A delayed HIV-1 model with virus waning term

  • Received: 01 April 2015 Accepted: 29 June 2018 Published: 01 October 2015
  • MSC : Primary: 34K20, 92D30; Secondary: 34K18.

  • -->
    In this paper, we propose and analyze a delayed HIV-1 model with CTL immune response and virus waning. The two discrete delays stand for the time for infected cells to produce viruses after viral entry and for the time for CD8+ T cell immune response to emerge to control viral replication. We obtain the positiveness and boundedness of solutions and find the basic reproduction number R0. If R0<1then=""the=""infectionfree=""steady=""state=""is=""globally=""asymptotically=""stable=""and=""the=""infection=""is=""cleared=""from=""the=""tcell=""population=""whereas=""if=""r0="">1, then the system is uniformly persistent and the viral concentration maintains at some constant level. The global dynamics when R0>1 is complicated. We establish the local stability of the infected steady state and show that Hopf bifurcation can occur. Both analytical and numerical results indicate that if, in the initial infection stage,the effect of delays on HIV-1 infection is ignored, then the risk of HIV-1 infection (if persists) will be underestimated. Moreover, the viral load differs from that without virus waning. These results highlight the important role of delays and virus waning on HIV-1 infection.

    Citation: Bing Li, Yuming Chen, Xuejuan Lu, Shengqiang Liu. A delayed HIV-1 model with virus waning term[J]. Mathematical Biosciences and Engineering, 2016, 13(1): 135-157. doi: 10.3934/mbe.2016.13.135

    Related Papers:

    [1] Ting Guo, Zhipeng Qiu . The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6822-6841. doi: 10.3934/mbe.2019341
    [2] Yan Wang, Tingting Zhao, Jun Liu . Viral dynamics of an HIV stochastic model with cell-to-cell infection, CTL immune response and distributed delays. Mathematical Biosciences and Engineering, 2019, 16(6): 7126-7154. doi: 10.3934/mbe.2019358
    [3] Xuejuan Lu, Lulu Hui, Shengqiang Liu, Jia Li . A mathematical model of HTLV-I infection with two time delays. Mathematical Biosciences and Engineering, 2015, 12(3): 431-449. doi: 10.3934/mbe.2015.12.431
    [4] Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022
    [5] Xinran Zhou, Long Zhang, Tao Zheng, Hong-li Li, Zhidong Teng . Global stability for a class of HIV virus-to-cell dynamical model with Beddington-DeAngelis functional response and distributed time delay. Mathematical Biosciences and Engineering, 2020, 17(5): 4527-4543. doi: 10.3934/mbe.2020250
    [6] Yan Wang, Minmin Lu, Daqing Jiang . Viral dynamics of a latent HIV infection model with Beddington-DeAngelis incidence function, B-cell immune response and multiple delays. Mathematical Biosciences and Engineering, 2021, 18(1): 274-299. doi: 10.3934/mbe.2021014
    [7] Xiaohong Tian, Rui Xu, Jiazhe Lin . Mathematical analysis of an age-structured HIV-1 infection model with CTL immune response. Mathematical Biosciences and Engineering, 2019, 16(6): 7850-7882. doi: 10.3934/mbe.2019395
    [8] Jiawei Deng, Ping Jiang, Hongying Shu . Viral infection dynamics with mitosis, intracellular delays and immune response. Mathematical Biosciences and Engineering, 2023, 20(2): 2937-2963. doi: 10.3934/mbe.2023139
    [9] A. M. Elaiw, A. S. Shflot, A. D. Hobiny . Stability analysis of general delayed HTLV-I dynamics model with mitosis and CTL immunity. Mathematical Biosciences and Engineering, 2022, 19(12): 12693-12729. doi: 10.3934/mbe.2022593
    [10] Ning Bai, Rui Xu . Mathematical analysis of an HIV model with latent reservoir, delayed CTL immune response and immune impairment. Mathematical Biosciences and Engineering, 2021, 18(2): 1689-1707. doi: 10.3934/mbe.2021087
  • In this paper, we propose and analyze a delayed HIV-1 model with CTL immune response and virus waning. The two discrete delays stand for the time for infected cells to produce viruses after viral entry and for the time for CD8+ T cell immune response to emerge to control viral replication. We obtain the positiveness and boundedness of solutions and find the basic reproduction number R0. If R0<1then=""the=""infectionfree=""steady=""state=""is=""globally=""asymptotically=""stable=""and=""the=""infection=""is=""cleared=""from=""the=""tcell=""population=""whereas=""if=""r0="">1, then the system is uniformly persistent and the viral concentration maintains at some constant level. The global dynamics when R0>1 is complicated. We establish the local stability of the infected steady state and show that Hopf bifurcation can occur. Both analytical and numerical results indicate that if, in the initial infection stage,the effect of delays on HIV-1 infection is ignored, then the risk of HIV-1 infection (if persists) will be underestimated. Moreover, the viral load differs from that without virus waning. These results highlight the important role of delays and virus waning on HIV-1 infection.


    [1] MMWR Morb Mortal Wkly Rep, 31 (1982), 652-654.
    [2] New Jersey, California, MMWR Morb Mortal Wkly Rep, 31 (1982), 665-667.
    [3] MMWR Morb Mortal Wkly Rep, 31 (1983), 697-698.
    [4] J. Theor. Biol., 259 (2009), 751-759.
    [5] Math. Biosci., 200 (2006), 1-27.
    [6] J. Math. Biol., 48 (2004), 545-562.
    [7] SIAM J. Appl. Math., 63 (2003), 1313-1327.
    [8] Nature Medicine, 9 (2003), 839-843.
    [9] Science, 298 (2002), 1728-1730.
    [10] Springer-Verlag, New York, 1993.
    [11] J. Theor. Biol., 236 (2005), 137-153.
    [12] Proc. Natl. Acad. Sci. USA, 93 (1996), 7247-7251.
    [13] SIAM J. Appl. Math., 70 (2010), 2693-2708.
    [14] The New England Journal of Medicine, 344 (2001), 1764-1772.
    [15] Journal of Biological Systems, 21 (2013), 1340012, 20pp.
    [16] SIAM J. Appl. Math., 70 (2010), 2434-2448.
    [17] Mathematical Biosciences and Engineering, 7 (2010), 675-685.
    [18] Mathematical Biosciences and Engineering, 12 (2015), 431-449.
    [19] Science, 298 (2002), 1727-1728.
    [20] Science, 272 (1996), 74-79.
    [21] Oxford University Press, Oxford, 2000.
    [22] Mathematical Biosciences, 235 (2012), 98-109.
    [23] PLoS Comput Biol., 7 (2011), e1001058, 17 pp.
    [24] Science, 271 (1996), 1582-1586.
    [25] Journal of Virology, 84 (2010), 6096-6102.
    [26] Bulletin of Mathematical Biology, 69 (2007), 2027-2060.
    [27] SIAM J. Appl. Math., 73 (2013), 1280-1302.
    [28] Nonlinear Anal., 47 (2001), 6169-6179.
    [29] Mathematical biosciences and engineering, 12 (2015), 185-208.
    [30] J. Theor. Biol., 203 (2000), 285-301.
    [31] Mathematical Methods in the Applied Science, 36 (2013), 125-142.
    [32] J. Math. Biol., 67 (2013), 901-934.
    [33] Physica D, 130 (1999), 255-272.
    [34] Springer, Berlin, 2003.
  • This article has been cited by:

    1. A.M. Elaiw, N.H. AlShamrani, Stability of latent pathogen infection model with adaptive immunity and delays, 2018, 17, 1757448X, 547, 10.3233/JIN-180087
    2. A. M. Elaiw, M. A. Alshaikh, Stability of discrete-time HIV dynamics models with three categories of infected CD4+ T-cells, 2019, 2019, 1687-1847, 10.1186/s13662-019-2338-3
    3. A. D. Hobiny, A. M. Elaiw, A. A. Almatrafi, Stability of delayed pathogen dynamics models with latency and two routes of infection, 2018, 2018, 1687-1847, 10.1186/s13662-018-1720-x
    4. Saroj Kumar Sahani, , Effects of delay in immunological response of HIV infection, 2018, 11, 1793-5245, 1850076, 10.1142/S1793524518500766
    5. A. M. Elaiw, N. H. AlShamrani, Stability of a general delay‐distributed virus dynamics model with multi‐staged infected progression and immune response, 2017, 40, 0170-4214, 699, 10.1002/mma.4002
    6. Ahmed M. Elaiw, Noura H. AlShamrani, Stability of an adaptive immunity pathogen dynamics model with latency and multiple delays, 2018, 41, 01704214, 6645, 10.1002/mma.5182
    7. Ahmed M. Elaiw, Matuka A. Alshaikh, Stability analysis of a general discrete-time pathogen infection model with humoral immunity, 2019, 25, 1023-6198, 1149, 10.1080/10236198.2019.1662411
    8. A. M. Elaiw, A. A. Almatrafi, A. D. Hobiny, Effect of antibodies on pathogen dynamics with delays and two routes of infection, 2018, 8, 2158-3226, 065104, 10.1063/1.5029483
    9. Yu Yang, Lan Zou, Yasuhiro Takeuchi, Global analysis of a multi-group viral infection model with age structure, 2020, 0003-6811, 1, 10.1080/00036811.2020.1721471
    10. A. M. Elaiw, M. A. Alshaikh, Stability of discrete-time delayed pathogen infection models with latently infected cells, 2019, 9, 2158-3226, 045015, 10.1063/1.5094811
    11. A. M. Elaiw, A. A. Almatrafi, A. D. Hobiny, K. Hattaf, Global Properties of a General Latent Pathogen Dynamics Model with Delayed Pathogenic and Cellular Infections, 2019, 2019, 1026-0226, 1, 10.1155/2019/9585497
    12. A. M. Elaiw, N. H. AlShamrani, A. S. Alofi, Stability of CTL immunity pathogen dynamics model with capsids and distributed delay, 2017, 7, 2158-3226, 125111, 10.1063/1.5006961
    13. A. M. Elaiw, A. A. Raezah, B. S. Alofi, Dynamics of delayed pathogen infection models with pathogenic and cellular infections and immune impairment, 2018, 8, 2158-3226, 025323, 10.1063/1.5023752
    14. A. M. Shehata, A. M. Elaiw, E. Kh. Elnahary, M. Abul-Ez, Stability analysis of humoral immunity HIV infection models with RTI and discrete delays, 2017, 5, 2195-268X, 811, 10.1007/s40435-016-0235-0
    15. HONGYING SHU, LIN WANG, JOINT IMPACTS OF THERAPY DURATION, DRUG EFFICACY AND TIME LAG IN IMMUNE EXPANSION ON IMMUNITY BOOSTING BY ANTIVIRAL THERAPY, 2017, 25, 0218-3390, 105, 10.1142/S0218339017500061
    16. A. M. Elaiw, A. A. Raezah, S. A. Azoz, Stability of delayed HIV dynamics models with two latent reservoirs and immune impairment, 2018, 2018, 1687-1847, 10.1186/s13662-018-1869-3
    17. Bing Li, Feng Jiao, A delayed HIV-1 model with cell-to-cell spread and virus waning, 2020, 14, 1751-3758, 802, 10.1080/17513758.2020.1836272
    18. Yuanlin Ma, Xingwang Yu, The effect of environmental noise on threshold dynamics for a stochastic viral infection model with two modes of transmission and immune impairment, 2020, 134, 09600779, 109699, 10.1016/j.chaos.2020.109699
    19. A. M. Elaiw, A. A. Raezah, Stability of general virus dynamics models with both cellular and viral infections and delays, 2017, 40, 01704214, 5863, 10.1002/mma.4436
    20. M. Mahrouf, K. Hattaf, N. Yousfi, G. Bocharov, S. Simakov, Yu. Vassilevski, V. Volpert, Dynamics of a Stochastic Viral Infection Model with Immune Response, 2017, 12, 1760-6101, 15, 10.1051/mmnp/201712502
    21. Ahmed M. Elaiw, Taofeek O. Alade, Saud M. Alsulami, Analysis of within-host CHIKV dynamics models with general incidence rate, 2018, 11, 1793-5245, 1850062, 10.1142/S1793524518500626
    22. Ahmed M. Elaiw, Taofeek O. Alade, Saud M. Alsulami, Global dynamics of delayed CHIKV infection model with multitarget cells, 2019, 60, 1598-5865, 303, 10.1007/s12190-018-1215-7
    23. Shyan-Shiou Chen, Chang-Yuan Cheng, Yasuhiro Takeuchi, Stability analysis in delayed within-host viral dynamics with both viral and cellular infections, 2016, 442, 0022247X, 642, 10.1016/j.jmaa.2016.05.003
    24. Taofeek O. Alade, On the generalized Chikungunya virus dynamics model with distributed time delays, 2020, 2195-268X, 10.1007/s40435-020-00723-x
    25. Cuicui Jiang, Kaifa Wang, Lijuan Song, Global dynamics of a delay virus model with recruitment and saturation effects of immune responses, 2017, 14, 1551-0018, 1233, 10.3934/mbe.2017063
    26. A. M. Elaiw, A. A. Almatrafi, A. D. Hobiny, I. A. Abbas, Stability of latent pathogen infection model with CTL immune response and saturated cellular infection, 2018, 8, 2158-3226, 125021, 10.1063/1.5079402
    27. Yan Wang, Minmin Lu, Daqing Jiang, Viral dynamics of a latent HIV infection model with Beddington-DeAngelis incidence function, B-cell immune response and multiple delays, 2021, 18, 1551-0018, 274, 10.3934/mbe.2021014
    28. Ahmed M. Elaiw, Safiya F. Alshehaiween, Aatef D. Hobiny, Global Properties of a Delay-Distributed HIV Dynamics Model Including Impairment of B-Cell Functions, 2019, 7, 2227-7390, 837, 10.3390/math7090837
    29. A. M. Elaiw, A. A. Raezah, A. S. Alofi, Stability of a general delayed virus dynamics model with humoral immunity and cellular infection, 2017, 7, 2158-3226, 065210, 10.1063/1.4989569
    30. Ahmed Elaiw, Taofeek Alade, Saud Alsulami, Global Stability of Within-Host Virus Dynamics Models with Multitarget Cells, 2018, 6, 2227-7390, 118, 10.3390/math6070118
    31. A. Elaiw, E. Elnahary, Analysis of General Humoral Immunity HIV Dynamics Model with HAART and Distributed Delays, 2019, 7, 2227-7390, 157, 10.3390/math7020157
    32. Ahmed M. Elaiw, Taofeek O. Alade, Saud M. Alsulami, Analysis of latent CHIKV dynamics models with general incidence rate and time delays, 2018, 12, 1751-3758, 700, 10.1080/17513758.2018.1503349
    33. A.M. Elaiw, M.A. Alshaikh, Stability of delayed discrete-time viral model with antibody and cell-mediated immune responses, 2020, 59, 11100168, 1073, 10.1016/j.aej.2019.12.014
    34. Xinsheng Ma, Yuhuai Zhang, Yuming Chen, Stability and bifurcation analysis of an HIV-1 infection model with a general incidence and CTL immune response, 2021, 15, 1751-3758, 367, 10.1080/17513758.2021.1950224
    35. Zhijun Liu, Lianwen Wang, Ronghua Tan, Spatiotemporal dynamics for a diffusive HIV-1 infection model with distributed delays and CTL immune response, 2022, 27, 1531-3492, 2767, 10.3934/dcdsb.2021159
    36. A. M. Elaiw, N. H. AlShamrani, Modeling and stability analysis of HIV/HTLV-I co-infection, 2021, 14, 1793-5245, 2150030, 10.1142/S1793524521500303
    37. Chenwei Song, Rui Xu, Ning Bai, Dynamics of a Within-Host Virus Infection Model with Multiple Pathways: Stability Switch and Global Stability, 2021, 31, 0218-1274, 10.1142/S0218127421501959
    38. Dianhong Wang, Yading Liu, Xiaojie Gao, Chuncheng Wang, Dejun Fan, Dynamics of an HIV infection model with two time delays, 2023, 0, 1531-3492, 0, 10.3934/dcdsb.2023069
    39. Qiuyue Dong, Yan Wang, Daqing Jiang, Dynamic analysis of an HIV model with CTL immune response and logarithmic Ornstein–Uhlenbeck process, 2025, 191, 09600779, 115789, 10.1016/j.chaos.2024.115789
    40. Noura H. AlShamrani, Reham H. Halawani, Wafa Shammakh, Ahmed M. Elaiw, Global Properties of HIV-1 Dynamics Models with CTL Immune Impairment and Latent Cell-to-Cell Spread, 2023, 11, 2227-7390, 3743, 10.3390/math11173743
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4041) PDF downloads(949) Cited by(39)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog