Processing math: 100%
Research article Special Issues

A new approach to calculating fiber fields in 2D vessel cross sections using conformal maps


  • An arterial vessel has three layers, namely, the intima, the media and the adventitia. Each of these layers is modeled to have two families of strain-stiffening collagen fibers that are transversely helical. In an unloaded configuration, these fibers are coiled up. In the case of a pressurized lumen, these fibers stretch and start to resist further outward expansion. As the fibers elongate, they stiffen, affecting the mechanical response. Having a mathematical model of vessel expansion is crucial in cardiovascular applications such as predicting stenosis and simulating hemodynamics. Thus, to study the mechanics of the vessel wall under loading, it is important to calculate the fiber configurations in the unloaded configuration. The aim of this paper is to introduce a new technique of using conformal maps to numerically calculate the fiber field in a general arterial cross-section. The technique relies on finding a rational approximation of the conformal map. First, points on the physical cross section are mapped to points on a reference annulus using a rational approximation of the forward conformal map. Next, we find the angular unit vectors at the mapped points, and finally a rational approximation of the inverse conformal map is used to map the angular unit vectors back to vectors on the physical cross section. We have used MATLAB software packages to achieve these goals.

    Citation: Avishek Mukherjee, Pak-Wing Fok. A new approach to calculating fiber fields in 2D vessel cross sections using conformal maps[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 3610-3623. doi: 10.3934/mbe.2023168

    Related Papers:

    [1] Yixin Zhuo, Ling Li, Jian Tang, Wenchuan Meng, Zhanhong Huang, Kui Huang, Jiaqiu Hu, Yiming Qin, Houjian Zhan, Zhencheng Liang . Optimal real-time power dispatch of power grid with wind energy forecasting under extreme weather. Mathematical Biosciences and Engineering, 2023, 20(8): 14353-14376. doi: 10.3934/mbe.2023642
    [2] Rami Al-Hajj, Gholamreza Oskrochi, Mohamad M. Fouad, Ali Assi . Probabilistic prediction intervals of short-term wind speed using selected features and time shift dependent machine learning models. Mathematical Biosciences and Engineering, 2025, 22(1): 23-51. doi: 10.3934/mbe.2025002
    [3] Xiaoqiang Dai, Kuicheng Sheng, Fangzhou Shu . Ship power load forecasting based on PSO-SVM. Mathematical Biosciences and Engineering, 2022, 19(5): 4547-4567. doi: 10.3934/mbe.2022210
    [4] Sue Wang, Jing Li, Saleem Riaz, Haider Zaman, Pengfei Hao, Yiwen Luo, Alsharef Mohammad, Ahmad Aziz Al-Ahmadi, NasimUllah . Duplex PD inertial damping control paradigm for active power decoupling of grid-tied virtual synchronous generator. Mathematical Biosciences and Engineering, 2022, 19(12): 12031-12057. doi: 10.3934/mbe.2022560
    [5] Jian Fang, Na Li, Chenhe Xu . A nonlocal population model for the invasion of Canada goldenrod. Mathematical Biosciences and Engineering, 2022, 19(10): 9915-9937. doi: 10.3934/mbe.2022462
    [6] Sue Wang, Chaohong Zhou, Saleem Riaz, Xuanchen Guo, Haider Zaman, Alsharef Mohammad, Ahmad Aziz Al-Ahmadi, Yasser Mohammed Alharbi, NasimUllah . Adaptive fuzzy-based stability control and series impedance correction for the grid-tied inverter. Mathematical Biosciences and Engineering, 2023, 20(2): 1599-1616. doi: 10.3934/mbe.2023073
    [7] Tangsheng Zhang, Hongying Zhi . A fuzzy set theory-based fast fault diagnosis approach for rotators of induction motors. Mathematical Biosciences and Engineering, 2023, 20(5): 9268-9287. doi: 10.3934/mbe.2023406
    [8] Yunfeng Liu, Guowei Sun, Lin Wang, Zhiming Guo . Establishing Wolbachia in the wild mosquito population: The effects of wind and critical patch size. Mathematical Biosciences and Engineering, 2019, 16(5): 4399-4414. doi: 10.3934/mbe.2019219
    [9] Lihe Liang, Jinying Cui, Juanjuan Zhao, Yan Qiang, Qianqian Yang . Ultra-short-term forecasting model of power load based on fusion of power spectral density and Morlet wavelet. Mathematical Biosciences and Engineering, 2024, 21(2): 3391-3421. doi: 10.3934/mbe.2024150
    [10] Mo'tassem Al-Arydah, Robert Smith? . Controlling malaria with indoor residual spraying in spatially heterogenous environments. Mathematical Biosciences and Engineering, 2011, 8(4): 889-914. doi: 10.3934/mbe.2011.8.889
  • An arterial vessel has three layers, namely, the intima, the media and the adventitia. Each of these layers is modeled to have two families of strain-stiffening collagen fibers that are transversely helical. In an unloaded configuration, these fibers are coiled up. In the case of a pressurized lumen, these fibers stretch and start to resist further outward expansion. As the fibers elongate, they stiffen, affecting the mechanical response. Having a mathematical model of vessel expansion is crucial in cardiovascular applications such as predicting stenosis and simulating hemodynamics. Thus, to study the mechanics of the vessel wall under loading, it is important to calculate the fiber configurations in the unloaded configuration. The aim of this paper is to introduce a new technique of using conformal maps to numerically calculate the fiber field in a general arterial cross-section. The technique relies on finding a rational approximation of the conformal map. First, points on the physical cross section are mapped to points on a reference annulus using a rational approximation of the forward conformal map. Next, we find the angular unit vectors at the mapped points, and finally a rational approximation of the inverse conformal map is used to map the angular unit vectors back to vectors on the physical cross section. We have used MATLAB software packages to achieve these goals.



    Numerical methods of Navier-Stokes/Darcy have attracted a lot of attention. So far, a great deal of numerical methods are proposed to solve this model by virtue of different ways, such as finite element methods[12], discontinuous Galerkin finite element methods[5], two-grid methods[1,15,16], modified two-grid methods[6], partitioned time stepping method[7], characteristic stabilized finite element methods[8], mortar finite element methods [2], grad-div stabilized projection finite element method[14], modular grad-div method[11] and so on. The grad-div stabilized method is first introduced in [4], which can penalize mass conservation and improve the solution quality efficiently. Recently, the effectiveness of the grad-div stabilized method has been proved in finite element simulation of Stokes and Navier-Stokes equation[10]. However, this method leads to a singular matrix stemming from grad-div term, and the larger stabilized parameter will cause solver breakdown. As a alternative method for grad-div stabilization, the modular grad-div stabilization method is introduced in [3]. The modular grad-div stabilization method for the Stokes/Darcy model is proposed in [13]. The modular grad-div stabilization method is not only easy to implement, but also avoids the influence of large parameters on the solution as well as preserving the advantages of the grad-div stabilization method.

    In this paper, we extended the modular grad-div stabilization methods from Stokes/Darcy model to Navier-Stokes/Darcy model. Compare to Navier-Stokes model, the convection term causes some difficulties in theoretical analysis and numerical simulation. To deal with convection term, the assumption unf>0 is used[6,9]. Our proposed method not only relax the influence of parameters but also improves the mass conservation.

    The rest of this paper is organized as follows: In section 2, some notations and the time-dependent Navier-Stokes/Darcy model are introduced; In section 3, we give the modular grad-div stabilization method, and stability analysis is provided; In section 4, under some regularity assumptions imposed on the true solution, error estimates are also given; In section 5, Some numerical experiments are given to verify the theoretical result, we compared with the standard scheme, standard grad-div scheme and modular grad-div scheme in the numerical experiment; Finally some conclusions are obtained in section 6.

    The model we considered is confined in a bounded domain Ω Rd(d=2 or 3), which is decomposed into a fluid flow region Ωf and porous media flow region Ωp, see figure 1. Here, ΩfΩp=, ¯Ωf¯Ωp=¯Ω and ¯Ωf¯Ωp=Γ, Γf=ΩfΩ, Γp=ΩpΩ. In the sake of simplicity, we assume that Ωf and Ωp are smooth enough throughout this paper.

    Figure 1.  The global domain Ω.

    The time-dependent Navier-Stokes equation govern the fluid flow in Ωf is expressed as

    utνΔu+(u)u+p=f1(x,t)in Ωf×(0,T),u=0in Ωf×(0,T),u(x,0)=u0(x)in Ωf. (1)

    here u=u(x,t) is the fluid velocity filed, p=p(x,t) is the pressure, function f1 is the external force, and coefficient ν>0 is the kinetic viscosity.

    The Darcy equation govern the porous media flow in Ωp is expressed as :

    S0ϕt+up=f2(x,t)in Ωp×(0,T),up=Kϕin Ωp×(0,T),ϕ(x,0)=ϕ0(x)in Ωp. (2)

    here the first equation is the saturated flow model and the second equation is the Darcy's law. S0 is the specific mass storativity coefficient, up=up(x,t) the velocity, ϕ=ϕ(x,t) the hydraulic head, K is the hydraulic conductivity tensor. We assume that K is a positive symmetric tensor and the function f2 is a source term.

    We know that

    ϕ=z+ppρg

    is the piezometric head, where pp denotes the dynamic pressure, ρ is the height from a reference level.

    Substituting the second formula of (2) into the first formula of (2), the following Darcy equation can be obtained:

    S0ϕt(Kϕ)=f2(x,t)in Ωp×(0,T). (3)

    The interface conditions of the conservation of mass, balance of forces, and the Beavers-Joseph-Saffman condition are imposed on the interface Γ by:

    unf+upnp=0on Γ×(0,T) (4)
    pνnfunf=gϕon Γ×(0,T), (5)
    ντiunf=αgντiKτiuτi,i=1,,d1on  Γ×(0,T), (6)

    where, nf and np are the unit outward normal vectors on Ωf and Ωp, respectively, and τi,i=1,,d1, are the orthonormal tangential unit vectors on the interface Γ, g is the gravitational acceleration, α is a positive parameter depending on the properties of the porous medium and must be determined experimentally.

    For simplicity of analysis, we impose the following boundary conditions on Γf, Γp:

    u=0on Γf×(0,T)ϕ=0on Γp×(0,T) (7)

    In this paper, we assume that:

    unf>0onΓ. (8)

    The assumption is not hold for general case of Navier-Stokes/Darcy Model. But for the gentle river, the water infiltration satisfies the assumption unf>0 on the interface. It is a special case of Navier-Stokes/Darcy Model.

    Next, Hillbert spaces will be introduced:

    Hf={v(H1(Ωf))d:v=0 on Γf},Hp={ψH1(Ωp): ψ=0 on Γp},Q=L2(Ωf).

    where (,)D denotes the L2 inner produce in the domain D, with corresponding norm ||||D. In the rest of this paper, we neglect the subscript. The spaces Hf and Hp are equipped with the following norms:

    ||u||Hf=||u||L2(Ωf)=(u,u)Ωf uHf,||ϕ||Hp=||ϕ||L2(Ωp)=(ϕ,ϕ)Ωf ϕHp.

    Some discrete norms are defined as,

    ||w||2L2(0,T;Hs(Ωf,p))=ΔtNn=0||wn||2Hs(Ωf,p),||w||L(0,T;Hs(Ωf,p))=max0nN||wn||Hs(Ωf,p).

    Due to u=0, we define a trilinear form af,c(;,) as follows

    af,c(u;v,w)=((u)v,w)f+12(u,vw)f=12((u)v,w)f12((u)w,v)f+12vw,unfΓ, (9)

    under the condition (8), we have

    af,c(u;v,v)0. (10)

    Then, we have the following estimates for af,c:

    af,c(u,v,w)C1||u||||v||||w||,af,c(u,v,w)C2||u||||v||2||w||. (11)

    In addition, we recall the Poincarˊe inequality and trace inequality. There exist positive constants cp and ct which only depend on the domain Ωf and exist ˜cp and ˜ct which only depend on the domain Ωp.

    ||v||L2cp||v||f||v||L2(Γ)ct||v||12L2(Ωf)||v||12H1(Ωf),||ψ||L2˜cp||ψ||p||ψ||L2(Γ)~ct||ψ||12L2(Ωp)||ψ||12H1(Ωp),||u||d||u||,d=2,or3.

    Thus, the weak formulation of the time-dependent Naiver-Stokes/Darcy model is to find u:[0,T]Hf,p:[0,T]Q,ϕ:[0,T]Hp, such that

    (ut,v)f+af(u,v)+b(v,p)+aΓ(v,ϕ)+af,c(u;u,v)=(f1,v)fvHf,b(u,q)=0qQ,gS0(ϕt,ψ)p+ap(ϕ,ψ)aΓ(u,ψ)=g(f2,ψ)pψHp. (12)

    Where

    af(u,v)=ν(D(u),D(v))+d1i=1ΓανgτiKτi(uτi)(vτi)ds,ap(ϕ,ψ)=g(Kϕ,ψ)p,aΓ(v,ϕ)=gΓϕvnfds,af,c(u,u,v)=((u)u,v)f,b(v,p)=(p,v)f.

    Bilinear forms af and ap are continuous and coercive:

    af(u,v)C3||u||Hf||v||Hf,af(u,u)ν||u||2Hf,ap(ϕ,ψ)gλmax||ϕ||Hp||ψ||Hp,ap(ϕ,ϕ)gλmin||ϕ||2Hp (13)

    The interface coupling term aΓ satisfies the following estimates:

    |aΓ(u,ϕ)|C4||u||f||ϕ||p|aΓ(u,ϕ)|C5g2h1||u||2f+||ϕ||2p,|aΓ(u,ϕ)|C6g2h1||ϕ||2p+||u||2f (14)

    Lemma 2.1. We assume that

    f1L2(0,T;L2(Ωf)d),f2L2(0,T;L2(Ωp)d),KL(Ωp)d×d,

    and K is uniformly bounded and positive definite in Ωp, there exist two constants kmin>0, kmax>0 such that

    0<kmin|x|2Kxxkmax|x|2 xΩp.

    Furthermore, uL2(Ωp)d,ϕ0L2(Ωp), therefore any solution (u,p,ϕ)(L2(0,T;Hf)H1(0,T;L2(Ωf)d))×L2(0,T;Q)×L2(0,T;Hp) of (1)-(7) is also the solution to the equation (12). The converse of the statement is also true.

    Lemma 2.2. (Discrete Gronwall Lemma). Let Δt, H, an, bn, cn, dn be nonnegative mumbers for n0 such that for N1. If

    aN+ΔtNn=0bnΔtN1n=0dnan+ΔtNn=0cn+H

    then for all Δt>0,

    aN+ΔtNn=0bnexp(ΔtN1n=0dn)(ΔtNn=0cn+H).

    We construct τh is a quasiuniform triangulation of the domain ΩfΩp, depending on a positive parameter h>0, which is made up of triangles if d=2 or tetrahedra if d=3. Then we define the finite element subspace of Hf, Q, Hp as Hfh, Qh, Hph. We assume that the space pairs (Hfh,Qh) satisfies the discrete LBB condition: there exists a positive constant β independent of h, such that qhQh, vhHfh, vfh0

    infqhQhsupvhHfh(qh,vfh)f||qh||Q||vfh||Hfβ. (15)

    Next, we divide time interval [0, T] into: 0=t0<t1<<tN=T with Δt=titi1. This leads to tm=mΔt and T=NΔt as a uniform distribution of discrete time levels. Let (un+1h,pn+1h,ϕn+1h) denote the discrete approximation of (uh(tn+1),ph(tn+1),ϕh(tn+1)). The modular grad-div scheme our proposed can be written as:

    Algorithm 1 (The modular grad-div scheme).

    For vhHfh, qhQh, and ψhHph.

    Step1. Given unhHfh, pnhQh, and ϕnhHph, find ˆun+1h,pn+1h,ϕn+1h satisfying:

    (ˆun+1hunhΔt,vh)+af(ˆun+1h,vh)+b(vh,pn+1h)+aΓ(vh,ϕnh)+af,c(unh;ˆun+1h,vh)=(fn+11,vh)b(ˆun+1h,qh)=0gS0(ϕn+1hϕnhΔt,ψh)+ap(ϕn+1h,ψh)aΓ(unh,ψh)=(fn+12,ψh) (16)

    Step2. Given ˆun+1hHfh, find un+1hHfh satisfying:

    (un+1h,vh)+(β+γΔt)(un+1h,vh)=(ˆun+1h,vh)+β(unh,vh) (17)

    Lemma 3.1. For Algorithm 1, we can obtain the following result,

    ||ˆun+1h||=||un+1h||2+||ˆun+1hun+1h||+2γΔt||un+1h||2+β(||un+1h||2||unh||2+||(un+1hunh)||2).

    Proof. Refer to Lemma 6 of [3] for proof details.

    Theorem 3.2. (Unconditional Stability) For any N>1, the solution of the Algorithm 1, satisfy

    ||uNh||2+β||uNh||2+gs0||ϕNh||2+N1n=0(||ˆun+1hunh||2+||ˆun+1hun+1h||2+β||(un+1hunh)||2+gs0||ϕn+1hϕnh||2)+N1n=02γΔt||un+1h||2+N1n=0νΔt||ˆun+1h||2+N1n=0λmingΔ||ϕn+1h||2C(ΔtN1n=0(2c2pν||fn+11||2+2c2pλming||fn+12||2)+||u0h||2+β||u0h||2+gs0||ϕ0h||2),

    Where the constant C=exp(ΔtN1n=0max2C5ghλmin,2C6g2hν).

    Proof. Taking vh=2Δˆun+1h, qh=2Δpn+1h and ψh=2Δϕn+1h in (16), using the property (10), and we can obtain af,c(unh,ˆun+1h,ˆun+1h)0. Then seeing [13] Theorem 3.1 for a detail proof.

    In this section, we will give some error estimates of our proposed method. Denote un,pn and ϕn be the true solution at time tn=nΔt. Assuming that the true solution have the following regularities,

    uL(0,T;HfHk+1(Ωf)d),utL(0,T;Hk+1(Ωf)d),uttL2(0,T;L2(Ωf)d).pL2(0,T;QHk(Ωf)).ϕL(0,T;HpHk+1(Ωp)),ϕtL(0,T;Hk+1(Ωp)),ϕttL2(0,T;L2(Ωp)) (18)

    Then define a projection operator [12]:

    Ph:(u(t),p(t),ϕ(t))Hf×Q×Hp(Phu(t),Php(t),Phϕ(t))Hfh×Qh×Hph.

    when some regularity conditions on (u(t),p(t),ϕ(t)) are statisfied, (Phu(t),Php(t),Phϕ(t)) is an approximation of (u(t),p(t),ϕ(t)), with the following properties:

    ||Phu(t)u(t)||fChk+1||u(t)||Hk+1(Ωf),||(Phu(t)u(t))||fChk||u(t)||Hk+1(Ωf),||Php(t)p(t)||fChk+1||p(t)||Hk+1(Ωf),||Phϕ(t)ϕ(t)||pChk+1||ϕ(t)||Hk+1(Ωp),||(Phϕ(t)ϕ(t))||pChk||ϕ(t)||Hk+1(Ωp) (19)

    Next, we define the following error equations

    enu=ununh=(unPhun)(unhPhun)=ηnuθnu,enˆu=unˆunh=(unPhun)(ˆunhPhun)=ηnuθnˆuenp=pnpnh=(pnPhpn)(pnhPhpn)=ηnpθnpenϕ=ϕnϕnh=(ϕnPhϕn)(ϕnhPhϕn)=ηnϕθnϕ (20)

    Lemma 4.1. For Algorithm 1, The following inequality holds

    ||θn+1ˆu||2||θn+1u||2+||θn+1ˆuθn+1u||2+β(||θn+1u||2||θnu||2+12||(θn+1uθnu)||2)+γΔt||θn+1u||2βΔt||θnu||2dβ(1+2Δt)||ηu,t||2L2(tn,tn+1;L2(Ωf))dγΔt||ηn+1u||2

    Proof. For the detailed proof process, please refer to Lemma 10 in [3].

    Theorem 4.2. Under the regularity assumption (18). Suppose β>0, then there exists a constant C>0, such that

    ||eNu||2+β||eNu||2+||eNϕ||2+N1n=0(||en+1ˆuen+1u||2+||en+1ˆuenu||2+β2||(en+1ˆuenu)||2+||en+1ϕenϕ||2)+N1n=0γΔt||en+1u||2+N1n=0νΔt||en+1ˆu||2+N1n=0gλminΔt||en+1ϕ||2C(h2k+Δt2+Δth2k)

    Proof. The true solution satisfies the following relations:

    (un+1unΔt,vh)+af(un+1,vh)+b(vh,pn+1)+aΓ(vh,ϕn+1)+af,c(un,un+1,vh)=(fn+11,vh)+(un+1unΔtun+1t,vh)af,c(un+1un,un+1,vh)b(un+1,qh)=0
    gs0(ϕn+1ϕnΔt,ψh)+ap(ϕn+1,ψh)aΓ(un+1,ψh)=(fn+12,ψh)+gs0(ϕn+1ϕnΔtϕn+1t,ψh). (21)

    Subtracting (16) from (21), we arrive that

    (en+1ˆuenuΔt,vh)+af(en+1ˆu,vh)+b(vh,en+1p)+aΓ(vh,ϕn+1ϕnh)+af,c(un,un+1,vh)af,c(unh,ˆun+1h,vh)=(un+1unΔtun+1t,vh)af,c(un+1un,un+1,vh)b(en+1ˆu,qh)=0gso(en+1ϕenϕΔt,ψh)+ap(en+1ϕ,ψh)aΓ(un+1unh,ψh)=gs0(ϕn+1ϕnΔtϕn+1t,ψh) (22)

    Setting vh=2Δtθn+1ˆu,qh=2Δtθn+1p, and ψh=2Δtθn+1ϕ in (22), the resulting equations are added, this yields:

    ||θn+1ˆu||2||θnu||2+||θn+1ϕ||2||θnϕ||2+||θn+1ˆuθnu||2+||θn+1ϕθnϕ||2+2Δtaf(θn+1ˆu,θn+1ˆu)+2Δtap(θn+1ϕ,θn+1ϕ)=2(ηn+1uηnu,θn+1ˆu)+2gs0(ηn+1ϕηnϕ,θn+1ϕ)+2Δtaf(ηn+1u,θn+1ˆu)+2Δtap(ηn+1ϕ,θn+1ϕ)+2Δtaf,c(un,un+1,θn+1ˆu)2Δtaf,c(unh,ˆun+1h,θn+1ˆu)+2ΔtaΓ(θn+1ˆu,ϕn+1ϕnh)2ΔtaΓ(un+1unh,θn+1ϕ)2Δt(un+1unΔtun+1t,θn+1ˆu)+2Δtaf,c(un+1un,un+1,θn+1ˆu)2Δtgs0(ϕn+1ϕnΔtϕn+1t,θn+1ϕ) (23)

    Next, we bound each term on the right hand side of (23), by virtue of Cauchy-Schwarz-Young inequality,

    2(ηn+1uηnu,θn+1ˆu)10c2pε1||ηu,t||2L2(tn,tn+1;L2(Ωf))+ε1Δt10||θn+1ˆu||22gs0(ηn+1ϕηnϕ,θn+1ϕ)6gs20~c2pλmin||ηϕ,t||2L2(tn,tn+1;L2(Ωp))+gλnimΔt6||θn+1ϕ||22Δtaf(ηn+1u,θn+1ˆu)2C3Δt||ηn+1u||||θn+1ˆu||10C23Δtε2||ηn+1u||2+ε2Δt10||θn+1ˆu||22Δtap(ηn+1ϕ,θn+1ϕ)2gλmax||ηn+1ϕ||||θn+1ϕ||6gλ2maxΔtλmin||ηn+1ϕ||2+gλminΔt6||θn+1ϕ||22Δt(un+1unΔtun+1t,θn+1ˆu)2Δtaf,c(un+1un,un+1,θn+1ˆu)CΔt2ε3(||utt||2L2(tn,tn+1;L2(Ωf))+||ut||2L2(tn,tn+1;L2(Ωf)))+ε3Δt10||θn+1ˆu||2
    2Δtgs0(ϕn+1ϕnΔtϕn+1t,θn+1ϕ)6gs02~c2pΔt2λmin||ϕtt||2L2(tn,tn+1;L2(Ωp))+gλminΔt6||θn+1ϕ||2 (24)

    For the interface terms, we treat them as follows:

    2ΔtaΓ(θn+1ˆu,ϕn+1ϕnh)=2ΔtaΓ(θn+1ˆu,ηnϕ)2ΔtaΓ(θn+1ˆu,θnϕ)+2ΔtaΓ(θn+1ˆu,ϕn+1ϕn)2ΔtaΓ(un+1unh,θn+1ϕ)=2ΔtaΓ(ηnu,θn+1ϕ)2ΔtaΓ(θnu,θn+1ϕ)+2ΔtaΓ(un+1un,θn+1ϕ) (25)

    So, we have the following estimates:

    2ΔtaΓ(θn+1ˆu,ηnϕ)10C24Δtε4||ηnϕ||2+ε4Δt10||θn+1ˆu||22ΔtaΓ(θn+1ˆu,θnϕ)2Δt(C6g2h1||θnϕ||2+||θn+1ˆu||2)10C6g2Δthε5||θnϕ||2+ε5Δt10||θn+1ˆu||22ΔtaΓ(θn+1ˆu,ϕn+1ϕn)2Δt(C6g2h1||ϕn+1ϕn||2+||θn+1ˆu||2)10C6g2Δt2hε6||ϕt||2L2(tn,tn+1;L2(Ωp))+ε6Δt10||θn+1ˆu||22ΔtaΓ(ηnu,θn+1ϕ)6C24Δtgλmin||ηnu||2+gλminΔt6||θn+1ϕ||22ΔtaΓ(θnu,θn+1ϕ)2Δ(C5g2h1||θnu||2+||θn+1ϕ||2)6C5gΔthλmin||θnu||2+gλminΔt6||θn+1ϕ||22ΔtaΓ(un+1un,θn+1ϕ)2C4Δt||(un+1un)||||θn+1ϕ||6C24Δt2gλmin||ut||2L2(tn,tn+1;L2(Ωf))+gλminΔt6||θn+1ϕ||2 (26)

    For the trilinear form, we have

    2Δtaf,c(un,un+1,θn+1ˆu)2Δtaf,c(unh,ˆun+1h,θn+1ˆu)=2Δtaf,c(ηnu;un+1,θn+1ˆu)2Δtaf,c(θnu;un+1,θn+1ˆu)+2Δtaf,c(ˆun+1h;ηn+1u,θn+1ˆu)+2Δtaf,c(unhˆun+1h,ηn+1u,θn+1ˆu), (27)

    then

    2Δtaf,c(ηnu;un+1,θn+1ˆu)2C1Δt||ηnu||||un+1||||θn+1ˆu||2C1Δt(||ηnu||2||un+1||22+||θn+1ˆu||22)10C21Δtε7||ηnu||2||un+1||2+ε7Δt10||θn+1ˆu||22Δtaf,c(θnu;un+1,θn+1ˆu)2C2Δt||θnu||||un+1||2||θn+1ˆu||
    10C22Δtε8||un+1||22||θnu||2+ε8Δt10||θn+1ˆu||22Δtaf,c(ˆun+1h;ηn+1u,θn+1ˆu)2C1Δt||ˆun+1h||||ηn+1u||||θn+1ˆu||10C21Δtε9||ˆun+1h||2||ηn+1u||2+ε9Δt10||θn+1ˆu||22Δtaf,c(unhˆun+1h,ηn+1u,θn+1ˆu)2C1Δt||(unhˆun+1h)||||ηn+1u||||θn+1ˆu||10C21Δtε10||(unhˆun+1h)||2||ηn+1u||2+ε10Δt10||θn+1ˆu||220C21Δtε10(||unh||2+||ˆun+1h||2)||ηn+1u||2+ε10Δt10||θn+1ˆu||2 (28)

    Combining Lemma 4.1 with the properties (13), we obtain

    ||θn+1u||2||θnu||2+||θn+1ϕ||2||θnϕ||2+β||θn+1u||2β||θnu||2+||θn+1ˆuθnu||2+||θn+1ˆuθn+1u||2+||θn+1ϕθnϕ||2+β2||(θn+1uθnu)||2+γΔt||θn+1u||2+2νΔt||θn+1ˆu||2+2gλminΔt||θn+1ϕ||22(ηn+1uηnu,θn+1ˆu)+2gs0(ηn+1ϕηnϕ,θn+1ϕ)+2Δtaf(ηn+1u,θn+1ˆu)+2Δtap(ηn+1ϕ,θn+1ϕ)+2Δtaf,c(ηnu;un+1,θn+1ˆu)2Δtaf,c(θnu;un+1,θn+1ˆu)+2Δtaf,c(ˆun+1h;ηn+1u,θn+1ˆu)+2Δtaf,c(unhˆun+1h,ηn+1u,θn+1ˆu)+2ΔtaΓ(θn+1ˆu,ηnϕ)2ΔtaΓ(θn+1ˆu,θnϕ)+2ΔtaΓ(θn+1ˆu,ϕn+1ϕn)2ΔtaΓ(ηnu,θn+1ϕ)+2ΔtaΓ(θnu,θn+1ϕ)2ΔtaΓ(un+1un,θn+1ϕ)2Δt(un+1unΔtun+1t,θn+1ˆu)+2Δtaf,c(un+1un,un+1,θn+1ˆu)2Δtgs0(ϕn+1ϕnΔtϕn+1t,θn+1ϕ)+βΔt||θnu||2+dβ(1+2Δt)||ηu,t||2L2(tn,tn+1;L2(Ωf))+dγΔt||ηn+1u||2. (29)

    Inserting the above results into (29) and let ε1=ε2==ε10=ν, we can get the following estimates:

    ||θn+1u||2||θnu||2+β||θn+1u||2β||θnu||2+||θn+1ϕ||2||θnϕ||2+||θn+1ˆuθnu||2+||θn+1ˆuθn+1u||2+||θn+1ϕθnϕ||2+β2||(θn+1uθnu)||2+γΔt||θn+1u||2+νΔt||θn+1ˆu||2+gλminΔt||θn+1ϕ||210c2pν||ηu,t||2L2(tn,tn+1;L2(Ωf))+(10C23Δtν+dγΔt)||ηn+1u||2+6gS20~c2pλmin||ηϕ,t||2L2(tn,tn+1;L2(Ωp))+6gλ2maxΔtλmin||ηn+1ϕ||2+6C24Δtgλmin||ηnu||2++10C24Δtν||ηnϕ||2+(6C5gΔthλmin+10C22Δtν||un+1||22)||θnu||2+Δtβ||θnu||2+10C6g2Δthν||θnϕ||2+(10C21Δtν||ˆun+1h||2+20C21Δtν(||unh||2+||ˆun+1h||2))||ηn+1u||2
    +10C21Δtν||un+1||2||ηnu||2+CΔt2ν||utt||2L2(tn,tn+1;L2(Ωf))+(CΔt2ν+6C24Δt2gλmin)||ut||2L2(tn,tn+1;L2(Ωf))+6gS20~c2pΔt2λmin||ϕtt||2L2(tn,tn+1;L2(Ωp))+10C6g2Δt2hν||ϕt||2L2(tn,tn+1;L2(Ωp))+dβ(1+2Δt)||ηu,t||2L2(tn,tn+1;L2(Ωf)) (30)

    Denote C=exp(ΔtN1n=0max(6C5ghλmin,10C22ν||u||2,2,β,10C6g2hν)). Sum (30) from n=0 to n=N1, together with Theorem 3.2 and Lemma 2.2, we get the following inequality:

    ||θNu||2+β||θNu||2+||θNϕ||2+N1n=0(||θn+1ˆuθnu||2+||θn+1ˆuθn+1u||2+β2||||θn+1ˆuθnu||2+||θn+1ϕθnϕ||2)+γΔtN1n=0||θn+1u||2+νΔtN1n=0||θn+1ˆu||2+gλminΔtN1n=0||θn+1ϕ||2C[10c2pν||ηu,t||2L2(0,T;L2(Ωf))+(10C23ν+6C24gλmin+dγ+1ν)||ηu||2+6gS20~c2pλmin||ηϕ,t||2L2(0,T;L2(Ωf))+(6λ2maxgλmin+10C24ν)||ηnϕ||2+CΔt2ν||utt||2L2(0,T;L2(Ωf))+(CΔt2ν+6C24Δt2gλmin)||ut||2L2(0,T;L2(Ωf))+6gS20~c2pΔt2λmin||ϕtt||2L2(0,T;L2(Ωp))+10C6g2Δt2hν||ϕt||2L2(0,T;L2(Ωp))+dβ(1+2Δt)||ηu,t||2L2(0,T;L2(Ωf))+||θ0u||2+β||θ0u||2+||θ0ϕ||2] (31)

    Finally, we have

    ||eNu||2+β||eNu||2+||eNϕ||2+N1n=0(||en+1ˆuen+1u||2+||en+1ˆuenu||2+β2||(en+1ˆuenu)||2+||en+1ϕenϕ||2)+N1n=0γΔt||en+1u||2+N1n=0νΔt||en+1ˆu||2+N1n=0gλminΔt||en+1ϕ||2C(h2k+Δt2+Δth2k) (32)

    where C>0 is a constant.

    Remark 1. Here we can propose a second-order backward differentiation formula(BDF2) methods for Stokes/Darcy model and Navier-Stokes/Darcy model, respectively. We will analyze it in the future.

    Algorithm 2 (The BDF2 modular grad-div scheme for Stokes/Darcy model).

    For vhHfh, qhQh, and ψhHph.

    Step1. Given un1h,unhHfh, pnhQh, and ϕn1h,ϕnhHph, find ˆun+1h,pn+1h,ϕn+1h satisfying:

    (3ˆun+1h4unh+un1h2Δt,vh)+af(ˆun+1h,vh)+b(vh,pn+1h)+aΓ(vh,2ϕnhϕn1h)=(fn+11,vh),b(ˆun+1h,qh)=0,gS0(3ϕn+1h4ϕnh+ϕn1h2Δt,ψh)+ap(ϕn+1h,ψh)aΓ(2unhun1h,ψh)=(fn+12,ψh). (33)

    Step2. Given ˆun+1hHfh, find un+1hHfh satisfying:

    (3un+1h3ˆun+1h2Δt,vh)+β(3un+1h4unh+un+1h2Δt,vh)+γ(un+1h,vh)=0. (34)

    Algorithm 3 (The BDF2 modular grad-div scheme for Navier-Stokes/Darcy model).

    For vhHfh, qhQh, and ψhHph.

    Step1. Given un1h,unhHfh, pnhQh, and ϕn1h,ϕnhHph, find ˆun+1h,pn+1h,ϕn+1h satisfying:

    (3ˆun+1h4unh+un1h2Δt,vh)+af(ˆun+1h,vh)+b(vh,pn+1h)+af,c(2unhun1h,ˆun+1h,vh)aΓ(vh,2ϕnϕn1)=(fn+11,vh)b(ˆun+1h,qh)=0gs0(3ϕn+1h4ϕnh+ϕn1h2Δt,ψh)+ap(ϕn+1h,ψh)aΓ(2unun1,ψh)=(fn+12,ψh) (35)

    Step2. Given ˆun+1hHfh, find un+1hHfh satisfying:

    (3un+1h3ˆun+1h2Δt,vh)+β(3un+1h4unh+un1h2Δt,vh)+γ(un+1h,vh)=0 (36)

    In this section, We will compare two grad-div schemes with standard scheme respectively to justify the results of the theoretical analysis. We implement numerical experiments using software Freefem++.

    The domain Ω be decomposed into Ωf=(0,1)×(1,2) and Ωp=(0,1)×(0,1) with the interface Γ=(0,1)×{1}. The exact solution is taken as follows:

    (u1,u2)=([x2(y1)2+y]cos(t), [23x(y1)3]cos(t)+[2πsin(πx)]cos(t)),p=[2πsin(πx)]sin(0.5πy)cos(t),ϕ=[2πsin(πx)][1ycos(πy)]cos(t).

    Here, the parameters n,ρ,g,ν,K,S0 and α are set to 1. The initial conditions, boundary conditions, and the forcing terms follows the exact solution, and we set h=Δt in experiments. The famous Taylor-Hood element(P2-P1) for the Navier-Stokes problem and the piecewise quadratic polynomials(P2) for the Darcy flow are used, respectively. The numerical results are presented in Table 1-Table 4.

    Table 1.  Numerical results at time T = 1 for the standard scheme.
    1h||eu||L2uL2rate||eu||fuHfrate||eu||L2divuL2rate
    40.01589060.03528820.042823
    80.008477820.9064080.01618721.124330.009784382.12983
    160.004367990.9567240.008050771.007650.002301982.08761
    320.002215160.9795590.004043690.9934540.0006099021.91623
    640.001115310.9899660.002031120.9933970.0001314012.2146
    1h||eϕ||L2ϕL2rate||eϕ||pϕHprate||ep||L2pL2rate
    40.04047640.06530310.500655
    80.01824771.149370.01826491.838080.257160.961151
    160.009273250.9765680.007774671.232220.1305690.977854
    320.004686120.9846810.003706711.068640.06583430.987901
    640.002355840.9921520.001838881.011310.03304730.994307

     | Show Table
    DownLoad: CSV
    Table 2.  Numerical results at time T = 1 for the standard grad-div scheme.
    1h||eu||L2uL2rate||eu||fuHfrate||eu||L2divuL2rate
    40.0157960.03499070.0332181
    80.008474770.8983130.01616291.114290.007956382.06179
    160.004367880.9562410.008048561.005880.001925462.04691
    320.002215150.9795290.004043510.9931230.0005518831.80277
    640.001115310.989960.00203110.9933470.0001129742.28837
    1h||eϕ||L2ϕL2rate||eϕ||pϕHprate||ep||L2pL2rate
    40.0403890.06527550.512196
    80.0182391.146940.01826131.837750.2574430.992443
    160.009272650.9759730.007774411.231980.1305820.979297
    320.004686070.9846030.003706691.06860.06583570.988014
    640.002355830.9921430.001838881.01130.03304740.994333

     | Show Table
    DownLoad: CSV
    Table 3.  Numerical results at time T = 1 for the modular grad-div scheme.
    1h||eu||L2uL2rate||eu||fuHfrate||eu||L2divuL2rate
    40.01612270.04222950.00546336
    80.008494780.9244450.01869871.175310.001336662.03116
    160.004368880.9593130.008496081.138070.0002500082.41859
    320.002215260.9797870.00423941.002947.36766e-0051.7627
    640.001115310.9900310.002044151.052366.93936e-0063.40833
    1h||eϕ||L2ϕL2rate||eϕ||pϕHprate||ep||L2pL2rate
    40.04038030.06525230.500113
    80.01823351.147060.01825841.837470.2571520.959633
    160.009272490.9755630.007774361.231760.130570.977798
    320.004686080.9845750.00370671.068590.06583450.987908
    640.002355830.9921460.001838881.011310.03304730.994311

     | Show Table
    DownLoad: CSV
    Table 4.  The ||eu||f for the standard without grad-div scheme, standard scheme and grad-div scheme with vaying hydraulic conductivity tensor K.
    KNon-stabilizedStandard grad-divmodular grad-div
    I0.01691730.01080850.077557
    1e1I0.02029740.01304370.0775562
    1e2I0.04646250.03018790.077554
    1e3I0.1242380.08249880.0775521

     | Show Table
    DownLoad: CSV

    Table 1, Table 2 and Table 3 shows the error and convergence order of velocity u, pressure p and hydraulic head ϕ by using the standard scheme, standard grad-div scheme and modular grad-div scheme, respectively. where γ=1 and β=0.2 for standard grad-div scheme and modular grad-div scheme. By observation and comparison, it can be found that the divergence velocity errors of the standard grad-div and modular grad-div scheme are smaller than that of the standard scheme, and the modular grad-div scheme is more accurate. Moreover both numerical results is consist with the theoretical analysis.

    Next, we set up a numerical experiment by using the different parameter K to show the superiority of modular grad-div scheme. Let's fix Δt=h=140. Table 4 shows the ||eu||f for the standard scheme without stabilization, standard grad-div scheme and modular grad-div scheme with hydraulic conductity K=I, 0.1I, 0.01I, 0.001I. We observe that the divergence of velocity error for all three schemes increase with the decrease of K. Yet their growth is relatively small, in particular there's almost no change in modular grad-div scheme. Such results are also consistent with our theoretical analysis.

    In this paper, we extend the grad-div stabilized method from Stokes/Darcy model to Navier-Stokes/Darcy model. Stability and error estimates are provided. Numerical experiments confirm the theoretical analysis, and show that the modular grad-div scheme is more efficient than that of the standard grad-div scheme.



    [1] C. Simonetto, M. Heier, A. Peters, J. A. Kaiser, S. Rospleszcz, From atherosclerosis to myocardial infarction: A process-oriented model investigating the role of risk factors, Am. J. Epidemiol., 191 (2022), 1766–1775. https://doi.org/10.1093/aje/kwac038 doi: 10.1093/aje/kwac038
    [2] A. Procopio, S. D. Rosa, C. Covello, A. Merola, J. Sabatino, A. D. Luca, et al., Mathematical model of the release of the ctnt and ck-mb cardiac biomarkers in patients with acute myocardial infarction, in 18th European Control Conference (ECC), 2019.
    [3] O. F. Voropaeva, C. A. Tsgoev, Y. L. Shokin, Numerical simulation of the inflammatory phase of myocardial infarction, J. Appl. Mech. Tech. Phys., 62 (2021), 441–450. https://doi.org/10.1134/S002189442103010X doi: 10.1134/S002189442103010X
    [4] C. Simonetto, S. Rospleszcz, M. Heier, C. Meisinger, A. Peters, J. C. Kaiser, Simulating the dynamics of atherosclerosis to the incidence of myocardial infarction, applied to the kora population, Stat. Med., 40 (2021), 3299–3312. https://doi.org/10.1002/sim.8951 doi: 10.1002/sim.8951
    [5] D. Mojsejenko, J. R. McGarvey, S. M. Dorsey, J. H. Gorman, J. A. Burdick, J. J. Pilla, et al., Estimating passive mechanical properties in a myocardial infarction using mri and finite element simulations, Biomech. Model. Mechanobiol., 14 (2015), 633–647. https://doi.org/10.1007/s10237-014-0627-z doi: 10.1007/s10237-014-0627-z
    [6] T. C. Gasser, R. W. Ogden, G. A. Holzapfel, Hyperelastic modelling of arterial layers with distributed collagen fibre orientations, J. R. Soc. Interface, 3 (2006), 15–35. https://royalsocietypublishing.org/doi/10.1098/rsif.2005.0073 doi: 10.1098/rsif.2005.0073
    [7] G. A. Holzapfel, Nonlinear solid mechanics : a continuum approach for engineering science, Meccanica, 37 (2000), 489–490.
    [8] P. W. Fok, K. Gou, Finite element simulation of intimal thickening in 2d multi-layered arterial cross sections by morphoelasticity, Comput. Methods Appl. Mech. Eng., 363 (2020), 112860. https://doi.org/10.1016/j.cma.2020.112860 doi: 10.1016/j.cma.2020.112860
    [9] G. A. Holzapfel, G. Sommer, C. T. Gasser, P. Regitnig, Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling, Am. J. Physiol. Heart Circ. Physiol., 289 (2005), 2048–2058.
    [10] S. G. Sassani, S. Tsangaris, D. P. Sokolis, Layer- and region-specific material characterization of ascending thoracic aortic aneurysms by microstructure-based models, J. Biomech., 48 (2015), 3757–3765. http://dx.doi.org/10.1016/j.jbiomech.2015.08.028 doi: 10.1016/j.jbiomech.2015.08.028
    [11] N. M. Mirzaei, P. W. Fok, Simple model of atherosclerosis in cylindrical arteries: impact of anisotropic growth on glagov remodeling, Math. Med. Biol. J. IMA, 38 (2020), 59–82. https://doi.org/10.1093/imammb/dqaa011 doi: 10.1093/imammb/dqaa011
    [12] S. Katsuda, Y. Okada, T. Minamoto, Y. Oda, Y. Matsui, I. Nakanishi, Collagens in human atherosclerosis: Immunohistochemical analysis using collagen type-specific antibodies, Arterioscler. Thromb. J. Vasc. Biol., 12 (1992), 494–502. https://doi.org/10.1161/01.ATV.12.4.494 doi: 10.1161/01.ATV.12.4.494
    [13] G. Plank, J. D. Bayer, R. C. Blake, N. A. Trayanova, A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models, Ann. Biomed. Eng., 40 (2012), 2243–2254. https://doi.org/10.1007/s10439-012-0593-5 doi: 10.1007/s10439-012-0593-5
    [14] J. Wong, E. Kuhl, Generating fiber orientation maps in human heart models using poisson interpolation, Comput. Methods Biomech. Biomed. Eng., 17 (2014), 1217–1226. https://doi.org/10.1080/10255842.2012.739167 doi: 10.1080/10255842.2012.739167
    [15] E. K. Theofilogiannakos, G. K. Theofilogiannakos, A. Anogeianaki, P. G. Danias, H. Zairi, T. Zaraboukas, et al., A fiber orientation model of the human heart using classical histological methods, magnetic resonance imaging and interpolation techniques, Comput. Cardiol., 35 (2008), 307–310. https://doi.org/10.1109/CIC.2008.4749039 doi: 10.1109/CIC.2008.4749039
    [16] A. C. Akyildiz, C. K. Chai, C. Oomens, A.van der Lugt, F. Baaijens, G. J. Strijkers, et al., 3d fiber orientation in atherosclerotic carotid plaques, J. Struct. Biol., 200 (2017), 28–35, https://dx.doi.org/10.1016/j.jsb.2017.08.003 doi: 10.1016/j.jsb.2017.08.003
    [17] J. A. Niestrawska, A. Pukaluk, A. R. Babu, G. A. Holzapfel, Differences in collagen fiber diameter and waviness between healthy and aneurysmal abdominal aortas, Microsc. Microanal., 28 (2022), 1649–1663. https://doi.org/10.1017/s1431927622000629 doi: 10.1017/s1431927622000629
    [18] G. A. Holzapfel, R. W. Ogden, S. Sherifova, On fibre dispersion modelling of soft biological tissues: a review, Proc. R. Soc. A, 475 (2019). http://dx.doi.org/10.1098/rspa.2018.0736 doi: 10.1098/rspa.2018.0736
    [19] A. J. Schriefl, A. J. Reinisch, S. Sankaran, D. M. Pierce, G. A. Holzapfel, Quantitative assessment of collagen fibre orientations from two-dimensional images of soft biological tissues, J. R. Soc. Interface, 9 (2012), 3081–3093. https://doi.org/10.1098/rsif.2012.0339 doi: 10.1098/rsif.2012.0339
    [20] M. Kroon, A continuum mechanics framework and a constitutive model for remodelling of collagen gels and collagenous tissues, J. Mech. Phys. Solids, 58 (2010), 918–933. https://doi.org/10.1016/j.jmps.2010.03.005 doi: 10.1016/j.jmps.2010.03.005
    [21] F. Cacho, P. J. Elbischger, J. F. Rodríguez, M. Doblaré, G. A. Holzapfel, A constitutive model for fibrous tissues considering collagen fiber crimp, Int. J. Non Linear Mech., 42 (2007), 391–402, https://doi.org/10.1016/j.ijnonlinmec.2007.02.002 doi: 10.1016/j.ijnonlinmec.2007.02.002
    [22] L. N. Trefethen, Numerical conformal mapping with rational functions, Comput. Methods Funct. Theory, 20 (2020), 369–387. https://doi.org/10.1007/s40315-020-00325-w doi: 10.1007/s40315-020-00325-w
    [23] Y. Nakatsukasa, O. Sète, L. N. Trefethen, The aaa algorithm for rational approximation, SIAM J. Sci. Comput., 40 (2018). https://doi.org/10.1137/16M1106122 doi: 10.1137/16M1106122
    [24] Y. Nakashima, Y. Chen, N. Kinukawa, K. Sueishi, Distributions of diffuse intimal thickening in human arteries: preferential expression in atherosclerosis-prone arteries from an early age, Virchows Arch., 441 (2002), 279–288. https://doi.org/10.1007/s00428-002-0605-1 doi: 10.1007/s00428-002-0605-1
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2204) PDF downloads(64) Cited by(2)

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog