topological indices with Covid-19 drugs and application, Arab. J. Chem., 14 (2021), 1–16. https://doi.org/10.1016/j.arabjc.2021.103240 doi: 10.1016/j.arabjc.2021.103240
![]() |
[10] |
S. A. K. Kirmani, P. Ali, F. Azam, Topological indices and QSPR/QSAR analysis of some antiviral drugs being investigated for the treatment of COVID-19 patients, Int. J. Quantum Chem., 121 (2021), 1–22. https://doi.org/10.1002/qua.26594 doi: 10.1002/qua.26594
![]() |
[11] |
M. C. Shanmukha, A. Usha, N. S. Basavarajappa, K. C. Shilpa, Graph entropies of porous graphene using topological indices, Comput. Theor. Chem., 1197 (2021), 1–11. https://doi.org/10.1016/j.comptc.2021.113142 doi: 10.1016/j.comptc.2021.113142
![]() |
[12] |
M. C. Shanmukha, A. Usha, K. C. Shilpa, N. S. Basavarajappa, M-polynomial and neighborhood M- polynomial methods for topological indices of porous graphene, Eur. Phys. J. Plus, 136 (2021), 1–16. https://doi.org/10.1140/epjp/s13360-021-02074-8. doi: 10.1140/epjp/s13360-021-02074-8
![]() |
[13] | M. Randic, Comparative structure-property studies: Regressions using a single descriptor, Croat. Chem. Acta, 66 (1993), 289–312. |
[14] | M. Randic, Quantitative structure-propert relationship: Boiling points and planar benzenoids, New J. Chem., 20 (1996), 1001–1009. |
[15] |
M. C. Shanmukha, N. S. Basavarajappa, K. C. Shilpa, A. Usha, Degree-based topological indices on anticancer drugs with QSPR analysis, Heliyon, 6 (2020), e04235. https://doi.org/10.1016/j.heliyon.2020.e04235 doi: 10.1016/j.heliyon.2020.e04235
![]() |
[16] |
W. Gao, M. R. Farahani, S. Wang, M. N. Husin, On the edge-version atom-bond connectivity and geometric arithmetic indices of certain graph operations, Appl. Math. Comput., 308 (2017), 11–17. https://doi.org/10.1016/j.amc.2017.02.046 doi: 10.1016/j.amc.2017.02.046
![]() |
[17] |
H. Wang, J. B. Liu, S. Wang, W. Gao, S. Akhter, M. Imran, M. R. Farahani. Sharp bounds for the general sum-connectivity indices of transformation graphs, Discrete Dyn. Nat. Soc., 2017 (2017), 2941615. https://doi.org/10.1155/2017/2941615 doi: 10.1155/2017/2941615
![]() |
[18] | W. Gao, M. K. Jamil, A. Javed, M. R. Farahani, M. Imran, Inverse sum indeg index of the line graphs of subdivision graphs of some chemical structures, UPB Sci. Bull. B, 80 (2018), 97–104. |
[19] | S. Akhter, M. Imran, W. Gao, M. R. Farahani, On topological indices of honeycomb networks and graphene networks, Hacettepe J. Math. Stat., 47 (2018), 19–35. |
[20] |
X. Zhang, X. Wu, S. Akhter, M. K. Jamil, J. B. Liu, M. R. Farahani, Edge-version atom-bond connectivity and geometric arithmetic indices of generalized bridge molecular graphs, Symmetry, 10 (2018), 751. https://doi.org/10.3390/sym10120751 doi: 10.3390/sym10120751
![]() |
[21] |
H. Yang, A. Q. Baig, W. Khalid, M. R. Farahani, X. Zhang, M-polynomial and topological indices of benzene ring embedded in P-type surface network, J. Chem., 2019 (2019), 7297253. https://doi.org/10.1155/2019/7297253 doi: 10.1155/2019/7297253
![]() |
[22] |
D. Y. Shin, S. Hussain, F. Afzal, C. Park, D. Afzal, M. R. Farahani, Closed formulas for some new degree based topological descriptors using Mpolynomial and boron triangular nanotube, Front. Chem., 8 (2021), 613873. https://doi.org/10.3389/fchem.2020.613873 doi: 10.3389/fchem.2020.613873
![]() |
[23] |
M. Cancan, S. Ediz, M. R. Farahani, On ve-degree atom-bond connectivity, sum-connectivity, geometric-arithmetic and harmonic indices of copper oxide, Eurasian Chem. Commun., 2 (2020), 641–645. https://doi.org/10.33945/SAMI/ECC.2020.5.11 doi: 10.33945/SAMI/ECC.2020.5.11
![]() |
[24] |
S. Ediz, M. Cancan, M. Alaeiyan, M. R. Farahani, Ve-degree and Ev-degree topological analysis of some anticancer drugs, Eurasian Chem. Commun., 2 (2020), 834–840. https://doi.org/10.22034/ECC.2020.107867 doi: 10.22034/ECC.2020.107867
![]() |
[25] |
S. Ediz, M. Alaeiyan, M. R. Farahani, M. Cancan, On Van, r and s topological properties of the Sierpinski triangle networks, Eurasian Chem. Commun., 2 (2020), 819–826. https://doi.org/10.33945/SAMI/ECC.2020.7.9 doi: 10.33945/SAMI/ECC.2020.7.9
![]() |
[26] | F. Harary, Graph Theory, Addison-Wesely, Reading Mass, 1969. https://doi.org/10.21236/AD0705364 |
[27] | V. R. Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India, 2012. |
[28] | I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986. https://doi.org/10.1515/9783112570180 |
[29] | S. Fajtlowicz, On Conjectures of Grafitti Ⅱ, Cong. Numer., 60 (1987), 189–197. |
[30] |
B. Furtula, I. Gutman, A forgotton topological index, J. Math. Chem., 53 (2015), 213–220. https://doi.org/10.1007/s10910-015-0480-z doi: 10.1007/s10910-015-0480-z
![]() |
[31] |
W. Zhao, M. C. Shanmukha, A. Usha, M. R. Farahani, K. C. Shilpa, Computing SS index of certain dendrimers, J. Math., 2021 (2021), 7483508. https://doi.org/10.1155/2021/7483508. doi: 10.1155/2021/7483508
![]() |
[32] | P. S. Ranjini, V. Lokesha, A. Usha, Relation between phenylene and hexagonal squeeze using harmonic index, Int. J. Graph Theory, 1 (2013), 116–121. |