
Within the framework of physical and ecological integrated control of cyanobacteria bloom, because the outbreak of cyanobacteria bloom can form cyanobacteria clustering phenomenon, so a new aquatic ecological model with clustering behavior is proposed to describe the dynamic relationship between cyanobacteria and potential grazers. The biggest advantage of the model is that it depicts physical spraying treatment technology into the existence pattern of cyanobacteria, then integrates the physical and ecological integrated control with the aggregation of cyanobacteria. Mathematical theory works mainly investigate some key threshold conditions to induce Transcritical bifurcation and Hopf bifurcation of the model (2.1), which can force cyanobacteria and potential grazers to form steady-state coexistence mode and periodic oscillation coexistence mode respectively. Numerical simulation works not only explore the influence of clustering on the dynamic relationship between cyanobacteria and potential grazers, but also dynamically show the evolution process of Transcritical bifurcation and Hopf bifurcation, which can be clearly seen that the density of cyanobacteria decreases gradually with the evolution of bifurcation dynamics. Furthermore, it should be worth explaining that the most important role of physical spraying treatment technology can break up clumps of cyanobacteria in the process of controlling cyanobacteria bloom, but cannot change the dynamic essential characteristics of cyanobacteria and potential grazers represented by the model (2.1), this result implies that the physical spraying treatment technology cannot fundamentally eliminate cyanobacteria bloom. In a word, it is hoped that the results of this paper can provide some theoretical support for the physical and ecological integrated control of cyanobacteria bloom.
Citation: Qiulin Huang, Hengguo Yu, Chuanjun Dai, Zengling Ma, Qi Wang, Min Zhao. Dynamic analysis of a new aquatic ecological model based on physical and ecological integrated control[J]. Mathematical Biosciences and Engineering, 2023, 20(1): 930-954. doi: 10.3934/mbe.2023043
[1] | Qihua Huang, Hao Wang . A toxin-mediated size-structured population model: Finite difference approximation and well-posedness. Mathematical Biosciences and Engineering, 2016, 13(4): 697-722. doi: 10.3934/mbe.2016015 |
[2] | Azmy S. Ackleh, Rainey Lyons, Nicolas Saintier . Finite difference schemes for a structured population model in the space of measures. Mathematical Biosciences and Engineering, 2020, 17(1): 747-775. doi: 10.3934/mbe.2020039 |
[3] | Suman Ganguli, David Gammack, Denise E. Kirschner . A Metapopulation Model Of Granuloma Formation In The Lung During Infection With Mycobacterium Tuberculosis. Mathematical Biosciences and Engineering, 2005, 2(3): 535-560. doi: 10.3934/mbe.2005.2.535 |
[4] | Azmy S. Ackleh, Vinodh K. Chellamuthu, Kazufumi Ito . Finite difference approximations for measure-valued solutions of a hierarchicallysize-structured population model. Mathematical Biosciences and Engineering, 2015, 12(2): 233-258. doi: 10.3934/mbe.2015.12.233 |
[5] | Azmy S. Ackleh, Rainey Lyons, Nicolas Saintier . High resolution finite difference schemes for a size structured coagulation-fragmentation model in the space of radon measures. Mathematical Biosciences and Engineering, 2023, 20(7): 11805-11820. doi: 10.3934/mbe.2023525 |
[6] | Simone De Reggi, Francesca Scarabel, Rossana Vermiglio . Approximating reproduction numbers: a general numerical method for age-structured models. Mathematical Biosciences and Engineering, 2024, 21(4): 5360-5393. doi: 10.3934/mbe.2024236 |
[7] | Arthur D. Lander, Qing Nie, Frederic Y. M. Wan . Spatially Distributed Morphogen Production and Morphogen Gradient Formation. Mathematical Biosciences and Engineering, 2005, 2(2): 239-262. doi: 10.3934/mbe.2005.2.239 |
[8] | Andrey V. Melnik, Andrei Korobeinikov . Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility. Mathematical Biosciences and Engineering, 2013, 10(2): 369-378. doi: 10.3934/mbe.2013.10.369 |
[9] | Saima Akter, Zhen Jin . A fractional order model of the COVID-19 outbreak in Bangladesh. Mathematical Biosciences and Engineering, 2023, 20(2): 2544-2565. doi: 10.3934/mbe.2023119 |
[10] | Inom Mirzaev, David M. Bortz . A numerical framework for computing steady states of structured population models and their stability. Mathematical Biosciences and Engineering, 2017, 14(4): 933-952. doi: 10.3934/mbe.2017049 |
Within the framework of physical and ecological integrated control of cyanobacteria bloom, because the outbreak of cyanobacteria bloom can form cyanobacteria clustering phenomenon, so a new aquatic ecological model with clustering behavior is proposed to describe the dynamic relationship between cyanobacteria and potential grazers. The biggest advantage of the model is that it depicts physical spraying treatment technology into the existence pattern of cyanobacteria, then integrates the physical and ecological integrated control with the aggregation of cyanobacteria. Mathematical theory works mainly investigate some key threshold conditions to induce Transcritical bifurcation and Hopf bifurcation of the model (2.1), which can force cyanobacteria and potential grazers to form steady-state coexistence mode and periodic oscillation coexistence mode respectively. Numerical simulation works not only explore the influence of clustering on the dynamic relationship between cyanobacteria and potential grazers, but also dynamically show the evolution process of Transcritical bifurcation and Hopf bifurcation, which can be clearly seen that the density of cyanobacteria decreases gradually with the evolution of bifurcation dynamics. Furthermore, it should be worth explaining that the most important role of physical spraying treatment technology can break up clumps of cyanobacteria in the process of controlling cyanobacteria bloom, but cannot change the dynamic essential characteristics of cyanobacteria and potential grazers represented by the model (2.1), this result implies that the physical spraying treatment technology cannot fundamentally eliminate cyanobacteria bloom. In a word, it is hoped that the results of this paper can provide some theoretical support for the physical and ecological integrated control of cyanobacteria bloom.
Diverse viral outbreaks, including those engendered by the human immune compromised virus (HIV) [1], ebola virus [2], acute respiratory syndrome Coronavirus‐2 (SARS‐CoV‐2) [3], dengue virus [4], nipah virus [5], HBV [6], etc., have been researched utilizing mathematical formulas to describe the within-host nonlinear versatile tendencies. In typical latent infection systems, uncontrolled infections, vulnerable tissues, and attacked cellular responses interact. Additionally, several researchers highlight the phenomenon of incubation by mentioning persistent contamination. The recipient defensive mechanism responds to viral infestation via inherent and monoclonal antibody immunogenicity. Both kinds of reactions can be roughly classified into lytic and nonlytic parts. While nonlytic responder processes prevent viremia by aqueous molecules, lytic responder strategies eliminate afflicted organisms. Innate mechanisms include the ability of autonomous assassin systems to destroy intracellular pathogens and the nonlytic inhibition of viral multiplication by cytokines released by cellular functions. Cytotoxic T lymphocytes (CTLs), which are allergen antibodies, destroy intracellular pathogens while autoantibodies deactivate dispersed viral proteins and prevent the transmission of bacteria to infected macrophages. Furthermore, CD4+ and CD8+ T lymphocytes can produce chemicals that inhibit infectious proliferation (e.g., IFN- and TNF-), (see Figure 1).
These discrepancies are not necessarily easy to make, though. For instance, cytokines like interferon and tumour necrotic signal have been shown to promote apoptosis in some circumstances, in addition to inhibiting infectious multiplication [7]. Eichelberger et al. [8] investigated whether the pathogen can be eradicated by the CD4+ T-cell-dependent antigen reaction in the absence of CD8+ T cells, (see Figure 2). Topham et al. [9] demonstrated that CD8+ T lymphocytes can eliminate the pathogen by a lytic process that is either regulated by complement activation or Fas. In terms of explaining the four distinct HCV scenarios quantitatively, Pan et al. [10] addressed the HCV infectious system, which incorporates the pathways of contamination and propagation, such as infectious agent and cell-to-cell dissemination patterns.
Chronic infestations result when the pathogen weakens and suppresses the innate immunity. An immunological reaction has occurred whereby, upon a bacteria's penetration into the system, the immunological mechanism identifies the onslaught and communicates this information to the defensive components, which then generate lymphocytes to eradicate the infection. Additionally, the responsive immunological mechanism is very important in regulating the virus replication. When an infection propagates in a person, the cells respond in two ways: first, a host antibody immune reaction is triggered by the B-cell, and then a cytotoxic immunological reaction is induced by the Cytotoxic T Lymphocyte (CTL). According to earlier investigations, the autoimmune disease seems to be more robust than the intracellular immunological defences. Elaiw et al. [11] addressed the production of antibodies, particular nonlinear prevalence rate expression, and behavioural features of viral transmission scenarios, including insidiously viral particles. Luo et al. [12] analyzed a nonlinear prevalence, cell-to-cell dissemination, and host immune protection framework for diffusive pathogen infectious diseases. Wang et al. [13] investigated the infectious patterns of a system of persistent HIV transmission that included multiple latencies, B-cell immunological responses, and the Beddington-DeAngelis occurrence criterion. Hattaf [14] presented a generalised virus-induced framework with several delayed and immune regulatory components that exhibit global stability and Hopf bifurcation. Rajivganthi and Rihan [15] presented the stochastic analysis of viral infection model involving latently infected cells. Olaide et al. [16] presented a novel metaheuristic algorithm named ebola optimization search algorithm (EOSA) based on the propagation mechanism of the ebola virus disease. For further investigations on optimization and epidemics, we refer the readers [17,18,19,20,21,22,23,24,25].
Fractional calculus (FC) is a subfield of mathematics that was created by applying integer derivatives to differential equations (DEs) involving fractional-orders [26,27,28,29,30,31]. Since many considerable anomalies in digital circuits, phonics, physio-chemical processes, special relativity, photo-catalysis, transport phenomena, stretchability, and optoelectronics can be characterized by fractional DEs, this field, which deals with classical derivatives and fractional-order, has gained popularity in the last three decades. Additionally, FC is currently an essential strategy for simulating complicated events as well as electron mobility that occurs in permeable heterogeneity environments [32,33,34,35,36]. In order to analyze FDEs, scientists require a powerful toolset, yet it might be challenging to identify precise alternatives to these kinds of computations. Therefore, it is vital to designing appropriate quantitative strategies to address these issues [37]. However, quantitative approaches for FDEs create mathematical challenges that are not present in the evaluation of integer-order models. Because certain of the advantageous aspects of the conventional approximation operators are compromised, there are certain systemic problems in performing simulations of the fractional derivatives. During the last decade, the Atangana-Baleanu fractional operator has made recent advancements in fractional DEs approximation, [38]. Atangana [39] proposed a revolutionary nonlocal formulation that combines fractional-order and fractal-dimension: fractal-fractional (FF) differential and integral operators. To examine intricate real-world situations that can never be modelled using classical and fractional derivative/integral formulations of single order, the F-F technique has been expounded as a valuable technique in numerous scientific and epidemiological fields. Versaci et al. [40] presented a fuzzy similarity-based approach to classify numerically simulated and experimentally detected carbon fiber-reinforced polymer plate defects. The present scheme can be further formulated with the method proposed by [40].
However, the fractional-order and integer-order mathematical models have been developed to analyze a large number of randomized order derivatives, providing an additional level of flexibility in selecting; see [41,42,43,44]. The stochastic DEs might offer a significant level of reliability, and when linked to deterministic systems, they encompass the comprehensive spectra of an individual cohort and produce a highly precise result as compared to a classical model. We need to execute the simulations repeatedly and detect commonalities in the projected scenarios because the results of every inquiry in a stochastic procedure differ from the preceding [46,47,48]. According to several researchers, a non-linear recurrence projection for stochastic processes is one of the epidemiological techniques that has been examined for stability evaluation. In fact, random events are prevalent worldwide. Systems frequently experience random disturbances. Various studies have been conducted on stochastic dynamics; for example, a wide range of scientific theories, including meteorology, accounting, biology, and telecommunication systems, frequently exhibit randomized fluctuations with long-term dependency. In order to analyze fractional stochastic processes, fractional Brownian motion (BM) employing the Hurst index H(1/2,1) has been proposed as an alternative to classical BM [49]. Kerboua et al. [50] looked into stochastic fractional DEs with perturbed regulatory frameworks that involved fractional BM. Pei and Xu [51] investigated the non-Lipschitz stochastic DEs driven by fractional BM. In 2021, authors [52] presented a novel notion for analyzing and predicting the transmission of COVID-19 throughout Africa and Europe using stochastic and deterministic methods. Alkahtani and Koca [53] contemplated the fractional stochastic SIR system within the fractional calculus technique. Rashid et al. [54] contemplated the stochastic fractal-fractional tuberculosis model via a non-singular kernel with random densities.
Owing to the aforesaid propensity, we intend to suggest a novel fractal-fractional stochastic immune effector response to viral infections while taking the notion of a fluctuating population with white noise into consideration. We intend to divide the entire population into five distinct groups based on the severity of viral infection. Furthermore, several qualitative analyses are conducted, such as the existence and distinctiveness of the positive solution in the stochastic immune effector responses considering a Holling type II functionality reaction. Perceptions from these systems are distilled in this assessment, which also contrasts them with test findings. Numerical results are presented by employing the revolutionary technique proposed by Atangana and Araz [52] in the fractal-fractional derivative sense. Graphical illustrations are presented with low random densities, incorporating the fractal-dimension and fractional-order. In a nutshell, we presented the simulation findings with and without control.
The rest of this paper is structured as follows. Section 2 gives some foundational information on F-F operators in the ABC sense, formulations of stochastic perturbation and the fractional viral infection model construction. In Section 3, we demonstrate the model's configuration. Section 4 exhibits the solution's existence-uniqueness, as well as ergodicity and conducts a stationary distribution study on the proposed model. The unique result for the F-F viral model is established utilizing the Atangana-Baleanu sense and standard Brownian motion in Section 5. Furthermore, the discussion of numerical simulations utilizing the novel numerical scheme is provided to analyze the behaviors of the considered model. Finally, we give the conclusion of our paper in the last section.
Before advancing on to the formal description, it is imperative to study certain fundamental F-F operator concepts. Take into account the parameters provided in [39] as well as the functional v(t1), which is continuous and fractal differentiable on [c,d] with fractal-dimension ℘ and fractional-order α.
Definition 2.1. ([39]) The FF operator of v(ˉt) involving the index law kernel in the perspective of Riemann–Liouville (RL) can be described as follows for ˉt∈[0,1]:
FFPDα,℘0,ˉt(v(ˉt))=1Γ(u−α)ddˉt℘ˉt∫0(ˉt−w)u−α−1v(w)dw, | (2.1) |
where dv(w)dw℘=limˉt↦ϰv(ˉt)−v(ϰ)ˉt℘−ϰ℘ and u−1<α,℘≤u∈N.
Definition 2.2. ([39]) The FF operator of v(ˉt) involving the exponential decay kernel in the terms of RL can be described as follows for α∈[0,1]:
FFEDα,℘0,ˉt(v(ˉt))=M(α)1−αddˉt℘ˉt∫0exp(−α1−α(ˉt−ϰ))v(ϰ)dϰ, | (2.2) |
such that M(0)=M(1)=1 containing α>0,℘≤u∈N.
Definition 2.3. ([39]) The FF operator of v(ˉt) involving the generalized Mittag-Leffler kernel in the perspective of RL can be described as follows for α∈[0,1]:
FFMDα,℘0,ˉt(v(ˉt))=ABC(α)1−αddˉt℘ˉt∫0Eα(−α1−α(ˉt−ϰ))v(ϰ)dϰ, | (2.3) |
such that ABC(α)=1−α+αΓ(α) involving α>0,℘≤1∈N.
Definition 2.4. ([39]) The corresponding F-F integral formulae of (2.1) is described as:
FFPJα0,ˉt(v(ˉt))=℘Γ(α)ˉt∫0(ˉt−ϰ)α−1ϰ℘−1v(ϰ)dϰ. | (2.4) |
Definition 2.5. ([39]) The corresponding F-F integral formulae of (2.2) is described as:
FFEJα0,ˉt(v(ˉt))=α℘M(α)ˉt∫0ϰ℘−1v(ϰ)dϰ+℘(1−α)ˉt℘−1v(ˉt)M(α). | (2.5) |
Definition 2.6. ([39]) The corresponding F-F integral formulae of (2.3) is described as:
FFMJα0,ˉt(v(ˉt))=α℘ABC(α)ˉt∫0ϰ℘−1(ˉt−ϰ)α−1v(ϰ)dϰ+℘(1−α)ˉt℘−1v(ˉt)ABC(α). | (2.6) |
Definition 2.7. ([38]) Let v∈H1(c,d),c<d and the Atangana-Baleanu fractional derivative operator is described as:
ABCcDαˉt(v(ˉt))=ABC(α)1−αˉt∫cv′(ϰ)Eα(−α(ˉt−ϰ)α1−α)dϰ,α∈[0,1], | (2.7) |
where ABC(α) represents the normalization function.
Definition 2.8. ([55]) The Gaussian hypergeometric function 2F1, characterized as
2F1(y1,y2;y3,y4)=1B(y2,y3−y2)1∫1ˉty2−1(1−ˉt)y3−y2−1(1−y4ˉt)−y1dˉt,(y3>y2>0,|y1|<1), | (2.8) |
where B(y1,y2)=Γ(y1)Γ(y2)Γ(y1+y2) and Γ(y1)=∞∫0exp(−ˉt)ˉty1dˉt is the Gamma function.
Here, the immunological mechanism is necessary for the highly contagious viral replication. If infectious processes are adequately described, the infection and the therapeutic medications employed to address it can be comprehended. Lymphocytes are vicariously liable for specialization and retention in responsive immunological systems. B cells and T cells are the two primary categories of lymphocytes. T cells have the ability to identify and eliminate contaminated organisms, whereas B cells are responsible for producing antigens that can neutralize pathogens. Immune systems, including CTL and antigen-response, have been examined in terms of their impact [56,57]. The impact of CTL reactions and cytoplasmic latencies has been considered by a few other scientists as well [58]. Murase et al. [59] presented the mathematical framework that shows how adaptive immunity affects viral transmission as follows:
{U(ˉt)dˉt=Λ−ςU(ˉt)−λ11U(ˉt)F(ˉt)−λ22U(ˉt)A(ˉt),A(ˉt)dˉt=λ1U(ˉt)F(ˉt)+λ2U(ˉt)A(ˉt)−δA(ˉt),F(ˉt)dˉt=φA(ˉt)−ν2F(ˉt)−ξF(ˉt)Q(ˉt),Q(ˉt)dˉt=χF(ˉt)Q(ˉt)−ζQ(ˉt)A(ˉt)−δA(ˉt), | (3.1) |
The system (3.1) based on unrestricted infections F(ˉt), unaffected target cells U(ˉt), productively infectious specific cells A(ˉt) and antibodies/B tissue Q(ˉt). The productivity Λ of the infectious organisms U(ˉt) and fatality rate ς are both constant. The incidence of the disease by uncontrolled pathogen is λ11, and uncontrolled bacteria become constructively contaminated at a rate of λ22 for each of the two individuals. The percentage of viral components that died at δ,ν2 and ζ released pathogens, antibodies, and B tissues, respectively. When tissues are actively infested, individual viral particles are created at a speed of φ, where is the ratio ξ at which responses can eliminate the pathogen. The frequency of responses that are active versus the pathogen is χ.
However, the persistent infectious factor is applied to framework (3.1) in this article as an improvement. We suppose that the incidence at which a Holling type II functioning reaction develops is that the unaffected cell U(ˉt) becomes contaminated by a neutral pathogen F(ˉt) or by virus is transmitted organism A(ˉt) at the rate λ1U(ˉt)F(ˉt)1+F(ˉt)+λ2U(ˉt)A(ˉt)1+A(ˉt) response. The rates of pathogen to tissue infection and tissue to cell propagation are indicated by λ1>0 and λ2>0,, respectively, see [60]. We further estimate that the amounts of contamination that result in response times and efficiency are 1−ϕ and ϕ∈(0,1), respectively. In addition, we included the effect of unpredictability within the host by injecting nonlinear disturbances on the spontaneous mortality rate, employing white noise throughout each expression in an attempt to depict a more accurate state of pathogen progression. As a result, the modified framework is specified:
{dU(ˉt)=(Λ−ςU(ˉt)−λ1U(ˉt)S(ˉt)1+S(ˉt)−λ2U(ˉt)A(ˉt)1+A(ˉt))dˉt+ρ1U(ˉt)dB1(ˉt),dS(ˉt)=((1−ϕ)(λ1U(ˉt)S(ˉt)1+S(ˉt)+λ2U(ˉt)A(ˉt)1+A(ˉt))−(ν1+σ)S(ˉt))dˉt+ρ2S(ˉt)dB2(ˉt),dA(ˉt)=(ϕ(λ1U(ˉt)S(ˉt)1+S(ˉt)+λ2U(ˉt)A(ˉt)1+A(ˉt))+σS(ˉt)−δA(ˉt))dˉt+ρ3A(ˉt)dB3(ˉt),dF(ˉt)=(φA(ˉt)−ν2F(ˉt)−ξF(ˉt)Q(ˉt))dˉt+ρ4F(ˉt)dB4(ˉt),dQ(ˉt)=(χF(ˉt)Q(ˉt)−ζQ(ˉt))dˉt+ρ5Q(ˉt)dB5(ˉt), | (3.2) |
subject to initial conditions (ICs) U(0)>0,S(0)>0,A(0)>0,F(0)>0,Q(0)>0. Moreover, the term S(ˉt) stands for the concentrations of contaminated tissues in the predictive phase at time ˉt. ν1 be the death rate of S(ˉt), the underlying contamination becomes prolific at the rate σ. Also, ρ2ι,ι=1,...,5 are intensities of standard Gaussian white noise and Bι,ι=1,...,5 are independent standard Brownian motion (BM). The underlying ideas of probability theory and stochastic differential equations are described as: let (Ω,F,{F}ˉt≥0,P) be a complete probability space using filtration such that {F}ˉt≥0 admits the basic requirements. For further information on Itô's technique, see [61]. However, the deterministic model has certain limitations because it cannot consider demographic stochasticity, which are important features of any natural system. Due to the influence of environmental noise, population density usually does not stabilize at a fixed value, but fluctuates around a certain average value. Nowadays, stochastic biological modeling has attracted great interest from researchers all over the world [20,21,22].
In what follows, we provide the accompanying result to identify the stochastic model's (3.2) existence and uniqueness.
Theorem 4.1. For χ<ξ<ζ,λ1φ<ν2+χ,1+λ2<δφ, the solution of the system (3.2) (U(0),S(0),A(0),F(0),Q(0)) is unique for ˉt≥0 underlying ICs (U(0),S(0),A(0),F(0),Q(0))∈R5+. Also, the solution will probably stay in R5+ having unit probability, i, e., (U(0),S(0),A(0),F(0),Q(0))∈R5+,∀ˉt>0 almost surely (a.s).
Proof. Briefly, if the local Lipschitz criterion is fulfilled by the components of the scheme (3.2). Thus, (3.2) has an unique local solution (U(ˉt),S(ˉt),A(ˉt),F(ˉt),Q(ˉt)) on [0,τe], where τe is the exposition duration. Then, we illustrate that τe=∞. Let us apply the same methodology used in [48] to prove the result. Our intention is to define a non-negative mapping C2 as H:R5+↦R+ such that limη↦∞(U(ˉt),S(ˉt),A(ˉt),F(ˉt),Q(ˉt))∈R5+∖ΥηinfH(U,S,A,F,Q)=∞ and LH(U,S,A,F,Q)≤k, where Υη=(1/η,η)×(1/η,η)×(1/η,η)×(1/η,η)×(1/η,η) and k is non-negative constant.
Now, considering two positive constants values ϵ from (0,1) and T must exist such that
P[T≥τ∞]>ϵ. | (4.1) |
Introducing a mapping H:R5+↦R+ as:
H(U,S,A,F,Q)=U+S+A+F+Q−5−(lnU+lnS+lnA+lnF+lnQ). | (4.2) |
This stored procedure non-negativity is shown by examining at ϱ−1lnϱ,∀ϱ>0. Suppose that k0≤k and T>0. The Itô's formula can be used to acquire
dH(U,S,A,F,Q)=LH(U,S,A,F,Q)dˉt+ρ1(U−1)dB1(ˉt)+ρ2(S−1)dB2(ˉt)+ρ3(A−1)dB3(ˉt)+ρ4(F−1)dB4(ˉt)+ρ5(Q−1)dB5(ˉt). | (4.3) |
It follows that
LH(U,S,A,F,Q)=(1−1U)(Λ−ςU(ˉt)−λ1U(ˉt)S(ˉt)1+S(ˉt)−λ2U(ˉt)A(ˉt)1+A(ˉt))+(1−1S)((1−ϕ)(λ1U(ˉt)S(ˉt)1+S(ˉt)+λ2U(ˉt)A(ˉt)1+A(ˉt))−(ν1+σ)S(ˉt))+(1−1A)(ϕ(λ1U(ˉt)S(ˉt)1+S(ˉt)+λ2U(ˉt)A(ˉt)1+A(ˉt))+(1−1F)(φA(ˉt)−ν2F(ˉt)−ξF(ˉt)Q(ˉt))+(1−1Q)(χF(ˉt)Q(ˉt)−ζQ(ˉt))≤12(ρ21+ρ22+ρ23+ρ24+ρ25)+Λ+ς+ν1+σ1+δ+ν2+ζ+((ξ−ζ)+(χ−ξ)F)Q+(λφ−(ν2+χ))F+((λ2+1)φ−δ)A. | (4.4) |
Utilizing the given hypothesis, there exists a non-negative constant η such that LH<η.
Therefore,
U[H(U(τη∧T),S(τη∧T),A(τη∧T),F(τη∧T),Q(τη∧T))]≤H(U(0),S(0),A(0),F(0),Q(0))+U[∫τη∧T0ηdˉt]≤H(U(0),S(0),A(0),F(0),Q(0))+ηT. | (4.5) |
Inserting Ωη={τη≤T} for η≥η1 and by (4.1) we have P(Ωη)≥ϵ. Observe that for every ω from Ωη there exist at least one U(τη,ω),S(τη,ω),A(τη,ω),F(τη,ω),Q(τη,ω) that yields 1/ηorη. Consequently, H(U(τη),S(τη),A(τη),F(τη),Q(τη))≥(1/η−1+lnη)∧U(η−1−lnη).
In view of (4.1) and (4.5), we can express
H(U(0),S(0),A(0),F(0),Q(0))+ηT≥U[1Ω(ω)H(U(τη),S(τη),A(τη),F(τη),Q(τη))]≥ϵ(1/η−1+lnη)∧U(η−1−lnη). | (4.6) |
The indicating mapping of ω is denoted as 1Ω(ω) that approaches to ∞, the contradiction
∞>H(U(0),S(0),A(0),F(0),Q(0))+ηT=∞ |
reveals itself, proving that τ∞=∞.
Now, we review and examine the model's (3.2) stationary distribution outcomes, which show that the infections are eliminated or enduring.
Suppose there be a regular Markov technique in Rn+ for which the behaviour is as below:
dΦ(ˉt)=b1(Φ)dˉt+u∑r1ζr1dΨr1(ˉt). |
The diffusion matrix takes the form
A(Φ)=[aij(ϕ)],aij(ϕ)=u∑r1=1ζir1(ϕ)ζr1j(ϕ). |
Lemma 4.1. ([62]) Suppose there is a unique stationary distribution technique Φ(ˉt). If there is a bounded region involving regular boundary such that S,ˉS∈RdˉS closure ˉS∈Rd satisfies the following:
(a) The smallest eigenvalue for A(ˉt) is bounded away from (0,0) for the open region S having neighbourhood.
(b) For ψ∈RdS, the mean time τ is bounded and for every compact subset K⊂Rn,supψ∈kSψτ<∞. Therefore, f1(.) is an integrable mapping containing measure π, then
P(limT↦∞1TT∫0f1(Φψ(ˉt))dˉt=∫Rdf1(ψ)π(dψ))=1,∀ψ∈Rd. |
Theorem 4.2. For ˆσ=ν1+σ+ρ222,ˆδ=δ+ρ232,^ν2=ν2+ρ242, then assume that Rs0:=Λσφλ1(1−ϕ)ςˆδˆσ>1, then for any ICs exists in R5+, the system has a unique ESD π(.).
Proof. The diffusive matrix for system (3.2) is computed as follows:
A=[ρ21U200000ρ22S200000ρ23A200000ρ24F200000ρ25U2]. |
This proves that the criteria (a) in Lemma 4.1 is applicable for any compact subset of R5+. In view of mapping C2 defined as H:R5+↦R+. Thus, we have
H(U,S,A,F,Q):=M(ln1U+ℓ1ln1S+ℓ2ln1A+ℓ3ln1F+ln1Q)+ln1U+ln1S+ln1A+ln1F+(U+S+A+F+Q)θ+1θ+1=MH1+H2+H3+H4+H5+H6, |
where θ∈[0,1],ℓ1=Λλ1σφ(1−ϕ)ˆσ2ˆa^ν2,ℓ2=Λλ1σφ(1−ϕ)ˆσ2ˆa2^ν2,ℓ3=Λλ1σφˆσˆa^ν22 fulfilling c−θ2(ρ21∨ρ22∨ρ23∨ρ24∨ρ25)>0 and M>0, admitting the assumption −Mν2+N1≤−2 and ν2=ς(Rs0−1)>0.
This shows that H(U,S,A,F,Q) is continuous as well as it tends to ∞. So that (U,S,A,F,Q) approaches to R5+ and ‖(U,S,A,F,Q)‖↦∞. Also, H have ICs that lies in R5+.
Again, in view of mapping C2 defined as H:R5+↦R+. Thus, we have
ˉH(U,S,A,F,Q)=HU,S,A,F,Q−H(U(0),S(0),A(0),F(0),Q(0)). |
Considering Itô's technique L on the mappings H1,...,H6 and utilizing the given hypothesis such that c=max{ς,ν1,δ,ν2,ζ}, we have
LH1≤−ΛU−ℓ1S(1−ϕ)λ1UF−σℓ2SA−φAℓ3F+ς+λ2A+ℓ1(ν1+σ)+δℓ2+ν2ℓ3+ξQℓ3−(χ−λ1)F+ζ+12(ρ21+ℓ1ρ22+ℓ2ρ23+ℓ3ρ24+ρ24)≤−F+ρ212+ζ+ρ25+λ2A+ξℓ3Q. | (4.7) |
Analogously, we have
LH2≤−ΛU+ς+λ1F+λ2A+ρ212,LH3=−1S(1−ϕ)(λ1UF1+F+λ2UA1+A)+ν1+σ+ρ222,LH4=−ϕλ1UFA(1+F)−ϕλ2U1+A−σSA+δ+ρ232,LH5=−φAF+ν2+ξQ+ρ242,LH5≤N2−12(c1−θ2(ρ21∨ρ22∨ρ23∨ρ24∨ρ25))(Uθ+1,Sθ+1,Aθ+1,Fθ+1,Qθ+1), | (4.8) |
where N2=sup(U,S,A,F,Q)∈R5+{Λ(U+S+A+F+Q)θ−12(c1−θ2(ρ21∨ρ22∨ρ23∨ρ24∨ρ25))(U+S+A+F+Q)θ+1}<∞.
Utilizing (4.7) and (4.8), we have
LˉH≤−ΛU−MF+(Mℓ3+1)ξQ−1S(1−ϕ)λ1UF−ϕλ2U1+A−φAF−12(c1−θ2(ρ21∨ρ22∨ρ23∨ρ24∨ρ25))(Uϑ+1+Sϑ+1+Aϑ+1+Fϑ+1+Qϑ+1)+ς+(M+1)ρ212+Mζ+Mρ252+(M+1)λ2A+δ+ν2+λ1F+N2+ν1+σ+ρ222+ρ232+ρ242. | (4.9) |
For ϵ>0, we construct the following set
D={(U,S,A,F,Q)∈R5+:U∈[ϵ,1/ϵ],S∈[ϵ5,1/ϵ5],A∈[ϵ2,1/ϵ2],F∈[ϵ3,1/ϵ3],Q∈[ϵ,1/ϵ]}. | (4.10) |
We can validate Lemma 4.1 in order to demonstrate that LˉH≤−1 for (U,S,A,F,Q)∈R5+∖DandR5+∖D=⋃10ι=1Dι, where
D1={(U,S,A,F,Q)∈R5+:U∈(0,ϵ)},D2={(U,S,A,F,Q)∈R5+:A∈(0,ϵ5),U≥ϵ,F≥ϵ3},D3={(U,S,A,F,Q)∈R5+:A∈(0,ϵ2),U≥ϵ},D4={(U,S,A,F,Q)∈R5+:F∈(0,ϵ3),A≥ϵ2},D5={(U,S,A,F,Q)∈R5+:Q∈(0,ϵ)},D6={(U,S,A,F,Q)∈R5+:U>1/ϵ},D7={(U,S,A,F,Q)∈R5+:S>1/ϵ5},D8={(U,S,A,F,Q)∈R5+:A>1/ϵ2},D9={(U,S,A,F,Q)∈R5+:F>1/ϵ3},D10={(U,S,A,F,Q)∈R5+:Q>1/ϵ}. | (4.11) |
Case (a) If (U,S,A,F,Q)∈D1, then by (4.9), we find
LˉH≤−ΛU+(Mℓ3+1)ξQ−14(c1−θ2(ρ21∨ρ22∨ρ23∨ρ24∨ρ25))(Uϑ+1+Sϑ+1+Aϑ+1+Fϑ+1+Qϑ+1)+ς+(M+1)ρ212+Mζ+Mρ252+(M+1)λ2A+δ+ν2+λ1F+N2+ν1+σ+ρ222+ρ232+ρ242≤−Λϵ+M1 | (4.12) |
If we choose a sufficiently small ϵ>0, then we get LˉH<0 for each (U,S,A,F,Q)∈D1.
Case (b) If (U,S,A,F,Q)∈D2, then by (4.9), we find
LˉH≤−1S(1−ϕ)λ1UF+M1≤−1ϵ(1−ϕ)λ1+M1 |
If we choose a sufficiently small ϵ5>0, then we get LˉH<0 for each (U,S,A,F,Q)∈D2.
Case (c) If (U,S,A,F,Q)∈D3, then by (4.9), we find
LˉH≤−ϕλ2U1+A+M1≤−ϕλ2ϵ1+ϵ2+M1. |
If we choose a sufficiently small ϵ2>0, then we get LˉH<0 for each (U,S,A,F,Q)∈D3.
Case (d) If (U,S,A,F,Q)∈D4, then by (4.9), we find
LˉH≤−φAF+M1≤−φϵ+M1. |
If we choose a sufficiently small ϵ>0, then we get LˉH<0 for each (U,S,A,F,Q)∈D4.
Case (e) If (U,S,A,F,Q)∈D5, then by (4.9), we find
LˉH≤−MF+(Mℓ3+1)ξQ+N1≤−MF+(Mℓ3+1)ξϵ+N1. |
If we choose a sufficiently small ϵ>0, then we get LˉH<0 for each (U,S,A,F,Q)∈D4.
Case (f) If (U,S,A,F,Q)∈D6, then by (4.9), we find
LˉH≤−14(c1−θ2(ρ21∨ρ22∨ρ23∨ρ24∨ρ25))(U)θ+1+M1≤−14(c1−θ2(ρ21∨ρ22∨ρ23∨ρ24∨ρ25))1ϵ(θ+1)+M1. |
If we choose a sufficiently small ϵ>0, then we get LˉH<0 for each (U,S,A,F,Q)∈D6.
Case (g) If (U,S,A,F,Q)∈D7, then by (4.9), we find
LˉH≤−14(c1−θ2(ρ21∨ρ22∨ρ23∨ρ24∨ρ25))(S)θ+1+M1≤−14(c1−θ2(ρ21∨ρ22∨ρ23∨ρ24∨ρ25))1ϵ5(θ+1)+M1. |
If we choose a sufficiently small 1/ϵ5>0, then we get LˉH<0 for each (U,S,A,F,Q)∈D7.
Case (h) If (U,S,A,F,Q)∈D8, then by (4.9), we find
LˉH≤−14(c1−θ2(ρ21∨ρ22∨ρ23∨ρ24∨ρ25))(A)θ+1+M1≤−14(c1−θ2(ρ21∨ρ22∨ρ23∨ρ24∨ρ25))1ϵ2(θ+1)+M1. |
If we choose a sufficiently small 1/ϵ2>0, then we get LˉH<0 for each (U,S,A,F,Q)∈D8.
Case (i) If (U,S,A,F,Q)∈D9, then by (4.9), we find
LˉH≤−14(c1−θ2(ρ21∨ρ22∨ρ23∨ρ24∨ρ25))(F)θ+1+M1≤−14(c1−θ2(ρ21∨ρ22∨ρ23∨ρ24∨ρ25))1ϵ3(θ+1)+M1. |
If we choose a sufficiently small 1/ϵ3>0, then we get LˉH<0 for each (U,S,A,F,Q)∈D9.
Case (j) If (U,S,A,F,Q)∈D10, then by (4.9), we find
LˉH≤−14(c1−θ2(ρ21∨ρ22∨ρ23∨ρ24∨ρ25))(Q)θ+1+M1≤−14(c1−θ2(ρ21∨ρ22∨ρ23∨ρ24∨ρ25))1ϵ(θ+1)+M1. |
If we choose a sufficiently small 1/ϵ>0, then we get LˉH<0 for each (U,S,A,F,Q)∈D10.\\As a result of the foregoing explanation, a ϵ>0 exists such that LˉH(U,S,A,F,Q)<0 ∀ (U,S,A,F,Q)∈R5+. The unique ESD of the system (3.2) is predicated on Lemma 4.1. This completes the proof.
This part defines the objectives for a virus's systemic elimination (3.1). Before proving the key findings, let's take a closer look at a key premise. Suppose
⟨Φ(ˉt)⟩=1ˉtˉt∫0ϕ(r1)dr1. | (4.13) |
Theorem 4.3. Suppose there is a solution of the system (3.1) (U(ˉt),S(ˉt),A(ˉt),F(ˉt),Q(ˉt)) having ICs lies in R5+. If
˜Rs0:=3(λ1+λ2)Λς((ν1+ρ222)∧((δ−φ)+ρ232)∧(ν2+ρ242))<1 |
⟹limˉt↦∞1ˉtˉt∫0U(ϖ)dϖ≤Λς,limˉt↦∞S(ˉt)=0,limˉt↦∞A(ˉt)=0,limˉt↦∞F(ˉt)=0 |
almost surely.
Proof. Under the hypothesis of Theorem 4.1, model (3.2) has non-negative solution,
dU(ˉt)≤(Λ−ςU)dˉt+ρ1UdB1(ˉt). |
Assume the stochastic DE of the aforementioned system
dU1(ˉt)≤(Λ−ςU1)dˉt+ρ1U1dB1(ˉt),U1(0)=U(0)>0, |
we have limˉt↦∞1ˉtˉt∫0U(ϖ)dϖ≤Λς(a.s).
Applying the result of [48], gives U(ˉt)≤U1(ˉt)(a.s). Then
limˉt↦∞1ˉtˉt∫0U(ϖ)dϖ≤limˉt↦∞1ˉtˉt∫0U1(ϖ)dϖ=Λς(a.s). |
For φ<δ and introducing ln(S(ˉt)+A(ˉt)+F(ˉt)) and implement the Itô's technique, we have
d(ln(S(ˉt)+A(ˉt)+F(ˉt)))=1S(ˉt)+A(ˉt)+F(ˉt)(λ1UF1+F+λ2UA1+A−ν1S−(δ−φ)A−ν2F−ξFQ)dˉt+ρ2SS+A+FdB2(ˉt)+ρ3AS+A+FdB3(ˉt)+ρ4FS+A+FdB2(ˉt)−12(S+A+F)2(ρ22S2+ρ23A2+ρ24F2)dˉt≤ρ2SS+A+FdB2(ˉt)+ρ3AS+A+FdB3(ˉt)+ρ4FS+A+FdB2(ˉt)+(λ1+λ2)Udˉt−13(((ν1+ρ222)∧((δ−φ)+ρ232)∧(ν2+ρ242)))dˉt. | (4.14) |
Applying integration from 0 to ˉt and dividing by ˉt, we have
ln(S(ˉt)+A(ˉt)+F(ˉt))ˉt−ln(S(0)+A(0)+F(0))ˉt≤λ1+λ2ˉtˉt∫0U(ϱ)dϱ−13(((ν1+ρ222)∧((δ−φ)+ρ232)∧(ν2+ρ242)))+ρ2ˉtˉt∫0dB2(ϱ)S+A+F+ρ3ˉtˉt∫0dB3(ϱ)S+A+F+ρ4ˉtˉt∫0dB4(ϱ)S+A+F≤13(((ν1+ρ222)∧((δ−φ)+ρ232)∧(ν2+ρ242)))(˜Rs0−1)<0(a.s) |
that yields limˉt↦∞S(ˉt)=0,limˉt↦∞A(ˉt)=0,limˉt↦∞F(ˉt)(a.s).
The modeling framework helps us understand and interpret experimental data on immune responses against viral infection model (5.1). The role of the fractal-fractional operator in the Atangana-Baleanu fractional derivative sense and antibodies for the resolution of viral infection is debated by utilizing the scheme proposed in [52]. Studies of the acute phase of the infection showed that humans who cleared the virus from their blood developed strong and sustained CTL responses [57]. Here, we illustrate the fractal-fractional derivative for the classical derivative formulation stated in (3.1). The fractal-fractional version in the sense of a generalized Mittag-Leffler function is described as
{FFM0Dα,℘ˉtU(ˉt)=(Λ−ςU(ˉt)−λ1U(ˉt)S(ˉt)1+S(ˉt)−λ2U(ˉt)A(ˉt)1+A(t1))dt1+ρ1G1(t1,U)dB1(ˉt),FFM0Dα,℘ˉtS(ˉt)=((1−ϕ)(λ1U(ˉt)S(ˉt)1+S(ˉt)+λ2U(ˉt)A(ˉt)1+A(ˉt))−(ν1+σ)S(ˉt))dˉt+ρ2G2(ˉt,S)dB2(ˉt),FFM0Dα,℘ˉtA(ˉt)=(ϕ(λ1U(ˉt)S(ˉt)1+S(ˉt)+λ2U(ˉt)A(ˉt)1+A(ˉt))+σS(ˉt)−δA(ˉt))dˉt+ρ3G3(ˉt,A)dB3(ˉt),FFM0Dα,℘ˉtF(ˉt)=(φA(ˉt)−ν2F(ˉt)−ξF(ˉt)Q(ˉt))dˉt+ρ4G4(ˉt,F)dB4(ˉt),FFM0Dα,℘ˉtQ(ˉt)=(χF(ˉt)Q(ˉt)−ζQ(ˉt))dˉt+ρ5G5(ˉt,Q)dB5(ˉt). | (5.1) |
For tn+1=(n+1)Δˉt, then we transform these mappings by their polynomials as follows:
Un+1=U0+(1−α)ABC(α)℘ˉt℘−1n+1[{U∗(ˉtn+1,Upn+1,Apn+1,Fpn+1)+ρ1G1(ˉtn+1,Upn+1)(B1(ˉtn+2)−B1(ˉtn+1))]+α℘ABC(α)Γ(α)n−1∑κ=0[{U∗(ˉtκ+1,Uκ+1,Aκ+1,Fκ+1)Jα,℘1,κ+U∗(ˉtκ+1,Uκ+1,Aκ+1,Fκ+1)−U∗(ˉtκ,Uκ,Aκ,Fκ)ℏJα,℘2,κ+U∗(ˉtκ+1,Uκ+1,Aκ+1,Fκ+1)−2U∗(ˉtκ,Uκ,Aκ,Fκ)+U∗(ˉtκ−1,Uκ−1,Aκ−1,Fκ−1)ℏJα,℘3,κ] |
+α℘ABC(α)Γ(α)n−1∑κ=0[{ρ1G1(ˉtκ+1,Uκ+1)(B1(ˉtκ+1)−B1(ˉtκ))Jα,℘1,κ+{ρ1G1(ˉtκ+1,Uκ+1)(B1(ˉtκ+1)−B1(ˉtκ))−ρ1G1(ˉtκ,Uκ)(B1(ˉtκ)−B1(ˉtκ−1))}Jα,℘2,κ+{ρ1G1(ˉtκ+1,Uκ+1)(B1(ˉtκ+1)−B1(ˉtκ))−2ρ1G1(ˉtκ,Uκ)(B1(ˉtκ)−B1(ˉtκ−1))ℏ−ρ1G1(ˉtκ−1,Uκ−1)(B1(ˉtκ−1)−B1(ˉtκ−2))ℏ}Jα,℘3,κ] |
+α℘ABC(α)Γ(α)[{U∗(ˉtn+1,Upn+1,Apn+1,Fpn+1)Jα,℘1,n+U∗(ˉtn+1,Upn+1,Apn+1,Fpn+1)Jα,℘2,n−U∗(ˉtn,Un,An,Fn)Jα,℘2,n+{U∗(ˉtn+1,Upn+1,Apn+1,Fpn+1)−2U∗(ˉtn,Un,An,Fn)2ℏ}Jα,℘3,n+U∗(ˉtn−1,Un−1,An−1,Fn−1)2ℏ2Jα,℘3,n+ρ1G1(ˉtn+1,Up1n+1)(B1(ˉtn+1)−B1(ˉtn))Jα,℘1,n+ρ1G1(ˉtn+1,Up1n+1)(B1(ˉtn+1)−B1(ˉtn))Jα,℘2,n−ρ1G1(ˉtn,Up1n)(B1(ˉtn)−B1(ˉtn−1))Jα,℘2,n+ρ1G1(ˉtn+1,Up1n+1)(B1(ˉtn+1)−B1(ˉtn))2ℏJα,℘3,n−2ρ1G1(ˉtn,Up1n)(B1(ˉtn)−B1(ˉtn−1))2ℏJα,℘3,n+ρ1G1(ˉtn−1,Up1n−1)(B1(ˉtn−2)−B1(ˉtn−2))2ℏJα,℘3,n], |
Sn+1=S0+(1−α)ABC(α)℘ˉt℘−1n+1[{S∗(ˉtn+1,Upn+1,Spn+1,Apn+1,Fpn+1)+ρ2G2(ˉtn+1,Spn+1)(B2(ˉtn+2)−B2(ˉtn+1))] |
+α℘ABC(α)Γ(α)n−1∑κ=0[{S∗(ˉtκ+1,Uκ+1,Sκ+1,Aκ+1,Fκ+1)Jα,℘1,κ+S∗(ˉtκ+1,Uκ+1,Sκ+1,Aκ+1,Fκ+1)−S∗(ˉtκ,Uκ,Sκ,Aκ,Fκ)ℏJα,℘2,κ+(S∗(ˉtκ+1,Uκ+1,Sκ+1,Aκ+1,Fκ+1)−2S∗(ˉtκ,Uκ,Sκ,Aκ,Fκ)ℏ+S∗(ˉtκ−1,Uκ−1,Sκ−1,Aκ−1,Fκ−1)ℏ)Jα,℘3,κ] |
+α℘ABC(α)Γ(α)n−1∑κ=0[{ρ2G2(ˉtκ+1,Sκ+1)(B2(ˉtκ+1)−B2(ˉtκ))Jα,℘1,κ+{ρ2G2(ˉtκ+1,Sκ+1)(B2(ˉtκ+1)−B2(ˉtκ))−ρ2G2(ˉtκ,Sκ)(B2(ˉtκ)−B2(ˉtκ−1))}Jα,℘2,κ+{ρ2G2(ˉtκ+1,Sκ+1)(B2(ˉtκ+1)−B2(ˉtκ))−2ρ2G2(ˉtκ,Sκ)(B2(ˉtκ)−B2(ˉtκ−1))ℏ−ρ2G2(ˉtκ−1,Sκ−1)(B2(ˉtκ−1)−B2(ˉtκ−2))ℏ}Jα,℘3,κ] |
+α℘ABC(α)Γ(α)[{S∗(ˉtn+1,Upn+1,Spn+1,Apn+1,Fpn+1)Jα,℘1,n+S∗(ˉtn+1,Upn+1,Spn+1,Apn+1,Fpn+1)Jα,℘2,n−S∗(ˉtn,Un,Sn,An,Fn)Jα,℘2,n+{S∗(ˉtn+1,Upn+1,Spn+1,Apn+1,Fpn+1)−2S∗(ˉtn,Un,Sn,An,Fn)2ℏ}Jα,℘3,n+S∗(ˉtn−1,Un−1,Sn−1,An−1,Fn−1)2ℏ2Jα,℘3,n+ρ2G2(ˉtn+1,Sp1n+1)(B2(ˉtn+1)−B2(ˉtn))Jα,℘1,n+ρ2G2(ˉtn+1,Sp1n+1)(B2(ˉtn+1)−B2(ˉtn))Jα,℘2,n−ρ2G2(ˉtn,Sp1n)(B2(ˉtn)−B2(ˉtn−1))Jα,℘2,n+ρ2G2(ˉtn+1,Sp1n+1)(B2(ˉtn+1)−B2(ˉtn))2ℏJα,℘3,n−2ρ2G2(ˉtn,Sp1n)(B2(ˉtn)−B2(ˉtn−1))2ℏJα,℘3,n+ρ2G2(ˉtn−1,Sp1n−1)(B2(ˉtn−2)−B2(ˉtn−2))2ℏJα,℘3,n], |
An+1=A0+(1−α)ABC(α)℘ˉt℘−1n+1[{A∗(ˉtn+1,Upn+1,Spn+1,Apn+1,Fpn+1)+ρ3G4(ˉtn+1,Apn+1)(B3(ˉtn+2)−B3(ˉtn+1))] |
+α℘ABC(α)Γ(α)n−1∑κ=0[{A∗(ˉtκ+1,Uκ+1,Sκ+1,Aκ+1,Fκ+1)Jα,℘1,κ+A∗(ˉtκ+1,Uκ+1,Sκ+1,Aκ+1,Fκ+1)−A∗(ˉtκ,Uκ,Sκ,Aκ,Fκ)ℏJα,℘2,κ+(A∗(ˉtκ+1,Uκ+1,Sκ+1,Aκ+1,Fκ+1)−2A∗(ˉtκ,Uκ,Sκ,Aκ,Fκ)ℏ+A∗(ˉtκ−1,Uκ−1,Sκ−1,Aκ−1,Fκ−1)ℏ)Jα,℘3,κ] |
+α℘ABC(α)Γ(α)n−1∑κ=0[{ρ3G3(ˉtκ+1,Aκ+1)(B3(ˉtκ+1)−B3(ˉtκ))Jα,℘1,κ+{ρ3G3(ˉtκ+1,Aκ+1)(B3(ˉtκ+1)−B3(ˉtκ))−ρ3G3(ˉtκ,Aκ)(B3(ˉtκ)−B3(ˉtκ−1))}Jα,℘2,κ+{ρ3G3(ˉtκ+1,Aκ+1)(B3(ˉtκ+1)−B3(ˉtκ))−2ρ3G3(ˉtκ,Aκ)(B3(ˉtκ)−B3(ˉtκ−1))ℏ−ρ3G3(ˉtκ−1,Aκ−1)(B3(ˉtκ−1)−B3(ˉtκ−2))ℏ}Jα,℘3,κ] |
+α℘ABC(α)Γ(α)[{A∗(ˉtn+1,Upn+1,Spn+1,Apn+1,Fpn+1)Jα,℘1,n+A∗(ˉtn+1,Upn+1,Spn+1,Apn+1,Fpn+1)Jα,℘2,n−A∗(ˉtn,Un,Sn,An,Fn)Jα,℘2,n+{A∗(ˉtn+1,Upn+1,Spn+1,Apn+1,Fpn+1)−2A∗(ˉtn,Un,Sn,An,Fn)2ℏ}Jα,℘3,n+A∗(ˉtn−1,Un−1,An−1,Fn−1)2ℏ2Jα,℘3,n+ρ3G3(ˉtn+1,Ap1n+1)(B3(ˉtn+1)−B3(ˉtn))Jα,℘1,n+ρ3G3(ˉtn+1,Ap1n+1)(B3(ˉtn+1)−B3(ˉtn))Jα,℘2,n−ρ3G3(ˉtn,Ap1n)(B3(ˉtn)−B3(ˉtn−1))Jα,℘2,n+ρ3G3(ˉtn+1,Ap1n+1)(B3(ˉtn+1)−B3(ˉtn))2ℏJα,℘3,n−2ρ3G3(ˉtn,Ap1n)(B3(ˉtn)−B3(ˉtn−1))2ℏJα,℘3,n+ρ3G3(ˉtn−1,Ap1n−1)(B3(ˉtn−2)−B3(ˉtn−2))2ℏJα,℘3,n], |
Fn+1=F0+(1−α)ABC(α)℘ˉt℘−1n+1[{F∗(ˉtn+1,Apn+1,Fpn+1,Qpn+1)+ρ4G4(ˉtn+1,Fpn+1)(B4(ˉtn+2)−B4(ˉtn+1))] |
+α℘ABC(α)Γ(α)n−1∑κ=0[{F∗(ˉtκ+1,Aκ+1,Fκ+1,Qκ+1)Jα,℘1,κ+F∗(ˉtκ+1,Aκ+1,Fκ+1,Qκ+1)−F∗(ˉtκ,Aκ,Fκ,Qκ)ℏJα,℘2,κ+F∗(ˉtκ+1,Aκ+1,Fκ+1,Qκ+1)−2A∗(ˉtκ,Aκ,Fκ,Qκ)+F∗(ˉtκ−1,Aκ−1,Fκ−1,Qκ−1)ℏJα,℘3,κ] |
\begin{array}{l} \\ \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\sum\limits_{\kappa = 0}^{\mathfrak{n}-1}\left[\begin{cases} \rho_{4}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{F}_{\kappa+1}\big)\big(\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\kappa+1})-\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\kappa})\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\cr+ \bigg\{\rho_{4}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{F}_{\kappa+1}\big)\big(\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\kappa+1})-\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\kappa})\big)\cr- \rho_{4}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{F}_{\kappa}\big)\big(\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\kappa})-\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\kappa-1})\big) \bigg\}\mathcal{J}_{2, \kappa}^{\alpha, \wp}\cr+\bigg\{\frac{\rho_{4}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{F}_{\kappa+1}\big)\big(\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\kappa+1})-\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\kappa})\big)-2\rho_{4}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{F}_{\kappa}\big)\big(\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\kappa})-\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\kappa-1})\big)}{\hbar}\cr-\frac{\rho_{4}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\kappa-1}, \mathbf{F}_{\kappa-1}\big)\big(\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\kappa-1})-\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\kappa-2})\big)}{\hbar}\bigg\}\mathcal{J}_{3, \kappa}^{\alpha, \wp} \end{cases}\right]\nonumber\\ \end{array} |
\begin{array}{l} \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\left[ \begin{cases} \mathbf{F}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{A}_{\mathfrak{n}+1}^{p}, \mathbf{F}_{\mathfrak{n}+1}^{p}, \mathbf{Q}_{\mathfrak{n}+1}^{p}\big)\mathcal{J}_{1, \mathfrak{n}}^{\alpha, \wp}\cr+\mathbf{F}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{A}_{\mathfrak{n}+1}^{p}, \mathbf{F}_{\mathfrak{n}+1}^{p}, \mathbf{Q}_{\mathfrak{n}+1}^{p}\big)\mathcal{J}_{2, \mathfrak{n}}^{\alpha, \wp}\cr-\mathbf{F}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{A}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}, \mathbf{Q}_{\mathfrak{n}}\big)\mathcal{J}_{2, \mathfrak{n}}^{\alpha, \wp}\cr+\bigg\{\frac{\mathbf{F}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{A}_{\mathfrak{n}+1}^{p}, \mathbf{F}_{\mathfrak{n}+1}^{p}, \mathbf{Q}_{\mathfrak{n}+1}^{p}\big)-2\mathbf{F}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{A}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}, \mathbf{Q}_{\mathfrak{n}}\big)}{2\hbar}\bigg\}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp}\cr+\frac{\mathbf{F}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}-1}, \mathbf{A}_{\mathfrak{n}-1}, \mathbf{F}_{\mathfrak{n}-1}, \mathbf{Q}_{\mathfrak{n}-1}\big)}{2\hbar^{2}}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp}\cr+\rho_{4}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{F}_{\mathfrak{n}+1}^{p_{1}}\big)\big(\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}+1})-\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}})\big)\mathcal{J}_{1, \mathfrak{n}}^{\alpha, \wp}\cr+\rho_{4}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{F}_{\mathfrak{n}+1}^{p_{1}}\big)\big(\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}+1})-\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}})\big)\mathcal{J}_{2, \mathfrak{n}}^{\alpha, \wp}\cr-\rho_{4}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}^{p_{1}}\big)\big(\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}})-\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}-1})\big)\mathcal{J}_{2, \mathfrak{n}}^{\alpha, \wp}\cr+\frac{\rho_{4}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{F}_{\mathfrak{n}+1}^{p_{1}}\big)\big(\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}+1})-\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}})\big)}{2\hbar}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp}\cr-2\frac{\rho_{4}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}^{p_{1}}\big)\big(\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}})-\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}-1})\big)}{2\hbar}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp}\cr+\frac{\rho_{4}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\mathfrak{n}-1}, \mathbf{F}_{\mathfrak{n}-1}^{p_{1}}\big)\big(\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}-2})-\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}-2})\big)}{2\hbar}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp} \end{cases} \right], \end{array} |
\begin{array}{l} \mathbf{Q}_{\mathfrak{n}+1} = \mathbf{Q}_{0}+\frac{(1-\alpha)}{\mathbf{ABC}(\alpha)}\wp{\bar{\mathbf{t}}}_{\mathfrak{n}+1}^{\wp-1}\left[ \begin{cases}\mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{F}_{\mathfrak{n}+1}^{p}, \mathbf{Q}_{\mathfrak{n}+1}^{p}\big)\cr+\rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{Q}_{\mathfrak{n}+1}^{p}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}+2})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}+1})\big)\end{cases}\right]\nonumber\\ \end{array} |
\begin{array}{l} \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\sum\limits_{\kappa = 0}^{\mathfrak{n}-1}\left[\begin{cases} \mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{F}_{\kappa+1}, \mathbf{Q}_{\kappa+1}\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\cr+ \frac{\mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{F}_{\kappa+1}, \mathbf{Q}_{\kappa+1}\big)-\mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{F}_{\kappa}, \mathbf{Q}_{\kappa}\big)}{\hbar}\mathcal{J}_{2, \kappa}^{\alpha, \wp}\cr+\frac{\mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{F}_{\kappa+1}, \mathbf{Q}_{\kappa+1}\big)-2\mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{F}_{\kappa}, \mathbf{Q}_{\kappa}\big)+\mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa-1}, \mathbf{F}_{\kappa-1}, \mathbf{Q}_{\kappa-1}\big)}{\hbar}\mathcal{J}_{3, \kappa}^{\alpha, \wp} \end{cases}\right]\nonumber\\ \end{array} |
\begin{array}{l} \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\sum\limits_{\kappa = 0}^{\mathfrak{n}-1}\left[\begin{cases} \rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{Q}_{\kappa+1}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\kappa+1})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\kappa})\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\cr+ \bigg\{\rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{Q}_{\kappa+1}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\kappa+1})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\kappa})\big)\cr- \rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{Q}_{\kappa}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\kappa})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\kappa-1})\big) \bigg\}\mathcal{J}_{2, \kappa}^{\alpha, \wp}\cr+\bigg\{\frac{\rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\kappa+1}, \mathbf{Q}_{\kappa+1}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\kappa+1})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\kappa})\big)-2\rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{Q}_{\kappa}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\kappa})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\kappa-1})\big)}{\hbar}\cr-\frac{\rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\kappa-1}, \mathbf{Q}_{\kappa-1}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\kappa-1})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\kappa-2})\big)}{\hbar}\bigg\}\mathcal{J}_{3, \kappa}^{\alpha, \wp} \end{cases}\right]\nonumber\\ \end{array} |
\begin{array}{l} \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\left[ \begin{cases} \mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{F}_{\mathfrak{n}+1}^{p}, \mathbf{Q}_{\mathfrak{n}+1}^{p}\big)\mathcal{J}_{1, \mathfrak{n}}^{\alpha, \wp}\cr+\mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{F}_{\mathfrak{n}+1}^{p}, \mathbf{Q}_{\mathfrak{n}+1}^{p}\big)\mathcal{J}_{2, \mathfrak{n}}^{\alpha, \wp}\cr-\mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}, \mathbf{Q}_{\mathfrak{n}}\big)\mathcal{J}_{2, \mathfrak{n}}^{\alpha, \wp}\cr+\bigg\{\frac{\mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{F}_{\mathfrak{n}+1}^{p}, \mathbf{Q}_{\mathfrak{n}+1}^{p}\big)-2\mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}, \mathbf{Q}_{\mathfrak{n}}\big)}{2\hbar}\bigg\}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp}\cr+\frac{\mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}-1}, \mathbf{F}_{\mathfrak{n}-1}, \mathbf{Q}_{\mathfrak{n}-1}\big)}{2\hbar^{2}}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp}\cr+\rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{Q}_{\mathfrak{n}+1}^{p_{1}}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}+1})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}})\big)\mathcal{J}_{1, \mathfrak{n}}^{\alpha, \wp}\cr+\rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{Q}_{\mathfrak{n}+1}^{p_{1}}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}+1})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}})\big)\mathcal{J}_{2, \mathfrak{n}}^{\alpha, \wp}\cr-\rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{Q}_{\mathfrak{n}}^{p_{1}}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}-1})\big)\mathcal{J}_{2, \mathfrak{n}}^{\alpha, \wp}\cr+\frac{\rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\mathfrak{n}+1}, \mathbf{Q}_{\mathfrak{n}+1}^{p_{1}}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}+1})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}})\big)}{2\hbar}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp}\cr-2\frac{\rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{Q}_{\mathfrak{n}}^{p_{1}}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}-1})\big)}{2\hbar}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp}\cr+\frac{\rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\mathfrak{n}-1}, \mathbf{Q}_{\mathfrak{n}-1}^{p_{1}}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}-2})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}-2})\big)}{2\hbar}\mathcal{J}_{3, \mathfrak{n}}^{\alpha, \wp} \end{cases} \right], \end{array} |
where
\begin{array}{l} \mathbf{U}_{\mathfrak{n}+1}^{p_{1}} = \mathbf{U}_{0}+\frac{1-\alpha}{\mathbf{ABC}(\alpha)}\wp{\bar{\mathbf{t}}}_{\mathfrak{n}+1}^{\wp-1}\left[ \begin{cases}\mathbf{U}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{U}_{\mathfrak{n}}, \mathbf{A}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}\big)\cr+\wp\rho_{1}\mathcal{G}_{1}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{U}_{\mathfrak{n}}\big)\big(\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\mathfrak{n}})-\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\mathfrak{n}-1})\big)\end{cases}\right]\nonumber\\ \end{array} |
\begin{array}{l} \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\sum\limits_{\kappa = 0}^{\mathfrak{n}}\left[\begin{cases}\mathbf{U}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{U}_{\kappa}, \mathbf{A}_{\kappa}, \mathbf{F}_{\kappa}\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\cr+\rho_{1}\mathcal{G}_{1}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{U}_{\kappa}\big)\big(\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\kappa})-\mathbf{B}_{1}({\bar{\mathbf{t}}}_{\kappa-1})\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\end{cases}\right], \nonumber\\ \mathbf{S}_{\mathfrak{n}+1}^{p_{1}} = \mathbf{S}_{0}+\frac{1-\alpha}{\mathbf{ABC}(\alpha)}\wp{\bar{\mathbf{t}}}_{\mathfrak{n}+1}^{\wp-1}\left[ \begin{cases}\mathbf{S}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{U}_{\mathfrak{n}}, \mathbf{S}_{\mathfrak{n}}, \mathbf{A}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}\big)\cr+\wp\rho_{2}\mathcal{G}_{2}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{S}_{\mathfrak{n}}\big)\big(\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\mathfrak{n}})-\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\mathfrak{n}-1})\big)\end{cases}\right]\nonumber\\ \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\sum\limits_{\kappa = 0}^{\mathfrak{n}}\left[\begin{cases}\mathbf{S}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{U}_{\kappa}, \mathbf{S}_{\kappa}, \mathbf{A}_{\kappa}, \mathbf{F}_{\kappa}\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\cr+\rho_{2}\mathcal{G}_{2}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{S}_{\kappa}\big)\big(\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\kappa})-\mathbf{B}_{2}({\bar{\mathbf{t}}}_{\kappa-1})\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\end{cases}\right], \nonumber\\ \end{array} |
\begin{array}{l} \mathbf{A}_{\mathfrak{n}+1}^{p_{1}} = \mathbf{A}_{0}+\frac{1-\alpha}{\mathbf{ABC}(\alpha)}\wp{\bar{\mathbf{t}}}_{\mathfrak{n}+1}^{\wp-1}\left[ \begin{cases}\mathbf{A}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{U}_{\mathfrak{n}}, \mathbf{S}_{\mathfrak{n}}, \mathbf{A}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}\big)\cr+\wp\rho_{3}\mathcal{G}_{3}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{A}_{\mathfrak{n}}\big)\big(\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\mathfrak{n}})-\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\mathfrak{n}-1})\big)\end{cases}\right]\nonumber\\ \end{array} |
\begin{array}{l} \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\sum\limits_{\kappa = 0}^{\mathfrak{n}}\left[\begin{cases}\mathbf{A}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{U}_{\kappa}, \mathbf{S}_{\kappa}, \mathbf{A}_{\kappa}, \mathbf{F}_{\kappa}\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\cr+\rho_{3}\mathcal{G}_{3}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{A}_{\kappa}\big)\big(\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\kappa})-\mathbf{B}_{3}({\bar{\mathbf{t}}}_{\kappa-1})\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\end{cases}\right], \nonumber\\\mathbf{F}_{\mathfrak{n}+1}^{p_{1}} = \mathbf{F}_{0}+\frac{1-\alpha}{\mathbf{ABC}(\alpha)}\wp{\bar{\mathbf{t}}}_{\mathfrak{n}+1}^{\wp-1}\left[ \begin{cases}\mathbf{F}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{A}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}, \mathbf{Q}_{\mathfrak{n}}\big)\cr+\wp\rho_{4}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}\big)\big(\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}})-\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\mathfrak{n}-1})\big)\end{cases}\right]\nonumber\\ \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\sum\limits_{\kappa = 0}^{\mathfrak{n}}\left[\begin{cases}\mathbf{F}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{A}_{\kappa}, \mathbf{F}_{\kappa}, \mathbf{Q}_{\kappa}\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\cr+\rho_{4}\mathcal{G}_{4}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{F}_{\kappa}\big)\big(\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\kappa})-\mathbf{B}_{4}({\bar{\mathbf{t}}}_{\kappa-1})\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\end{cases}\right], \nonumber\\\mathbf{Q}_{\mathfrak{n}+1}^{p_{1}} = \mathbf{Q}_{0}+\frac{1-\alpha}{\mathbf{ABC}(\alpha)}\wp{\bar{\mathbf{t}}}_{\mathfrak{n}+1}^{\wp-1}\left[ \begin{cases}\mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{F}_{\mathfrak{n}}, \mathbf{Q}_{\mathfrak{n}}\big)\cr+\wp\rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\mathfrak{n}}, \mathbf{Q}_{\mathfrak{n}}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\mathfrak{n}-1})\big)\end{cases}\right]\nonumber\\ \quad+ \frac{\alpha\wp}{\mathbf{ABC}(\alpha)\Gamma(\alpha)}\sum\limits_{\kappa = 0}^{\mathfrak{n}}\left[\begin{cases}\mathbf{Q}^{\ast}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{F}_{\kappa}, \mathbf{Q}_{\kappa}\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\cr+\rho_{5}\mathcal{G}_{5}\big({\bar{\mathbf{t}}}_{\kappa}, \mathbf{Q}_{\kappa}\big)\big(\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\kappa})-\mathbf{B}_{5}({\bar{\mathbf{t}}}_{\kappa-1})\big)\mathcal{J}_{1, \kappa}^{\alpha, \wp}\end{cases}\right]. \end{array} |
Also,
\begin{array}{l} \mathcal{J}_{1, \kappa}^{\alpha, \wp} = \frac{((\mathfrak{n}+1)\hbar)^{\alpha-1}}{\wp}\left[\begin{cases} ((\kappa+1)\hbar)^{\wp}\, _{2}\mathcal{F}_{1}\Big(\big[\wp, 1-\alpha\big], \big[1+\wp\big], \frac{\kappa+1}{\mathfrak{n}+1}\Big)\cr-(\kappa\hbar)^{\wp}\, _{2}\mathcal{F}_{1}\Big(\big[\wp, 1-\alpha\big], \big[1+\wp\big], \frac{\kappa}{\mathfrak{n}}\Big) \end{cases}\right], \nonumber\\ \mathcal{J}_{2, \kappa}^{\alpha, \wp} = \frac{((\mathfrak{n}+1)\hbar)^{\alpha-1}}{\wp(\wp+1)}\left[\begin{cases} \wp((\kappa+1)\hbar)^{\wp+1}\, _{2}\mathcal{F}_{1}\Big(\big[1+\wp, 1-\alpha\big], \big[2+\wp\big], \frac{\kappa+1}{\mathfrak{n}+1}\Big)\cr-(1+\wp)((\kappa+1)\hbar)^{\wp+1}\, _{2}\mathcal{F}_{1}\Big(\big[\wp, 1-\alpha\big], \big[1+\wp\big], \frac{\kappa+1}{\mathfrak{n}}\Big)\cr- \wp((\kappa)\hbar)^{\wp+1}\, _{2}\mathcal{F}_{1}\Big(\big[1+\wp, 1-\alpha\big], \big[2+\wp\big], \frac{\kappa}{\mathfrak{n}+1}\Big)\cr+ \hbar((\kappa)\hbar)^{\wp}(1+\wp)(1+\kappa)\, _{2}\mathcal{F}_{1}\Big(\big[\wp, 1-\alpha\big], \big[1+\wp\big], \frac{\kappa}{\mathfrak{n}}\Big)\end{cases}\right] , \nonumber\\ \mathcal{J}_{3, \kappa}^{\alpha, \wp} = \frac{((\kappa+1)\hbar)^{\alpha-1}}{\wp(\wp+1)(\wp+2)}\left[\begin{cases} \wp(\wp+1)((\kappa+1)\hbar)^{\wp+2}\, _{2}\mathcal{F}_{1}\Big(\big[2+\wp, 1-\alpha\big], \big[3+\wp\big], \frac{\kappa+1}{\mathfrak{n}+1}\Big)\cr- 2\wp(\wp+2)\Big(\kappa+\frac{1}{2}\Big)\hbar((\kappa+1)\hbar)^{\wp+1}\, _{2}\mathcal{F}_{1}\Big(\big[1+\wp, 1-\alpha\big], \big[2+\wp\big], \frac{\kappa+1}{\mathfrak{n}+1}\Big)\cr + \kappa\hbar(\wp+1)(\wp+2)((\kappa+1)\hbar)^{\wp+1}\, _{2}\mathcal{F}_{1}\Big(\big[\wp, 1-\alpha\big], \big[1+\wp\big], \frac{\kappa+1}{\mathfrak{n}}\Big)\cr + 2\wp(\wp+2)\Big(\kappa+\frac{1}{2}\Big)\hbar((\hbar\kappa))^{\wp+1}\, _{2}\mathcal{F}_{1}\Big(\big[1+\wp, 1-\alpha\big], \big[2+\wp\big], \frac{\kappa}{\mathfrak{n}+1}\Big)\cr -\wp(\wp+1)(\kappa\hbar)^{\wp+2}\, _{2}\mathcal{F}_{1}\Big(\big[2+\wp, 1-\alpha\big], \big[3+\wp\big], \frac{\kappa}{\mathfrak{n}}\Big)\cr -\hbar(\wp+1)(\wp+2)(\kappa+1)(\kappa\hbar)^{\wp+1}\, _{2}\mathcal{F}_{1}\Big(\big[\wp, 1-\alpha\big], \big[1+\wp\big], \frac{\kappa}{\mathfrak{n}+1}\Big)\end{cases}\right]. \end{array} |
To exemplify the theoretical outcomes of the suggested framework, numerical computations were performed in this part. We accomplish this using the stochastic complete numerical technique proposed by Atangana and Araz [52]. Moreover, we compute the fractal-fractional model (3.2) for Atangana-Baleanu-Caputo sense when both fractional-order \alpha and fractal-dimension \wp are distinct.
Figures 3–5 illustrate the effects of uninfected \mathbf{U}(\bar{\mathbf{t}}) , latently infected \mathbf{S}(\bar{\mathbf{t}}) , actively infected \mathbf{A}(\bar{\mathbf{t}}) , free virus \mathbf{F}(\bar{\mathbf{t}}) , and antibodies \mathbf{Q}(\bar{\mathbf{t}}) at various fractional-orders and fixed fractal-dimensions. We assign the following parameter values: \Lambda = 10, \; \varsigma = 0.1, \; \lambda_{1} = 2, \; \lambda_{2} = 2, \; \phi = 0.5, \; \nu_{1} = 0.5, \; \sigma = 5, \; \delta = 10, \; \varphi = 2, \; \nu_{2} = 10, \; \xi = 3, \; \chi = 2, \; \zeta = 4. To demonstrate the system's dynamical behaviour, we input various white noise levels (5.1). We first take into account the white noise components \rho_{1} = 0.9, \; \rho_{2} = 0.9, \; \rho_{3} = 0.7, \; \rho_{4} = 0.9 and \rho_{5} = 0.8, where the distinctive stationary distribution sensitivity criterion \mathbb{R}_{0}^{s} > 1 is attained. As the virus spreads through the community, the class diminishes over time and eventually affects all other categories in the structure. This classification corresponds rapidly at low orders and slowly at higher orders, which displays a consistent tendency.
Figures 6–8 display the temporal patterns of (\mathbf{U}(\bar{\mathbf{t}}), \mathbf{S}(\bar{\mathbf{t}}), \mathbf{A}(\bar{\mathbf{t}}), \mathbf{F}(\bar{\mathbf{t}}), \mathbf{Q}(\bar{\mathbf{t}})) of the stochastic system (5.1) involving white noise \rho_{1} = 0.9, \; \rho_{2} = 0.9, \; \rho_{3} = 0.7, \; \rho_{4} = 0.9 and \rho_{5} = 0.8, respectively. The solution varies at white noises, having a corresponding stochastic mean. The affected cells \mathbf{S}(\bar{\mathbf{t}}) exhibit a rapid decline in behaviour over time, similar to the behaviour of uninfected cells \mathbf{U}(\bar{\mathbf{t}}) at various fractal-fractional orders.
Figures 9–11 show the impacts of uninfected \mathbf{U}(\bar{\mathbf{t}}) , latently infected \mathbf{S}(\bar{\mathbf{t}}) , actively infected \mathbf{A}(\bar{\mathbf{t}}) , free virus \mathbf{F}(\bar{\mathbf{t}}) , and antibodies \mathbf{Q}(\bar{\mathbf{t}}) at various fractal-dimension and fixed fractional-orders. The corresponding attributed values: \Lambda = 10, \; \varsigma = 0.1, \; \lambda_{1} = 2, \; \lambda_{2} = 2, \; \phi = 0.5, \; \nu_{1} = 0.5, \; \sigma = 5, \; \delta = 10, \; \varphi = 2, \; \nu_{2} = 10, \; \xi = 3, \; \chi = 2, \; \zeta = 4. Then, by increasing the white noise intensities to \rho_{1} = 3.9, \; \rho_{2} = 3.7, \; \rho_{3} = 3.9, \; \rho_{4} = 3.9 and \rho_{5} = 3.8, we are able to satisfy the elimination criterion \tilde{\mathbb{R}}_{0}^{s} < 1 in Theorem 4.3 and validate the findings. Figures 9–11 demonstrate that as the white noise intensity escalates, contaminated lymphocytes \mathbf{S}(\bar{\mathbf{t}}) , productively infested cells \mathbf{A}(\bar{\mathbf{t}}) , and uncontrolled pathogen \mathbf{A}(\bar{\mathbf{t}}) can all perish and settle at a variety of fractal dimensions and fixed fractional-order. This shows that white noise concentration can effectively eradicate all insidiously, proactively, and freely virally infested cells, dramatically reduce the quantity of virally affected cells, and prevent the proliferation of contaminated nuclei.
Figures 12–14 predict the behaviour of uninfected \mathbf{U}(\bar{\mathbf{t}}) , latently infected \mathbf{S}(\bar{\mathbf{t}}) , actively infected \mathbf{A}(\bar{\mathbf{t}}) , free virus \mathbf{F}(\bar{\mathbf{t}}) , and antibodies \mathbf{Q}(\bar{\mathbf{t}}) at various fractal-dimension and fractional-orders. The corresponding attributed values: \Lambda = 10, \; \varsigma = 0.1, \; \lambda_{1} = 2, \; \lambda_{2} = 2, \; \phi = 0.5, \; \nu_{1} = 0.5, \; \sigma = 5, \; \delta = 10, \; \varphi = 2, \; \nu_{2} = 10, \; \xi = 3, \; \chi = 2, \; \zeta = 4. Then, by increasing the white noise intensities to \rho_{1} = 3.9, \; \rho_{2} = 3.7, \; \rho_{3} = 3.9, \; \rho_{4} = 3.9 and \rho_{5} = 3.8, and \tilde{\mathbb{R}}_{0}^{s} < 1. This shows that the stochastic noise is demonstrated to be suppressed by the massive boom. The infectious populace is disappearing more significantly when both fractional-order and fractal-dimension are changed simultaneously in an infectious system in comparison to fractional systems, which leads to fascinating and biologically more plausible findings.
Figures 15–17 demonstrate the effect of uninfected \mathbf{U}(\bar{\mathbf{t}}) , latently infected \mathbf{S}(\bar{\mathbf{t}}) , actively infected \mathbf{A}(\bar{\mathbf{t}}) , free virus \mathbf{F}(\bar{\mathbf{t}}) , and antibodies \mathbf{Q}(\bar{\mathbf{t}}) at fixed fractal-dimension and fractional-orders with and without control, respectively. Considering an inadequate CTL reaction, we examine how virus replication affects the patterns of HCV and immunological reactions from acute infection through the chronic stage. This is accomplished using a mix of analytical and numerical techniques. Since the target cell restriction prevents the penetration of new viral variations in the case of severe liver damage, virus development is predicted to come to an end.
As a result of these pictorial outcomes, we draw the conclusion that by using this novel fractal-fractional operator concept, it is possible to detect more precise outcomes and to offer a wider insight of problems that arise in engineering and science as well as in the reality.
In this article, we examined the variations in cellular complexities of a novel randomized fractal-fractional virus transmission system considering latently diseased tissues and a Holling type II functionality reaction. We discovered the existence of non-negative solutions to the examined system by accounting for environmental noise and the fractal effects of vaccination. In view of Itô's technique and Lyapunov candidate, we established the necessary assumptions of the stochastically permanence of the virus transmission scenario and the elimination of chronically diseased, productively contaminated cells and independent pathogen fragments. Ultimately, in order to create the suggested system, we employed the F-F calculus notion in the ABC context. Additionally, numerical simulations are provided to understand the tendencies of our theoretical model's analysis. We determine that increasing the noise strength will eventually render the virus obsolete. The illustration analysis shows that the fractal-fractional notion outperforms the integer-order and classical derivatives in terms of effectiveness and biological dependability. Upcoming research on viral infections, particularly the novel COVID-19, monkey pox and lumpy virus can confidently implement the revolutionary modelling methodology termed as the fractal-fractional operator.
The authors declare there is no conflict of interest.
[1] |
H. Xu, H. Jiang, G. Yu, L. Yang, Towards understanding the role of extracellular polymeric substances in cyanobacterial Microcystis aggregation and mucilaginous bloom formation, Chemosphere, 117 (2014), 815–822. https://doi.org/10.1016/j.chemosphere.2014.10.061 doi: 10.1016/j.chemosphere.2014.10.061
![]() |
[2] |
B. Q. Qin, G. J. Yang, J. R. Ma, J. M. Deng, W. Li, T. Wu, et al., Dynamics of variability and mechanism of harmful cyanobacteria bloom in Lake Taihu, China, Chin. Sci. Bull., 61 (2016), 759–770. http://dx.doi.org/10.1360/N972015-00400 doi: 10.1360/N972015-00400
![]() |
[3] |
H. Z. Chen, S. P. Zuo, B. Q. Qin, L. T. Ye, H. Wang, Research progress in mechanism of Microcystis aggregation and migration, Environ. Sci. Technol. China, 42 (2019), 142–149. http://dx.doi.org/10.19672/j.cnki.1003-6504.2019.01.021 doi: 10.19672/j.cnki.1003-6504.2019.01.021
![]() |
[4] | F. X. Kong, R. H. Ma, J. F. Gao, X. Wang, The theory and practice of prevention, forecast and warning on cyanobacteria bloom in Lake Taihu, J. Lake Sci., 21 (2009), 314–328. |
[5] |
F. A. Kibuye, A. Zzmyadi, E. C. Wert, A critical review on operation and performance of source water control strategies for cyanobacterial blooms: Part I-chemical control methods, Harmful Algae, 109 (2021), 102099. https://doi.org/10.1016/j.hal.2021.102099 doi: 10.1016/j.hal.2021.102099
![]() |
[6] |
F. A. Kibuye, A. Zzmyadi, E. C. Wert, A critical review on operation and performance of source water control strategies for cyanobacterial blooms: Part II-mechanical and biological control methods, Harmful Algae, 109 (2021), 102119. https://doi.org/10.1016/j.hal.2021.102119 doi: 10.1016/j.hal.2021.102119
![]() |
[7] |
L. Y. Yang, X. Y. Yang, L. M. Ren, X. Qian, L. Xiao, Mechanism and control strategy of cyanobacterial bloom in Lake Taihu, J. Lake Sci., 31 (2019), 18–27. http://dx.doi.org/10.18307/2019.0102 doi: 10.18307/2019.0102
![]() |
[8] |
T. Gorham, Y. Jia, C. K. Shum, J. Lee, Ten-year survey of cyanobacterial blooms in Ohio's waterbodies using satellite remote sensing, Harmful Algae, 66 (2017), 13–19. http://dx.doi.org/10.1016/j.hal.2017.04.013 doi: 10.1016/j.hal.2017.04.013
![]() |
[9] |
H. W. Paerl, T. G. Otten, Harmful cyanobacterial blooms: causes, consequences, and controls, Microb. Ecol., 65 (2013), 995–1010. http://dx.doi.org/10.1007/s00248-012-0159-y doi: 10.1007/s00248-012-0159-y
![]() |
[10] |
H. W. Paerl, Nuisance phytoplankton blooms in coastal, estuarine, and inland waters, Limnol Oceanogr, 33 (1988), 823–847. http://dx.doi.org/10.4319/lo.1988.33.4-part-2.0823 doi: 10.4319/lo.1988.33.4-part-2.0823
![]() |
[11] |
Z. Yang, F. X. Kong, X. L. Shi, H. Cao, Morphological response of Microcystis aeruginosa to grazing by different sorts of zooplankton, Hydrobiologia, 563 (2006), 225–230. http://dx.doi.org/10.1007/s1075–005-0008-9 doi: 10.1007/s1075–005-0008-9
![]() |
[12] |
U. Burkert, P. Hyenstrand, S. Drakare, P. Blomqvist, Effects of the mixotrophic flagellate Ochromonas sp. on colony formation in Microcystis aeruginosa, Aquat. Ecol., 35 (2001), 11–17. http://dx.doi.org/10.1023/a:1011454313607 doi: 10.1023/a:1011454313607
![]() |
[13] |
P. Chow-Fraser, D. O. Trew, D. Findlay, M. Stainton, A test of hypotheses to explain the sigmoidal relationship between total phosphorus and chlorophyll a concentrations in Canadian lakes, Can. J. Fish. Aquat. Sci., 51 (1994), 2052–2065. http://dx.doi.org/10.1139/f94-208 doi: 10.1139/f94-208
![]() |
[14] |
H. L. Gao, X. Qian, H. F. Wu, H. Li, H. Pan, C. Han, et al., Combined effects of submerged macrophytes and aquatic animals on the restoration of a eutrophic water body-a case study of Gonghu Bay, Harmful Algae, 102 (2017), 15–23. https://doi.org/10.1016/j doi: 10.1016/j
![]() |
[15] |
P. I. Boon, S. E. Bunn, J. D. Green, R. J. Shiel, Consumption of cyanobacteria by freshwater zooplankton: Implications for the success of 'top-down' control of cyanobacterial blooms in australia, Mar. Freshwater Res., 45 (1994), 875–887. https://doi.org/10.1071/MF9940875 doi: 10.1071/MF9940875
![]() |
[16] |
I. Setlíkova, S. Maciarzova, M. Blaha, T. Policar, Silver carp (Hypophthalmichthys molitrix) can non-mechanically digest cyanobacteria, Fish Physiol. Biochem., 46 (2020), 771–776. https://doi.org/10.1007/s10695-019-00751-1 doi: 10.1007/s10695-019-00751-1
![]() |
[17] |
H. Joshi, B. K. Jha, Chaos of calcium diffusion in Parkinson's infectious disease model and treatment mechanism via Hilfer fractional derivative, Math. Modell. Numer. Simul. Appl., 1 (2021), 84–94. https://doi.org/10.53391/mmnsa.2021.01.008 doi: 10.53391/mmnsa.2021.01.008
![]() |
[18] | H. Joshi, B. K. Jha, Modeling the spatiotemporal intracellular calcium dynamics in nerve cell with strong memory effects, Int. J. Nonlinear Sci. Numer. Simul., 2021 (2021). https://doi.org/10.1515/ijnsns-2020-0254 |
[19] |
H. Joshi, B. K. Jha, Generalized diffusion characteristics of calcium model with concentration and memory of cells: A spatiotemporal approach, Iran. J. Sci. Technol. Trans. A Sci., 46 (2022), 309–322. https://doi.org/10.1007/s40995-021-01247-5 doi: 10.1007/s40995-021-01247-5
![]() |
[20] |
P. Veeresha, M. Yavuz, C. Baishya, A computational approach for shallow water forced Korteweg–De Vries equation on critical flow over a hole with three fractional operators, Int. J. Optim. Control Theor. Appl., 11 (2021), 52–67. https://doi.org/10.11121/ijocta.2021.1177 doi: 10.11121/ijocta.2021.1177
![]() |
[21] |
P. A. Naik, K. M. Owolabi, M. Yavuz, J. Zu, Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells, Chaos Solitons Fractals, 140 (2020), 110272. https://doi.org/10.1016/j.chaos.2020.110272 doi: 10.1016/j.chaos.2020.110272
![]() |
[22] |
M. Yavuz, N. Ozdemir, Analysis of an epidemic spreading model with exponential decay law, Math. Sci. Appl. E Notes, 8 (2020), 142–154. https://doi.org/10.36753/mathenot.691638 doi: 10.36753/mathenot.691638
![]() |
[23] |
M. Id, R. Khoshsiar, Z. Eskandari, Three-dimensional fractional system with the stability condition and chaos control, Math. Modell. Numer. Simul. Appl., 2 (2022), 41–47. https://doi.org/10.53391/mmnsa.2022.01.004 doi: 10.53391/mmnsa.2022.01.004
![]() |
[24] |
D. Anwarud, M. Abidin, Analysis of fractional-order vaccinated Hepatitis-B epidemic model with Mittag-Leffler kernels, Math. Modelling Numer. Simul. Appl., 2 (2022), 59–72. https://doi.org/10.53391/mmnsa.2022.006 doi: 10.53391/mmnsa.2022.006
![]() |
[25] |
P. A. Naik, Z. Eskandari, Z. Avazzadeh, J, Zu, Multiple bifurcations of a discrete-time prey-predator model with mixed functional response, Int. J. Bifurcation Chaos, 32 (2022), 2250050. https://doi.org/10.1142/S021812742250050X doi: 10.1142/S021812742250050X
![]() |
[26] |
P.A. Naik, Z. Eskandari, H. E. Shahkari, Flip and generalized flip bifurcations of a two-dimensional discrete-time chemical model, Math. Modell. Numer. Simul. Appl., 1 (2021), 95–101. https://doi.org/10.53391/mmnsa.2021.01.009 doi: 10.53391/mmnsa.2021.01.009
![]() |
[27] |
P. A. Naik, Z. Eskandari, M. Yavuz, J. Zu, Complex dynamics of a discrete-time Bazykin-Berezovskaya prey-predator model with a strong Allee effect, J. Comput. Appl. Math., 413 (2022), 114401. https://doi.org/10.1016/j.cam.2022.114401 doi: 10.1016/j.cam.2022.114401
![]() |
[28] | L. V. Bertalanffy, Theoretische Biologie, Springer, Berlin, 1932. https://doi.org/10.1007/978-3-662-36634-9 |
[29] | S. E. Jorgensen, G. Bendoricchio, Fundamentals of Ecological Modelling, 3^{nd} edition, Elsevier, 2001. |
[30] |
S. N. Chen, X. L. Chen, Y. Peng, K, Peng, A mathematical model of the effect of nitrogen and phosphorus on the growth of blue-green algae population, Appl. Math. Modell., 33 (2009), 1097–1106. https://doi.org/10.1016/j.apm.2008.01.001 doi: 10.1016/j.apm.2008.01.001
![]() |
[31] |
Z. Rupawalla, N. Robinson, S. Schmidt, S. Li, S. Carruthers, E. Buisset, et al., Algae biofertilisers promote sustainable food production and a circular nutrient economy–An integrated empirical-modelling study, Sci. Total Environ., 796 (2021), 148913. https://doi.org/10.1016/j.scitotenv.2021.148913 doi: 10.1016/j.scitotenv.2021.148913
![]() |
[32] |
M. Sagehashi, A. Sakoda, M. Suzuki, A mathematical model of a shallow and Eutrophic Lake (The Keszthely Basin, Lake Balaton) and simulation of restorative manipulations, Water Res., 35 (2001), 1675–1686. https://doi.org/10.1016/S0043-1354(00)00435-8 doi: 10.1016/S0043-1354(00)00435-8
![]() |
[33] |
H. Y. Liu, H. G. Yu, C. J. Dai, Z. Ma, Q. Wang, M. Zhao, Dynamical analysis of an aquatic amensalism model with non-selective harvesting and Allee effect, Math. Biosci. Eng., 18 (2021), 8857–8882. https://doi.org/10.3934/mbe.2021437 doi: 10.3934/mbe.2021437
![]() |
[34] |
M. Sagehashi, A. Sakoda, M. Suzuki, A predictive model of long-term stability after biomanipulation of shallow lakes, Water Res., 34 (2000), 4014–4028. https://doi.org/10.1016/S0043-1354(00)00165-2 doi: 10.1016/S0043-1354(00)00165-2
![]() |
[35] |
X. X. Li, H. G. Yu, C.J. Dai, Z. Ma, Q. Wang, M. Zhao, Bifurcation analysis of a new aquatic ecological model with aggregation effect, Math. Comput. Simul., 190 (2021), 75–96. https://doi.org/10.1016/j.matcom.2021.05.015 doi: 10.1016/j.matcom.2021.05.015
![]() |
[36] |
A. Fadel, N. Sharaf, M. Siblini, K. Slim, A. Kobaissi, A simple modelling approach to simulate the effect of different climate scenarios on toxic cyanobacterial bloom in a eutrophic reservoir, Ecohydrol. Hydrobiol., 19 (2019), 359–369. https://doi.org/10.1016/j.ecohyd.2019.02.005 doi: 10.1016/j.ecohyd.2019.02.005
![]() |
[37] |
H. Serizawa, T. Amemiya, K. Itoh, Effects of buoyancy, transparency and zooplankton feeding on surface maxima and deep maxima: Comprehensive mathematical model for vertical distribution in cyanobacterial biomass, Ecol. Modell., 221 (2010), 2028–2037. https://doi.org/10.1016/j.ecolmodel.2010.05.009 doi: 10.1016/j.ecolmodel.2010.05.009
![]() |
[38] |
H. Serizawa, T. Amemiya, K. Itoh, Patchiness and bistability in the comprehensive cyanobacterial model (CCM), Ecol. Modell., 220 (2009), 764–773. https://doi.org/10.1016/j.ecolmodel.2008.12.015 doi: 10.1016/j.ecolmodel.2008.12.015
![]() |
[39] |
N. H. Gazi, K. Das, Structural stability analysis of an algal bloom mathematical model in tropic interaction, Nonlinear Anal. Real World Appl., 11 (2010), 2191–2206. https://doi.org/10.1016/j.nonrwa.2009.06.009 doi: 10.1016/j.nonrwa.2009.06.009
![]() |
[40] |
Y. S. Zhang, H. Y. Li, F. X. Kong, Y. Yu, M. Zhang, Role of colony intercelar space in the cyanobacteria bloom-forming, Environ. Sci., 32 (2011), 1602–1607. https://doi.org/10.13227/j.hjkx.2011.06.002 doi: 10.13227/j.hjkx.2011.06.002
![]() |
[41] |
S. Pereira, A. Zille, E. Micheletti, P. Moradas-Ferreira, R. De Philippis, P. Tamagnini, Complexity of cyanobacterial exopoly saccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly, FEMS Microbiol. Rev., 33 (2009), 917–941. https://doi.org/10.1111/j.1574-6976.2009.00183.x doi: 10.1111/j.1574-6976.2009.00183.x
![]() |
[42] |
S. Xu, Y. J. Yang, J.Z. Xu, J. Shi, L. Song, Z. Wu, Physiological responses of populations and unicellular microcystis to shortterm high light stress, Acta Hydrobiol. Sinica, 41 (2017), 443–447. https://doi.org/10.7541/2017.55 doi: 10.7541/2017.55
![]() |
[43] |
Z. Yang, F. X. Kang, X. L. Shi, H. Cao, Morphological response of Microcystis aeruginosa to grazing by different sorts of zooplankton, Hydrobiologia, 563 (2006), 225–230. https://doi.org/10.1007/s10750-005-0008-9 doi: 10.1007/s10750-005-0008-9
![]() |
[44] |
H. Shen, L. R. Song, Comparative studies on physiological responses to phosphorus in two phenotype of bloom-forming microcystis, Hydrobiologia, 592 (2007), 475–786. https://doi.org/10.1007/s10750-007-0794-3 doi: 10.1007/s10750-007-0794-3
![]() |
[45] |
X. H. Wu, Z. X. Wu, L. R. Song, Phenotype and temperature affect the affinity for dissolved inorganic carbon in a cyanobacterium Microcystis, Hydrobiologia, 675 (2011), 175-186. https://doi.org/10.1007/s10750-011-0815-0 doi: 10.1007/s10750-011-0815-0
![]() |
[46] |
P. Xie, J. K. Liu, Practical success of biomanipulation using filter-feeding fish to control cyanobacteria blooms: A synthesis of decades of research and application in a subtropical hypereutrophic lake, Sci. World J., 1 (2014), 337–356. https://doi.org/10.1100/tsw.2001.67 doi: 10.1100/tsw.2001.67
![]() |
[47] |
H. H. Jakobsen, K. W. Tang, Effects of protozoan grazing on colony formation in Phaeocystis globosa (Prymnesiophyceae) and the potential costs and benefits, Aquat. Microb. Ecol., 27 (2002), 261–273. https://doi.org/10.3354/ame027261 doi: 10.3354/ame027261
![]() |
[48] |
K. W. Tang, Grazing and colony size development in Phaeocystis globosa (Prymnesiophyceae): the role of chemical signal, J. Plankton Res., 25 (2003), 831–842. https://doi.org/10.1093/plankt/25.7.831 doi: 10.1093/plankt/25.7.831
![]() |
1. | Azmy S. Ackleh, Mark L. Delcambre, Karyn L. Sutton, A second-order high-resolution finite difference scheme for a size-structured model for the spread ofMycobacterium marinum, 2015, 9, 1751-3758, 156, 10.1080/17513758.2014.962998 | |
2. | Hayriye Gulbudak, Cameron J. Browne, Infection severity across scales in multi-strain immuno-epidemiological Dengue model structured by host antibody level, 2020, 80, 0303-6812, 1803, 10.1007/s00285-020-01480-3 | |
3. | O. Angulo, J.C. López-Marcos, M.A. López-Marcos, Study on the efficiency in the numerical integration of size-structured population models: Error and computational cost, 2016, 291, 03770427, 391, 10.1016/j.cam.2015.03.022 | |
4. | Azmy S. Ackleh, Baoling Ma, Tingting Tang, A high resolution finite difference method for a model of structured susceptible-infected populations coupled with the environment, 2017, 33, 0749159X, 1420, 10.1002/num.22139 |