
An arterial vessel has three layers, namely, the intima, the media and the adventitia. Each of these layers is modeled to have two families of strain-stiffening collagen fibers that are transversely helical. In an unloaded configuration, these fibers are coiled up. In the case of a pressurized lumen, these fibers stretch and start to resist further outward expansion. As the fibers elongate, they stiffen, affecting the mechanical response. Having a mathematical model of vessel expansion is crucial in cardiovascular applications such as predicting stenosis and simulating hemodynamics. Thus, to study the mechanics of the vessel wall under loading, it is important to calculate the fiber configurations in the unloaded configuration. The aim of this paper is to introduce a new technique of using conformal maps to numerically calculate the fiber field in a general arterial cross-section. The technique relies on finding a rational approximation of the conformal map. First, points on the physical cross section are mapped to points on a reference annulus using a rational approximation of the forward conformal map. Next, we find the angular unit vectors at the mapped points, and finally a rational approximation of the inverse conformal map is used to map the angular unit vectors back to vectors on the physical cross section. We have used MATLAB software packages to achieve these goals.
Citation: Avishek Mukherjee, Pak-Wing Fok. A new approach to calculating fiber fields in 2D vessel cross sections using conformal maps[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 3610-3623. doi: 10.3934/mbe.2023168
[1] | Yixin Zhuo, Ling Li, Jian Tang, Wenchuan Meng, Zhanhong Huang, Kui Huang, Jiaqiu Hu, Yiming Qin, Houjian Zhan, Zhencheng Liang . Optimal real-time power dispatch of power grid with wind energy forecasting under extreme weather. Mathematical Biosciences and Engineering, 2023, 20(8): 14353-14376. doi: 10.3934/mbe.2023642 |
[2] | Rami Al-Hajj, Gholamreza Oskrochi, Mohamad M. Fouad, Ali Assi . Probabilistic prediction intervals of short-term wind speed using selected features and time shift dependent machine learning models. Mathematical Biosciences and Engineering, 2025, 22(1): 23-51. doi: 10.3934/mbe.2025002 |
[3] | Xiaoqiang Dai, Kuicheng Sheng, Fangzhou Shu . Ship power load forecasting based on PSO-SVM. Mathematical Biosciences and Engineering, 2022, 19(5): 4547-4567. doi: 10.3934/mbe.2022210 |
[4] | Sue Wang, Jing Li, Saleem Riaz, Haider Zaman, Pengfei Hao, Yiwen Luo, Alsharef Mohammad, Ahmad Aziz Al-Ahmadi, NasimUllah . Duplex PD inertial damping control paradigm for active power decoupling of grid-tied virtual synchronous generator. Mathematical Biosciences and Engineering, 2022, 19(12): 12031-12057. doi: 10.3934/mbe.2022560 |
[5] | Jian Fang, Na Li, Chenhe Xu . A nonlocal population model for the invasion of Canada goldenrod. Mathematical Biosciences and Engineering, 2022, 19(10): 9915-9937. doi: 10.3934/mbe.2022462 |
[6] | Sue Wang, Chaohong Zhou, Saleem Riaz, Xuanchen Guo, Haider Zaman, Alsharef Mohammad, Ahmad Aziz Al-Ahmadi, Yasser Mohammed Alharbi, NasimUllah . Adaptive fuzzy-based stability control and series impedance correction for the grid-tied inverter. Mathematical Biosciences and Engineering, 2023, 20(2): 1599-1616. doi: 10.3934/mbe.2023073 |
[7] | Tangsheng Zhang, Hongying Zhi . A fuzzy set theory-based fast fault diagnosis approach for rotators of induction motors. Mathematical Biosciences and Engineering, 2023, 20(5): 9268-9287. doi: 10.3934/mbe.2023406 |
[8] | Yunfeng Liu, Guowei Sun, Lin Wang, Zhiming Guo . Establishing Wolbachia in the wild mosquito population: The effects of wind and critical patch size. Mathematical Biosciences and Engineering, 2019, 16(5): 4399-4414. doi: 10.3934/mbe.2019219 |
[9] | Lihe Liang, Jinying Cui, Juanjuan Zhao, Yan Qiang, Qianqian Yang . Ultra-short-term forecasting model of power load based on fusion of power spectral density and Morlet wavelet. Mathematical Biosciences and Engineering, 2024, 21(2): 3391-3421. doi: 10.3934/mbe.2024150 |
[10] | Mo'tassem Al-Arydah, Robert Smith? . Controlling malaria with indoor residual spraying in spatially heterogenous environments. Mathematical Biosciences and Engineering, 2011, 8(4): 889-914. doi: 10.3934/mbe.2011.8.889 |
An arterial vessel has three layers, namely, the intima, the media and the adventitia. Each of these layers is modeled to have two families of strain-stiffening collagen fibers that are transversely helical. In an unloaded configuration, these fibers are coiled up. In the case of a pressurized lumen, these fibers stretch and start to resist further outward expansion. As the fibers elongate, they stiffen, affecting the mechanical response. Having a mathematical model of vessel expansion is crucial in cardiovascular applications such as predicting stenosis and simulating hemodynamics. Thus, to study the mechanics of the vessel wall under loading, it is important to calculate the fiber configurations in the unloaded configuration. The aim of this paper is to introduce a new technique of using conformal maps to numerically calculate the fiber field in a general arterial cross-section. The technique relies on finding a rational approximation of the conformal map. First, points on the physical cross section are mapped to points on a reference annulus using a rational approximation of the forward conformal map. Next, we find the angular unit vectors at the mapped points, and finally a rational approximation of the inverse conformal map is used to map the angular unit vectors back to vectors on the physical cross section. We have used MATLAB software packages to achieve these goals.
Numerical methods of Navier-Stokes/Darcy have attracted a lot of attention. So far, a great deal of numerical methods are proposed to solve this model by virtue of different ways, such as finite element methods[12], discontinuous Galerkin finite element methods[5], two-grid methods[1,15,16], modified two-grid methods[6], partitioned time stepping method[7], characteristic stabilized finite element methods[8], mortar finite element methods [2], grad-div stabilized projection finite element method[14], modular grad-div method[11] and so on. The grad-div stabilized method is first introduced in [4], which can penalize mass conservation and improve the solution quality efficiently. Recently, the effectiveness of the grad-div stabilized method has been proved in finite element simulation of Stokes and Navier-Stokes equation[10]. However, this method leads to a singular matrix stemming from grad-div term, and the larger stabilized parameter will cause solver breakdown. As a alternative method for grad-div stabilization, the modular grad-div stabilization method is introduced in [3]. The modular grad-div stabilization method for the Stokes/Darcy model is proposed in [13]. The modular grad-div stabilization method is not only easy to implement, but also avoids the influence of large parameters on the solution as well as preserving the advantages of the grad-div stabilization method.
In this paper, we extended the modular grad-div stabilization methods from Stokes/Darcy model to Navier-Stokes/Darcy model. Compare to Navier-Stokes model, the convection term causes some difficulties in theoretical analysis and numerical simulation. To deal with convection term, the assumption
The rest of this paper is organized as follows: In section 2, some notations and the time-dependent Navier-Stokes/Darcy model are introduced; In section 3, we give the modular grad-div stabilization method, and stability analysis is provided; In section 4, under some regularity assumptions imposed on the true solution, error estimates are also given; In section 5, Some numerical experiments are given to verify the theoretical result, we compared with the standard scheme, standard grad-div scheme and modular grad-div scheme in the numerical experiment; Finally some conclusions are obtained in section 6.
The model we considered is confined in a bounded domain
The time-dependent Navier-Stokes equation govern the fluid flow in
∂u∂t−νΔu+(u⋅∇)u+∇p=f1(x,t)in Ωf×(0,T),∇⋅u=0in Ωf×(0,T),u(x,0)=u0(x)in Ωf. | (1) |
here
The Darcy equation govern the porous media flow in
S0∂ϕ∂t+∇⋅up=f2(x,t)in Ωp×(0,T),up=−K∇ϕin Ωp×(0,T),ϕ(x,0)=ϕ0(x)in Ωp. | (2) |
here the first equation is the saturated flow model and the second equation is the Darcy's law.
We know that
ϕ=z+ppρg |
is the piezometric head, where
Substituting the second formula of (2) into the first formula of (2), the following Darcy equation can be obtained:
S0∂ϕ∂t−∇⋅(K∇ϕ)=f2(x,t)in Ωp×(0,T). | (3) |
The interface conditions of the conservation of mass, balance of forces, and the Beavers-Joseph-Saffman condition are imposed on the interface
u⋅nf+up⋅np=0on Γ×(0,T) | (4) |
p−νnf∂u∂nf=gϕon Γ×(0,T), | (5) |
−ντi∂u∂nf=α√gν√τi⋅Kτiu⋅τi,i=1,⋅⋅⋅,d−1on Γ×(0,T), | (6) |
where,
For simplicity of analysis, we impose the following boundary conditions on
u=0on Γf×(0,T)ϕ=0on Γp×(0,T) | (7) |
In this paper, we assume that:
u⋅nf>0onΓ. | (8) |
The assumption is not hold for general case of Navier-Stokes/Darcy Model. But for the gentle river, the water infiltration satisfies the assumption
Next, Hillbert spaces will be introduced:
Hf={v∈(H1(Ωf))d:v=0 on Γf},Hp={ψ∈H1(Ωp): ψ=0 on Γp},Q=L2(Ωf). |
where
||u||Hf=||∇u||L2(Ωf)=√(∇u,∇u)Ωf ∀u∈Hf,||ϕ||Hp=||∇ϕ||L2(Ωp)=√(∇ϕ,∇ϕ)Ωf ∀ϕ∈Hp. |
Some discrete norms are defined as,
||w||2L2(0,T;Hs(Ωf,p))=ΔtN∑n=0||wn||2Hs(Ωf,p),||w||L∞(0,T;Hs(Ωf,p))=max0≤n≤N||wn||Hs(Ωf,p). |
Due to
af,c(u;v,w)=((u⋅∇)v,w)f+12(∇⋅u,v⋅w)f=12((u⋅∇)v,w)f−12((u⋅∇)w,v)f+12⟨v⋅w,u⋅nf⟩Γ, | (9) |
under the condition (8), we have
af,c(u;v,v)≥0. | (10) |
Then, we have the following estimates for
af,c(u,v,w)≤C1||∇u||||∇v||||∇w||,af,c(u,v,w)≤C2||u||||v||2||∇w||. | (11) |
In addition, we recall the Poincar
||v||L2≤cp||v||f||v||L2(Γ)≤ct||v||12L2(Ωf)||v||12H1(Ωf),||ψ||L2≤˜cp||ψ||p||ψ||L2(Γ)≤~ct||ψ||12L2(Ωp)||ψ||12H1(Ωp),||∇⋅u||≤√d||∇u||,d=2,or3. |
Thus, the weak formulation of the time-dependent Naiver-Stokes/Darcy model is to find
(ut,v)f+af(u,v)+b(v,p)+aΓ(v,ϕ)+af,c(u;u,v)=(f1,v)f∀v∈Hf,b(u,q)=0∀q∈Q,gS0(ϕt,ψ)p+ap(ϕ,ψ)−aΓ(u,ψ)=g(f2,ψ)p∀ψ∈Hp. | (12) |
Where
af(u,v)=ν(D(u),D(v))+d−1∑i=1∫Γα√νgτi⋅Kτi(u⋅τi)(v⋅τi)ds,ap(ϕ,ψ)=g(K∇ϕ,∇ψ)p,aΓ(v,ϕ)=g∫Γϕv⋅nfds,af,c(u,u,v)=((u⋅∇)u,v)f,b(v,p)=−(p,∇⋅v)f. |
Bilinear forms
af(u,v)≤C3||u||Hf||v||Hf,af(u,u)≥ν||u||2Hf,ap(ϕ,ψ)≤gλmax||ϕ||Hp||ψ||Hp,ap(ϕ,ϕ)≥gλmin||ϕ||2Hp | (13) |
The interface coupling term
|aΓ(u,ϕ)|≤C4||∇u||f||∇ϕ||p|aΓ(u,ϕ)|≤C5g2h−1||u||2f+||∇ϕ||2p,|aΓ(u,ϕ)|≤C6g2h−1||ϕ||2p+||∇u||2f | (14) |
Lemma 2.1. We assume that
f1∈L2(0,T;L2(Ωf)d),f2∈L2(0,T;L2(Ωp)d),K∈L∞(Ωp)d×d, |
and
0<kmin|x|2≤Kx⋅x≤kmax|x|2∀ x∈Ωp. |
Furthermore,
Lemma 2.2. (Discrete Gronwall Lemma). Let
aN+ΔtN∑n=0bn≤ΔtN−1∑n=0dnan+ΔtN∑n=0cn+H |
then for all
aN+ΔtN∑n=0bn≤exp(ΔtN−1∑n=0dn)(ΔtN∑n=0cn+H). |
We construct
infqh∈Qhsupvh∈Hfh(qh,∇⋅vfh)f||qh||Q||vfh||Hf≥β. | (15) |
Next, we divide time interval [0, T] into:
Algorithm 1 (The modular grad-div scheme).
For
Step1. Given
(ˆun+1h−unhΔt,vh)+af(ˆun+1h,vh)+b(vh,pn+1h)+aΓ(vh,ϕnh)+af,c(unh;ˆun+1h,vh)=(fn+11,vh)b(ˆun+1h,qh)=0gS0(ϕn+1h−ϕnhΔt,ψh)+ap(ϕn+1h,ψh)−aΓ(unh,ψh)=(fn+12,ψh) | (16) |
Step2. Given
(un+1h,vh)+(β+γΔt)(∇⋅un+1h,∇⋅vh)=(ˆun+1h,vh)+β(∇⋅unh,∇⋅vh) | (17) |
Lemma 3.1. For Algorithm 1, we can obtain the following result,
||ˆun+1h||=||un+1h||2+||ˆun+1h−un+1h||+2γΔt||∇⋅un+1h||2+β(||∇⋅un+1h||2−||∇⋅unh||2+||∇⋅(un+1h−unh)||2). |
Proof. Refer to Lemma 6 of [3] for proof details.
Theorem 3.2. (Unconditional Stability) For any
||uNh||2+β||∇uNh||2+gs0||ϕNh||2+N−1∑n=0(||ˆun+1h−unh||2+||ˆun+1h−un+1h||2+β||∇⋅(un+1h−unh)||2+gs0||ϕn+1h−ϕnh||2)+N−1∑n=02γΔt||∇⋅un+1h||2+N−1∑n=0νΔt||∇ˆun+1h||2+N−1∑n=0λmingΔ||∇ϕn+1h||2≤C(ΔtN−1∑n=0(2c2pν||fn+11||2+2c2pλming||fn+12||2)+||u0h||2+β||∇⋅u0h||2+gs0||ϕ0h||2), |
Where the constant
Proof. Taking
In this section, we will give some error estimates of our proposed method. Denote
u∈L∞(0,T;Hf∩Hk+1(Ωf)d),ut∈L∞(0,T;Hk+1(Ωf)d),utt∈L2(0,T;L2(Ωf)d).p∈L2(0,T;Q∩Hk(Ωf)).ϕ∈L∞(0,T;Hp∩Hk+1(Ωp)),ϕt∈L∞(0,T;Hk+1(Ωp)),ϕtt∈L2(0,T;L2(Ωp)) | (18) |
Then define a projection operator [12]:
Ph:(u(t),p(t),ϕ(t))∈Hf×Q×Hp→(Phu(t),Php(t),Phϕ(t))∈Hfh×Qh×Hph. |
when some regularity conditions on
||Phu(t)−u(t)||f≤Chk+1||u(t)||Hk+1(Ωf),||∇(Phu(t)−u(t))||f≤Chk||u(t)||Hk+1(Ωf),||Php(t)−p(t)||f≤Chk+1||p(t)||Hk+1(Ωf),||Phϕ(t)−ϕ(t)||p≤Chk+1||ϕ(t)||Hk+1(Ωp),||∇(Phϕ(t)−ϕ(t))||p≤Chk||ϕ(t)||Hk+1(Ωp) | (19) |
Next, we define the following error equations
enu=un−unh=(un−Phun)−(unh−Phun)=ηnu−θnu,enˆu=un−ˆunh=(un−Phun)−(ˆunh−Phun)=ηnu−θnˆuenp=pn−pnh=(pn−Phpn)−(pnh−Phpn)=ηnp−θnpenϕ=ϕn−ϕnh=(ϕn−Phϕn)−(ϕnh−Phϕn)=ηnϕ−θnϕ | (20) |
Lemma 4.1. For Algorithm 1, The following inequality holds
||θn+1ˆu||2≥||θn+1u||2+||θn+1ˆu−θn+1u||2+β(||∇⋅θn+1u||2−||∇⋅θnu||2+12||∇⋅(θn+1u−θnu)||2)+γΔt||∇⋅θn+1u||2−βΔt||∇⋅θnu||2−dβ(1+2Δt)||∇ηu,t||2L2(tn,tn+1;L2(Ωf))−dγΔt||∇ηn+1u||2 |
Proof. For the detailed proof process, please refer to Lemma 10 in [3].
Theorem 4.2. Under the regularity assumption (18). Suppose
||eNu||2+β||∇⋅eNu||2+||eNϕ||2+N−1∑n=0(||en+1ˆu−en+1u||2+||en+1ˆu−enu||2+β2||∇⋅(en+1ˆu−enu)||2+||en+1ϕ−enϕ||2)+N−1∑n=0γΔt||∇⋅en+1u||2+N−1∑n=0νΔt||∇en+1ˆu||2+N−1∑n=0gλminΔt||∇en+1ϕ||2≤C(h2k+Δt2+Δth2k) |
Proof. The true solution satisfies the following relations:
(un+1−unΔt,vh)+af(un+1,vh)+b(vh,pn+1)+aΓ(vh,ϕn+1)+af,c(un,un+1,vh)=(fn+11,vh)+(un+1−unΔt−un+1t,vh)−af,c(un+1−un,un+1,vh)b(un+1,qh)=0 |
gs0(ϕn+1−ϕnΔt,ψh)+ap(ϕn+1,ψh)−aΓ(un+1,ψh)=(fn+12,ψh)+gs0(ϕn+1−ϕnΔt−ϕn+1t,ψh). | (21) |
Subtracting (16) from (21), we arrive that
(en+1ˆu−enuΔt,vh)+af(en+1ˆu,vh)+b(vh,en+1p)+aΓ(vh,ϕn+1−ϕnh)+af,c(un,un+1,vh)−af,c(unh,ˆun+1h,vh)=(un+1−unΔt−un+1t,vh)−af,c(un+1−un,un+1,vh)b(en+1ˆu,qh)=0gso(en+1ϕ−enϕΔt,ψh)+ap(en+1ϕ,ψh)−aΓ(un+1−unh,ψh)=gs0(ϕn+1−ϕnΔt−ϕn+1t,ψh) | (22) |
Setting
||θn+1ˆu||2−||θnu||2+||θn+1ϕ||2−||θnϕ||2+||θn+1ˆu−θnu||2+||θn+1ϕ−θnϕ||2+2Δtaf(θn+1ˆu,θn+1ˆu)+2Δtap(θn+1ϕ,θn+1ϕ)=2(ηn+1u−ηnu,θn+1ˆu)+2gs0(ηn+1ϕ−ηnϕ,θn+1ϕ)+2Δtaf(ηn+1u,θn+1ˆu)+2Δtap(ηn+1ϕ,θn+1ϕ)+2Δtaf,c(un,un+1,θn+1ˆu)−2Δtaf,c(unh,ˆun+1h,θn+1ˆu)+2ΔtaΓ(θn+1ˆu,ϕn+1−ϕnh)−2ΔtaΓ(un+1−unh,θn+1ϕ)−2Δt(un+1−unΔt−un+1t,θn+1ˆu)+2Δtaf,c(un+1−un,un+1,θn+1ˆu)−2Δtgs0(ϕn+1−ϕnΔt−ϕn+1t,θn+1ϕ) | (23) |
Next, we bound each term on the right hand side of (23), by virtue of Cauchy-Schwarz-Young inequality,
2(ηn+1u−ηnu,θn+1ˆu)≤10c2pε1||ηu,t||2L2(tn,tn+1;L2(Ωf))+ε1Δt10||∇θn+1ˆu||22gs0(ηn+1ϕ−ηnϕ,θn+1ϕ)≤6gs20~c2pλmin||ηϕ,t||2L2(tn,tn+1;L2(Ωp))+gλnimΔt6||∇θn+1ϕ||22Δtaf(ηn+1u,θn+1ˆu)≤2C3Δt||∇ηn+1u||||∇θn+1ˆu||≤10C23Δtε2||∇ηn+1u||2+ε2Δt10||∇θn+1ˆu||22Δtap(ηn+1ϕ,θn+1ϕ)≤2gλmax||∇ηn+1ϕ||||∇θn+1ϕ||≤6gλ2maxΔtλmin||∇ηn+1ϕ||2+gλminΔt6||∇θn+1ϕ||22Δt(un+1−unΔt−un+1t,θn+1ˆu)−2Δtaf,c(un+1−un,un+1,θn+1ˆu)≤CΔt2ε3(||utt||2L2(tn,tn+1;L2(Ωf))+||∇ut||2L2(tn,tn+1;L2(Ωf)))+ε3Δt10||∇θn+1ˆu||2 |
2Δtgs0(ϕn+1−ϕnΔt−ϕn+1t,θn+1ϕ)≤6gs02~c2pΔt2λmin||ϕtt||2L2(tn,tn+1;L2(Ωp))+gλminΔt6||∇θn+1ϕ||2 | (24) |
For the interface terms, we treat them as follows:
2ΔtaΓ(θn+1ˆu,ϕn+1−ϕnh)=2ΔtaΓ(θn+1ˆu,ηnϕ)−2ΔtaΓ(θn+1ˆu,θnϕ)+2ΔtaΓ(θn+1ˆu,ϕn+1−ϕn)2ΔtaΓ(un+1−unh,θn+1ϕ)=2ΔtaΓ(ηnu,θn+1ϕ)−2ΔtaΓ(θnu,θn+1ϕ)+2ΔtaΓ(un+1−un,θn+1ϕ) | (25) |
So, we have the following estimates:
2ΔtaΓ(θn+1ˆu,ηnϕ)≤10C24Δtε4||∇ηnϕ||2+ε4Δt10||∇θn+1ˆu||22ΔtaΓ(θn+1ˆu,θnϕ)≤2Δt(C6g2h−1||θnϕ||2+||θn+1ˆu||2)≤10C6g2Δthε5||θnϕ||2+ε5Δt10||∇θn+1ˆu||22ΔtaΓ(θn+1ˆu,ϕn+1−ϕn)≤2Δt(C6g2h−1||ϕn+1−ϕn||2+||∇θn+1ˆu||2)≤10C6g2Δt2hε6||ϕt||2L2(tn,tn+1;L2(Ωp))+ε6Δt10||∇θn+1ˆu||22ΔtaΓ(ηnu,θn+1ϕ)≤6C24Δtgλmin||∇ηnu||2+gλminΔt6||∇θn+1ϕ||22ΔtaΓ(θnu,θn+1ϕ)≤2Δ(C5g2h−1||θnu||2+||∇θn+1ϕ||2)≤6C5gΔthλmin||θnu||2+gλminΔt6||∇θn+1ϕ||22ΔtaΓ(un+1−un,θn+1ϕ)≤2C4Δt||∇(un+1−un)||||∇θn+1ϕ||≤6C24Δt2gλmin||∇ut||2L2(tn,tn+1;L2(Ωf))+gλminΔt6||∇θn+1ϕ||2 | (26) |
For the trilinear form, we have
2Δtaf,c(un,un+1,θn+1ˆu)−2Δtaf,c(unh,ˆun+1h,θn+1ˆu)=2Δtaf,c(ηnu;un+1,θn+1ˆu)−2Δtaf,c(θnu;un+1,θn+1ˆu)+2Δtaf,c(ˆun+1h;ηn+1u,θn+1ˆu)+2Δtaf,c(unh−ˆun+1h,ηn+1u,θn+1ˆu), | (27) |
then
2Δtaf,c(ηnu;un+1,θn+1ˆu)≤2C1Δt||∇ηnu||||∇un+1||||∇θn+1ˆu||≤2C1Δt(||∇ηnu||2||∇un+1||22+||∇θn+1ˆu||22)≤10C21Δtε7||∇ηnu||2||∇un+1||2+ε7Δt10||∇θn+1ˆu||22Δtaf,c(θnu;un+1,θn+1ˆu)≤2C2Δt||θnu||||un+1||2||∇θn+1ˆu|| |
≤10C22Δtε8||un+1||22||θnu||2+ε8Δt10||∇θn+1ˆu||22Δtaf,c(ˆun+1h;ηn+1u,θn+1ˆu)≤2C1Δt||∇ˆun+1h||||∇ηn+1u||||∇θn+1ˆu||≤10C21Δtε9||∇ˆun+1h||2||∇ηn+1u||2+ε9Δt10||∇θn+1ˆu||22Δtaf,c(unh−ˆun+1h,ηn+1u,θn+1ˆu)≤2C1Δt||∇(unh−ˆun+1h)||||∇ηn+1u||||∇θn+1ˆu||≤10C21Δtε10||∇(unh−ˆun+1h)||2||∇ηn+1u||2+ε10Δt10||∇θn+1ˆu||2≤20C21Δtε10(||∇unh||2+||∇ˆun+1h||2)||∇ηn+1u||2+ε10Δt10||∇θn+1ˆu||2 | (28) |
Combining Lemma 4.1 with the properties (13), we obtain
||θn+1u||2−||θnu||2+||θn+1ϕ||2−||θnϕ||2+β||∇⋅θn+1u||2−β||∇⋅θnu||2+||θn+1ˆu−θnu||2+||θn+1ˆu−θn+1u||2+||θn+1ϕ−θnϕ||2+β2||∇⋅(θn+1u−θnu)||2+γΔt||∇⋅θn+1u||2+2νΔt||∇θn+1ˆu||2+2gλminΔt||∇θn+1ϕ||2≤2(ηn+1u−ηnu,θn+1ˆu)+2gs0(ηn+1ϕ−ηnϕ,θn+1ϕ)+2Δtaf(ηn+1u,θn+1ˆu)+2Δtap(ηn+1ϕ,θn+1ϕ)+2Δtaf,c(ηnu;un+1,θn+1ˆu)−2Δtaf,c(θnu;un+1,θn+1ˆu)+2Δtaf,c(ˆun+1h;ηn+1u,θn+1ˆu)+2Δtaf,c(unh−ˆun+1h,ηn+1u,θn+1ˆu)+2ΔtaΓ(θn+1ˆu,ηnϕ)−2ΔtaΓ(θn+1ˆu,θnϕ)+2ΔtaΓ(θn+1ˆu,ϕn+1−ϕn)−2ΔtaΓ(ηnu,θn+1ϕ)+2ΔtaΓ(θnu,θn+1ϕ)−2ΔtaΓ(un+1−un,θn+1ϕ)−2Δt(un+1−unΔt−un+1t,θn+1ˆu)+2Δtaf,c(un+1−un,un+1,θn+1ˆu)−2Δtgs0(ϕn+1−ϕnΔt−ϕn+1t,θn+1ϕ)+βΔt||∇⋅θnu||2+dβ(1+2Δt)||∇ηu,t||2L2(tn,tn+1;L2(Ωf))+dγΔt||∇ηn+1u||2. | (29) |
Inserting the above results into (29) and let
||θn+1u||2−||θnu||2+β||∇⋅θn+1u||2−β||∇⋅θnu||2+||θn+1ϕ||2−||θnϕ||2+||θn+1ˆu−θnu||2+||θn+1ˆu−θn+1u||2+||θn+1ϕ−θnϕ||2+β2||∇⋅(θn+1u−θnu)||2+γΔt||∇⋅θn+1u||2+νΔt||∇θn+1ˆu||2+gλminΔt||∇θn+1ϕ||2≤10c2pν||ηu,t||2L2(tn,tn+1;L2(Ωf))+(10C23Δtν+dγΔt)||∇ηn+1u||2+6gS20~c2pλmin||ηϕ,t||2L2(tn,tn+1;L2(Ωp))+6gλ2maxΔtλmin||∇ηn+1ϕ||2+6C24Δtgλmin||∇ηnu||2++10C24Δtν||∇ηnϕ||2+(6C5gΔthλmin+10C22Δtν||un+1||22)||θnu||2+Δtβ||∇⋅θnu||2+10C6g2Δthν||θnϕ||2+(10C21Δtν||∇ˆun+1h||2+20C21Δtν(||∇unh||2+||∇ˆun+1h||2))||∇ηn+1u||2 |
+10C21Δtν||∇un+1||2||∇ηnu||2+CΔt2ν||utt||2L2(tn,tn+1;L2(Ωf))+(CΔt2ν+6C24Δt2gλmin)||∇ut||2L2(tn,tn+1;L2(Ωf))+6gS20~c2pΔt2λmin||ϕtt||2L2(tn,tn+1;L2(Ωp))+10C6g2Δt2hν||ϕt||2L2(tn,tn+1;L2(Ωp))+dβ(1+2Δt)||∇ηu,t||2L2(tn,tn+1;L2(Ωf)) | (30) |
Denote
||θNu||2+β||∇⋅θNu||2+||θNϕ||2+N−1∑n=0(||θn+1ˆu−θnu||2+||θn+1ˆu−θn+1u||2+β2||∇⋅||θn+1ˆu−θnu||2+||θn+1ϕ−θnϕ||2)+γΔtN−1∑n=0||∇⋅θn+1u||2+νΔtN−1∑n=0||∇θn+1ˆu||2+gλminΔtN−1∑n=0||∇θn+1ϕ||2≤C∗[10c2pν||ηu,t||2L2(0,T;L2(Ωf))+(10C23ν+6C24gλmin+dγ+1ν)||∇ηu||2+6gS20~c2pλmin||ηϕ,t||2L2(0,T;L2(Ωf))+(6λ2maxgλmin+10C24ν)||∇ηnϕ||2+CΔt2ν||utt||2L2(0,T;L2(Ωf))+(CΔt2ν+6C24Δt2gλmin)||∇ut||2L2(0,T;L2(Ωf))+6gS20~c2pΔt2λmin||ϕtt||2L2(0,T;L2(Ωp))+10C6g2Δt2hν||ϕt||2L2(0,T;L2(Ωp))+dβ(1+2Δt)||∇ηu,t||2L2(0,T;L2(Ωf))+||θ0u||2+β||∇⋅θ0u||2+||θ0ϕ||2] | (31) |
Finally, we have
||eNu||2+β||∇⋅eNu||2+||eNϕ||2+N−1∑n=0(||en+1ˆu−en+1u||2+||en+1ˆu−enu||2+β2||∇⋅(en+1ˆu−enu)||2+||en+1ϕ−enϕ||2)+N−1∑n=0γΔt||∇⋅en+1u||2+N−1∑n=0νΔt||∇en+1ˆu||2+N−1∑n=0gλminΔt||∇en+1ϕ||2≤C(h2k+Δt2+Δth2k) | (32) |
where
Remark 1. Here we can propose a second-order backward differentiation formula(BDF2) methods for Stokes/Darcy model and Navier-Stokes/Darcy model, respectively. We will analyze it in the future.
Algorithm 2 (The BDF2 modular grad-div scheme for Stokes/Darcy model).
For
Step1. Given
(3ˆun+1h−4unh+un−1h2Δt,vh)+af(ˆun+1h,vh)+b(vh,pn+1h)+aΓ(vh,2ϕnh−ϕn−1h)=(fn+11,vh),b(ˆun+1h,qh)=0,gS0(3ϕn+1h−4ϕnh+ϕn−1h2Δt,ψh)+ap(ϕn+1h,ψh)−aΓ(2unh−un−1h,ψh)=(fn+12,ψh). | (33) |
Step2. Given
(3un+1h−3ˆun+1h2Δt,vh)+β(∇⋅3un+1h−4unh+un+1h2Δt,∇⋅vh)+γ(∇⋅un+1h,∇⋅vh)=0. | (34) |
Algorithm 3 (The BDF2 modular grad-div scheme for Navier-Stokes/Darcy model).
For
Step1. Given
(3ˆun+1h−4unh+un−1h2Δt,vh)+af(ˆun+1h,vh)+b(vh,pn+1h)+af,c(2unh−un−1h,ˆun+1h,vh)aΓ(vh,2ϕn−ϕn−1)=(fn+11,vh)b(ˆun+1h,qh)=0gs0(3ϕn+1h−4ϕnh+ϕn−1h2Δt,ψh)+ap(ϕn+1h,ψh)−aΓ(2un−un−1,ψh)=(fn+12,ψh) | (35) |
Step2. Given
(3un+1h−3ˆun+1h2Δt,vh)+β(∇⋅3un+1h−4unh+un−1h2Δt,∇⋅vh)+γ(∇⋅un+1h,∇⋅vh)=0 | (36) |
In this section, We will compare two grad-div schemes with standard scheme respectively to justify the results of the theoretical analysis. We implement numerical experiments using software Freefem++.
The domain
(u1,u2)=([x2(y−1)2+y]cos(t), [−23x(y−1)3]cos(t)+[2−πsin(πx)]cos(t)),p=[2−πsin(πx)]sin(0.5πy)cos(t),ϕ=[2−πsin(πx)][1−y−cos(πy)]cos(t). |
Here, the parameters
1h | ||eu||L2 | uL2rate | ||eu||f | uHfrate | ||∇⋅eu||L2 | divuL2rate |
4 | 0.0158906 | 0.0352882 | 0.042823 | |||
8 | 0.00847782 | 0.906408 | 0.0161872 | 1.12433 | 0.00978438 | 2.12983 |
16 | 0.00436799 | 0.956724 | 0.00805077 | 1.00765 | 0.00230198 | 2.08761 |
32 | 0.00221516 | 0.979559 | 0.00404369 | 0.993454 | 0.000609902 | 1.91623 |
64 | 0.00111531 | 0.989966 | 0.00203112 | 0.993397 | 0.000131401 | 2.2146 |
1h | ||eϕ||L2 | ϕL2rate | ||eϕ||p | ϕHprate | ||ep||L2 | pL2rate |
4 | 0.0404764 | 0.0653031 | 0.500655 | |||
8 | 0.0182477 | 1.14937 | 0.0182649 | 1.83808 | 0.25716 | 0.961151 |
16 | 0.00927325 | 0.976568 | 0.00777467 | 1.23222 | 0.130569 | 0.977854 |
32 | 0.00468612 | 0.984681 | 0.00370671 | 1.06864 | 0.0658343 | 0.987901 |
64 | 0.00235584 | 0.992152 | 0.00183888 | 1.01131 | 0.0330473 | 0.994307 |
1h | ||eu||L2 | uL2rate | ||eu||f | uHfrate | ||∇⋅eu||L2 | divuL2rate |
4 | 0.015796 | 0.0349907 | 0.0332181 | |||
8 | 0.00847477 | 0.898313 | 0.0161629 | 1.11429 | 0.00795638 | 2.06179 |
16 | 0.00436788 | 0.956241 | 0.00804856 | 1.00588 | 0.00192546 | 2.04691 |
32 | 0.00221515 | 0.979529 | 0.00404351 | 0.993123 | 0.000551883 | 1.80277 |
64 | 0.00111531 | 0.98996 | 0.0020311 | 0.993347 | 0.000112974 | 2.28837 |
1h | ||eϕ||L2 | ϕL2rate | ||eϕ||p | ϕHprate | ||ep||L2 | pL2rate |
4 | 0.040389 | 0.0652755 | 0.512196 | |||
8 | 0.018239 | 1.14694 | 0.0182613 | 1.83775 | 0.257443 | 0.992443 |
16 | 0.00927265 | 0.975973 | 0.00777441 | 1.23198 | 0.130582 | 0.979297 |
32 | 0.00468607 | 0.984603 | 0.00370669 | 1.0686 | 0.0658357 | 0.988014 |
64 | 0.00235583 | 0.992143 | 0.00183888 | 1.0113 | 0.0330474 | 0.994333 |
1h | ||eu||L2 | uL2rate | ||eu||f | uHfrate | ||∇⋅eu||L2 | divuL2rate |
4 | 0.0161227 | 0.0422295 | 0.00546336 | |||
8 | 0.00849478 | 0.924445 | 0.0186987 | 1.17531 | 0.00133666 | 2.03116 |
16 | 0.00436888 | 0.959313 | 0.00849608 | 1.13807 | 0.000250008 | 2.41859 |
32 | 0.00221526 | 0.979787 | 0.0042394 | 1.00294 | 7.36766e-005 | 1.7627 |
64 | 0.00111531 | 0.990031 | 0.00204415 | 1.05236 | 6.93936e-006 | 3.40833 |
1h | ||eϕ||L2 | ϕL2rate | ||eϕ||p | ϕHprate | ||ep||L2 | pL2rate |
4 | 0.0403803 | 0.0652523 | 0.500113 | |||
8 | 0.0182335 | 1.14706 | 0.0182584 | 1.83747 | 0.257152 | 0.959633 |
16 | 0.00927249 | 0.975563 | 0.00777436 | 1.23176 | 0.13057 | 0.977798 |
32 | 0.00468608 | 0.984575 | 0.0037067 | 1.06859 | 0.0658345 | 0.987908 |
64 | 0.00235583 | 0.992146 | 0.00183888 | 1.01131 | 0.0330473 | 0.994311 |
K | Non-stabilized | Standard grad-div | modular grad-div |
I | 0.0169173 | 0.0108085 | 0.077557 |
1e−1I | 0.0202974 | 0.0130437 | 0.0775562 |
1e−2I | 0.0464625 | 0.0301879 | 0.077554 |
1e−3I | 0.124238 | 0.0824988 | 0.0775521 |
Table 1, Table 2 and Table 3 shows the error and convergence order of velocity
Next, we set up a numerical experiment by using the different parameter
In this paper, we extend the grad-div stabilized method from Stokes/Darcy model to Navier-Stokes/Darcy model. Stability and error estimates are provided. Numerical experiments confirm the theoretical analysis, and show that the modular grad-div scheme is more efficient than that of the standard grad-div scheme.
[1] |
C. Simonetto, M. Heier, A. Peters, J. A. Kaiser, S. Rospleszcz, From atherosclerosis to myocardial infarction: A process-oriented model investigating the role of risk factors, Am. J. Epidemiol., 191 (2022), 1766–1775. https://doi.org/10.1093/aje/kwac038 doi: 10.1093/aje/kwac038
![]() |
[2] | A. Procopio, S. D. Rosa, C. Covello, A. Merola, J. Sabatino, A. D. Luca, et al., Mathematical model of the release of the ctnt and ck-mb cardiac biomarkers in patients with acute myocardial infarction, in 18th European Control Conference (ECC), 2019. |
[3] |
O. F. Voropaeva, C. A. Tsgoev, Y. L. Shokin, Numerical simulation of the inflammatory phase of myocardial infarction, J. Appl. Mech. Tech. Phys., 62 (2021), 441–450. https://doi.org/10.1134/S002189442103010X doi: 10.1134/S002189442103010X
![]() |
[4] |
C. Simonetto, S. Rospleszcz, M. Heier, C. Meisinger, A. Peters, J. C. Kaiser, Simulating the dynamics of atherosclerosis to the incidence of myocardial infarction, applied to the kora population, Stat. Med., 40 (2021), 3299–3312. https://doi.org/10.1002/sim.8951 doi: 10.1002/sim.8951
![]() |
[5] |
D. Mojsejenko, J. R. McGarvey, S. M. Dorsey, J. H. Gorman, J. A. Burdick, J. J. Pilla, et al., Estimating passive mechanical properties in a myocardial infarction using mri and finite element simulations, Biomech. Model. Mechanobiol., 14 (2015), 633–647. https://doi.org/10.1007/s10237-014-0627-z doi: 10.1007/s10237-014-0627-z
![]() |
[6] |
T. C. Gasser, R. W. Ogden, G. A. Holzapfel, Hyperelastic modelling of arterial layers with distributed collagen fibre orientations, J. R. Soc. Interface, 3 (2006), 15–35. https://royalsocietypublishing.org/doi/10.1098/rsif.2005.0073 doi: 10.1098/rsif.2005.0073
![]() |
[7] | G. A. Holzapfel, Nonlinear solid mechanics : a continuum approach for engineering science, Meccanica, 37 (2000), 489–490. |
[8] |
P. W. Fok, K. Gou, Finite element simulation of intimal thickening in 2d multi-layered arterial cross sections by morphoelasticity, Comput. Methods Appl. Mech. Eng., 363 (2020), 112860. https://doi.org/10.1016/j.cma.2020.112860 doi: 10.1016/j.cma.2020.112860
![]() |
[9] | G. A. Holzapfel, G. Sommer, C. T. Gasser, P. Regitnig, Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling, Am. J. Physiol. Heart Circ. Physiol., 289 (2005), 2048–2058. |
[10] |
S. G. Sassani, S. Tsangaris, D. P. Sokolis, Layer- and region-specific material characterization of ascending thoracic aortic aneurysms by microstructure-based models, J. Biomech., 48 (2015), 3757–3765. http://dx.doi.org/10.1016/j.jbiomech.2015.08.028 doi: 10.1016/j.jbiomech.2015.08.028
![]() |
[11] |
N. M. Mirzaei, P. W. Fok, Simple model of atherosclerosis in cylindrical arteries: impact of anisotropic growth on glagov remodeling, Math. Med. Biol. J. IMA, 38 (2020), 59–82. https://doi.org/10.1093/imammb/dqaa011 doi: 10.1093/imammb/dqaa011
![]() |
[12] |
S. Katsuda, Y. Okada, T. Minamoto, Y. Oda, Y. Matsui, I. Nakanishi, Collagens in human atherosclerosis: Immunohistochemical analysis using collagen type-specific antibodies, Arterioscler. Thromb. J. Vasc. Biol., 12 (1992), 494–502. https://doi.org/10.1161/01.ATV.12.4.494 doi: 10.1161/01.ATV.12.4.494
![]() |
[13] |
G. Plank, J. D. Bayer, R. C. Blake, N. A. Trayanova, A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models, Ann. Biomed. Eng., 40 (2012), 2243–2254. https://doi.org/10.1007/s10439-012-0593-5 doi: 10.1007/s10439-012-0593-5
![]() |
[14] |
J. Wong, E. Kuhl, Generating fiber orientation maps in human heart models using poisson interpolation, Comput. Methods Biomech. Biomed. Eng., 17 (2014), 1217–1226. https://doi.org/10.1080/10255842.2012.739167 doi: 10.1080/10255842.2012.739167
![]() |
[15] |
E. K. Theofilogiannakos, G. K. Theofilogiannakos, A. Anogeianaki, P. G. Danias, H. Zairi, T. Zaraboukas, et al., A fiber orientation model of the human heart using classical histological methods, magnetic resonance imaging and interpolation techniques, Comput. Cardiol., 35 (2008), 307–310. https://doi.org/10.1109/CIC.2008.4749039 doi: 10.1109/CIC.2008.4749039
![]() |
[16] |
A. C. Akyildiz, C. K. Chai, C. Oomens, A.van der Lugt, F. Baaijens, G. J. Strijkers, et al., 3d fiber orientation in atherosclerotic carotid plaques, J. Struct. Biol., 200 (2017), 28–35, https://dx.doi.org/10.1016/j.jsb.2017.08.003 doi: 10.1016/j.jsb.2017.08.003
![]() |
[17] |
J. A. Niestrawska, A. Pukaluk, A. R. Babu, G. A. Holzapfel, Differences in collagen fiber diameter and waviness between healthy and aneurysmal abdominal aortas, Microsc. Microanal., 28 (2022), 1649–1663. https://doi.org/10.1017/s1431927622000629 doi: 10.1017/s1431927622000629
![]() |
[18] |
G. A. Holzapfel, R. W. Ogden, S. Sherifova, On fibre dispersion modelling of soft biological tissues: a review, Proc. R. Soc. A, 475 (2019). http://dx.doi.org/10.1098/rspa.2018.0736 doi: 10.1098/rspa.2018.0736
![]() |
[19] |
A. J. Schriefl, A. J. Reinisch, S. Sankaran, D. M. Pierce, G. A. Holzapfel, Quantitative assessment of collagen fibre orientations from two-dimensional images of soft biological tissues, J. R. Soc. Interface, 9 (2012), 3081–3093. https://doi.org/10.1098/rsif.2012.0339 doi: 10.1098/rsif.2012.0339
![]() |
[20] |
M. Kroon, A continuum mechanics framework and a constitutive model for remodelling of collagen gels and collagenous tissues, J. Mech. Phys. Solids, 58 (2010), 918–933. https://doi.org/10.1016/j.jmps.2010.03.005 doi: 10.1016/j.jmps.2010.03.005
![]() |
[21] |
F. Cacho, P. J. Elbischger, J. F. Rodríguez, M. Doblaré, G. A. Holzapfel, A constitutive model for fibrous tissues considering collagen fiber crimp, Int. J. Non Linear Mech., 42 (2007), 391–402, https://doi.org/10.1016/j.ijnonlinmec.2007.02.002 doi: 10.1016/j.ijnonlinmec.2007.02.002
![]() |
[22] |
L. N. Trefethen, Numerical conformal mapping with rational functions, Comput. Methods Funct. Theory, 20 (2020), 369–387. https://doi.org/10.1007/s40315-020-00325-w doi: 10.1007/s40315-020-00325-w
![]() |
[23] |
Y. Nakatsukasa, O. Sète, L. N. Trefethen, The aaa algorithm for rational approximation, SIAM J. Sci. Comput., 40 (2018). https://doi.org/10.1137/16M1106122 doi: 10.1137/16M1106122
![]() |
[24] |
Y. Nakashima, Y. Chen, N. Kinukawa, K. Sueishi, Distributions of diffuse intimal thickening in human arteries: preferential expression in atherosclerosis-prone arteries from an early age, Virchows Arch., 441 (2002), 279–288. https://doi.org/10.1007/s00428-002-0605-1 doi: 10.1007/s00428-002-0605-1
![]() |
1h | ||eu||L2 | uL2rate | ||eu||f | uHfrate | ||∇⋅eu||L2 | divuL2rate |
4 | 0.0158906 | 0.0352882 | 0.042823 | |||
8 | 0.00847782 | 0.906408 | 0.0161872 | 1.12433 | 0.00978438 | 2.12983 |
16 | 0.00436799 | 0.956724 | 0.00805077 | 1.00765 | 0.00230198 | 2.08761 |
32 | 0.00221516 | 0.979559 | 0.00404369 | 0.993454 | 0.000609902 | 1.91623 |
64 | 0.00111531 | 0.989966 | 0.00203112 | 0.993397 | 0.000131401 | 2.2146 |
1h | ||eϕ||L2 | ϕL2rate | ||eϕ||p | ϕHprate | ||ep||L2 | pL2rate |
4 | 0.0404764 | 0.0653031 | 0.500655 | |||
8 | 0.0182477 | 1.14937 | 0.0182649 | 1.83808 | 0.25716 | 0.961151 |
16 | 0.00927325 | 0.976568 | 0.00777467 | 1.23222 | 0.130569 | 0.977854 |
32 | 0.00468612 | 0.984681 | 0.00370671 | 1.06864 | 0.0658343 | 0.987901 |
64 | 0.00235584 | 0.992152 | 0.00183888 | 1.01131 | 0.0330473 | 0.994307 |
1h | ||eu||L2 | uL2rate | ||eu||f | uHfrate | ||∇⋅eu||L2 | divuL2rate |
4 | 0.015796 | 0.0349907 | 0.0332181 | |||
8 | 0.00847477 | 0.898313 | 0.0161629 | 1.11429 | 0.00795638 | 2.06179 |
16 | 0.00436788 | 0.956241 | 0.00804856 | 1.00588 | 0.00192546 | 2.04691 |
32 | 0.00221515 | 0.979529 | 0.00404351 | 0.993123 | 0.000551883 | 1.80277 |
64 | 0.00111531 | 0.98996 | 0.0020311 | 0.993347 | 0.000112974 | 2.28837 |
1h | ||eϕ||L2 | ϕL2rate | ||eϕ||p | ϕHprate | ||ep||L2 | pL2rate |
4 | 0.040389 | 0.0652755 | 0.512196 | |||
8 | 0.018239 | 1.14694 | 0.0182613 | 1.83775 | 0.257443 | 0.992443 |
16 | 0.00927265 | 0.975973 | 0.00777441 | 1.23198 | 0.130582 | 0.979297 |
32 | 0.00468607 | 0.984603 | 0.00370669 | 1.0686 | 0.0658357 | 0.988014 |
64 | 0.00235583 | 0.992143 | 0.00183888 | 1.0113 | 0.0330474 | 0.994333 |
1h | ||eu||L2 | uL2rate | ||eu||f | uHfrate | ||∇⋅eu||L2 | divuL2rate |
4 | 0.0161227 | 0.0422295 | 0.00546336 | |||
8 | 0.00849478 | 0.924445 | 0.0186987 | 1.17531 | 0.00133666 | 2.03116 |
16 | 0.00436888 | 0.959313 | 0.00849608 | 1.13807 | 0.000250008 | 2.41859 |
32 | 0.00221526 | 0.979787 | 0.0042394 | 1.00294 | 7.36766e-005 | 1.7627 |
64 | 0.00111531 | 0.990031 | 0.00204415 | 1.05236 | 6.93936e-006 | 3.40833 |
1h | ||eϕ||L2 | ϕL2rate | ||eϕ||p | ϕHprate | ||ep||L2 | pL2rate |
4 | 0.0403803 | 0.0652523 | 0.500113 | |||
8 | 0.0182335 | 1.14706 | 0.0182584 | 1.83747 | 0.257152 | 0.959633 |
16 | 0.00927249 | 0.975563 | 0.00777436 | 1.23176 | 0.13057 | 0.977798 |
32 | 0.00468608 | 0.984575 | 0.0037067 | 1.06859 | 0.0658345 | 0.987908 |
64 | 0.00235583 | 0.992146 | 0.00183888 | 1.01131 | 0.0330473 | 0.994311 |
K | Non-stabilized | Standard grad-div | modular grad-div |
I | 0.0169173 | 0.0108085 | 0.077557 |
1e−1I | 0.0202974 | 0.0130437 | 0.0775562 |
1e−2I | 0.0464625 | 0.0301879 | 0.077554 |
1e−3I | 0.124238 | 0.0824988 | 0.0775521 |
1h | ||eu||L2 | uL2rate | ||eu||f | uHfrate | ||∇⋅eu||L2 | divuL2rate |
4 | 0.0158906 | 0.0352882 | 0.042823 | |||
8 | 0.00847782 | 0.906408 | 0.0161872 | 1.12433 | 0.00978438 | 2.12983 |
16 | 0.00436799 | 0.956724 | 0.00805077 | 1.00765 | 0.00230198 | 2.08761 |
32 | 0.00221516 | 0.979559 | 0.00404369 | 0.993454 | 0.000609902 | 1.91623 |
64 | 0.00111531 | 0.989966 | 0.00203112 | 0.993397 | 0.000131401 | 2.2146 |
1h | ||eϕ||L2 | ϕL2rate | ||eϕ||p | ϕHprate | ||ep||L2 | pL2rate |
4 | 0.0404764 | 0.0653031 | 0.500655 | |||
8 | 0.0182477 | 1.14937 | 0.0182649 | 1.83808 | 0.25716 | 0.961151 |
16 | 0.00927325 | 0.976568 | 0.00777467 | 1.23222 | 0.130569 | 0.977854 |
32 | 0.00468612 | 0.984681 | 0.00370671 | 1.06864 | 0.0658343 | 0.987901 |
64 | 0.00235584 | 0.992152 | 0.00183888 | 1.01131 | 0.0330473 | 0.994307 |
1h | ||eu||L2 | uL2rate | ||eu||f | uHfrate | ||∇⋅eu||L2 | divuL2rate |
4 | 0.015796 | 0.0349907 | 0.0332181 | |||
8 | 0.00847477 | 0.898313 | 0.0161629 | 1.11429 | 0.00795638 | 2.06179 |
16 | 0.00436788 | 0.956241 | 0.00804856 | 1.00588 | 0.00192546 | 2.04691 |
32 | 0.00221515 | 0.979529 | 0.00404351 | 0.993123 | 0.000551883 | 1.80277 |
64 | 0.00111531 | 0.98996 | 0.0020311 | 0.993347 | 0.000112974 | 2.28837 |
1h | ||eϕ||L2 | ϕL2rate | ||eϕ||p | ϕHprate | ||ep||L2 | pL2rate |
4 | 0.040389 | 0.0652755 | 0.512196 | |||
8 | 0.018239 | 1.14694 | 0.0182613 | 1.83775 | 0.257443 | 0.992443 |
16 | 0.00927265 | 0.975973 | 0.00777441 | 1.23198 | 0.130582 | 0.979297 |
32 | 0.00468607 | 0.984603 | 0.00370669 | 1.0686 | 0.0658357 | 0.988014 |
64 | 0.00235583 | 0.992143 | 0.00183888 | 1.0113 | 0.0330474 | 0.994333 |
1h | ||eu||L2 | uL2rate | ||eu||f | uHfrate | ||∇⋅eu||L2 | divuL2rate |
4 | 0.0161227 | 0.0422295 | 0.00546336 | |||
8 | 0.00849478 | 0.924445 | 0.0186987 | 1.17531 | 0.00133666 | 2.03116 |
16 | 0.00436888 | 0.959313 | 0.00849608 | 1.13807 | 0.000250008 | 2.41859 |
32 | 0.00221526 | 0.979787 | 0.0042394 | 1.00294 | 7.36766e-005 | 1.7627 |
64 | 0.00111531 | 0.990031 | 0.00204415 | 1.05236 | 6.93936e-006 | 3.40833 |
1h | ||eϕ||L2 | ϕL2rate | ||eϕ||p | ϕHprate | ||ep||L2 | pL2rate |
4 | 0.0403803 | 0.0652523 | 0.500113 | |||
8 | 0.0182335 | 1.14706 | 0.0182584 | 1.83747 | 0.257152 | 0.959633 |
16 | 0.00927249 | 0.975563 | 0.00777436 | 1.23176 | 0.13057 | 0.977798 |
32 | 0.00468608 | 0.984575 | 0.0037067 | 1.06859 | 0.0658345 | 0.987908 |
64 | 0.00235583 | 0.992146 | 0.00183888 | 1.01131 | 0.0330473 | 0.994311 |
K | Non-stabilized | Standard grad-div | modular grad-div |
I | 0.0169173 | 0.0108085 | 0.077557 |
1e−1I | 0.0202974 | 0.0130437 | 0.0775562 |
1e−2I | 0.0464625 | 0.0301879 | 0.077554 |
1e−3I | 0.124238 | 0.0824988 | 0.0775521 |