Research article Special Issues

The Unique ergodic stationary distribution of two stochastic SEIVS epidemic models with higher order perturbation


  • Received: 17 August 2022 Revised: 30 September 2022 Accepted: 16 October 2022 Published: 27 October 2022
  • Two types of susceptible, exposed, infectious, vaccinated/recovered, susceptible (SEIVS) epidemic models with saturation incidence and temporary immunity, driven by higher order white noise and telegraph noise, are investigated. The key aim of this work is to explore and obtain the existence of the unique ergodic stationary distribution for the above two models, which reveals whether the disease will be prevalent and persistent under some noise intensity assumptions. We also use meticulous numerical examples to validate the feasibility of the analytical findings. Finally, a brief biological discussion shows that the intensities of noises play a significant role in the stationary distributions of the two models.

    Citation: Yan Xie, Zhijun Liu. The Unique ergodic stationary distribution of two stochastic SEIVS epidemic models with higher order perturbation[J]. Mathematical Biosciences and Engineering, 2023, 20(1): 1317-1343. doi: 10.3934/mbe.2023060

    Related Papers:

  • Two types of susceptible, exposed, infectious, vaccinated/recovered, susceptible (SEIVS) epidemic models with saturation incidence and temporary immunity, driven by higher order white noise and telegraph noise, are investigated. The key aim of this work is to explore and obtain the existence of the unique ergodic stationary distribution for the above two models, which reveals whether the disease will be prevalent and persistent under some noise intensity assumptions. We also use meticulous numerical examples to validate the feasibility of the analytical findings. Finally, a brief biological discussion shows that the intensities of noises play a significant role in the stationary distributions of the two models.



    加载中


    [1] L. Chen, S. Q. Gan, X. J. Wang, First order strong convergence of an explicit scheme for the stochastic SIS epidemic model, J. Comput. Appl. Math., 392 (2021), 113482. https://doi.org/10.1016/j.cam.2021.113482 doi: 10.1016/j.cam.2021.113482
    [2] G. Guan, Z. Y. Guo, Bifurcation and stability of a delayed SIS epidemic model with saturated incidence and treatment rates in heterogeneous networks, Appl. Math. Model., 101 (2022), 55–75. https://doi.org/10.1016/j.apm.2021.08.024 doi: 10.1016/j.apm.2021.08.024
    [3] J. J. Jiao, S. H. Cai, L. M. Li, Impulsive vaccination and dispersal on dynamics of an SIR epidemic model with restricting infected individuals boarding transports, Phys. A, 449 (2016), 145–159. https://doi.org/10.1016/j.physa.2015.10.055 doi: 10.1016/j.physa.2015.10.055
    [4] Y. L. Cai, Y. Kang, W. M. Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Appl. Math. Comput., 305 (2017), 221–240. https://doi.org/10.1016/j.amc.2017.02.003 doi: 10.1016/j.amc.2017.02.003
    [5] A. Zeb, S. Djilali, T. Saeed, M. S. Alhodaly, N. Gul, Global proprieties of an SIR epidemic model with nonlocal diffusion and immigration, Results Phys., 39 (2022), 105758. https://doi.org/10.1016/j.rinp.2022.105758 doi: 10.1016/j.rinp.2022.105758
    [6] G. Huang, Y. Takeuchi, W. B. Ma, D. J. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72 (2010), 1192–1207. https://doi.org/10.1007/s11538-009-9487-6 doi: 10.1007/s11538-009-9487-6
    [7] C. J. Sun, Y. H. Hsieh, Global analysis of an SEIR model with varying population size and vaccination, Appl. Math. Model., 34 (2010), 2685–2697. https://doi.org/10.1016/j.apm.2009.12.005 doi: 10.1016/j.apm.2009.12.005
    [8] M. De la Sen, S. Alonso-Quesada, A. Ibeas, On the stability of an SEIR epidemic model with distributed time-delay and a general class of feedback vaccination rules, Appl. Math. Comput., 270 (2015), 953–976. https://doi.org/10.1016/j.amc.2015.08.099 doi: 10.1016/j.amc.2015.08.099
    [9] Q. Liu, D. Q. Jiang, N. Z. Shi, T. Hayat, A. Alsaedi, Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence, Phys. A, 476 (2017), 58–69. https://doi.org/10.1016/j.physa.2017.02.028 doi: 10.1016/j.physa.2017.02.028
    [10] D. Wanduku, Complete global analysis of a two-scale network SIRS epidemic dynamic model with distributed delay and random perturbations, Appl. Math. Comput., 294 (2017), 49–76. https://doi.org/10.1016/j.amc.2016.09.001 doi: 10.1016/j.amc.2016.09.001
    [11] Q. Liu, D. Q. Jiang, T. Hayat, A. Alsaedi, Dynamics of a stochastic multigroup SIQR epidemic model with standard incidence rates, J. Franklin Inst., 356 (2019), 2960–2993. https://doi.org/10.1016/j.jfranklin.2019.01.038 doi: 10.1016/j.jfranklin.2019.01.038
    [12] R. Ikram, A. Khan, M. Zahri, A. Saeed, M. Yavuz, P. Kumam, Extinction and stationary distribution of a stochastic COVID-19 epidemic model with time-delay, Comput. Biol. Med., 141 (2022), 105115. https://doi.org/10.1016/j.compbiomed.2021.105115 doi: 10.1016/j.compbiomed.2021.105115
    [13] F. Özköse, M. Yavuz, M. T. Şenel, R. Habbireeh, Fractional order modelling of omicron SARS-CoV-2 variant containing heart attack effect using real data from the United Kingdom, Chaos Solitons Fractals, 157 (2022), 111954. https://doi.org/10.1016/j.chaos.2022.111954 doi: 10.1016/j.chaos.2022.111954
    [14] M. A. Teitelbaulm, M. Edmunds, Immunization and vaccine-preventable illness, Unites States, 1992–1997, Stat. Bull., 80 (1999), 13–20.
    [15] J. Mossong, C. P. Muller, Modelling measles re-emergence as a result of waning of immunity in vaccinated populations, Vaccine, 21 (2003), 4597–4603. https://doi.org/10.1016/S0264-410X(03)00449-3 doi: 10.1016/S0264-410X(03)00449-3
    [16] E. Leuridan, P. Van Damme, Passive transmission and persistence of naturally acquired or vaccine-induced maternal antibodies against measles in newborns, Vaccine, 25 (2007), 6296–6304. https://doi.org/10.1016/j.vaccine.2007.06.020 doi: 10.1016/j.vaccine.2007.06.020
    [17] L. M. Cai, X. Z. Li, Analysis of a SEIV epidemic model with a nonlinear incidence rate, Appl. Math. Model., 33 (2009), 2919–2926. https://doi.org/10.1016/j.apm.2008.01.005 doi: 10.1016/j.apm.2008.01.005
    [18] G. P. Sahu, J. Dhar, Analysis of an SVEIS epidemic model with partial temporary immunity and saturation incidence rate, Appl. Math. Model., 36 (2012), 908–923. https://doi.org/10.1016/j.apm.2011.07.044 doi: 10.1016/j.apm.2011.07.044
    [19] X. Y. Wang, Z. J. Liu, L. W. Wang, C. H. Guo, H. L. Xiang, An application of a novel geometric criterion to global-stability problems of a nonlinear SEIVS epidemic model, J. Appl. Math. Comput., 67 (2021), 707–730. https://doi.org/10.1007/s12190-020-01487-5 doi: 10.1007/s12190-020-01487-5
    [20] X. R. Mao, G. Marion, E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stoch. Process. Appl., 97 (2002), 95–110. https://doi.org/10.1016/S0304-4149(01)00126-0 doi: 10.1016/S0304-4149(01)00126-0
    [21] C. Lu, H. H. Liu, D. Zhang, Dynamics and simulations of a second order stochastically perturbed SEIQV epidemic model with saturated incidence rate, Chaos Solitons Fractals, 152 (2021), 111312. https://doi.org/10.1016/j.chaos.2021.111312 doi: 10.1016/j.chaos.2021.111312
    [22] S. P. Rajasekar, M. Pitchaimani, Q. X. Zhu, Higher order stochastically perturbed SIRS epidemic model with relapse and media impact, Math. Methods Appl. Sci., 45 (2022), 843–863. https://doi.org/10.1002/mma.7817 doi: 10.1002/mma.7817
    [23] Y. Q. Song, X. H. Zhang, Stationary distribution and extinction of a stochastic SVEIS epidemic model incorporating Ornstein-Uhlenbeck process, Appl. Math. Lett., 133 (2022), 108284 https://doi.org/10.1016/j.aml.2022.108284 doi: 10.1016/j.aml.2022.108284
    [24] X. H. Zhang, Q. D. Jiang, A. Alsaedi, T. Hayat, Stationary distribution of stochastic SIS epidemic model with vaccination under regime switching, Appl. Math. Lett., 59 (2016), 87–93. https://doi.org/10.1016/j.aml.2016.03.010 doi: 10.1016/j.aml.2016.03.010
    [25] J. Xu, T. Chen, X. D. Wen, Analysis of a Bailey-Dietz model for vector-borne disease under regime switching, Phys. A, 580 (2021), 126129. https://doi.org/10.1016/j.physa.2021.126129 doi: 10.1016/j.physa.2021.126129
    [26] B. Brahim, E. Mohamed, L. Aziz, R. Takic, K. Wang, A Markovian regime-switching stochastic hybrid time-delayed epidemic model with vaccination, Automatica, 133 (2021), 109881. https://doi.org/10.1016/j.automatica.2021.109881 doi: 10.1016/j.automatica.2021.109881
    [27] X. R. Mao, C. G. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial college press, 2006.
    [28] R. Z. Khasminskii, C. Zhu, G. Yin, Stability of regime-switching diffusions, Stoch Process Their Appl., 117 (2007), 1037–1051. https://doi.org/10.1016/j.spa.2006.12.001 doi: 10.1016/j.spa.2006.12.001
    [29] Z. X. Han, J. D. Zhao, Stochastic SIRS model under regime switching, Nonlinear Anal Real World Appl., 14 (2013), 352–364. https://doi.org/10.1016/j.nonrwa.2012.06.008 doi: 10.1016/j.nonrwa.2012.06.008
    [30] Z. F. Shi, X. H. Zhang, D. Q. Jiang, Modelling a stochastic avian influenza model under regime switching and with human-to-human transmission, Int. J. Biomath., 13 (2020), 2050064. https://doi.org/10.1142/S1793524520500643 doi: 10.1142/S1793524520500643
    [31] B. Q. Zhou, B. T. Han, D. Q. Jiang, T. Hayat, A. Alsaedi, Ergodic stationary distribution and extinction of hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete markov switching, Appl. Math. Comput., 410 (2021), 126388. https://doi.org/10.1016/j.amc.2021.126388 doi: 10.1016/j.amc.2021.126388
    [32] J. Xu, Y. N. Wang, Z. W. Cao, Dynamics of a stochastic SIRS epidemic model with standard incidence under regime switching, Int. J. Biomath., 15 (2022), 2150074. https://doi.org/10.1142/S1793524521500741 doi: 10.1142/S1793524521500741
    [33] B. T. Han, D. Q. Jiang, T. Hayat, A. Alsaedi, B. Ahmad, Stationary distribution and extinction of a stochastic staged progression AIDS model with staged treatment and second-order perturbation, Chaos Solitons Fractals, 140 (2020), 110238. https://doi.org/10.1016/j.chaos.2020.110238 doi: 10.1016/j.chaos.2020.110238
    [34] R. Z. Hasminskii, Stochastic Stability of Differential Equations, Sijthoff Noordhoff, Alphen aan den Rijn, The Netherlands, 1980.
    [35] A. Bahar, X. R. Mao, Stochastic delay Lotka-Volterra model, J. Math. Anal. Appl., 292 (2004), 364–380. https://doi.org/10.1016/j.jmaa.2003.12.004 doi: 10.1016/j.jmaa.2003.12.004
    [36] X. Y. Li, D. Q. Jiang, X. R. Mao, Population dynamical behavior of Lotka-Volterra system under regime switching, J. Comput. Appl. Math., 232 (2009), 427–448. https://doi.org/10.1016/j.cam.2009.06.021 doi: 10.1016/j.cam.2009.06.021
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1268) PDF downloads(106) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog