
Many real-world problems can be classified as multimodal optimization problems (MMOPs), which require to locate global optima as more as possible and refine the accuracy of found optima as high as possible. When dealing with MMOPs, how to divide population and obtain effective niches is a key to balance population diversity and convergence during evolution. In this paper, a self-organizing map (SOM) based differential evolution with dynamic selection strategy (SOMDE-DS) is proposed to improve the performance of differential evolution (DE) in solving MMOPs. Firstly, a SOM based method is introduced as a niching technique to divide population reasonably by using the similarity information among different individuals. Secondly, a variable neighborhood search (VNS) strategy is proposed to locate more possible optimal regions by expanding the search space. Thirdly, a dynamic selection (DS) strategy is designed to balance exploration and exploitation of the population by taking advantages of both local search strategy and global search strategy. The proposed SOMDE-DS is compared with several widely used multimodal optimization algorithms on benchmark CEC'2013. The experimental results show that SOMDE-DS is superior or competitive with the compared algorithms.
Citation: Shihao Yuan, Hong Zhao, Jing Liu, Binjie Song. Self-organizing map based differential evolution with dynamic selection strategy for multimodal optimization problems[J]. Mathematical Biosciences and Engineering, 2022, 19(6): 5968-5997. doi: 10.3934/mbe.2022279
[1] | Mahmoud El-Morshedy, Mohamed S. Eliwa, Mohamed El-Dawoody, Hend S. Shahen . A weighted hybrid discrete probability model: Mathematical framework, statistical analysis, estimation techniques, simulation-based ranking, and goodness-of-fit evaluation for over-dispersed data. Electronic Research Archive, 2025, 33(4): 2061-2091. doi: 10.3934/era.2025091 |
[2] | Weishang Gao, Qin Gao, Lijie Sun, Yue Chen . Design of a novel multimodal optimization algorithm and its application in logistics optimization. Electronic Research Archive, 2024, 32(3): 1946-1972. doi: 10.3934/era.2024089 |
[3] | Shaban Khidr, Salomon Sambou . Lp-theory for the ∂¯∂-equation and isomorphisms results. Electronic Research Archive, 2025, 33(1): 68-86. doi: 10.3934/era.2025004 |
[4] | Shuai Chang, Jinrui Guan . A study on the estimator for the extreme value index of heavy-tailed distribution generated from moment statistic. Electronic Research Archive, 2025, 33(4): 2295-2311. doi: 10.3934/era.2025101 |
[5] | Hanan H. Sakr, Mohamed S. Mohamed . On residual cumulative generalized exponential entropy and its application in human health. Electronic Research Archive, 2025, 33(3): 1633-1666. doi: 10.3934/era.2025077 |
[6] | Caiwen Chen, Tianxiu Lu, Ping Gao . Chaotic performance and circuitry implement of piecewise logistic-like mapping. Electronic Research Archive, 2025, 33(1): 102-120. doi: 10.3934/era.2025006 |
[7] | Sadia Anwar, Showkat Ahmad Lone, Aysha Khan, Salmeh Almutlak . Stress-strength reliability estimation for the inverted exponentiated Rayleigh distribution under unified progressive hybrid censoring with application. Electronic Research Archive, 2023, 31(7): 4011-4033. doi: 10.3934/era.2023204 |
[8] | Xuerui Li, Lican Kang, Yanyan Liu, Yuanshan Wu . Distributed Bayesian posterior voting strategy for massive data. Electronic Research Archive, 2022, 30(5): 1936-1953. doi: 10.3934/era.2022098 |
[9] | Zhensheng Zhou, Lin Wang, Xue Zou, Fei Wang, Zaijun Zhang, Xiaobo Yan . The first hitting time analysis of evolutionary algorithms based on renewal process. Electronic Research Archive, 2024, 32(5): 2994-3015. doi: 10.3934/era.2024137 |
[10] | Xin Gao, Hao Liu, Zhou Fang, Yang Zhang . Microscopic mechanism of subgrade vibration compaction based on discrete element method. Electronic Research Archive, 2023, 31(11): 7061-7077. doi: 10.3934/era.2023358 |
Many real-world problems can be classified as multimodal optimization problems (MMOPs), which require to locate global optima as more as possible and refine the accuracy of found optima as high as possible. When dealing with MMOPs, how to divide population and obtain effective niches is a key to balance population diversity and convergence during evolution. In this paper, a self-organizing map (SOM) based differential evolution with dynamic selection strategy (SOMDE-DS) is proposed to improve the performance of differential evolution (DE) in solving MMOPs. Firstly, a SOM based method is introduced as a niching technique to divide population reasonably by using the similarity information among different individuals. Secondly, a variable neighborhood search (VNS) strategy is proposed to locate more possible optimal regions by expanding the search space. Thirdly, a dynamic selection (DS) strategy is designed to balance exploration and exploitation of the population by taking advantages of both local search strategy and global search strategy. The proposed SOMDE-DS is compared with several widely used multimodal optimization algorithms on benchmark CEC'2013. The experimental results show that SOMDE-DS is superior or competitive with the compared algorithms.
The features and interrelationships of distribution functions are important for representing naturally occurring events. The conventional distributions, however, have not been able to adequately describe complex data due to the dynamic and ever-increasing complexity of current datasets. Aware of these limitations, scientists have focused their attention on improving the effectiveness and suitability of these distributions in an attempt to find better matches for the variety of real-world information. There are several approaches for defining statistical distributions. Different approaches are available for defining failure rate and density functions to create distributions with more desired and modifiable qualities. One of these approaches is the development of generated families of the probability distributions. Notable has helped to create new distribution families that aim to solve the shortcomings of their earlier versions. Recently, a variety of academics have developed an interest in the families of distributions that have been generated, such as the Marshall Olkin-G proposed by Ref. [1], beta-G presented by Ref. [2], transformed- transformer (T-X) family proposed by Ref. [3], Topp-Leone-G prepared by Ref. [4], new Topp Leone-G prepared by Ref. [5], transmuted odd Fréchet-G created by Ref. [6], modified T-X family prepared by Ref. [7], truncated power Lomax-G proposed by Ref. [8], odd Lindley-G, and power Lindley-G discussed, respectively, by [9,10]. For more recently generated families, the reader can refer to [11,12,13,14].
Nowadays, there has been a lot of interest in the families represented by "trigonometric transformations" due to their versatility and ability for modeling a variety of real-world datasets. The sine-G (S-G) family of distributions, which was first presented by Ref. [15], is the first trigonometric family. The cumulative distribution function (CDF) of the S-G family is as follows:
G(t;ζ)=sin(12πF(t;ζ)),t∈R, | (1.1) |
where F(t;ζ) is the baseline CDF of a continuous distribution and ζ is a parameter vector. The following is the probability density function (PDF) associated with CDF (1.1):
g(t;ζ)=12πf(t;ζ)cos(12πF(t;ζ)),t∈R, | (1.2) |
where f(t;ζ) is the PDF corresponding to F(t;ζ). As indicated in Ref. [16], the S-G family offers several benefits, such as the following, (ⅰ) It is straightforward; (ⅱ) the CDF G(t;ζ) and the CDF F(t;ζ) have the same number of parameters that is, no extra parameter is used therefore, there is no risk of over-parameterization; (ⅲ) the trigonometric function enables G(t;ζ) to expand F(t;ζ)'s flexibility, resulting in the creation of new flexible models.
One popular lifespan model that was created by Ref. [17] is the half logistic distribution (HLD). It has attracted significant interest due to its simplicity, tractable mathematical features, and capacity to accommodate survival data. Basically, the HLD is characterized by the survival function (SF) provided by
S(y)=21+eδy;y,δ>0, |
where δ>0, is the scale parameter. Recently, a number of HLD generalizations and extensions have been proposed in an effort to increase or use some of its features. Among them are the inverse HLD [18], generalized HLD [19], exponentiated half logistic-G [20], McDonald-HLD [21], type Ⅱ half logistic-G [22], power- HLD [23], Kumaraswamy-HLD [24], Marshall-Olkin HLD [25], type Ⅰ half logistic Lindley distribution [26], transmuted-HLD [27], type Ⅱ half logistic Weibull distribution [28], half-logistic generalized Weibull distribution [29], type Ⅰ half logistic Burr X-G [30], modified-HLD [31], unit exponentiated-HLD [32], and, for more extended forms, refer to [33,34,35,36].
The main focus here is on a more flexible model, the power-HLD (PHLD) with an extra shape parameter compared to HLD. The CDF and PDF, with scale parameter δ>0 and shape parameter γ>0 of the PHLD, are provided by:
F(t;ζ)=1−21+eδtγ;t>0, | (1.3) |
and
f(t;ζ)=2δγtγ−1eδtγ(1+eδtγ)2;t>0, | (1.4) |
where ζ=(δ,γ).
The requirement for flexible and efficient probability distributions is fundamental in statistics and probability theory. The fact that no one distribution fits every dataset makes academics constantly look for ways to improve the accuracy and flexibility of current models. In light of this, a new two-parameter distribution called the sine-PHLD (SPHLD) was created, which is based on the PHLD. The SPHLD is intended to efficiently simulate datasets with a range of asymmetrical shapes. The following motivates us to recommend the SPHLD.
1) To enhance the versatility of the traditional PHLD in the modeling of different phenomena. The SPHLD can be used to model skewed data from a range of sources, including agricultural and survival times. Additionally, SPHLD performs better than other distributions that are available in the literature, according to our evaluation of its performance on actual data.
2) A few SPHLD features are identified, including the quantile function (QF), moments (both full and incomplete), and stress-strength (SS) reliability.
3) To evaluate the SPHLD parameters' behavior, sixteen estimation strategies are advised. The approaches that have been suggested include percentiles (PC), Kolmogorov, maximum product spacing (MPS), ordinary least squares (OLS), Anderson-Darling (AD), Cramér-von Mises (CVM), left tail AD (LTAD), minimum spacing square distance (MSSD), maximum likelihood (ML), weighted LS (WLS), minimum spacing absolute-log distance (MSALD), right-tail AD (RTAD), AD left tail second order (ADSO), minimum spacing Linex distance (MSLND), minimum spacing absolute distance (MSAD), and minimum spacing square log distance (MSSLD).
4) A comprehensive simulation study is conducted to evaluate the behaviors of different estimators because it is challenging to compare them theoretically. Tables and graphs were included to demonstrate how these methods worked for different parameter values and sample sizes.
5) In comparison to other current models, the SPHLD's adaptability makes it a competitive model for fitting real data. This study illustrates its efficacy by contrasting it with a number of well-known statistical models, such as the exponentiated generalized standard HLD, exponentiated HLD, Poisson generalized HLD, Kumaraswamy HLD, Type-Ⅱ half logistic Weibull distribution, and PHLD. Two practical applications from the fields of agriculture and medical science further demonstrate the SPHLD's superiority.
This article has the following setup: A novel model extending the PHLD is presented in Section 2. The essential properties of the SPHLD distribution are obtained in Section 3. Many methods for estimating model parameters are covered in Section 4. Section 5 uses Monte Carlo simulations to conduct a numerical analysis. Two real datasets are quantitatively examined in Section 6, and the results are presented in Section 7.
In this section, a relatively new flexible distribution model known as the SPHLD is created by setting CDF (1.3) into CDF (1.1). This allows us to get the CDF, which may be represented as
F(t;ζ)=sin[12π(1−21+eδtγ)]=cos(π1+eδtγ);t,δ,γ>0, | (2.1) |
where ζ=(δ,γ) is the set of parameters. The PDF of the SPHLD associated with (2.1) is given by:
f(t;ζ)=δγπtγ−1eδtγ(1+eδtγ)2sin(π1+eδtγ);t,δ,γ>0. | (2.2) |
For γ=1, the PDF (2.2) reduces to the sine HLD (SHLD) as a new sub-model. The SF and hazard rate function (HRF) of the SPHLD are as below:
S(t;ζ)=1−cos(π1+eδtγ), | (2.3) |
and
h(t;ζ)=δγπtγ−1eδtγ(1+eδtγ)2sin(π1+eδtγ)[1−cos(π1+eδtγ)]−1. |
The SPHLD can accurately represent the positively skewed, reverse J-shaped, and unimodal data (left panel in Figure 1) with varying failure rates and decreasing, increasing, and reverse J-shaped failure data (right panel in Figure 1) structures. Figure 2 shows the 3D plots of the PDF and HRF for the SPHLD at δ = 1.5.
Several statistical features, including SS reliability, inverse moments, QF, and central moments, have been covered in the subsections that follow.
The QF of the SPHLD is determined by inverting (2.1) as follows:
Q(p)=[1δln(πcos−1(p)−1)]1/γ;0<p<1 | (3.1) |
Specifically, by setting p = 0.25, 0.5, and 0.75, respectively, in (3.1), the first quartile, or Q1, the second quartile, or Q2, and the third quartile, or Q3, are achieved. Some numerical values of the proposed model quantiles are presented in Table 1.
Parameters | Measures | ||||||||
δ | γ | Q(0.1) | Q(0.25) | Q(0.35) | Q(0.5) | Q(0.6) | Q(0.75) | Q(0.85) | Q(0.95) |
0.15 | 0.5 | 0.724887 | 4.68121 | 9.54363 | 21.3535 | 33.6724 | 64.8572 | 105.342 | 212.237 |
1.0 | 0.851403 | 2.16361 | 3.08928 | 4.62098 | 5.80279 | 8.0534 | 10.2636 | 14.5684 | |
3.0 | 0.947789 | 1.29338 | 1.45642 | 1.66563 | 1.79699 | 2.00444 | 2.1732 | 2.44233 | |
5.0 | 0.968338 | 1.16691 | 1.25306 | 1.35815 | 1.42144 | 1.51773 | 1.59316 | 1.70876 | |
7.0 | 0.977281 | 1.11656 | 1.17484 | 1.24441 | 1.28556 | 1.34718 | 1.39467 | 1.46623 | |
10 | 0.984042 | 1.08023 | 1.1194 | 1.1654 | 1.19224 | 1.23196 | 1.26221 | 1.3072 | |
0.6 | 0.5 | 0.0453054 | 0.292575 | 0.596477 | 1.33459 | 2.10452 | 4.05357 | 6.58386 | 13.2648 |
1.0 | 0.212851 | 0.540902 | 0.772319 | 1.15525 | 1.4507 | 2.01335 | 2.5659 | 3.64209 | |
3.0 | 0.59707 | 0.814779 | 0.917485 | 1.04928 | 1.13203 | 1.26272 | 1.36903 | 1.53857 | |
5.0 | 0.733863 | 0.884349 | 0.949641 | 1.02928 | 1.07725 | 1.15023 | 1.20739 | 1.295 | |
7.0 | 0.801698 | 0.915955 | 0.963765 | 1.02083 | 1.05459 | 1.10514 | 1.1441 | 1.2028 | |
10 | 0.856658 | 0.940398 | 0.974495 | 1.01454 | 1.03791 | 1.07249 | 1.09881 | 1.13798 | |
0.9 | 0.5 | 0.0201357 | 0.130033 | 0.265101 | 0.593152 | 0.935344 | 1.80159 | 2.92616 | 5.89547 |
1.0 | 0.1419 | 0.360602 | 0.514879 | 0.770164 | 0.967132 | 1.34223 | 1.7106 | 2.42806 | |
3.0 | 0.521588 | 0.711775 | 0.801497 | 0.916631 | 0.988922 | 1.10309 | 1.19596 | 1.34406 | |
5.0 | 0.676701 | 0.815465 | 0.875671 | 0.94911 | 0.993338 | 1.06063 | 1.11335 | 1.19413 | |
7.0 | 0.75658 | 0.864407 | 0.909526 | 0.96338 | 0.995237 | 1.04294 | 1.07971 | 1.13511 | |
10 | 0.822618 | 0.903031 | 0.935773 | 0.974223 | 0.996664 | 1.02987 | 1.05515 | 1.09276 | |
1.5 | 0.5 | 0.00724887 | 0.0468121 | 0.0954363 | 0.213535 | 0.336724 | 0.648572 | 1.05342 | 2.12237 |
1.0 | 0.0851403 | 0.216361 | 0.308928 | 0.462098 | 0.580279 | 0.80534 | 1.02636 | 1.45684 | |
3.0 | 0.439925 | 0.600334 | 0.676009 | 0.773116 | 0.834089 | 0.930379 | 1.00871 | 1.13363 | |
5.0 | 0.61098 | 0.736268 | 0.790626 | 0.856933 | 0.896866 | 0.957626 | 1.00522 | 1.07816 | |
7.0 | 0.703335 | 0.803573 | 0.845517 | 0.895581 | 0.925196 | 0.969546 | 1.00372 | 1.05522 | |
10 | 0.781652 | 0.85806 | 0.889172 | 0.925707 | 0.94703 | 0.978584 | 1.00261 | 1.03834 | |
2.5 | 0.5 | 0.00260959 | 0.0168523 | 0.0343571 | 0.0768725 | 0.121221 | 0.233486 | 0.37923 | 0.764053 |
1.0 | 0.0510842 | 0.129817 | 0.185357 | 0.277259 | 0.348167 | 0.483204 | 0.615817 | 0.874101 | |
3.0 | 0.371047 | 0.506341 | 0.570168 | 0.652071 | 0.703498 | 0.784712 | 0.85078 | 0.956138 | |
5.0 | 0.551642 | 0.664762 | 0.713841 | 0.773708 | 0.809762 | 0.864622 | 0.907591 | 0.973447 | |
7.0 | 0.653837 | 0.747021 | 0.786013 | 0.832554 | 0.860085 | 0.901313 | 0.933086 | 0.980961 | |
10 | 0.742726 | 0.815329 | 0.844891 | 0.879607 | 0.899868 | 0.92985 | 0.952676 | 0.986634 | |
4.5 | 0.5 | 0.00080543 | 0.00520134 | 0.010604 | 0.0237261 | 0.0374137 | 0.0720635 | 0.117046 | 0.235819 |
1.0 | 0.0283801 | 0.0721203 | 0.102976 | 0.154033 | 0.193426 | 0.268447 | 0.34212 | 0.485612 | |
3.0 | 0.305027 | 0.416248 | 0.468718 | 0.536049 | 0.578325 | 0.645088 | 0.699401 | 0.786013 | |
5.0 | 0.490459 | 0.591033 | 0.634669 | 0.687896 | 0.719951 | 0.768726 | 0.80693 | 0.865482 | |
7.0 | 0.601176 | 0.686855 | 0.722707 | 0.765499 | 0.790813 | 0.828721 | 0.857935 | 0.901954 | |
10 | 0.700328 | 0.768787 | 0.796661 | 0.829395 | 0.848499 | 0.87677 | 0.898293 | 0.930313 |
Studying the random variable's moments can help in understanding a number of its distribution characteristics. We'll provide the nth moment of the recommended SPHLD below.
E(Tn)=∫∞0tnδγπtγ−1eδtγ(1+eδtγ)2sin(π1+eδtγ)dt. | (3.2) |
The following is the series of the sine function:
sin(t)=∞∑j=0(−1)jt2j+1(2j+1)!. | (3.3) |
Using expansion (3.3) in (3.2) gives
E(Tn)=∞∑j=0(−1)jπ2j+2(2j+1)!∫∞0δγtn+γ−1e−2(j+1)δtγ(1+e−δtγ)2j+3dt. | (3.4) |
The following is the binomial expansion
(1+y)−(a+1)=∞∑i=0(−1)i(a+ii)yi. | (3.5) |
Employing (3.5) in (3.4), we have
E(Tn)=∞∑j,i=0ηi,jδ−(n/γ)(2(j+1)+i)(n/γ)+1Γ(nγ+1), |
where ηi,j=(−1)j+iπ2j+2(2j+1)!(2j+2+ii), Γ(.) is the gamma function (GaF).
Furthermore, using moments around the origin, we may compute the nth central moment of T based on the complete moments as follows:
μn=E[(T−E(T))n]=n∑k=0(−1)k(nk)(E(T))k(E(T))n−k. |
Next, we get skewness coefficient SK=μ3/μ1.52 and kurtosis coefficient KU=μ4/μ22. They are essential for determining whether the SPHLD is symmetrical or asymmetric. In conclusion, Figure 3 offers 3D plots of mean, variance, skewness, and kurtosis for the SPHLD.
The nth incomplete moment (IM) of the SPHLD is obtained by using PDF (2.2) as follows:
ϑn(z)=∫z0tnδγπtγ−1eδtγ(1+eδtγ)2sin(π1+eδtγ)dt. |
Using the expansions (3.2) and (3.4), we have
ϑn(z)=∞∑j,i=0ηi,jz∫0δγtn+γ−1e−(2(j+1)+i)δtγdt=∞∑j,i=0ηi,jδ−(n/γ)((2(j+1)+i))(n/γ)+1Γ(nγ+1,(2(j+1)+i)δzγ), |
where Γ(.,x) is the incomplete GaF. A valuable tool in science, engineering, economics, and demography, the IM is used to estimate Lorenz and Bonferroni curves. These values may be mathematically defined as L(z)=ϑ1(z)/E(T) and B(z)=ϑ1(z)/pE(T). Additionally, it is employed in determining the mean waiting time, say MW(z)=z−ϑ1(z)/F(z;ζ), and the mean residual life, say MR(z)=[1−ϑ1(z)]/S(z;ζ)−z.
The life of a component with random strength T1under random stress T2 is described by the SS model. When the component is subjected to stress greater than its strength, it fails instantly, and when T1>T2, it works properly. Suppose that T1∼SPHLD(δ1,γ) and T2∼SPHLD(δ2,γ), then the SS reliability is given by
β=P(T2<T1)=∫∞0δ1γπtγ−1eδ1tγ(1+eδ1tγ)2sin(π1+eδ1tγ)cos(π1+eδ2tγ)dt, | (3.6) |
since
cos(t)=∞∑j2=0(−1)j2t2j22j2!. | (3.7) |
Then, using expansions (3.3) and (3.7) in (3.6) provide
β=∞∑j1,j2=0Dj1,j2∫∞0δ1γtγ−1e−2(j1+1)δ1tγ(1+e−δ1tγ)2j1+3e−2δ2j2tγ(1+e−δ2tγ)2j2dt, | (3.8) |
where Dj1,j2=(−1)j1+j2π2j1+2j2+2(2j1+1)!2j2!. Again, using the expansion (3.5) two times in (3.8), we obtain
β=∞∑j1,j2,i1,i2=0Dj1,j2Ki1,i2∫∞0δ1γtγ−1e−{δ1[2(j1+1)+i1]+δ2(i2+2j2)}tγdt, | (3.9) |
where Ki1,i2=(−1)i1+i2(2j1+2+i1i1)(2j2−1+i2i2). Hence, (3.9) has the following expression
β=∞∑j1,j2,i1,i2=0Dj1,j2Ki1,i2δ1[δ1[2(j1+1)+i1]+δ2(i2+2j2)]. |
To estimate the SPHLD parameters, we investigate various classical estimation techniques in this section. The proposed methods are AD, MSALD, MPS, ML, Kolmogorov, LTAD, MSAD, CVM, OLS, MSSD, PC, WLS, MSLD, RTAD, ADSO, and MSSLD. In order to enhance the straightforward nature of the estimation techniques, we have incorporated a more comprehensive explanation of the derivation process for every equation.
The SPHLD parameters are estimated in this subsection using the ML technique. Let t1,t2,…,tn be an n observed sample from PDF (2.2). The log-likelihood function is as below:
logℓ∝nlog(δγ)+n∑i=1(γ−1)logti+n∑i=1δtγi−2n∑i=1log(1+eδtγi)+n∑i=1log[sin(π1+eδtγ)]. |
The log-likelihood function can be maximized to determine the ML estimators (MLEs) ˆδ1 and ˆγ1 of the parameters δ and γ. Alternatively, the following differential equations can be solved about of δ and γ
∂logℓ∂δ=nδ+n∑i=1tγi−2n∑i=1tγi1+e−δtγi−n∑i=1πtγi(1+e−δtγi)2cot(π1+eδtγ)=0, | (4.1) |
and
∂logℓ∂γ=nγ+n∑i=1logti+n∑i=1δtγilogti−2n∑i=1δtγilogti(1+e−δtγi)−n∑i=1cot(π1+eδtγ)δπtγilogti(1+e−δtγi)2=0. | (4.2) |
Since the aforementioned Eqs (4.1) and (4.2) have no explicit solutions, in order to determine the MLEs of the SPHLD parameters, nonlinear numerical techniques must be used.
A particular class of minimal distance estimators is the AD estimators. Here, four different estimators for the SPHLD parameters based on the AD approach are determined. These estimators are AD estimators (ADEs), RTAD estimators (RTADEs), ADSO estimators (ADSOEs), and LTAD estimators (LTADEs).
Suppose that t(1),t(2),…,t(n) are the order statistics of a random sample drawn from the SPHLD. Minimizing the following function with respect to the SPHLD parameters, the ADEs ˆδ2 and ˆγ2 of δ and γ are determined
A1(ζ)=−n−1nn∑b=1(2b−1){logF(t(b)|ζ)+log(S(t(n−b+1)|ζ))}, |
where F(.) is the CDF (2.1) and S(.) is the SF (2.3). Solving the following nonlinear equations will also yield the ADEs:
n∑b=1(2b−1){υζ(t(b)|ζ)F(t(b)|ζ)−υζ(t(n−b+1)|ζ)S(t(n−b+1)|ζ)}=0,ζ=(δ,γ), |
where
υδ(t(b)|ζ)=∂F(t(b)|ζ)∂δ=πtγ(b)eδtγ(b)(1+eδtγ(b))2sin(π1+eδtγ(b)), | (4.3) |
and
υγ(t(b)|ζ)=∂F(t(b)|ζ)∂γ=πtγ(b)logt(b)eδtγ(b)(1+eδtγ(b))2sin(π1+eδtγ(b)). | (4.4) |
The RTADEs ˆδ3 and ˆγ3 of parameters δ and γ are determined by minimizing the following function with respect to parameters,
A2(ζ)=n2−2n∑b=1F(t(b)|δ,γ)−1nn∑=1(2b−1)logS(t(n+1−b)|δ,γ)=0, | (4.5) |
where F(.) is the CDF (2.1) and S(.) is the SF (2.3). As an alternative to (4.5), the RTADEs can additionally be obtained by solving the following nonlinear equations:
−2n∑b=1υζ(t(b)|δ,γ)+1nn∑=1(2b−1)S(t(n+1−b)|δ,γ)=0,ζ=(δ,γ), |
where, υζ(t(b)|δ,γ) and ζ=(δ,γ) are given in (4.3) and (4.4).
Next, the ADSOE ˆδ4 and ˆγ4 of parameters δ and γ may be obtained by minimizing the function shown below:
A3(ζ)=2n∑b=1logF(t(b)|δ,γ)+1nn∑b=12b−1F(t(b)|δ,γ), | (4.6) |
where F(.) is the CDF (2.1). The ADSOEs can also be produced by solving the following nonlinear equations as an alternative to Eq (4.6):
2n∑b=1υζ(t(b)|δ,γ)F(t(b)|δ,γ)−1nn∑b=1(2b−1)υζ(t(b)|δ,γ)[F(t(b)|δ,γ)]2=0,ζ=(δ,γ), |
where, υζ(t(b)|δ,γ) and ζ=(δ,γ) are given in (4.3) and (4.4).
The LTADE ˆδ5 and ˆγ5 of parameters δ and γ are determined, respectively, by minimizing the following function:
A4(ζ)=−3n2+2n∑b=1F(t(b)|ζ)−1nn∑b=1(2b−1)logF(t(b)|ζ). | (4.7) |
The following nonlinear equations can be quantitatively solved in place of (4.7) to get ˆδ5 and ˆγ5 respectively:
2n∑b=1F(t(b)|ζ)υζ(t(b)|δ,γ)−1nn∑b=1(2b−1)F(t(b)|ζ)υζ(t(b)|δ,γ)=0,ζ=(δ,γ), |
where, υζ(t(b)|δ,γ) and ζ=(δ,γ) are given in (4.3) and (4.4).
In place of MLE for estimating the unknown parameters of continuous univariate distributions, [37,38] presented the MPS approach. Ranneby [39] demonstrated that in some circumstances, the MPSE asymptotically has the same properties as the MLE and that the MSP method produces consistent estimates while the ML method does not. Let t(1),t(2),…,t(n) be the order statistics of a random sample drawn from the SPHLD. Subsequently, the uniform spacing is established by
ωb(t;δ,γ)=F(t(b)|δ,γ)−F(t(b−1)|δ,γ),b=1,2,...,n+1, |
where F(t(0)|δ,γ)=0,F(t(n+1)|δ,γ)=1, and n+1∑b=1ωb(t;δ,γ)=1. Hence, the following function is maximized with respect to δ and γ to obtain the MPS estimators (MPSEs) of the SPHLD.
D∙(ζ)=1n+1n+1∑b=1log[ωb(t;δ,γ)]. | (4.8) |
It is also possible for assessing the MPSEs ˆδ6 and ˆγ6 of parameters δ and γ by solving the following nonlinear equation.
1n+1n+1∑b=1υζ(t(b)|ζ)−υζ(t(b−1)|ζ)ωb(t;ζ)=0, |
where, υζ(t(b)|ζ) and ζ=(δ,γ) are given in (4.3) and (4.4).
On minimizing the subsequent functions to δ and γ, the OLS estimators (OLSEs) and WLS estimators (WLSEs) of the unknown parameters δ and γ of the SPHLD distribution are obtained
ls∙=n∑b=1(F(t(b)|ζ)−bn+1)2ws∙=n∑b=1(n+1)2(n+2)b(n−b+1)(F(t(b)|ζ)−bn+1)2}, | (4.9) |
where F(.) is the CDF (2.1). In an equivalent manner to (4.9), the OLSEs ˆδ7 and ˆγ7 and WLSEs ˆδ8 and ˆγ8 of unknown parameters δ and γ may be acquired by working out the following equations, with respect to δ and γ :
n∑b=1(F(t(b)|ζ)−bn+1)υζ(t(b)|ζ)=0,n∑b=1(n+1)2(n+2)b(n−b+1)(F(t(b)|ζ)−bn+1)υζ(t(b)|ζ)=0, |
where F(.) is the CDF (2.1), and υζ(t(b)|δ,γ) and ζ=(δ,γ) are given in (4.3) and (4.4).
Here, the MSSD estimators (MSSDEs), MSLND estimators (MSLNDEs), MSALD estimators (MSALDEs), MSAD estimators (MSADEs), and MSSLD estimators (MSSLDEs) are obtained.
The next function is minimized to obtain the MSSDEs ˆδ9 and ˆγ9 of the SPHLD parameters δ and γ :
V1(ζ)=n+1∑b=1(ωb(t;ζ)−1n+1)2, |
where ωb(t;ζ)=F(t(b)|δ,γ)−F(t(b−1)|δ,γ). The MSSDEs ˆδ9 and ˆγ9 are generated by solving the following nonlinear equations:
n+1∑b=1(ωb(t;ζ)−1n+1)[υζ(t(b)|ζ)−υζ(t(b−1)|ζ)]=0, |
where υζ(.|ζ) and ζ=(δ,γ) are given in (4.3) and (4.4).
The function that follows is minimized to provide the MSLNDEs ˆδ10 and ˆγ10 of the SPHLD parameters δ and γ
V2(ζ)=n+1∑b=1(eωb−1n+1−(ωb−1n+1)−1)2. | (4.10) |
The following nonlinear equation can be solved as an alternative to (4.10), in order to find the MSLNDEs ˆδ10 and ˆγ10
n+1∑b=1(eωb−1n+1−(ωb−1n+1)−1)(eωb−1n+1−1)[υζ(t(b)|δ,γ)−υζ(t(b−1)|δ,γ)]=0,ζ=(δ,γ), |
where, υζ(.|ζ) and ζ=(δ,γ) are given in (4.3) and (4.4).
Minimizing the function below yields the MSALDEs ˆδ11 and ˆγ11 of δ and γ
V3(ζ)=n+1∑b=1|logωb(t;ζ)−log1n+1|. |
The MSALDEs ˆδ11 and ˆγ11 are determined by solving the following nonlinear equations:
n+1∑b=1logωb(t;ζ)−log1n+1|logωb(t;ζ)−log1n+1|[υζ(t(b)|ζ)−υζ(t(b−1)|ζ)]1ωb(t;ζ)=0, |
where υζ(.|ζ) and ζ=(δ,γ) are given in (4.3) and (4.4).
The MSADEs ˆδ12 and ˆγ12 of the SPHLD parameters δ and γ are produced by minimizing the following function:
V4(ζ)=n+1∑b=1|ωb(t;ζ)−1n+1|. |
After minimizing the function shown below, the MSADEs ˆδ12 and ˆγ12 are established
n+1∑b=1ωb(t;ζ)−1n+1|ωb(t;ζ)−1n+1|[υζ(t(b)|ζ)−υζ(t(b−1)|ζ)]=0, |
where υζ(.|ζ) and ζ=(δ,γ) are given in (4.3) and (4.4).
The MSSLDEs ˆδ13 and ˆγ13 of parameters δ and γ are produced by minimizing the following function:
V5(ζ)=n+1∑b=1(logωb(t;ζ)−log1n+1)2. | (4.11) |
As opposed to using (4.11), the following nonlinear equation must be solved in order to derive the MSSLDEs ˆδ13 and ˆγ13 :
n+1∑b=1(logωb(t;ζ)−log1n+1)[vζ(t(b)∣zeta)−vζ(t(b−1)∣ζ)]1ωb(t;ζ)=0, |
where υζ(.|ζ) and ζ=(δ,γ) are given in (4.3) and (4.4).
In comparison to other estimators of the same kind, the CVM estimators (CVMEs) are less biased and fall within the category of minimal distance estimators. Finding the difference between the estimated and empirical CDFs allows one to generate these estimators. The function below can be minimized with regard to δ and γ to get the CVMEs ˆδ14 and ˆγ14 of δ and γ
C(ζ)=112n+n∑b=1{F(t(b)|ζ)−2b−12n}2. | (4.12) |
The following nonlinear equation might be solved in place of (4.12), yielding ˆδ14 and ˆγ14
n∑b=1{F(t(b)|ζ)−2b−12n}υζ(t(b)|ζ)=0, |
where υζ(.|δ,γ) and ζ=(δ,γ) are given in (4.3) and (4.4).
In this subsection, the Kolmogorov estimators (KEs) and the PC estimators (PCEs) of the SPHLD parameters are obtained.
The estimation of the SPHLD parameters δ and γ is done using the Kolmogorov method. The KEs ˆδ15 and ˆγ15 are obtained after minimizing the following function:
H(ζ)=Max1≤b≤nn∑b=1[bn−F(t(b)|ζ),F(t(b)|ζ)−b−1n]2, |
where F(.) is the CDF (2.1).
Next, by equating the sample and population percentile values, the PCEs ˆδ16 and ˆγ16 of the unknown parameters δ and γ are produced. The following function can be minimized in relation to δ and γ to get the ˆδ16 and ˆγ16
P=n∑b=1[z(b)−F−1(pb)]2,pb=bn+1. |
Using a significant quantity of simulated data, this section compares the performance of several estimate methods for estimating the parameters of the proposed model. In our simulation, we used the suggested model quantity function to create random datasets for a variety of sample sizes (n=25,75,150,200,250, and 400). In this part, we will investigate the performance and behavior of our model estimators. Furthermore, we will examine the performance of various estimating strategies using a range of metrics, such as average of bias (|Bias(ζ)|=1L∑Li=1|ˆζ−ζ|), mean squared errors (MSE=1L∑Li=1(ˆζ−ζ)2), mean relative errors (MRE=1L∑Li=1|ˆζ−ζ|/ζ), average absolute difference (Dabs=1nL∑Li=1∑nj=1|F(tij|ζ)−F(tij|ˆζ)|), maximum absolute difference (Dmax=1L∑Li=1maxj|F(tij|ζ)−F(tij|ˆζ)|), and average squared absolute error (ASAE=1n∑ni=1|ti−^ti|tn−t1), where the observations ti are in ascending order and ζ=(δ,γ).
Tables 6–10 illustrate the results of simulating the specified model parameters using 16 estimating approaches. Figures 4 through 9 visually show the data from Table 6. It is critical to note that all of the parameter estimates for the proposed distribution are quite trustworthy and reasonably near to their real values. As n increases, all anticipated metrics for each scenario under consideration decline. All of the estimating approaches are quite effective at approximating the recommended model parameters. Table 11 shows that the MPS estimate has the lowest overall score, equal to 67.0 for the criteria included in our investigation, followed by the ML estimate as the second-best method for our investigation with a score of 69.0. Table 11 displays the total rankings for all estimating procedures.
Model | Parameter | SE | Parameter | SE | Parameter | SE |
SPHLD(δ,γ) | 3.7870 | 0.4370 | 2.2162 | 0.1836 | – | – |
EGSHLD(α,β) | 7.0611 | 0.5863 | 3.3169 | 0.4593 | – | – |
EHLD(λ,θ) | 4.7771 | 0.3748 | 2.7077 | 0.3918 | – | – |
PGHLD(α,β,δ) | 0.5901 | 0.0916 | 2.6059 | 0.2187 | 133.3208 | 3.0465 |
KHLD(α,β,θ) | 2.5987 | 0.2161 | 141.1152 | 2.1935 | 0.5731 | 0.0893 |
HLWD(β,θ,δ) | 9.2668 | 0.0013 | 7.7567 | 0.0075 | 0.2865 | 0.0236 |
PHLD(δ,γ) | 6.3117 | 0.7676 | 2.2754 | 0.1877 | – | – |
Models | -2logL | AIC | BIC | CAIC | HQIC | KS | p(KS) | CVM | p(CVM) | AD | p(AD) |
SPHLD | -50.0009 | -46.0009 | -40.6552 | -45.8877 | -43.8338 | 0.0635 | 0.7812 | 0.1027 | 0.5727 | 0.8752 | 0.4295 |
EGSHLD | -18.5522 | -14.5522 | -9.2065 | -14.439 | -12.3851 | 0.1367 | 0.0367 | 0.678 | 0.0142 | 3.9479 | 0.0093 |
EHLD | -20.661 | -16.661 | -11.3154 | -16.5478 | -14.494 | 0.1291 | 0.0566 | 0.6068 | 0.0213 | 3.6361 | 0.0132 |
PGHLD | -41.7841 | -35.7841 | -27.7656 | -35.5556 | -32.5335 | 0.0868 | 0.3958 | 0.2084 | 0.2519 | 1.5726 | 0.1601 |
KHLD | -42.0805 | -36.0805 | -28.062 | -35.8519 | -32.8299 | 0.0865 | 0.4001 | 0.2067 | 0.255 | 1.5561 | 0.1637 |
HLWD | -50.7479 | -44.7479 | -36.7294 | -44.5193 | -41.4973 | 0.083 | 0.4532 | 0.1787 | 0.3131 | 1.088 | 0.3141 |
PHLD | -48.4568 | -44.4568 | -39.1112 | -44.3436 | -42.2898 | 0.0647 | 0.7624 | 0.1082 | 0.5469 | 0.9613 | 0.378 |
Model | parameter | SE | parameter | SE | parameter | SE |
SPHLD(δ,γ) | 0.0134 | 0.0048 | 1.0754 | 0.0806 | – | – |
EGSHLD(α,β) | 0.0271 | 0.0029 | 1.4176 | 0.1774 | – | – |
EHLD(λ,θ) | 0.0330 | 0.0030 | 1.1827 | 0.1406 | – | – |
PGHLD(α,β,δ) | 0.0029 | 6.0E-04 | 1.3095 | 0.0959 | 31.6416 | 3.0606 |
KHLD(α,β,θ) | 1.7763 | 2.0E-04 | 0.1171 | 0.0106 | 0.2100 | 1.0E-04 |
HLWD(β,θ,δ) | 3.2E-05 | 0.0000 | 2.3012 | 0.0925 | 0.5459 | 0.0382 |
PHLD(δ,γ) | 0.0188 | 0.0068 | 1.1120 | 0.0833 | – | – |
Models | -2logL | AIC | BIC | CAIC | HQIC | KS | p(KS) | CVM | p(CVM) | AD | p(AD) |
SPHLD | 1158.5700 | 1162.5700 | 1168.1620 | 1162.4700 | 1164.8410 | 0.0460 | 0.9603 | 0.0697 | 0.7543 | 0.5285 | 0.7176 |
EGSHLD | 1161.6180 | 1165.6180 | 1171.2090 | 1165.7180 | 1167.8890 | 0.0848 | 0.3489 | 0.0784 | 0.7023 | 0.5126 | 0.7337 |
EHLD | 1158.7411 | 1162.7411 | 1168.4002 | 1162.5110 | 1164.9820 | 0.0569 | 0.8286 | 0.0519 | 0.8652 | 0.4096 | 0.8389 |
PGHLD | 1158.6990 | 1164.1990 | 1172.5860 | 1164.4010 | 1167.6050 | 0.0606 | 0.7658 | 0.0522 | 0.8638 | 0.3987 | 0.8498 |
KHLD | 1163.9130 | 1169.9130 | 1178.3000 | 1170.1140 | 1173.3190 | 0.1032 | 0.1521 | 0.1349 | 0.4395 | 0.7670 | 0.5051 |
HLWD | 1158.8090 | 1163.0090 | 1171.3960 | 1163.2110 | 1166.4150 | 0.0538 | 0.8752 | 0.0634 | 0.7934 | 0.4578 | 0.7898 |
PHLD | 1158.6310 | 1162.6310 | 1168.8022 | 1162.5310 | 1164.8702 | 0.0492 | 0.9311 | 0.0597 | 0.8170 | 0.4685 | 0.7788 |
n | Est. | MLE | ADE | CVME | MPSE | OLSE | PCE | RTADE | WLSE | LTADE | MSADE | MSALDE | ADSOE | KE | MSSD | MSSLD | MSLND |
20 | BIAS(ˆδ) | 0.50997{10} | 0.47624{8} | 0.55618{14} | 0.4227{1} | 0.52808{11} | 0.45642{4} | 0.48106{9} | 0.4697{6} | 0.55874{15} | 0.47011{7} | 0.45026{3} | 0.69895{16} | 0.4578{5} | 0.54062{12} | 0.43213{2} | 0.55229{13} |
BIAS(ˆγ) | 0.65945{6} | 0.6582{5} | 0.7497{13} | 0.62205{2} | 0.73052{12} | 0.62897{3} | 0.70944{10} | 0.67628{8} | 0.7155{11} | 0.65291{4} | 0.70363{9} | 0.76909{14} | 0.55328{1} | 0.82507{15} | 0.66467{7} | 0.87293{16} | |
MSE(ˆδ) | 0.48274{13} | 0.3941{8} | 0.58214{15} | 0.27484{1} | 0.46439{12} | 0.33067{4} | 0.40226{9} | 0.37185{7} | 0.53257{14} | 0.3537{5} | 0.3227{3} | 0.7722{16} | 0.36868{6} | 0.4295{10} | 0.31669{2} | 0.44799{11} | |
MSE(ˆγ) | 0.75419{9} | 0.70861{5} | 0.97653{14} | 0.58115{2} | 0.87688{12} | 0.59901{3} | 0.84103{11} | 0.73695{7} | 0.79691{10} | 0.7111{6} | 0.73851{8} | 0.91542{13} | 0.53207{1} | 0.99521{15} | 0.69597{4} | 1.09317{16} | |
MRE(ˆδ) | 0.20399{10} | 0.1905{8} | 0.22247{14} | 0.16908{1} | 0.21123{11} | 0.18257{4} | 0.19243{9} | 0.18788{6} | 0.2235{15} | 0.18804{7} | 0.1801{3} | 0.27958{16} | 0.18312{5} | 0.21625{12} | 0.17285{2} | 0.22092{13} | |
MRE(ˆγ) | 0.16486{6} | 0.16455{5} | 0.18742{13} | 0.15551{2} | 0.18263{12} | 0.15724{3} | 0.17736{10} | 0.16907{8} | 0.17887{11} | 0.16323{4} | 0.17591{9} | 0.19227{14} | 0.13832{1} | 0.20627{15} | 0.16617{7} | 0.21823{16} | |
Dabs | 0.05542{1} | 0.05852{6} | 0.05875{7} | 0.05789{4} | 0.06077{10} | 0.05774{3} | 0.05704{2} | 0.05827{5} | 0.05946{9} | 0.06363{13} | 0.06702{14} | 0.06358{12} | 0.05891{8} | 0.06948{15} | 0.06084{11} | 0.0712{16} | |
Dmax | 0.09015{1} | 0.09333{7} | 0.09632{9} | 0.0904{2} | 0.09725{11} | 0.09107{3} | 0.09261{5} | 0.0929{6} | 0.09717{10} | 0.10099{12} | 0.10555{13} | 0.10614{14} | 0.09162{4} | 0.1109{15} | 0.09595{8} | 0.11392{16} | |
ASAE | 0.04585{1} | 0.04191{7} | 0.04337{9} | 0.04308{2} | 0.04118{11} | 0.04172{3} | 0.04508{5} | 0.04062{6} | 0.04319{10} | 0.05482{12} | 0.05271{13} | 0.05203{14} | 0.04583{4} | 0.05973{15} | 0.04937{8} | 0.06062{16} | |
∑Ranks | 66{7} | 56{6} | 106{13} | 20{1} | 93{11} | 30{2} | 73{9} | 54{4.5} | 101{12} | 72{8} | 75{10} | 127{15} | 40{3} | 124{14} | 54{4.5} | 133{16} | |
70 | BIAS(ˆδ) | 0.23302{3} | 0.2412{4} | 0.30468{12} | 0.22791{1} | 0.27786{11} | 0.23246{2} | 0.26005{8} | 0.25407{7} | 0.32622{15} | 0.27753{10} | 0.24555{5} | 0.49886{16} | 0.26772{9} | 0.31504{14} | 0.24582{6} | 0.30999{13} |
BIAS(ˆγ) | 0.3245{1} | 0.32947{2} | 0.39565{12} | 0.33268{3} | 0.38705{11} | 0.34282{5} | 0.37162{7} | 0.36078{6} | 0.40446{13} | 0.3758{8} | 0.38459{10} | 0.54412{16} | 0.33343{4} | 0.45321{14} | 0.38433{9} | 0.4608{15} | |
MSE(ˆδ) | 0.09308{3} | 0.09963{5} | 0.17211{14} | 0.08165{1} | 0.131{11} | 0.0835{2} | 0.12498{8} | 0.11594{7} | 0.19003{15} | 0.12754{10} | 0.09977{6} | 0.41958{16} | 0.12736{9} | 0.15069{13} | 0.09772{4} | 0.14683{12} | |
MSE(ˆγ) | 0.17324{2} | 0.17331{3} | 0.25132{12} | 0.16753{1} | 0.23172{10} | 0.18154{4} | 0.23363{11} | 0.20815{6} | 0.26128{13} | 0.22809{9} | 0.22537{7} | 0.4488{16} | 0.20041{5} | 0.32895{15} | 0.22666{8} | 0.32661{14} | |
MRE(ˆδ) | 0.09321{3} | 0.09648{4} | 0.12187{12} | 0.09117{1} | 0.11114{11} | 0.09299{2} | 0.10402{8} | 0.10163{7} | 0.13049{15} | 0.11101{10} | 0.09822{5} | 0.19954{16} | 0.10709{9} | 0.12602{14} | 0.09833{6} | 0.12399{13} | |
MRE(ˆγ) | 0.08113{1} | 0.08237{2} | 0.09891{12} | 0.08317{3} | 0.09676{11} | 0.0857{5} | 0.0929{7} | 0.0902{6} | 0.10112{13} | 0.09395{8} | 0.09615{10} | 0.13603{16} | 0.08336{4} | 0.1133{14} | 0.09608{9} | 0.1152{15} | |
Dabs | 0.0291{1} | 0.03155{7} | 0.03136{6} | 0.03121{5} | 0.03271{10} | 0.03079{2} | 0.03097{3} | 0.03118{4} | 0.03217{9} | 0.03687{13} | 0.0343{11} | 0.039{14} | 0.03186{8} | 0.03963{15} | 0.03489{12} | 0.03977{16} | |
Dmax | 0.04706{1} | 0.05079{5} | 0.05236{8} | 0.04993{3} | 0.05362{9} | 0.04926{2} | 0.05056{4} | 0.05084{6} | 0.05385{10} | 0.05874{13} | 0.0553{11} | 0.06884{16} | 0.05146{7} | 0.06406{14} | 0.05617{12} | 0.0649{15} | |
ASAE | 0.02068{1} | 0.0194{5} | 0.02022{8} | 0.02038{3} | 0.0197{9} | 0.01966{2} | 0.02055{4} | 0.01914{6} | 0.02024{10} | 0.0263{13} | 0.0254{11} | 0.02805{16} | 0.02126{7} | 0.02941{14} | 0.02373{12} | 0.02958{15} | |
∑Ranks | 24{1} | 34{4} | 93{11} | 25{2} | 88{10} | 27{3} | 64{6} | 50{5} | 109{13} | 94{12} | 77{8.5} | 140{16} | 65{7} | 128{14} | 77{8.5} | 129{15} | |
150 | BIAS(ˆδ) | 0.15673{2} | 0.15991{3} | 0.18883{10} | 0.15145{1} | 0.18886{11} | 0.16135{4} | 0.1763{8} | 0.16792{6} | 0.22306{15} | 0.19224{12} | 0.17614{7} | 0.37121{16} | 0.17811{9} | 0.21099{13} | 0.16783{5} | 0.21401{14} |
BIAS(ˆγ) | 0.21048{1} | 0.23683{4} | 0.26398{12} | 0.22694{2} | 0.25585{10} | 0.23069{3} | 0.25039{8} | 0.24322{6} | 0.28777{13} | 0.26282{11} | 0.25477{9} | 0.39249{16} | 0.23897{5} | 0.32228{15} | 0.24795{7} | 0.31651{14} | |
MSE(ˆδ) | 0.03876{2} | 0.0421{4} | 0.05973{11} | 0.03526{1} | 0.06179{12} | 0.03983{3} | 0.05052{8} | 0.04654{5} | 0.0843{15} | 0.05917{10} | 0.04776{7} | 0.22463{16} | 0.05493{9} | 0.07{13} | 0.04684{6} | 0.07287{14} | |
MSE(ˆγ) | 0.07143{1} | 0.08939{4} | 0.10989{11} | 0.07985{2} | 0.10559{10} | 0.08356{3} | 0.10142{8} | 0.09184{5} | 0.1303{13} | 0.11125{12} | 0.10348{9} | 0.24262{16} | 0.0989{7} | 0.15864{15} | 0.09643{6} | 0.15711{14} | |
MRE(ˆδ) | 0.06269{2} | 0.06396{3} | 0.07553{10} | 0.06058{1} | 0.07554{11} | 0.06454{4} | 0.07052{8} | 0.06717{6} | 0.08923{15} | 0.07689{12} | 0.07046{7} | 0.14849{16} | 0.07124{9} | 0.0844{13} | 0.06713{5} | 0.0856{14} | |
MRE(ˆγ) | 0.05262{1} | 0.05921{4} | 0.066{12} | 0.05674{2} | 0.06396{10} | 0.05767{3} | 0.0626{8} | 0.06081{6} | 0.07194{13} | 0.06571{11} | 0.06369{9} | 0.09812{16} | 0.05974{5} | 0.08057{15} | 0.06199{7} | 0.07913{14} | |
Dabs | 0.02054{1} | 0.02072{2} | 0.02154{6.5} | 0.0209{3} | 0.02214{8} | 0.02154{6.5} | 0.0215{5} | 0.02124{4} | 0.02222{10} | 0.02553{13} | 0.02417{12} | 0.02878{15} | 0.02217{9} | 0.029{16} | 0.02327{11} | 0.02835{14} | |
Dmax | 0.03296{1} | 0.03367{3} | 0.03572{7} | 0.03363{2} | 0.03616{9} | 0.03467{5} | 0.03506{6} | 0.03443{4} | 0.03725{10} | 0.04088{13} | 0.03877{12} | 0.0513{16} | 0.03581{8} | 0.04664{15} | 0.03742{11} | 0.04585{14} | |
ASAE | 0.01285{1} | 0.0121{3} | 0.01253{7} | 0.01291{2} | 0.0126{9} | 0.0126{5} | 0.01309{6} | 0.01218{4} | 0.01276{10} | 0.01719{13} | 0.01618{12} | 0.01927{16} | 0.0134{8} | 0.01885{15} | 0.01518{11} | 0.01927{14} | |
∑Ranks | 18{1} | 28{3} | 82.5{9} | 22{2} | 86{11} | 35.5{4} | 68{6} | 44{5} | 110{13} | 107{12} | 84{10} | 143{16} | 71{8} | 129{15} | 69{7} | 127{14} | |
200 | BIAS(ˆδ) | 0.13265{2} | 0.13595{3} | 0.1673{11} | 0.13118{1} | 0.16857{12} | 0.13838{5} | 0.13802{4} | 0.14025{6} | 0.18959{15} | 0.16663{10} | 0.15183{8} | 0.33625{16} | 0.16201{9} | 0.18672{14} | 0.14916{7} | 0.1847{13} |
BIAS(ˆγ) | 0.1819{1} | 0.2009{4} | 0.23223{11} | 0.19663{2} | 0.23062{10} | 0.19721{3} | 0.21404{7} | 0.20405{5} | 0.24252{13} | 0.23595{12} | 0.22556{9} | 0.35139{16} | 0.21768{8} | 0.26822{14} | 0.21092{6} | 0.28227{15} | |
MSE(ˆδ) | 0.02876{2} | 0.03111{5} | 0.04706{12} | 0.02608{1} | 0.04487{11} | 0.02986{3} | 0.02999{4} | 0.03198{6} | 0.05815{15} | 0.04388{9} | 0.03648{8} | 0.17779{16} | 0.04457{10} | 0.0543{14} | 0.03468{7} | 0.05337{13} | |
MSE(ˆγ) | 0.05319{1} | 0.06643{5} | 0.0866{11} | 0.05773{2} | 0.08181{9} | 0.06042{3} | 0.07294{7} | 0.0649{4} | 0.09347{13} | 0.0891{12} | 0.07835{8} | 0.18831{16} | 0.08335{10} | 0.10843{14} | 0.07018{6} | 0.12237{15} | |
MRE(ˆδ) | 0.05306{2} | 0.05438{3} | 0.06692{11} | 0.05247{1} | 0.06743{12} | 0.05535{5} | 0.05521{4} | 0.0561{6} | 0.07583{15} | 0.06665{10} | 0.06073{8} | 0.1345{16} | 0.0648{9} | 0.07469{14} | 0.05966{7} | 0.07388{13} | |
MRE(ˆγ) | 0.04548{1} | 0.05022{4} | 0.05806{11} | 0.04916{2} | 0.05765{10} | 0.0493{3} | 0.05351{7} | 0.05101{5} | 0.06063{13} | 0.05899{12} | 0.05639{9} | 0.08785{16} | 0.05442{8} | 0.06705{14} | 0.05273{6} | 0.07057{15} | |
Dabs | 0.01756{1} | 0.01875{6} | 0.01966{9} | 0.01806{2} | 0.01886{7} | 0.01851{3} | 0.01865{5} | 0.01857{4} | 0.02{10} | 0.02234{13} | 0.02071{12} | 0.02553{16} | 0.01939{8} | 0.02374{14} | 0.02001{11} | 0.02467{15} | |
Dmax | 0.02827{1} | 0.03015{5} | 0.03226{10} | 0.02899{2} | 0.03112{7} | 0.02971{3} | 0.03023{6} | 0.02997{4} | 0.03328{11} | 0.03587{13} | 0.03331{12} | 0.04625{16} | 0.03149{8} | 0.03869{14} | 0.03217{9} | 0.03998{15} | |
ASAE | 0.01079{1} | 0.01033{5} | 0.01064{10} | 0.01096{2} | 0.01058{7} | 0.0105{3} | 0.01128{6} | 0.01037{4} | 0.01071{11} | 0.01466{13} | 0.0135{12} | 0.01705{16} | 0.01127{8} | 0.01565{14} | 0.01282{9} | 0.01625{15} | |
∑Ranks | 18{1} | 36{4} | 91{11} | 21{2} | 82{9} | 31{3} | 54{6} | 42{5} | 111{13} | 104{12} | 86{10} | 144{16} | 79{8} | 126{14} | 70{7} | 129{15} | |
300 | BIAS(ˆδ) | 0.10974{2} | 0.11844{5} | 0.13179{9} | 0.10665{1} | 0.13783{12} | 0.1132{3} | 0.11493{4} | 0.11974{6} | 0.14628{13} | 0.13581{11} | 0.12478{8} | 0.2783{16} | 0.1341{10} | 0.15588{15} | 0.12086{7} | 0.14797{14} |
BIAS(ˆγ) | 0.14742{1} | 0.16142{3} | 0.18156{10} | 0.16198{4} | 0.1938{12} | 0.1533{2} | 0.16496{5} | 0.17827{7} | 0.1921{11} | 0.19653{13} | 0.17965{8} | 0.28618{16} | 0.18104{9} | 0.22094{15} | 0.17758{6} | 0.2143{14} | |
MSE(ˆδ) | 0.01875{2} | 0.02203{5} | 0.02817{9} | 0.01818{1} | 0.03043{12} | 0.02021{3} | 0.02064{4} | 0.02295{7} | 0.03499{13} | 0.02881{11} | 0.02412{8} | 0.12932{16} | 0.0286{10} | 0.03896{15} | 0.02229{6} | 0.03584{14} | |
MSE(ˆγ) | 0.03488{1} | 0.04131{4} | 0.05192{9} | 0.04036{3} | 0.05898{12} | 0.03722{2} | 0.04372{5} | 0.04954{7} | 0.05812{11} | 0.06262{13} | 0.05007{8} | 0.13548{16} | 0.05346{10} | 0.07594{15} | 0.04802{6} | 0.07302{14} | |
MRE(ˆδ) | 0.0439{2} | 0.04737{5} | 0.05272{9} | 0.04266{1} | 0.05513{12} | 0.04528{3} | 0.04597{4} | 0.0479{6} | 0.05851{13} | 0.05433{11} | 0.04991{8} | 0.11132{16} | 0.05364{10} | 0.06235{15} | 0.04834{7} | 0.05919{14} | |
MRE(ˆγ) | 0.03685{1} | 0.04036{3} | 0.04539{10} | 0.04049{4} | 0.04845{12} | 0.03832{2} | 0.04124{5} | 0.04457{7} | 0.04802{11} | 0.04913{13} | 0.04491{8} | 0.07155{16} | 0.04526{9} | 0.05524{15} | 0.04439{6} | 0.05357{14} | |
Dabs | 0.01362{1} | 0.01495{6} | 0.01533{8} | 0.01478{5} | 0.01539{9} | 0.01426{2} | 0.01476{4} | 0.01472{3} | 0.01529{7} | 0.01826{13} | 0.01734{12} | 0.02195{16} | 0.01583{10} | 0.0199{14} | 0.0161{11} | 0.02005{15} | |
Dmax | 0.02211{1} | 0.02424{6} | 0.02529{7} | 0.02366{3} | 0.02549{8} | 0.02312{2} | 0.02388{4} | 0.02416{5} | 0.0255{9} | 0.02944{13} | 0.02777{12} | 0.03943{16} | 0.0259{10} | 0.03232{15} | 0.02613{11} | 0.0323{14} | |
ASAE | 0.00851{1} | 0.00811{6} | 0.00842{7} | 0.00842{3} | 0.00824{8} | 0.00839{2} | 0.00871{4} | 0.00814{5} | 0.00844{9} | 0.01156{13} | 0.0109{12} | 0.01371{16} | 0.00883{10} | 0.01255{15} | 0.01019{11} | 0.01271{14} | |
∑Ranks | 19{1} | 38{4} | 77{8} | 27{3} | 92{11} | 23{2} | 44{5} | 50{6} | 95{12} | 111{13} | 84{9} | 144{16} | 88{10} | 133{15} | 71{7} | 128{14} | |
450 | BIAS(ˆδ) | 0.08895{2} | 0.09072{3} | 0.11445{12} | 0.08675{1} | 0.10738{10} | 0.09073{4} | 0.09415{5} | 0.0949{6} | 0.12204{13} | 0.11394{11} | 0.10417{8} | 0.22716{16} | 0.10475{9} | 0.12807{15} | 0.09963{7} | 0.12233{14} |
BIAS(ˆγ) | 0.1248{1} | 0.13118{4} | 0.15604{12} | 0.12656{2} | 0.15209{10} | 0.13038{3} | 0.15018{9} | 0.13814{5} | 0.15294{11} | 0.16044{13} | 0.14765{8} | 0.24681{16} | 0.14338{6} | 0.17673{15} | 0.14537{7} | 0.17526{14} | |
MSE(ˆδ) | 0.01257{2} | 0.01291{4} | 0.02057{11} | 0.01176{1} | 0.01849{10} | 0.01269{3} | 0.01407{5} | 0.01462{6} | 0.02287{13} | 0.02088{12} | 0.01688{8} | 0.08455{16} | 0.0176{9} | 0.02511{15} | 0.01571{7} | 0.02359{14} | |
MSE(ˆγ) | 0.0249{1} | 0.02715{4} | 0.03896{12} | 0.02562{2} | 0.03687{10} | 0.02638{3} | 0.03486{9} | 0.03042{5} | 0.03691{11} | 0.04153{13} | 0.03326{7} | 0.09873{16} | 0.03448{8} | 0.04877{15} | 0.03238{6} | 0.04832{14} | |
MRE(ˆδ) | 0.03558{2} | 0.03629{3.5} | 0.04578{12} | 0.0347{1} | 0.04295{10} | 0.03629{3.5} | 0.03766{5} | 0.03796{6} | 0.04881{13} | 0.04558{11} | 0.04167{8} | 0.09086{16} | 0.0419{9} | 0.05123{15} | 0.03985{7} | 0.04893{14} | |
MRE(ˆγ) | 0.0312{1} | 0.0328{4} | 0.03901{12} | 0.03164{2} | 0.03802{10} | 0.0326{3} | 0.03755{9} | 0.03453{5} | 0.03823{11} | 0.04011{13} | 0.03691{8} | 0.0617{16} | 0.03584{6} | 0.04418{15} | 0.03634{7} | 0.04381{14} | |
Dabs | 0.01206{3} | 0.0118{1} | 0.01283{9} | 0.01195{2} | 0.01252{6} | 0.0122{4} | 0.01285{10} | 0.01236{5} | 0.01279{8} | 0.0151{13} | 0.01376{12} | 0.01756{16} | 0.01274{7} | 0.01662{15} | 0.01351{11} | 0.01591{14} | |
Dmax | 0.0194{3} | 0.01913{1} | 0.02112{9} | 0.01918{2} | 0.02062{6} | 0.01963{4} | 0.0208{8} | 0.02007{5} | 0.02128{10} | 0.02436{13} | 0.02228{12} | 0.03163{16} | 0.02078{7} | 0.02684{15} | 0.02176{11} | 0.02572{14} | |
ASAE | 0.0068{3} | 0.00657{1} | 0.00666{9} | 0.0068{2} | 0.00659{6} | 0.00666{4} | 0.00675{8} | 0.00645{5} | 0.00672{10} | 0.00925{13} | 0.00841{12} | 0.01085{16} | 0.00715{7} | 0.01005{15} | 0.00797{11} | 0.01017{14} | |
∑Ranks | 24{2} | 26.5{3} | 94{11} | 21{1} | 75{9} | 31.5{4} | 67{6} | 44{5} | 96{12} | 112{13} | 83{10} | 144{16} | 71{7} | 134{15} | 74{8} | 127{14} |
n | Est. | MLE | ADE | CVME | MPSE | OLSE | PCE | RTADE | WLSE | LTADE | MSADE | MSALDE | ADSOE | KE | MSSD | MSSLD | MSLND |
20 | BIAS(ˆδ) | 0.13569{4} | 0.13611{5} | 0.14304{12} | 0.11914{1} | 0.13443{3} | 0.23732{16} | 0.13881{8} | 0.13078{2} | 0.145{13} | 0.14272{11} | 0.13867{7} | 0.15516{15} | 0.14722{14} | 0.13911{9} | 0.13978{10} | 0.13755{6} |
BIAS(ˆγ) | 0.04852{2} | 0.04836{1} | 0.06184{11} | 0.04882{3} | 0.05532{8} | 0.10105{16} | 0.05227{6} | 0.05221{5} | 0.05666{9} | 0.0622{12} | 0.05323{7} | 0.0738{15} | 0.05983{10} | 0.06465{13} | 0.04883{4} | 0.06543{14} | |
MSE(ˆδ) | 0.02924{3} | 0.03072{6.5} | 0.03339{12} | 0.02293{1} | 0.02941{4} | 0.08556{16} | 0.03083{9} | 0.02791{2} | 0.03622{14} | 0.03338{11} | 0.03296{10} | 0.04423{15} | 0.0359{13} | 0.03072{6.5} | 0.03037{5} | 0.03074{8} | |
MSE(ˆγ) | 0.00409{4} | 0.0038{3} | 0.00673{14} | 0.00366{1} | 0.00511{8} | 0.01506{16} | 0.00465{7} | 0.00459{6} | 0.00576{9} | 0.00621{12} | 0.00433{5} | 0.00882{15} | 0.00612{10} | 0.00618{11} | 0.00373{2} | 0.00633{13} | |
MRE(ˆδ) | 0.16961{4} | 0.17014{5} | 0.17881{12} | 0.14892{1} | 0.16804{3} | 0.29665{16} | 0.17352{8} | 0.16347{2} | 0.18125{13} | 0.1784{11} | 0.17334{7} | 0.19395{15} | 0.18402{14} | 0.17389{9} | 0.17473{10} | 0.17193{6} | |
MRE(ˆγ) | 0.16174{2} | 0.1612{1} | 0.20613{11} | 0.16273{3} | 0.18441{8} | 0.33685{16} | 0.17424{6} | 0.17403{5} | 0.18886{9} | 0.20735{12} | 0.17743{7} | 0.24601{15} | 0.19943{10} | 0.21551{13} | 0.16277{4} | 0.21812{14} | |
Dabs | 0.05531{1} | 0.05792{3} | 0.06031{6} | 0.05725{2} | 0.06112{9} | 0.10551{16} | 0.05954{5} | 0.05815{4} | 0.06079{8} | 0.06665{12} | 0.06419{11} | 0.06793{13} | 0.06068{7} | 0.07137{15} | 0.06132{10} | 0.07046{14} | |
Dmax | 0.09073{2} | 0.09264{3} | 0.10036{8} | 0.0902{1} | 0.09881{7} | 0.17373{16} | 0.09574{5} | 0.09359{4} | 0.1012{9} | 0.10726{12} | 0.10174{11} | 0.11822{15} | 0.10136{10} | 0.11505{14} | 0.09648{6} | 0.11428{13} | |
ASAE | 0.04603{2} | 0.04811{3} | 0.05374{8} | 0.04434{1} | 0.06565{7} | 0.0267{16} | 0.0424{5} | 0.04964{4} | 0.08063{9} | 0.04583{12} | 0.04342{11} | 0.42444{15} | 0.05812{10} | 0.0862{14} | 0.05103{6} | 0.08934{13} | |
∑Ranks | 28{2} | 34.5{3} | 96{9} | 17{1} | 62{7} | 129{15} | 56{5} | 38{4} | 97{10} | 98{11} | 68{8} | 134{16} | 99{12} | 104.5{14} | 60{6} | 103{13} | |
70 | BIAS(ˆδ) | 0.07296{5} | 0.06964{1} | 0.07359{7} | 0.07124{3} | 0.07313{6} | 0.18982{16} | 0.07141{4} | 0.06974{2} | 0.07362{8} | 0.0874{13} | 0.0797{11} | 0.08887{15} | 0.07713{10} | 0.08667{12} | 0.0757{9} | 0.08745{14} |
BIAS(ˆγ) | 0.02459{1} | 0.02612{5} | 0.03127{11} | 0.02602{4} | 0.0292{8} | 0.0696{16} | 0.02598{3} | 0.02544{2} | 0.02942{9} | 0.03295{12} | 0.02869{7} | 0.04133{15} | 0.03019{10} | 0.03481{14} | 0.02684{6} | 0.03435{13} | |
MSE(ˆδ) | 0.00838{5} | 0.00771{1.5} | 0.00865{7} | 0.00801{3} | 0.0085{6} | 0.0611{16} | 0.00817{4} | 0.00771{1.5} | 0.00869{8} | 0.01225{12} | 0.01009{11} | 0.01295{15} | 0.00958{10} | 0.01229{13} | 0.00905{9} | 0.01253{14} | |
MSE(ˆγ) | 0.00099{1} | 0.00108{4} | 0.00163{11} | 0.00104{3} | 0.00135{8} | 0.00721{16} | 0.00111{5} | 0.00103{2} | 0.00144{9} | 0.00171{12} | 0.00125{7} | 0.00265{15} | 0.00151{10} | 0.00187{14} | 0.00114{6} | 0.0018{13} | |
MRE(ˆδ) | 0.09119{5} | 0.08705{1} | 0.09199{7} | 0.08905{3} | 0.09141{6} | 0.23728{16} | 0.08926{4} | 0.08718{2} | 0.09203{8} | 0.10925{13} | 0.09963{11} | 0.11109{15} | 0.09642{10} | 0.10834{12} | 0.09462{9} | 0.10931{14} | |
MRE(ˆγ) | 0.08196{1} | 0.08707{5} | 0.10422{11} | 0.08674{4} | 0.09732{8} | 0.232{16} | 0.08659{3} | 0.0848{2} | 0.09806{9} | 0.10984{12} | 0.09562{7} | 0.13777{15} | 0.10063{10} | 0.11604{14} | 0.08946{6} | 0.1145{13} | |
Dabs | 0.03066{4} | 0.03051{2} | 0.0325{7} | 0.03188{5} | 0.03278{8} | 0.07892{16} | 0.03045{1} | 0.03058{3} | 0.03232{6} | 0.03856{12} | 0.03556{11} | 0.04174{15} | 0.0333{10} | 0.04018{13} | 0.03322{9} | 0.04055{14} | |
Dmax | 0.04975{3.5} | 0.04967{2} | 0.05402{8} | 0.05105{5} | 0.05348{7} | 0.12657{16} | 0.04963{1} | 0.04975{3.5} | 0.05403{9} | 0.06225{12} | 0.0567{11} | 0.07376{15} | 0.0551{10} | 0.06547{14} | 0.05338{6} | 0.06543{13} | |
ASAE | 0.0162{3.5} | 0.01797{2} | 0.02094{8} | 0.01643{5} | 0.02195{7} | 0.01337{16} | 0.01615{1} | 0.01862{3.5} | 0.02546{9} | 0.01928{12} | 0.01803{11} | 0.09751{15} | 0.02182{10} | 0.02609{14} | 0.01813{6} | 0.02645{13} | |
∑Ranks | 28.5{4} | 26.5{2} | 79{8.5} | 34{5} | 69{7} | 129{15} | 27{3} | 26{1} | 79{8.5} | 107{12} | 82{10} | 136{16} | 91{11} | 120{13} | 67{6} | 123{14} | |
150 | BIAS(ˆδ) | 0.04684{1} | 0.04829{3} | 0.04887{4.5} | 0.04806{2} | 0.04987{7} | 0.17968{16} | 0.04887{4.5} | 0.04975{6} | 0.05064{10} | 0.05928{12} | 0.05586{11} | 0.06197{13} | 0.05002{8} | 0.06334{14} | 0.05037{9} | 0.06384{15} |
BIAS(ˆγ) | 0.01666{1} | 0.01759{4} | 0.02009{10} | 0.01747{2} | 0.02006{9} | 0.06159{16} | 0.01832{5} | 0.0185{6} | 0.02003{8} | 0.0217{12} | 0.0192{7} | 0.02988{15} | 0.02063{11} | 0.02394{13} | 0.01753{3} | 0.02409{14} | |
MSE(ˆδ) | 0.00343{1} | 0.00367{3} | 0.00382{5} | 0.00363{2} | 0.00389{7} | 0.05875{16} | 0.00372{4} | 0.00387{6} | 0.00409{10} | 0.00543{12} | 0.00503{11} | 0.0063{14} | 0.00394{8} | 0.00615{13} | 0.00404{9} | 0.00634{15} | |
MSE(ˆγ) | 0.00045{1} | 0.00048{4} | 0.00064{10} | 0.00046{2} | 0.00062{8.5} | 0.00575{16} | 0.00054{5.5} | 0.00054{5.5} | 0.00062{8.5} | 0.00073{12} | 0.00056{7} | 0.0014{15} | 7e−04{11} | 9e−04{14} | 0.00047{3} | 0.00088{13} | |
MRE(ˆδ) | 0.05855{1} | 0.06037{3} | 0.06108{4.5} | 0.06008{2} | 0.06234{7} | 0.2246{16} | 0.06108{4.5} | 0.06219{6} | 0.0633{10} | 0.0741{12} | 0.06982{11} | 0.07746{13} | 0.06253{8} | 0.07917{14} | 0.06296{9} | 0.0798{15} | |
MRE(ˆγ) | 0.05553{1} | 0.05865{4} | 0.06697{10} | 0.05823{2} | 0.06687{9} | 0.2053{16} | 0.06107{5} | 0.06166{6} | 0.06675{8} | 0.07234{12} | 0.06399{7} | 0.09959{15} | 0.06876{11} | 0.07981{13} | 0.05845{3} | 0.08029{14} | |
Dabs | 0.02014{1} | 0.02095{2} | 0.02155{5} | 0.02132{3} | 0.02237{8} | 0.07261{16} | 0.02134{4} | 0.02169{6} | 0.02256{10} | 0.02615{12} | 0.02437{11} | 0.02995{15} | 0.02244{9} | 0.0284{13} | 0.02199{7} | 0.02844{14} | |
Dmax | 0.03246{1} | 0.03388{2} | 0.03559{7} | 0.03417{3} | 0.03664{8} | 0.11597{16} | 0.03474{4} | 0.03524{5} | 0.0373{10} | 0.04235{12} | 0.0391{11} | 0.05332{15} | 0.03699{9} | 0.04607{13} | 0.03549{6} | 0.04632{14} | |
ASAE | 0.00893{1} | 0.01018{2} | 0.01121{7} | 0.00853{3} | 0.01162{8} | 0.00883{16} | 0.009{4} | 0.00981{5} | 0.01321{10} | 0.01058{12} | 0.00981{11} | 0.03661{15} | 0.01211{9} | 0.01329{13} | 0.00993{6} | 0.01331{14} | |
∑Ranks | 11{1} | 33{3} | 66{7} | 19{2} | 74.5{8} | 128{14.5} | 40.5{4} | 52.5{5} | 87.5{10} | 104{12} | 81{9} | 129{16} | 91{11} | 123{13} | 56{6} | 128{14.5} | |
200 | BIAS(ˆδ) | 0.04341{8} | 0.03894{1} | 0.04242{5} | 0.04287{7} | 0.04155{3} | 0.16861{16} | 0.04223{4} | 0.04141{2} | 0.0428{6} | 0.0525{12} | 0.04708{10} | 0.05372{15} | 0.04369{9} | 0.05334{14} | 0.04767{11} | 0.05288{13} |
BIAS(ˆγ) | 0.01466{1} | 0.0152{3} | 0.01737{9} | 0.01482{2} | 0.01744{10} | 0.05522{16} | 0.01611{5} | 0.01546{4} | 0.01751{11} | 0.019{12} | 0.01669{7} | 0.026{15} | 0.01733{8} | 0.02049{13} | 0.01646{6} | 0.02067{14} | |
MSE(ˆδ) | 0.00301{8} | 0.00239{1} | 0.00281{4} | 0.0029{6} | 0.00279{3} | 0.05237{16} | 0.00282{5} | 0.00268{2} | 0.00291{7} | 0.00451{13} | 0.00352{10} | 0.00452{14} | 0.00307{9} | 0.00453{15} | 0.00356{11} | 0.00449{12} | |
MSE(ˆγ) | 0.00035{2} | 0.00038{3} | 0.00047{8} | 0.00034{1} | 0.00048{9} | 0.00465{16} | 4e−04{5} | 0.00039{4} | 0.00049{10.5} | 0.00056{12} | 0.00044{7} | 0.00111{15} | 0.00049{10.5} | 0.00064{13} | 0.00042{6} | 0.00067{14} | |
MRE(ˆδ) | 0.05427{8} | 0.04867{1} | 0.05302{5} | 0.05358{7} | 0.05194{3} | 0.21077{16} | 0.05278{4} | 0.05176{2} | 0.05349{6} | 0.06562{12} | 0.05885{10} | 0.06715{15} | 0.05462{9} | 0.06668{14} | 0.05959{11} | 0.06611{13} | |
MRE(ˆγ) | 0.04887{1} | 0.05067{3} | 0.05789{9} | 0.04941{2} | 0.05813{10} | 0.18407{16} | 0.05369{5} | 0.05154{4} | 0.05836{11} | 0.06333{12} | 0.05564{7} | 0.08668{15} | 0.05776{8} | 0.0683{13} | 0.05488{6} | 0.0689{14} | |
Dabs | 0.01861{4} | 0.01734{1} | 0.01893{7} | 0.01868{5} | 0.0188{6} | 0.06765{16} | 0.01843{3} | 0.01809{2} | 0.01907{8} | 0.02302{12} | 0.02074{11} | 0.02596{15} | 0.01938{9} | 0.0239{13} | 0.02062{10} | 0.02397{14} | |
Dmax | 0.02971{3} | 0.02823{1} | 0.03122{7} | 0.02995{4} | 0.03106{6} | 0.10653{16} | 0.02997{5} | 0.02958{2} | 0.0319{8} | 0.03705{12} | 0.03334{11} | 0.04661{15} | 0.03204{9} | 0.03867{13} | 0.03292{10} | 0.03921{14} | |
ASAE | 0.00707{3} | 0.00822{1} | 0.00916{7} | 0.00728{4} | 0.00916{6} | 0.00736{16} | 0.00708{5} | 0.00804{2} | 0.01016{8} | 0.00844{12} | 0.00794{11} | 0.02823{15} | 0.0094{9} | 0.01004{13} | 0.00783{10} | 0.0105{14} | |
∑Ranks | 36{3} | 22{1} | 64{7} | 37{4} | 59{6} | 131{15} | 49{5} | 29{2} | 80.5{10} | 105{12} | 78{9} | 134{16} | 82.5{11} | 120{13} | 75{8} | 122{14} | |
300 | BIAS(ˆδ) | 0.03359{1} | 0.03426{4} | 0.03522{5} | 0.03414{3} | 0.0339{2} | 0.15982{16} | 0.03524{6} | 0.03559{7} | 0.03562{8} | 0.04236{12} | 0.03961{11} | 0.04313{13} | 0.03677{9} | 0.04397{14} | 0.03893{10} | 0.04451{15} |
BIAS(ˆγ) | 0.01137{1} | 0.01228{3} | 0.01405{9} | 0.01219{2} | 0.01354{7} | 0.05028{16} | 0.01315{5} | 0.01242{4} | 0.01412{10} | 0.01532{12} | 0.01366{8} | 0.02121{15} | 0.01461{11} | 0.01687{14} | 0.01337{6} | 0.01621{13} | |
MSE(ˆδ) | 0.00174{1} | 0.00183{3} | 0.00192{5} | 0.00187{4} | 0.0018{2} | 0.04814{16} | 0.00198{7} | 0.00197{6} | 0.00199{8} | 0.00292{12} | 0.00245{11} | 0.003{13} | 0.00214{9} | 0.00314{14} | 0.00231{10} | 0.00318{15} | |
MSE(ˆγ) | 0.00021{1} | 0.00023{2.5} | 0.00032{9.5} | 0.00023{2.5} | 0.00029{8} | 0.00397{16} | 0.00027{5} | 0.00025{4} | 0.00032{9.5} | 0.00036{12} | 0.00028{6.5} | 0.00074{15} | 0.00033{11} | 0.00045{14} | 0.00028{6.5} | 0.00043{13} | |
MRE(ˆδ) | 0.04199{1} | 0.04282{4} | 0.04403{5} | 0.04268{3} | 0.04238{2} | 0.19977{16} | 0.04404{6} | 0.04449{7} | 0.04453{8} | 0.05295{12} | 0.04952{11} | 0.05391{13} | 0.04597{9} | 0.05496{14} | 0.04866{10} | 0.05564{15} | |
MRE(ˆγ) | 0.0379{1} | 0.04092{3} | 0.04685{9} | 0.04065{2} | 0.04512{7} | 0.16759{16} | 0.04382{5} | 0.04141{4} | 0.04707{10} | 0.05107{12} | 0.04554{8} | 0.0707{15} | 0.0487{11} | 0.05622{14} | 0.04456{6} | 0.05404{13} | |
Dabs | 0.01428{1} | 0.01493{2} | 0.01562{7} | 0.015{3} | 0.01523{4} | 0.06329{16} | 0.01533{5} | 0.01542{6} | 0.01592{8} | 0.01858{12} | 0.01711{11} | 0.02105{15} | 0.01634{9} | 0.0196{13} | 0.01678{10} | 0.01968{14} | |
Dmax | 0.0231{1} | 0.02413{3} | 0.02571{7} | 0.02402{2} | 0.02497{6} | 0.09926{16} | 0.0248{4} | 0.02495{5} | 0.02655{8} | 0.02992{12} | 0.02754{11} | 0.03749{15} | 0.02695{9} | 0.03206{14} | 0.02701{10} | 0.0319{13} | |
ASAE | 0.00503{1} | 0.00586{3} | 0.00626{7} | 0.0051{2} | 0.00667{6} | 0.00572{16} | 0.00531{4} | 0.00569{5} | 0.00725{8} | 0.00629{12} | 0.0057{11} | 0.01823{15} | 0.00683{9} | 0.00742{14} | 0.00555{10} | 0.00735{13} | |
∑Ranks | 9{1} | 32.5{3} | 65.5{7} | 23.5{2} | 49{6} | 135{16} | 46{4} | 48{5} | 82.5{9} | 106{12} | 83.5{10} | 130{15} | 90{11} | 126{14} | 72.5{8} | 125{13} | |
450 | BIAS(ˆδ) | 0.02849{7} | 0.02771{3} | 0.02723{2} | 0.0272{1} | 0.02835{6} | 0.14718{16} | 0.02885{8} | 0.02788{4} | 0.02901{9} | 0.03489{12} | 0.03154{11} | 0.03737{15} | 0.02814{5} | 0.03623{13} | 0.03103{10} | 0.037{14} |
BIAS(ˆγ) | 0.00965{2} | 0.00997{3} | 0.01198{11} | 0.0093{1} | 0.01114{9} | 0.04448{16} | 0.01054{6} | 0.01018{4} | 0.01105{8} | 0.01207{12} | 0.01051{5} | 0.01806{15} | 0.01153{10} | 0.01314{13} | 0.01081{7} | 0.01315{14} | |
MSE(ˆδ) | 0.00125{5.5} | 0.00119{2.5} | 0.00119{2.5} | 0.00117{1} | 0.00127{7} | 0.04381{16} | 0.00128{8} | 0.00125{5.5} | 0.00132{9} | 0.00193{12} | 0.0016{11} | 0.0022{14.5} | 0.00123{4} | 0.00207{13} | 0.00151{10} | 0.0022{14.5} | |
MSE(ˆγ) | 0.00015{2} | 0.00016{3.5} | 0.00022{10.5} | 0.00013{1} | 0.00019{8.5} | 0.00326{16} | 0.00018{6} | 0.00016{3.5} | 0.00019{8.5} | 0.00023{12} | 0.00018{6} | 0.00052{15} | 0.00022{10.5} | 0.00027{13.5} | 0.00018{6} | 0.00027{13.5} | |
MRE(ˆδ) | 0.03561{7} | 0.03463{3} | 0.03404{2} | 0.034{1} | 0.03543{6} | 0.18398{16} | 0.03606{8} | 0.03485{4} | 0.03627{9} | 0.04361{12} | 0.03943{11} | 0.04671{15} | 0.03518{5} | 0.04529{13} | 0.03879{10} | 0.04626{14} | |
MRE(ˆγ) | 0.03216{2} | 0.03322{3} | 0.03995{11} | 0.03099{1} | 0.03715{9} | 0.14827{16} | 0.03512{6} | 0.03395{4} | 0.03684{8} | 0.04024{12} | 0.03502{5} | 0.0602{15} | 0.03843{10} | 0.04381{13} | 0.03602{7} | 0.04383{14} | |
Dabs | 0.01217{3.5} | 0.01203{2} | 0.01254{5.5} | 0.0118{1} | 0.01259{7} | 0.05777{16} | 0.01254{5.5} | 0.01217{3.5} | 0.01282{9} | 0.01499{12} | 0.01365{11} | 0.0179{15} | 0.01262{8} | 0.01585{13} | 0.01354{10} | 0.01633{14} | |
Dmax | 0.01954{2} | 0.01966{3} | 0.02084{7} | 0.01902{1} | 0.0206{6} | 0.09011{16} | 0.02035{5} | 0.0197{4} | 0.02134{9} | 0.02413{12} | 0.02191{11} | 0.03217{15} | 0.02103{8} | 0.02567{13} | 0.02172{10} | 0.02642{14} | |
ASAE | 0.00367{2} | 0.00414{3} | 0.00475{7} | 0.00367{1} | 0.0047{6} | 0.00441{16} | 0.00389{5} | 0.00421{4} | 0.00514{9} | 0.00441{12} | 0.00441{11} | 0.01141{15} | 0.00498{8} | 0.00517{13} | 0.0041{10} | 0.00505{14} | |
∑Ranks | 33{3} | 28{2} | 62.5{6} | 9{1} | 68.5{7} | 137{16} | 55.5{5} | 38.5{4} | 83.5{11} | 104{12} | 78{10} | 135.5{15} | 72.5{8} | 119.5{13} | 74{9} | 125{14} |
n | Est. | MLE | ADE | CVME | MPSE | OLSE | PCE | RTADE | WLSE | LTADE | MSADE | MSALDE | ADSOE | KE | MSSD | MSSLD | MSLND |
20 | BIAS(ˆδ) | 0.09101{2} | 0.09313{5} | 0.09815{11} | 0.09237{4} | 0.09432{8} | 0.09341{6} | 0.0981{10} | 0.09231{3} | 0.09406{7} | 0.10135{13} | 0.10156{14} | 0.09488{9} | 0.0905{1} | 0.10724{16} | 0.1011{12} | 0.10679{15} |
BIAS(ˆγ) | 0.24286{5} | 0.23531{2} | 0.29982{12} | 0.24475{8} | 0.2741{11} | 0.24374{6} | 0.26941{10} | 0.26062{9} | 0.30261{13} | 0.24144{4} | 0.2443{7} | 0.34346{16} | 0.19995{1} | 0.31841{14} | 0.23577{3} | 0.32015{15} | |
MSE(ˆδ) | 0.01264{1} | 0.01384{7} | 0.01474{10} | 0.01362{5} | 0.01402{8} | 0.01346{3} | 0.01544{11} | 0.0135{4} | 0.01369{6} | 0.01643{13} | 0.0167{14} | 0.01406{9} | 0.01276{2} | 0.01786{15} | 0.01573{12} | 0.01802{16} | |
MSE(ˆγ) | 0.10211{8} | 0.09051{3} | 0.15669{14} | 0.09054{4} | 0.12578{10} | 0.09169{5} | 0.1259{11} | 0.12059{9} | 0.15608{13} | 0.10091{7} | 0.09303{6} | 0.19169{16} | 0.07721{1} | 0.15596{12} | 0.0862{2} | 0.15691{15} | |
MRE(ˆδ) | 0.22752{2} | 0.23283{5} | 0.24537{11} | 0.23092{4} | 0.2358{8} | 0.23353{6} | 0.24524{10} | 0.23077{3} | 0.23515{7} | 0.25338{13} | 0.2539{14} | 0.23721{9} | 0.22626{1} | 0.2681{16} | 0.25275{12} | 0.26697{15} | |
MRE(ˆγ) | 0.1619{5} | 0.15687{2} | 0.19988{12} | 0.16317{8} | 0.18273{11} | 0.16249{6} | 0.17961{10} | 0.17375{9} | 0.20174{13} | 0.16096{4} | 0.16286{7} | 0.22897{16} | 0.1333{1} | 0.21227{14} | 0.15718{3} | 0.21343{15} | |
Dabs | 0.05406{1} | 0.05653{2} | 0.059{7} | 0.05707{3} | 0.0592{8} | 0.05783{4} | 0.05875{6} | 0.0581{5} | 0.06031{10} | 0.06505{13} | 0.06303{12} | 0.06891{14} | 0.05967{9} | 0.07115{16} | 0.06078{11} | 0.07068{15} | |
Dmax | 0.08883{1} | 0.09041{3} | 0.09875{10} | 0.09{2} | 0.09621{9} | 0.09085{4} | 0.09549{7} | 0.09422{5} | 0.10075{12} | 0.10336{13} | 0.09961{11} | 0.1194{16} | 0.09486{6} | 0.11513{15} | 0.096{8} | 0.11422{14} | |
ASAE | 0.04552{1} | 0.04129{3} | 0.04352{10} | 0.0421{2} | 0.04259{9} | 0.04025{4} | 0.04201{7} | 0.04014{5} | 0.04631{12} | 0.05495{13} | 0.05154{11} | 0.06866{16} | 0.04793{6} | 0.06063{15} | 0.049{8} | 0.06158{14} | |
∑Ranks | 33{3} | 32{1.5} | 94{12} | 43{5} | 79{8.5} | 42{4} | 79{8.5} | 48{6} | 90{10} | 93{11} | 97{13} | 121{14} | 32{1.5} | 132{15} | 74{7} | 135{16} | |
70 | BIAS(ˆδ) | 0.0481{2} | 0.05165{5} | 0.05356{11} | 0.05241{9} | 0.05152{4} | 0.05205{6} | 0.05239{8} | 0.05128{3} | 0.05271{10} | 0.06183{14} | 0.05814{13} | 0.05235{7} | 0.04805{1} | 0.06292{15} | 0.05444{12} | 0.06617{16} |
BIAS(ˆγ) | 0.11542{1} | 0.1306{7} | 0.15145{12} | 0.13011{5} | 0.1467{11} | 0.13022{6} | 0.13686{8} | 0.12861{4} | 0.15339{13} | 0.13907{10} | 0.13901{9} | 0.21446{16} | 0.11885{2} | 0.17721{14} | 0.12857{3} | 0.17739{15} | |
MSE(ˆδ) | 0.00371{1} | 0.00425{6} | 0.00459{11} | 0.0043{8} | 0.00415{4} | 0.00444{10} | 0.00423{5} | 0.0041{3} | 0.00442{9} | 0.00627{14} | 0.00532{13} | 0.00426{7} | 0.00378{2} | 0.00636{15} | 0.00471{12} | 0.00704{16} | |
MSE(ˆγ) | 0.02207{1} | 0.02746{7} | 0.03672{12} | 0.02552{3} | 0.03476{11} | 0.02672{6} | 0.02954{8} | 0.02659{5} | 0.03801{13} | 0.03324{10} | 0.02999{9} | 0.07196{16} | 0.02561{4} | 0.04841{14} | 0.02515{2} | 0.04931{15} | |
MRE(ˆδ) | 0.12025{2} | 0.12913{5} | 0.13391{11} | 0.13103{9} | 0.1288{4} | 0.13013{6} | 0.13097{8} | 0.1282{3} | 0.13177{10} | 0.15459{14} | 0.14535{13} | 0.13087{7} | 0.12012{1} | 0.1573{15} | 0.1361{12} | 0.16544{16} | |
MRE(ˆγ) | 0.07695{1} | 0.08707{7} | 0.10097{12} | 0.08674{5} | 0.0978{11} | 0.08681{6} | 0.09124{8} | 0.08574{4} | 0.10226{13} | 0.09271{10} | 0.09267{9} | 0.14297{16} | 0.07923{2} | 0.11814{14} | 0.08571{3} | 0.11826{15} | |
Dabs | 0.029{1} | 0.03098{3} | 0.03229{9} | 0.03129{5} | 0.03173{8} | 0.03149{6} | 0.03107{4} | 0.03048{2} | 0.03321{11} | 0.03821{13} | 0.03553{12} | 0.04234{16} | 0.03159{7} | 0.03854{14} | 0.03314{10} | 0.04108{15} | |
Dmax | 0.04673{1} | 0.05004{3} | 0.05334{10} | 0.05006{4} | 0.05236{8} | 0.05032{5} | 0.05057{6} | 0.04942{2} | 0.05539{11} | 0.06103{13} | 0.05694{12} | 0.07498{16} | 0.05124{7} | 0.06295{14} | 0.0533{9} | 0.06672{15} | |
ASAE | 0.02027{1} | 0.0192{3} | 0.0198{10} | 0.02014{4} | 0.01985{8} | 0.01955{5} | 0.01938{6} | 0.01906{2} | 0.02191{11} | 0.02726{13} | 0.02532{12} | 0.03829{16} | 0.02211{7} | 0.02947{14} | 0.0234{9} | 0.03035{15} | |
∑Ranks | 18{1} | 45{4} | 93{10} | 55{5.5} | 67{8} | 55{5.5} | 58{7} | 27{2} | 99{11} | 111{13} | 102{12} | 117{14} | 36{3} | 129{15} | 74{9} | 138{16} | |
150 | BIAS(ˆδ) | 0.03328{1} | 0.0353{6} | 0.0374{11} | 0.03498{4} | 0.03719{10} | 0.03551{7} | 0.03615{9} | 0.0356{8} | 0.03506{5} | 0.04183{14} | 0.03989{13} | 0.0349{3} | 0.03389{2} | 0.04561{15} | 0.03987{12} | 0.04643{16} |
BIAS(ˆγ) | 0.08222{2} | 0.08757{5} | 0.10185{12} | 0.0854{4} | 0.09794{10} | 0.08475{3} | 0.09216{7} | 0.08967{6} | 0.10362{13} | 0.09947{11} | 0.09497{9} | 0.14629{16} | 0.08125{1} | 0.11894{15} | 0.09383{8} | 0.11833{14} | |
MSE(ˆδ) | 0.00173{1} | 0.00199{8} | 0.00217{11} | 0.00191{3.5} | 0.00212{10} | 0.00195{6} | 0.00203{9} | 0.00198{7} | 0.00194{5} | 0.00287{14} | 0.00253{13} | 0.00191{3.5} | 0.00185{2} | 0.00328{15} | 0.0025{12} | 0.0034{16} | |
MSE(ˆγ) | 0.01055{1} | 0.01222{5} | 0.01657{11} | 0.01115{3} | 0.01489{10} | 0.0111{2} | 0.01324{7} | 0.01255{6} | 0.01754{13} | 0.01697{12} | 0.01365{8} | 0.03483{16} | 0.01219{4} | 0.02212{15} | 0.0138{9} | 0.02208{14} | |
MRE(ˆδ) | 0.0832{1} | 0.08825{6} | 0.09351{11} | 0.08745{4} | 0.09298{10} | 0.08878{7} | 0.09037{9} | 0.08899{8} | 0.08765{5} | 0.10457{14} | 0.09974{13} | 0.08726{3} | 0.08473{2} | 0.11402{15} | 0.09968{12} | 0.11607{16} | |
MRE(ˆγ) | 0.05482{2} | 0.05838{5} | 0.0679{12} | 0.05693{4} | 0.0653{10} | 0.0565{3} | 0.06144{7} | 0.05978{6} | 0.06908{13} | 0.06631{11} | 0.06331{9} | 0.09753{16} | 0.05417{1} | 0.07929{15} | 0.06255{8} | 0.07889{14} | |
Dabs | 0.02013{1} | 0.0215{5} | 0.02248{9} | 0.02108{2} | 0.02243{8} | 0.02148{4} | 0.02155{6} | 0.02144{3} | 0.02261{10} | 0.02502{13} | 0.02394{12} | 0.02897{16} | 0.022{7} | 0.02727{14} | 0.02349{11} | 0.02805{15} | |
Dmax | 0.03262{1} | 0.03483{4} | 0.03697{9} | 0.03385{2} | 0.03648{8} | 0.03435{3} | 0.035{6} | 0.03487{5} | 0.03781{11} | 0.04037{13} | 0.03849{12} | 0.05152{16} | 0.0357{7} | 0.0443{14} | 0.03754{10} | 0.04542{15} | |
ASAE | 0.01281{1} | 0.01235{4} | 0.01271{9} | 0.01282{2} | 0.01267{8} | 0.01243{3} | 0.01232{6} | 0.01213{5} | 0.01387{11} | 0.01723{13} | 0.01581{12} | 0.02473{16} | 0.01382{7} | 0.01923{14} | 0.01498{10} | 0.01922{15} | |
∑Ranks | 17{1} | 47{5} | 92{10} | 34.5{2} | 81{8} | 39{4} | 62{7} | 50{6} | 85{9} | 115{14} | 101{12} | 105.5{13} | 35{3} | 133{15} | 93{11} | 134{16} | |
200 | BIAS(ˆδ) | 0.03004{4} | 0.03076{7} | 0.03085{8} | 0.03037{5.5} | 0.03139{10} | 0.03094{9} | 0.03282{11} | 0.03037{5.5} | 0.02938{2} | 0.03559{14} | 0.03323{12} | 0.02991{3} | 0.02875{1} | 0.03858{15} | 0.03377{13} | 0.04069{16} |
BIAS(ˆγ) | 0.07131{1} | 0.07797{6} | 0.08532{13} | 0.07373{2} | 0.08203{9} | 0.07759{5} | 0.08374{10} | 0.07738{4} | 0.08435{12} | 0.08421{11} | 0.08068{7} | 0.13489{16} | 0.07469{3} | 0.10571{15} | 0.08089{8} | 0.1039{14} | |
MSE(ˆδ) | 0.00142{3} | 0.00152{8} | 0.00157{10} | 0.00146{6} | 0.00154{9} | 0.00149{7} | 0.00167{11} | 0.00144{4} | 0.00136{2} | 0.00206{14} | 0.00183{12} | 0.00145{5} | 0.00134{1} | 0.00244{15} | 0.00186{13} | 0.00262{16} | |
MSE(ˆγ) | 0.00803{1} | 0.00955{5} | 0.01194{13} | 0.00849{2} | 0.01055{9} | 0.0093{3} | 0.01118{10} | 0.0094{4} | 0.01153{11} | 0.01156{12} | 0.01033{8} | 0.0292{16} | 0.00975{6} | 0.01744{15} | 0.01012{7} | 0.0172{14} | |
MRE(ˆδ) | 0.07511{4} | 0.0769{7} | 0.07713{8} | 0.07591{5} | 0.07847{10} | 0.07735{9} | 0.08205{11} | 0.07593{6} | 0.07344{2} | 0.08898{14} | 0.08307{12} | 0.07478{3} | 0.07188{1} | 0.09646{15} | 0.08444{13} | 0.10173{16} | |
MRE(ˆγ) | 0.04754{1} | 0.05198{6} | 0.05688{13} | 0.04915{2} | 0.05469{9} | 0.05173{5} | 0.05583{10} | 0.05159{4} | 0.05623{12} | 0.05614{11} | 0.05379{7} | 0.08993{16} | 0.04979{3} | 0.07047{15} | 0.05393{8} | 0.06927{14} | |
Dabs | 0.01811{3} | 0.01815{4} | 0.01899{8} | 0.018{1} | 0.01939{10} | 0.01845{6} | 0.01901{9} | 0.01828{5} | 0.01873{7} | 0.02142{13} | 0.02013{11} | 0.02676{16} | 0.01806{2} | 0.0234{14} | 0.0203{12} | 0.02478{15} | |
Dmax | 0.02912{2} | 0.02943{3} | 0.03145{9} | 0.02902{1} | 0.03166{10} | 0.02977{6} | 0.03086{7} | 0.02976{5} | 0.03113{8} | 0.03446{13} | 0.03244{11} | 0.04814{16} | 0.02955{4} | 0.03829{14} | 0.03269{12} | 0.04011{15} | |
ASAE | 0.01084{2} | 0.01041{3} | 0.01058{9} | 0.01075{1} | 0.01055{10} | 0.01059{6} | 0.01044{7} | 0.01026{5} | 0.01183{8} | 0.0146{13} | 0.01356{11} | 0.02271{16} | 0.01181{4} | 0.01657{14} | 0.013{12} | 0.01652{15} | |
∑Ranks | 27{1} | 48{5} | 87{10} | 31.5{3} | 80{8} | 56{6} | 82{9} | 38.5{4} | 66{7} | 115{14} | 92{11} | 107{13} | 30{2} | 133{15} | 97{12} | 134{16} | |
300 | BIAS(ˆδ) | 0.02485{6} | 0.02476{5} | 0.02566{9} | 0.02457{4} | 0.02581{11} | 0.02534{8} | 0.02574{10} | 0.02419{3} | 0.02525{7} | 0.02979{14} | 0.02852{13} | 0.02323{1} | 0.02369{2} | 0.03294{15} | 0.02815{12} | 0.03398{16} |
BIAS(ˆγ) | 0.0589{2} | 0.06119{4} | 0.07198{11} | 0.05917{3} | 0.07063{10} | 0.06366{6} | 0.06554{7} | 0.06125{5} | 0.0723{12} | 0.07294{13} | 0.06713{9} | 0.11461{16} | 0.0585{1} | 0.08189{14} | 0.06684{8} | 0.08506{15} | |
MSE(ˆδ) | 0.00097{6} | 0.00095{5} | 0.00104{10} | 0.00092{3} | 0.00106{11} | 0.00101{8} | 0.00102{9} | 0.00092{3} | 0.00099{7} | 0.00142{14} | 0.0013{13} | 0.00086{1} | 0.00092{3} | 0.00174{15} | 0.00123{12} | 0.0018{16} | |
MSE(ˆγ) | 0.00544{2} | 0.00596{4} | 0.0081{12} | 0.00531{1} | 0.00802{10} | 0.0062{6} | 0.00676{7} | 0.00587{3} | 0.00807{11} | 0.00845{13} | 0.00716{9} | 0.0214{16} | 0.00613{5} | 0.01057{14} | 0.00699{8} | 0.01123{15} | |
MRE(ˆδ) | 0.06213{6} | 0.06189{5} | 0.06414{9} | 0.06142{4} | 0.06453{11} | 0.06335{8} | 0.06434{10} | 0.06047{3} | 0.06312{7} | 0.07448{14} | 0.07131{13} | 0.05807{1} | 0.05923{2} | 0.08235{15} | 0.07037{12} | 0.08494{16} | |
MRE(ˆγ) | 0.03927{2} | 0.04079{4} | 0.04799{11} | 0.03945{3} | 0.04709{10} | 0.04244{6} | 0.0437{7} | 0.04083{5} | 0.0482{12} | 0.04863{13} | 0.04475{9} | 0.07641{16} | 0.039{1} | 0.0546{14} | 0.04456{8} | 0.05671{15} | |
Dabs | 0.0149{2} | 0.01502{6} | 0.01526{8} | 0.01465{1} | 0.01538{9} | 0.01498{4} | 0.01496{3} | 0.015{5} | 0.01612{10} | 0.01796{13} | 0.0173{12} | 0.02158{16} | 0.01508{7} | 0.01984{14} | 0.0167{11} | 0.02037{15} | |
Dmax | 0.02397{2} | 0.02433{5} | 0.02518{8} | 0.02351{1} | 0.02527{9} | 0.02418{3} | 0.0243{4} | 0.02439{6} | 0.02685{10} | 0.02907{13} | 0.02777{12} | 0.0393{16} | 0.02464{7} | 0.0321{14} | 0.02686{11} | 0.03302{15} | |
ASAE | 0.00853{2} | 0.00807{5} | 0.00855{8} | 0.00844{1} | 0.00828{9} | 0.00845{3} | 0.00818{4} | 0.00806{6} | 0.00936{10} | 0.01155{13} | 0.01074{12} | 0.01805{16} | 0.00913{7} | 0.0133{14} | 0.01033{11} | 0.01291{15} | |
∑Ranks | 35{3} | 40{5} | 86{9.5} | 25{1} | 85{8} | 55{6} | 60{7} | 34{2} | 86{9.5} | 120{14} | 102{13} | 99{12} | 37{4} | 130{15} | 93{11} | 137{16} | |
450 | BIAS(ˆδ) | 0.02044{6} | 0.02051{8} | 0.02116{10} | 0.019{1} | 0.02069{9} | 0.02027{5} | 0.02203{11} | 0.0205{7} | 0.02016{4} | 0.02427{14} | 0.02322{13} | 0.01969{2} | 0.01982{3} | 0.02696{16} | 0.02321{12} | 0.02623{15} |
BIAS(ˆγ) | 0.04846{2} | 0.05228{6} | 0.0574{13} | 0.04793{1} | 0.05487{9} | 0.05183{5} | 0.05454{8} | 0.04955{4} | 0.0563{11} | 0.05671{12} | 0.05567{10} | 0.0905{16} | 0.04917{3} | 0.06732{15} | 0.05414{7} | 0.06462{14} | |
MSE(ˆδ) | 0.00067{8} | 0.00066{5.5} | 0.00069{10} | 0.00058{1} | 0.00067{8} | 0.00064{3} | 0.00075{11} | 0.00067{8} | 0.00065{4} | 0.00091{14} | 0.00083{12} | 0.00061{2} | 0.00066{5.5} | 0.00118{16} | 0.00084{13} | 0.0011{15} | |
MSE(ˆγ) | 0.00365{2} | 0.00428{5} | 0.00512{12} | 0.0036{1} | 0.00482{9} | 0.00412{4} | 0.00455{7} | 0.00393{3} | 0.00511{11} | 0.00524{13} | 0.00483{10} | 0.01351{16} | 0.00454{6} | 0.00711{15} | 0.00458{8} | 0.00678{14} | |
MRE(ˆδ) | 0.0511{6} | 0.05128{8} | 0.05289{10} | 0.04749{1} | 0.05174{9} | 0.05068{5} | 0.05506{11} | 0.05125{7} | 0.05041{4} | 0.06067{14} | 0.05805{13} | 0.04922{2} | 0.04954{3} | 0.06741{16} | 0.05803{12} | 0.06557{15} | |
MRE(ˆγ) | 0.03231{2} | 0.03485{6} | 0.03827{13} | 0.03195{1} | 0.03658{9} | 0.03456{5} | 0.03636{8} | 0.03303{4} | 0.03753{11} | 0.03781{12} | 0.03711{10} | 0.06033{16} | 0.03278{3} | 0.04488{15} | 0.03609{7} | 0.04308{14} | |
Dabs | 0.01212{2} | 0.01221{4} | 0.01301{10} | 0.01152{1} | 0.01267{7} | 0.01213{3} | 0.01268{8} | 0.01239{5} | 0.01284{9} | 0.01464{13} | 0.01405{12} | 0.01779{16} | 0.01241{6} | 0.01646{15} | 0.01395{11} | 0.01616{14} | |
Dmax | 0.01948{2} | 0.01977{4} | 0.02134{10} | 0.01866{1} | 0.02076{8} | 0.01973{3} | 0.02045{7} | 0.01998{5} | 0.02125{9} | 0.0235{13} | 0.02262{12} | 0.03211{16} | 0.02026{6} | 0.02686{15} | 0.02237{11} | 0.02617{14} | |
ASAE | 0.00666{2} | 0.0065{4} | 0.00668{10} | 0.00664{1} | 0.00653{8} | 0.00681{3} | 0.00645{7} | 0.00643{5} | 0.0072{9} | 0.00914{13} | 0.00857{12} | 0.01371{16} | 0.00731{6} | 0.01032{15} | 0.00804{11} | 0.01033{14} | |
∑Ranks | 36{2} | 49.5{6} | 95{11} | 13{1} | 72{7.5} | 41{3} | 73{9} | 44{4} | 72{7.5} | 118{14} | 104{13} | 102{12} | 45.5{5} | 137{16} | 92{10} | 130{15} |
n | Est. | MLE | ADE | CVME | MPSE | OLSE | PCE | RTADE | WLSE | LTADE | MSADE | MSALDE | ADSOE | KE | MSSD | MSSLD | MSLND |
20 | BIAS(ˆδ) | 0.3501{9} | 0.3437{8} | 0.40963{14} | 0.30095{2} | 0.39118{13} | 0.33084{6} | 0.33466{7} | 0.32993{5} | 0.42136{15} | 0.32471{4} | 0.35322{10} | 0.50199{16} | 0.24141{1} | 0.38085{11} | 0.324{3} | 0.38994{12} |
BIAS(ˆγ) | 0.13283{7.5} | 0.12262{2} | 0.1403{10.5} | 0.11926{1} | 0.13649{9} | 0.15974{14} | 0.12869{5} | 0.13283{7.5} | 0.1403{10.5} | 0.14078{12} | 0.13085{6} | 0.15005{13} | 0.12789{4} | 0.16161{15} | 0.12295{3} | 0.16948{16} | |
MSE(ˆδ) | 0.24075{12} | 0.21192{9} | 0.3003{14} | 0.14184{2} | 0.25737{13} | 0.18243{3} | 0.2025{7} | 0.18359{4} | 0.31963{15} | 0.18816{6} | 0.208{8} | 0.4098{16} | 0.13207{1} | 0.21903{10} | 0.18787{5} | 0.22378{11} | |
MSE(ˆγ) | 0.02909{8} | 0.02497{3} | 0.03288{12} | 0.02105{1} | 0.02988{9} | 0.03944{14} | 0.02878{7} | 0.02797{5} | 0.03213{11} | 0.03099{10} | 0.02507{4} | 0.03542{13} | 0.028{6} | 0.03951{15} | 0.02414{2} | 0.04133{16} | |
MRE(ˆδ) | 0.17505{9} | 0.17185{8} | 0.20481{14} | 0.15047{2} | 0.19559{13} | 0.16542{6} | 0.16733{7} | 0.16497{5} | 0.21068{15} | 0.16236{4} | 0.17661{10} | 0.25099{16} | 0.12071{1} | 0.19042{11} | 0.162{3} | 0.19497{12} | |
MRE(ˆγ) | 0.17711{7.5} | 0.16349{2} | 0.18707{11} | 0.15901{1} | 0.18198{9} | 0.21299{14} | 0.17159{5} | 0.17711{7.5} | 0.18706{10} | 0.1877{12} | 0.17447{6} | 0.20007{13} | 0.17052{4} | 0.21549{15} | 0.16393{3} | 0.22597{16} | |
Dabs | 0.0565{1} | 0.05712{4} | 0.05886{7} | 0.05687{2} | 0.06327{10} | 0.06941{14} | 0.05914{9} | 0.05897{8} | 0.05881{6} | 0.06741{13} | 0.06656{12} | 0.06374{11} | 0.05703{3} | 0.07132{15} | 0.05801{5} | 0.07227{16} | |
Dmax | 0.09202{4} | 0.09177{3} | 0.09715{8} | 0.08966{1} | 0.10075{10} | 0.11042{14} | 0.09523{7} | 0.09403{6} | 0.0975{9} | 0.10556{12} | 0.10428{11} | 0.10641{13} | 0.09022{2} | 0.11373{15} | 0.09277{5} | 0.1168{16} | |
ASAE | 0.0449{4} | 0.04202{3} | 0.04466{8} | 0.04118{1} | 0.04475{10} | 0.03873{14} | 0.03903{7} | 0.04015{6} | 0.05109{9} | 0.05226{12} | 0.04966{11} | 0.07747{13} | 0.04731{2} | 0.06494{15} | 0.04801{5} | 0.06415{16} | |
∑Ranks | 66{7} | 44{4} | 96.5{12} | 16{1} | 93{11} | 86{9.5} | 56{6} | 51{5} | 103.5{13} | 86{9.5} | 78{8} | 127{15} | 31{2} | 122{14} | 39{3} | 129{16} | |
70 | BIAS(ˆδ) | 0.17171{5} | 0.18705{9} | 0.20507{12} | 0.15645{2} | 0.19235{11} | 0.17397{7} | 0.17091{4} | 0.17337{6} | 0.2287{14} | 0.18551{8} | 0.18797{10} | 0.35752{16} | 0.14934{1} | 0.22252{13} | 0.16562{3} | 0.23357{15} |
BIAS(ˆγ) | 0.06108{1} | 0.06501{3} | 0.07395{10} | 0.0626{2} | 0.07357{9} | 0.09167{15} | 0.06922{7} | 0.06717{5} | 0.07612{11} | 0.08148{12} | 0.06963{8} | 0.10063{16} | 0.06762{6} | 0.08679{13} | 0.0654{4} | 0.09097{14} | |
MSE(ˆδ) | 0.04867{5} | 0.05793{10} | 0.07313{12} | 0.03837{1} | 0.06261{11} | 0.04746{4} | 0.05063{7} | 0.0502{6} | 0.08989{14} | 0.05706{9} | 0.0566{8} | 0.21988{16} | 0.04548{3} | 0.0789{13} | 0.04538{2} | 0.09541{15} | |
MSE(ˆγ) | 0.006{2} | 0.00682{3} | 0.00895{10} | 0.00595{1} | 0.00885{9} | 0.01323{15} | 0.00798{8} | 0.00709{5} | 0.00943{11} | 0.01{12} | 0.00748{6} | 0.01549{16} | 0.00765{7} | 0.01163{13} | 0.00689{4} | 0.01282{14} | |
MRE(ˆδ) | 0.08586{5} | 0.09353{9} | 0.10253{12} | 0.07822{2} | 0.09617{11} | 0.08699{7} | 0.08546{4} | 0.08669{6} | 0.11435{14} | 0.09276{8} | 0.09399{10} | 0.17876{16} | 0.07467{1} | 0.11126{13} | 0.08281{3} | 0.11679{15} | |
MRE(ˆγ) | 0.08144{1} | 0.08668{3} | 0.0986{10} | 0.08346{2} | 0.09809{9} | 0.12223{15} | 0.0923{7} | 0.08956{5} | 0.10149{11} | 0.10863{12} | 0.09284{8} | 0.13417{16} | 0.09016{6} | 0.11572{13} | 0.0872{4} | 0.12129{14} | |
Dabs | 0.03009{2} | 0.03133{6} | 0.03149{7} | 0.03058{3} | 0.03206{8} | 0.03927{13} | 0.03093{5} | 0.03076{4} | 0.03394{10} | 0.03862{12} | 0.03514{11} | 0.04015{14} | 0.0298{1} | 0.04024{15} | 0.0338{9} | 0.04049{16} | |
Dmax | 0.0487{2} | 0.05096{6} | 0.05222{8} | 0.0488{3} | 0.05211{7} | 0.0631{13} | 0.0503{5} | 0.04996{4} | 0.05648{11} | 0.06186{12} | 0.05645{10} | 0.07057{16} | 0.04803{1} | 0.06548{14} | 0.05377{9} | 0.0661{15} | |
ASAE | 0.01898{2} | 0.01867{6} | 0.02002{8} | 0.01877{3} | 0.01966{7} | 0.01889{13} | 0.01739{5} | 0.01873{4} | 0.02301{11} | 0.02448{12} | 0.02275{10} | 0.03954{16} | 0.02094{1} | 0.02842{14} | 0.02149{9} | 0.02845{15} | |
∑Ranks | 29{2} | 51{7} | 89{10} | 20{1} | 82{8.5} | 94{11} | 48{5.5} | 44{4} | 108{13} | 98{12} | 82{8.5} | 142{16} | 35{3} | 121{14} | 48{5.5} | 133{15} | |
150 | BIAS(ˆδ) | 0.10986{1} | 0.12035{7} | 0.13735{12} | 0.11316{3} | 0.13179{10} | 0.11926{5} | 0.12475{8} | 0.11964{6} | 0.15345{14} | 0.1338{11} | 0.12831{9} | 0.25651{16} | 0.11174{2} | 0.15491{15} | 0.11768{4} | 0.15252{13} |
BIAS(ˆγ) | 0.04272{1} | 0.04461{4} | 0.04968{9} | 0.04411{2} | 0.04973{10} | 0.06877{15} | 0.04602{6} | 0.04415{3} | 0.05031{11} | 0.05342{12} | 0.04797{7} | 0.07337{16} | 0.04901{8} | 0.0609{13} | 0.04463{5} | 0.06118{14} | |
MSE(ˆδ) | 0.02001{2} | 0.02339{7} | 0.03028{12} | 0.01951{1} | 0.02911{11} | 0.02197{3} | 0.02439{8} | 0.02325{6} | 0.03819{14} | 0.02853{10} | 0.02588{9} | 0.10809{16} | 0.02284{5} | 0.03913{15} | 0.02198{4} | 0.03683{13} | |
MSE(ˆγ) | 0.00289{1} | 0.0032{5} | 0.00395{10} | 0.0029{2} | 0.0039{9} | 0.00751{15} | 0.00335{6} | 0.00309{4} | 0.00402{11} | 0.00443{12} | 0.00362{7} | 0.00858{16} | 0.00387{8} | 0.00569{14} | 0.00308{3} | 0.00564{13} | |
MRE(ˆδ) | 0.05493{1} | 0.06017{7} | 0.06868{12} | 0.05658{3} | 0.06589{10} | 0.05963{5} | 0.06238{8} | 0.05982{6} | 0.07672{14} | 0.0669{11} | 0.06416{9} | 0.12826{16} | 0.05587{2} | 0.07745{15} | 0.05884{4} | 0.07626{13} | |
MRE(ˆγ) | 0.05696{1} | 0.05947{4} | 0.06624{9} | 0.05882{2} | 0.0663{10} | 0.09169{15} | 0.06136{6} | 0.05886{3} | 0.06708{11} | 0.07123{12} | 0.06396{7} | 0.09782{16} | 0.06535{8} | 0.0812{13} | 0.05951{5} | 0.08157{14} | |
Dabs | 0.02101{3} | 0.02172{6} | 0.02246{8} | 0.02098{2} | 0.02175{7} | 0.02787{15} | 0.0214{5} | 0.02032{1} | 0.02305{10} | 0.02584{12} | 0.02481{11} | 0.02861{16} | 0.02131{4} | 0.02731{13} | 0.02247{9} | 0.02764{14} | |
Dmax | 0.03392{3} | 0.03507{6} | 0.03694{9} | 0.03388{2} | 0.03583{7} | 0.04538{15} | 0.03497{5} | 0.03315{1} | 0.03822{10} | 0.04156{12} | 0.03964{11} | 0.05122{16} | 0.03487{4} | 0.04466{13} | 0.03605{8} | 0.04506{14} | |
ASAE | 0.01131{3} | 0.01145{6} | 0.01219{9} | 0.01132{2} | 0.01215{7} | 0.01202{15} | 0.01066{5} | 0.01124{1} | 0.01443{10} | 0.015{12} | 0.01418{11} | 0.02725{16} | 0.01299{4} | 0.01733{13} | 0.01318{8} | 0.01712{14} | |
∑Ranks | 16{1} | 51{5} | 89{10} | 21{2} | 81{8.5} | 94{11} | 53{7} | 32{3} | 107{13} | 105{12} | 81{8.5} | 144{16} | 50{4} | 126{15} | 52{6} | 122{14} | |
200 | BIAS(ˆδ) | 0.09481{2} | 0.09919{4} | 0.11951{12} | 0.09731{3} | 0.11266{9} | 0.10231{7} | 0.10178{6} | 0.10627{8} | 0.12385{13} | 0.11765{11} | 0.11291{10} | 0.22789{16} | 0.09458{1} | 0.1277{14} | 0.10109{5} | 0.13459{15} |
BIAS(ˆγ) | 0.03406{1} | 0.0368{2} | 0.04226{10} | 0.03738{3} | 0.04238{11} | 0.0608{15} | 0.03909{5} | 0.04036{7} | 0.04193{9} | 0.04674{12} | 0.04094{8} | 0.06563{16} | 0.03914{6} | 0.04865{13} | 0.03897{4} | 0.05024{14} | |
MSE(ˆδ) | 0.01449{2} | 0.01573{3} | 0.02331{12} | 0.01422{1} | 0.02019{10} | 0.01594{5} | 0.01647{6} | 0.01871{8} | 0.02608{14} | 0.02244{11} | 0.01954{9} | 0.08519{16} | 0.01677{7} | 0.0256{13} | 0.01579{4} | 0.02858{15} | |
MSE(ˆγ) | 0.00188{1} | 0.00215{3} | 0.0029{11} | 0.00212{2} | 0.00277{9} | 0.00588{15} | 0.00242{5} | 0.00265{8} | 0.00286{10} | 0.00333{12} | 0.00259{6} | 0.00697{16} | 0.0026{7} | 0.00368{13} | 0.00236{4} | 0.00394{14} | |
MRE(ˆδ) | 0.0474{2} | 0.04959{4} | 0.05976{12} | 0.04865{3} | 0.05633{9} | 0.05116{7} | 0.05089{6} | 0.05313{8} | 0.06193{13} | 0.05882{11} | 0.05645{10} | 0.11394{16} | 0.04729{1} | 0.06385{14} | 0.05055{5} | 0.0673{15} | |
MRE(ˆγ) | 0.04541{1} | 0.04906{2} | 0.05635{10} | 0.04984{3} | 0.0565{11} | 0.08107{15} | 0.05213{5} | 0.05382{7} | 0.05591{9} | 0.06232{12} | 0.05458{8} | 0.0875{16} | 0.05219{6} | 0.06487{13} | 0.05196{4} | 0.06698{14} | |
Dabs | 0.01776{2} | 0.01728{1} | 0.01877{5} | 0.01808{3} | 0.01905{8} | 0.02479{14} | 0.01893{7} | 0.0192{9} | 0.01888{6} | 0.02278{12} | 0.02095{11} | 0.02556{16} | 0.01809{4} | 0.02331{13} | 0.0194{10} | 0.02489{15} | |
Dmax | 0.02854{2} | 0.02811{1} | 0.0311{6} | 0.02911{3} | 0.03125{9} | 0.04038{15} | 0.03059{5} | 0.03114{8} | 0.03133{10} | 0.03661{12} | 0.03376{11} | 0.04569{16} | 0.02932{4} | 0.03781{13} | 0.03112{7} | 0.04026{14} | |
ASAE | 0.00922{2} | 0.00948{1} | 0.01031{6} | 0.00924{3} | 0.0102{9} | 0.01022{15} | 0.00873{5} | 0.00939{8} | 0.01165{10} | 0.01246{12} | 0.01166{11} | 0.02331{16} | 0.01082{4} | 0.014{13} | 0.01085{7} | 0.01438{14} | |
∑Ranks | 15{1} | 25{3} | 86{10} | 24{2} | 82{8} | 100{12} | 46{5} | 67{7} | 95{11} | 106{13} | 85{9} | 144{16} | 45{4} | 120{14} | 53{6} | 131{15} | |
300 | BIAS(ˆδ) | 0.08175{4} | 0.08302{7} | 0.09584{11} | 0.08295{6} | 0.0921{10} | 0.08157{3} | 0.08021{2} | 0.08213{5} | 0.10482{13} | 0.0976{12} | 0.08978{9} | 0.19508{16} | 0.07762{1} | 0.10747{14} | 0.08829{8} | 0.1103{15} |
BIAS(ˆγ) | 0.02876{1} | 0.03099{3} | 0.0363{10} | 0.03037{2} | 0.03335{9} | 0.04885{15} | 0.03242{5} | 0.03128{4} | 0.03653{11} | 0.03663{12} | 0.03266{7} | 0.05563{16} | 0.03243{6} | 0.04199{14} | 0.03326{8} | 0.04146{13} | |
MSE(ˆδ) | 0.01057{2.5} | 0.01109{6} | 0.01455{11} | 0.01057{2.5} | 0.0136{10} | 0.01075{4} | 0.01013{1} | 0.01096{5} | 0.01746{13} | 0.01501{12} | 0.01281{9} | 0.06142{16} | 0.01129{7} | 0.01861{14} | 0.01214{8} | 0.0188{15} | |
MSE(ˆγ) | 0.00135{1} | 0.00144{3} | 0.00207{11} | 0.0014{2} | 0.00178{9} | 0.0038{15} | 0.00168{5} | 0.00159{4} | 0.00206{10} | 0.0021{12} | 0.0017{6.5} | 0.00496{16} | 0.00174{8} | 0.00276{14} | 0.0017{6.5} | 0.00266{13} | |
MRE(ˆδ) | 0.04088{4} | 0.04151{7} | 0.04792{11} | 0.04148{6} | 0.04605{10} | 0.04078{3} | 0.04011{2} | 0.04106{5} | 0.05241{13} | 0.0488{12} | 0.04489{9} | 0.09754{16} | 0.03881{1} | 0.05373{14} | 0.04415{8} | 0.05515{15} | |
MRE(ˆγ) | 0.03835{1} | 0.04132{3} | 0.04839{10} | 0.04049{2} | 0.04447{9} | 0.06514{15} | 0.04322{5} | 0.04171{4} | 0.0487{11} | 0.04883{12} | 0.04355{7} | 0.07418{16} | 0.04324{6} | 0.05599{14} | 0.04435{8} | 0.05528{13} | |
Dabs | 0.01451{1} | 0.01492{4} | 0.01568{8} | 0.01477{3} | 0.0151{6} | 0.01945{13} | 0.01508{5} | 0.01474{2} | 0.01613{9} | 0.01734{12} | 0.01679{11} | 0.02148{16} | 0.01519{7} | 0.02013{15} | 0.01651{10} | 0.01986{14} | |
Dmax | 0.02346{1} | 0.02414{4} | 0.02588{8} | 0.02383{2} | 0.02478{7} | 0.03171{13} | 0.02446{5} | 0.02401{3} | 0.02676{10} | 0.02813{12} | 0.02693{11} | 0.03855{16} | 0.02454{6} | 0.03263{15} | 0.02665{9} | 0.03221{14} | |
ASAE | 0.00718{1} | 0.0073{4} | 0.0079{8} | 0.00719{2} | 0.00773{7} | 0.00792{13} | 0.00677{5} | 0.0072{3} | 0.00891{10} | 0.00949{12} | 0.00892{11} | 0.01824{16} | 0.0082{6} | 0.01104{15} | 0.00845{9} | 0.01089{14} | |
∑Ranks | 17.5{1} | 42{5} | 87{10} | 28.5{2} | 76{8} | 89{11} | 31{3} | 36{4} | 101{12} | 109{13} | 81.5{9} | 144{16} | 51{6} | 129{15} | 75.5{7} | 126{14} | |
450 | BIAS(ˆδ) | 0.06326{1} | 0.06783{5} | 0.07928{12} | 0.06463{3} | 0.07265{10} | 0.06995{8} | 0.06595{4} | 0.06897{6} | 0.08425{13} | 0.07847{11} | 0.0712{9} | 0.16761{16} | 0.0639{2} | 0.09041{15} | 0.06952{7} | 0.08633{14} |
BIAS(ˆγ) | 0.02415{2} | 0.02646{6} | 0.02954{11} | 0.02364{1} | 0.02695{7} | 0.04121{15} | 0.02631{5} | 0.02548{3} | 0.02907{10} | 0.03157{12} | 0.02792{9} | 0.04678{16} | 0.02769{8} | 0.03356{13} | 0.02597{4} | 0.03406{14} | |
MSE(ˆδ) | 0.00636{2} | 0.00728{4} | 0.00986{11} | 0.00632{1} | 0.00858{10} | 0.00755{7} | 0.0067{3} | 0.0074{6} | 0.01125{13} | 0.01001{12} | 0.00807{9} | 0.04645{16} | 0.00729{5} | 0.01315{15} | 0.00764{8} | 0.01145{14} | |
MSE(ˆγ) | 0.00094{2} | 0.00109{5} | 0.0014{11} | 0.00087{1} | 0.00117{7} | 0.00268{15} | 0.00112{6} | 0.00102{3} | 0.00134{10} | 0.00149{12} | 0.00121{8} | 0.00357{16} | 0.00126{9} | 0.00178{13} | 0.00106{4} | 0.00182{14} | |
MRE(ˆδ) | 0.03163{1} | 0.03391{5} | 0.03964{12} | 0.03231{3} | 0.03632{10} | 0.03497{8} | 0.03298{4} | 0.03448{6} | 0.04212{13} | 0.03923{11} | 0.0356{9} | 0.0838{16} | 0.03195{2} | 0.0452{15} | 0.03476{7} | 0.04317{14} | |
MRE(ˆγ) | 0.03221{2} | 0.03528{6} | 0.03939{11} | 0.03151{1} | 0.03594{7} | 0.05495{15} | 0.03508{5} | 0.03398{3} | 0.03876{10} | 0.04209{12} | 0.03723{9} | 0.06237{16} | 0.03693{8} | 0.04475{13} | 0.03463{4} | 0.04542{14} | |
Dabs | 0.0121{3} | 0.01181{1} | 0.01305{10} | 0.01242{6} | 0.01266{8} | 0.01607{13} | 0.01218{4} | 0.01194{2} | 0.01264{7} | 0.01499{12} | 0.01383{11} | 0.01823{16} | 0.01233{5} | 0.01656{15} | 0.0127{9} | 0.01614{14} | |
Dmax | 0.01946{2} | 0.01932{1} | 0.02156{10} | 0.01984{5} | 0.02063{8} | 0.02631{14} | 0.01983{4} | 0.01948{3} | 0.02102{9} | 0.02419{12} | 0.02228{11} | 0.03279{16} | 0.02009{6} | 0.0268{15} | 0.02052{7} | 0.02612{13} | |
ASAE | 0.00557{2} | 0.00566{1} | 0.00609{10} | 0.00547{5} | 0.00601{8} | 0.00632{14} | 0.00522{4} | 0.00555{3} | 0.00684{9} | 0.00742{12} | 0.00691{11} | 0.01457{16} | 0.0063{6} | 0.00851{15} | 0.00659{7} | 0.00841{13} | |
∑Ranks | 19{1} | 38{5} | 95{10} | 23{2} | 73{8} | 104{12} | 36{4} | 35{3} | 96{11} | 107{13} | 87{9} | 144{16} | 53{6} | 129{15} | 60{7} | 125{14} |
n | Est. | MLE | ADE | CVME | MPSE | OLSE | PCE | RTADE | WLSE | LTADE | MSADE | MSALDE | ADSOE | KE | MSSD | MSSLD | MSLND |
20 | BIAS(ˆδ) | 0.77168{8} | 0.76809{7} | 0.84661{12} | 0.71596{4} | 0.80149{11} | 0.70339{3} | 0.78376{10} | 0.76067{6} | 0.91526{15} | 0.59993{2} | 0.77341{9} | 1.05303{16} | 0.08104{1} | 0.87407{14} | 0.72763{5} | 0.87105{13} |
BIAS(ˆγ) | 0.07775{3} | 0.07744{2} | 0.08311{7} | 0.08034{4} | 0.08821{10} | 0.11802{16} | 0.08311{7} | 0.08311{7} | 0.0899{13} | 0.08642{9} | 0.08946{12} | 0.08937{11} | 0.05695{1} | 0.09847{14} | 0.08049{5} | 0.10753{15} | |
MSE(ˆδ) | 1.06897{12} | 1.02191{9} | 1.21392{14} | 0.75581{4} | 1.02667{11} | 0.68575{2} | 1.07332{13} | 0.95724{7} | 1.33596{15} | 0.70539{3} | 0.9149{6} | 1.704{16} | 0.04444{1} | 1.02214{10} | 0.88171{5} | 0.99335{8} | |
MSE(ˆγ) | 0.00998{4} | 0.00969{3} | 0.01129{7} | 0.00947{2} | 0.01163{10} | 0.02198{16} | 0.01154{9} | 0.01096{6} | 0.01247{13} | 0.01137{8} | 0.01187{11} | 0.01205{12} | 0.0054{1} | 0.01413{14} | 0.00999{5} | 0.01611{15} | |
MRE(ˆδ) | 0.22048{8} | 0.21945{7} | 0.24189{12} | 0.20456{4} | 0.229{11} | 0.20097{3} | 0.22393{10} | 0.21733{6} | 0.2615{15} | 0.17141{2} | 0.22097{9} | 0.30087{16} | 0.02315{1} | 0.24973{14} | 0.20789{5} | 0.24887{13} | |
MRE(ˆγ) | 0.15551{3} | 0.15488{2} | 0.16622{7} | 0.16068{4} | 0.17641{10} | 0.23603{16} | 0.16623{8} | 0.16621{6} | 0.1798{13} | 0.17283{9} | 0.17893{12} | 0.17875{11} | 0.1139{1} | 0.19694{14} | 0.16098{5} | 0.21507{15} | |
Dabs | 0.05534{2} | 0.05541{3} | 0.05593{5} | 0.05852{7} | 0.06269{11} | 0.0826{16} | 0.05677{6} | 0.05553{4} | 0.05914{8} | 0.0676{12} | 0.06827{13} | 0.06145{10} | 0.05199{1} | 0.0697{14} | 0.05965{9} | 0.07496{15} | |
Dmax | 0.08925{3.5} | 0.08825{2} | 0.09159{6} | 0.09215{7} | 0.09924{10} | 0.13153{16} | 0.09117{5} | 0.08925{3.5} | 0.09676{9} | 0.10384{12} | 0.10725{13} | 0.1017{11} | 0.07619{1} | 0.11139{14} | 0.09445{8} | 0.11954{15} | |
ASAE | 0.04532{3.5} | 0.04375{2} | 0.04621{6} | 0.04116{7} | 0.05013{10} | 0.03245{16} | 0.03944{5} | 0.04351{3.5} | 0.06002{9} | 0.04967{12} | 0.04615{13} | 0.09029{11} | 0.05507{1} | 0.06957{14} | 0.04822{8} | 0.07438{15} | |
∑Ranks | 49.5{4.5} | 40{3} | 78{9} | 39{2} | 95{12} | 89{10} | 70{8} | 49.5{4.5} | 114{13} | 67{7} | 92{11} | 119{14} | 20{1} | 122{15} | 56{6} | 124{16} | |
70 | BIAS(ˆδ) | 0.38708{2} | 0.40421{6} | 0.51253{13} | 0.38794{3} | 0.44381{10} | 0.52357{14} | 0.39876{5} | 0.43209{9} | 0.54517{15} | 0.39048{4} | 0.42867{8} | 0.82893{16} | 0.04895{1} | 0.48272{12} | 0.40594{7} | 0.46834{11} |
BIAS(ˆγ) | 0.04102{2} | 0.04177{3} | 0.05133{12} | 0.04363{4} | 0.04774{9} | 0.08577{16} | 0.04446{5} | 0.04528{6} | 0.05104{11} | 0.04919{10} | 0.04746{8} | 0.06662{15} | 0.03025{1} | 0.05524{13} | 0.04573{7} | 0.05577{14} | |
MSE(ˆδ) | 0.26609{4} | 0.27429{5} | 0.45976{14} | 0.2416{2} | 0.3468{12} | 0.41142{13} | 0.28375{6} | 0.33729{10} | 0.50461{15} | 0.28832{7} | 0.30255{8} | 1.1095{16} | 0.01393{1} | 0.33799{11} | 0.25368{3} | 0.32081{9} | |
MSE(ˆγ) | 0.00277{3} | 0.00273{2} | 0.00412{12} | 0.00282{4} | 0.0036{8.5} | 0.01232{16} | 0.00322{6} | 0.00331{7} | 0.00403{11} | 0.00377{10} | 0.0036{8.5} | 0.00664{15} | 0.00148{1} | 0.00468{13} | 0.00314{5} | 0.00483{14} | |
MRE(ˆδ) | 0.11059{2} | 0.11549{6} | 0.14644{13} | 0.11084{3} | 0.1268{10} | 0.14959{14} | 0.11393{5} | 0.12345{9} | 0.15576{15} | 0.11156{4} | 0.12248{8} | 0.23684{16} | 0.01399{1} | 0.13792{12} | 0.11598{7} | 0.13381{11} | |
MRE(ˆγ) | 0.08205{2} | 0.08354{3} | 0.10265{12} | 0.08726{4} | 0.09548{9} | 0.17154{16} | 0.08893{5} | 0.09056{6} | 0.10208{11} | 0.09837{10} | 0.09491{8} | 0.13324{15} | 0.0605{1} | 0.11047{13} | 0.09145{7} | 0.11155{14} | |
Dabs | 0.0317{6} | 0.03027{2} | 0.03218{8} | 0.03068{3} | 0.03193{7} | 0.0563{16} | 0.03165{5} | 0.03137{4} | 0.03254{9} | 0.03697{12} | 0.03626{11} | 0.03957{14} | 0.02778{1} | 0.03987{15} | 0.0337{10} | 0.03879{13} | |
Dmax | 0.05069{4} | 0.049{2} | 0.0534{8} | 0.04924{3} | 0.0517{7} | 0.0913{16} | 0.05088{5} | 0.05097{6} | 0.0543{10} | 0.05856{12} | 0.05761{11} | 0.0694{15} | 0.04102{1} | 0.06417{14} | 0.05397{9} | 0.06242{13} | |
ASAE | 0.01744{4} | 0.01873{2} | 0.01989{8} | 0.01707{3} | 0.02058{7} | 0.01739{16} | 0.01678{5} | 0.01793{6} | 0.0238{10} | 0.02182{12} | 0.02093{11} | 0.04535{15} | 0.02255{1} | 0.02846{14} | 0.0197{9} | 0.02686{13} | |
∑Ranks | 29{3} | 35{4} | 100{11} | 28{2} | 81.5{10} | 124{15} | 43{5} | 62{6.5} | 110{12} | 80{8} | 80.5{9} | 138{16} | 20{1} | 118{14} | 62{6.5} | 113{13} | |
150 | BIAS(ˆδ) | 0.25741{3} | 0.28723{9} | 0.33028{11} | 0.24728{2} | 0.32023{10} | 0.37796{15} | 0.27298{4} | 0.28018{7} | 0.37038{14} | 0.28436{8} | 0.27735{6} | 0.60911{16} | 0.04457{1} | 0.34047{13} | 0.27329{5} | 0.33688{12} |
BIAS(ˆγ) | 0.02775{3} | 0.02945{4} | 0.03249{9} | 0.02752{2} | 0.03128{6} | 0.0686{16} | 0.03289{10} | 0.03047{5} | 0.03433{12} | 0.03355{11} | 0.0316{8} | 0.04711{15} | 0.02136{1} | 0.03692{13} | 0.03156{7} | 0.03824{14} | |
MSE(ˆδ) | 0.1146{4} | 0.13115{8} | 0.18661{13} | 0.09363{2} | 0.16818{10} | 0.21627{14} | 0.12654{6} | 0.12824{7} | 0.2379{15} | 0.15009{9} | 0.12349{5} | 0.60562{16} | 0.00764{1} | 0.16919{11} | 0.11448{3} | 0.1759{12} | |
MSE(ˆγ) | 0.00128{3} | 0.00136{4} | 0.00171{9.5} | 0.00115{2} | 0.0016{8} | 0.00786{16} | 0.00171{9.5} | 0.00146{5} | 0.00193{12} | 0.00181{11} | 0.00154{7} | 0.00345{15} | 0.00073{1} | 0.00213{13} | 0.0015{6} | 0.00226{14} | |
MRE(ˆδ) | 0.07355{3} | 0.08206{9} | 0.09437{11} | 0.07065{2} | 0.09149{10} | 0.10799{15} | 0.078{4} | 0.08005{7} | 0.10582{14} | 0.08124{8} | 0.07924{6} | 0.17403{16} | 0.01274{1} | 0.09728{13} | 0.07808{5} | 0.09625{12} | |
MRE(ˆγ) | 0.0555{3} | 0.0589{4} | 0.06498{9} | 0.05505{2} | 0.06256{6} | 0.13721{16} | 0.06579{10} | 0.06095{5} | 0.06866{12} | 0.0671{11} | 0.0632{8} | 0.09421{15} | 0.04272{1} | 0.07383{13} | 0.06313{7} | 0.07647{14} | |
Dabs | 0.02119{4} | 0.02149{6} | 0.02144{5} | 0.0207{2} | 0.02185{7} | 0.04339{16} | 0.02193{8} | 0.02111{3} | 0.02232{9} | 0.02592{12} | 0.02395{10} | 0.02881{15} | 0.01951{1} | 0.02737{14} | 0.0241{11} | 0.02658{13} | |
Dmax | 0.03411{3} | 0.0349{5} | 0.03544{6} | 0.03309{2} | 0.0358{8} | 0.07038{16} | 0.03555{7} | 0.03433{4} | 0.03727{9} | 0.04136{12} | 0.03834{10} | 0.05089{15} | 0.02905{1} | 0.04409{14} | 0.03852{11} | 0.04319{13} | |
ASAE | 0.01006{3} | 0.01056{5} | 0.01175{6} | 0.00993{2} | 0.01159{8} | 0.01117{16} | 0.00977{7} | 0.01073{4} | 0.01372{9} | 0.01276{12} | 0.01202{10} | 0.0259{15} | 0.01249{1} | 0.01489{14} | 0.01124{11} | 0.01515{13} | |
∑Ranks | 29{3} | 53{5} | 82.5{10} | 18{1} | 73{9} | 130{15} | 59.5{6} | 48{4} | 110{12} | 94{11} | 70{8} | 139{16} | 19{2} | 118{13} | 62{7} | 119{14} | |
200 | BIAS(ˆδ) | 0.22738{3} | 0.24049{5} | 0.28374{11} | 0.22633{2} | 0.26335{10} | 0.32776{15} | 0.24123{7} | 0.24084{6} | 0.31328{14} | 0.23175{4} | 0.25422{9} | 0.55912{16} | 0.04407{1} | 0.29393{13} | 0.24363{8} | 0.29313{12} |
BIAS(ˆγ) | 0.02338{2} | 0.02475{5} | 0.02843{10} | 0.02441{3} | 0.02825{9} | 0.06116{16} | 0.02619{6} | 0.02451{4} | 0.02883{11} | 0.02977{12} | 0.0278{8} | 0.0442{15} | 0.01918{1} | 0.03334{14} | 0.02696{7} | 0.03238{13} | |
MSE(ˆδ) | 0.08379{3} | 0.09431{5} | 0.13122{12} | 0.07612{2} | 0.11804{10} | 0.16318{15} | 0.09553{7} | 0.09299{4} | 0.16137{14} | 0.10525{9} | 0.10263{8} | 0.50196{16} | 0.00749{1} | 0.13579{13} | 0.09516{6} | 0.13114{11} | |
MSE(ˆγ) | 0.00087{2} | 0.00103{5} | 0.00131{10} | 0.00093{3} | 0.00129{9} | 0.00644{16} | 0.00109{6} | 0.00099{4} | 0.00133{11} | 0.00139{12} | 0.00122{8} | 0.00315{15} | 0.00059{1} | 0.00174{14} | 0.00116{7} | 0.00163{13} | |
MRE(ˆδ) | 0.06497{3} | 0.06871{5} | 0.08107{11} | 0.06467{2} | 0.07524{10} | 0.09365{15} | 0.06892{7} | 0.06881{6} | 0.08951{14} | 0.06621{4} | 0.07263{9} | 0.15975{16} | 0.01259{1} | 0.08398{13} | 0.06961{8} | 0.08375{12} | |
MRE(ˆγ) | 0.04677{2} | 0.04949{5} | 0.05686{10} | 0.04883{3} | 0.0565{9} | 0.12232{16} | 0.05238{6} | 0.04901{4} | 0.05766{11} | 0.05954{12} | 0.05559{8} | 0.0884{15} | 0.03837{1} | 0.06669{14} | 0.05391{7} | 0.06477{13} | |
Dabs | 0.01842{4} | 0.01854{5} | 0.019{8.5} | 0.0174{1} | 0.019{8.5} | 0.03963{16} | 0.01868{6} | 0.01819{3} | 0.01897{7} | 0.02249{12} | 0.02071{11} | 0.02579{15} | 0.01775{2} | 0.02459{14} | 0.01959{10} | 0.02407{13} | |
Dmax | 0.02964{4} | 0.03001{5} | 0.03123{8} | 0.02815{2} | 0.03104{7} | 0.06416{16} | 0.03029{6} | 0.02958{3} | 0.03168{10} | 0.03573{12} | 0.0332{11} | 0.04634{15} | 0.02642{1} | 0.03964{14} | 0.03162{9} | 0.03874{13} | |
ASAE | 0.00813{4} | 0.00859{5} | 0.00969{8} | 0.00828{2} | 0.00948{7} | 0.00933{16} | 0.00794{6} | 0.00848{3} | 0.01137{10} | 0.01065{12} | 0.00986{11} | 0.02451{15} | 0.01009{1} | 0.01255{14} | 0.00948{9} | 0.01222{13} | |
∑Ranks | 25{3} | 45{5} | 89.5{11} | 21{2} | 79.5{8} | 131{15} | 52{6} | 38{4} | 105{12} | 89{10} | 82{9} | 139{16} | 20{1} | 124{14} | 70{7} | 114{13} | |
300 | BIAS(ˆδ) | 0.18765{4} | 0.18622{3} | 0.23491{11} | 0.18334{2} | 0.22584{10} | 0.27554{15} | 0.19962{7} | 0.19495{5} | 0.26373{14} | 0.20076{8} | 0.21238{9} | 0.45699{16} | 0.04033{1} | 0.24334{13} | 0.19542{6} | 0.23557{12} |
BIAS(ˆγ) | 0.01932{2} | 0.02075{4} | 0.023{10} | 0.02042{3} | 0.02281{9} | 0.05248{16} | 0.02174{6} | 0.02078{5} | 0.02432{12} | 0.02395{11} | 0.02185{7} | 0.03616{15} | 0.01532{1} | 0.0263{13} | 0.02232{8} | 0.02669{14} | |
MSE(ˆδ) | 0.05495{3} | 0.0567{4} | 0.09068{12} | 0.05069{2} | 0.08238{10} | 0.11574{15} | 0.06299{7} | 0.06252{6} | 0.11564{14} | 0.07554{9} | 0.06987{8} | 0.34711{16} | 0.00682{1} | 0.09099{13} | 0.06187{5} | 0.08566{11} | |
MSE(ˆγ) | 0.00059{2} | 0.00068{4.5} | 0.00087{10} | 0.00063{3} | 0.00083{9} | 0.00468{16} | 0.00074{6} | 0.00068{4.5} | 0.00095{12} | 0.00091{11} | 0.00076{7} | 0.00211{15} | 0.00038{1} | 0.00107{13} | 0.00078{8} | 0.00111{14} | |
MRE(ˆδ) | 0.05362{4} | 0.05321{3} | 0.06712{11} | 0.05238{2} | 0.06452{10} | 0.07873{15} | 0.05703{7} | 0.0557{5} | 0.07535{14} | 0.05736{8} | 0.06068{9} | 0.13057{16} | 0.01152{1} | 0.06953{13} | 0.05583{6} | 0.06731{12} | |
MRE(ˆγ) | 0.03864{2} | 0.04151{4} | 0.046{10} | 0.04083{3} | 0.04562{9} | 0.10497{16} | 0.04347{6} | 0.04157{5} | 0.04865{12} | 0.0479{11} | 0.04369{7} | 0.07233{15} | 0.03065{1} | 0.05259{13} | 0.04465{8} | 0.05338{14} | |
Dabs | 0.01481{3} | 0.01449{2} | 0.01601{10} | 0.01499{5} | 0.0154{6} | 0.03369{16} | 0.01558{7} | 0.01493{4} | 0.01592{9} | 0.01812{12} | 0.01693{11} | 0.02121{15} | 0.01395{1} | 0.01943{13} | 0.01589{8} | 0.02021{14} | |
Dmax | 0.02383{3} | 0.02354{2} | 0.02633{9} | 0.02408{4} | 0.02526{7} | 0.05415{16} | 0.02519{6} | 0.02434{5} | 0.02657{10} | 0.02892{12} | 0.02722{11} | 0.03806{15} | 0.02079{1} | 0.03138{13} | 0.02564{8} | 0.03239{14} | |
ASAE | 0.00611{3} | 0.00649{2} | 0.00725{9} | 0.00604{4} | 0.00719{7} | 0.00738{16} | 0.00603{6} | 0.00656{5} | 0.0085{10} | 0.00801{12} | 0.00734{11} | 0.01688{15} | 0.00749{1} | 0.00901{13} | 0.00699{8} | 0.00906{14} | |
∑Ranks | 26{2.5} | 30.5{4} | 91{10} | 26{2.5} | 77{8} | 135{15} | 53{6} | 44.5{5} | 110{12} | 94{11} | 78{9} | 139{16} | 19{1} | 118{13} | 63{7} | 120{14} | |
450 | BIAS(ˆδ) | 0.14464{2} | 0.16061{5} | 0.18023{11} | 0.14937{3} | 0.18915{12} | 0.23554{15} | 0.16553{6} | 0.15659{4} | 0.20892{14} | 0.1712{9} | 0.17003{8} | 0.37407{16} | 0.03867{1} | 0.19508{13} | 0.16801{7} | 0.17316{10} |
BIAS(ˆγ) | 0.01548{2} | 0.01727{5} | 0.02006{12} | 0.01612{3} | 0.01949{9} | 0.04544{16} | 0.01815{7} | 0.01616{4} | 0.01997{11} | 0.01955{10} | 0.01872{8} | 0.02942{15} | 0.01273{1} | 0.02202{14} | 0.01764{6} | 0.02132{13} | |
MSE(ˆδ) | 0.03395{2} | 0.04041{5} | 0.05534{11} | 0.03453{3} | 0.05704{12} | 0.08297{15} | 0.04494{7} | 0.03901{4} | 0.07116{14} | 0.05212{10} | 0.04508{8} | 0.21887{16} | 0.0053{1} | 0.0597{13} | 0.04395{6} | 0.04793{9} | |
MSE(ˆγ) | 0.00038{2} | 0.00047{5} | 0.00062{10.5} | 4e−04{3} | 0.00059{9} | 0.00338{16} | 0.00052{7} | 0.00042{4} | 0.00063{12} | 0.00062{10.5} | 0.00055{8} | 0.00137{15} | 0.00025{1} | 0.00073{14} | 0.00049{6} | 0.00069{13} | |
MRE(ˆδ) | 0.04133{2} | 0.04589{5} | 0.0515{11} | 0.04268{3} | 0.05404{12} | 0.0673{15} | 0.04729{6} | 0.04474{4} | 0.05969{14} | 0.04891{9} | 0.04858{8} | 0.10688{16} | 0.01105{1} | 0.05574{13} | 0.048{7} | 0.04947{10} | |
MRE(ˆγ) | 0.03095{2} | 0.03454{5} | 0.04013{12} | 0.03224{3} | 0.03897{9} | 0.09089{16} | 0.03631{7} | 0.03232{4} | 0.03993{11} | 0.0391{10} | 0.03745{8} | 0.05885{15} | 0.02546{1} | 0.04404{14} | 0.03528{6} | 0.04264{13} | |
Dabs | 0.01192{3} | 0.01219{5} | 0.01323{8} | 0.0121{4} | 0.01294{7} | 0.0284{16} | 0.0123{6} | 0.01173{2} | 0.01327{9} | 0.01469{12} | 0.01401{11} | 0.01758{15} | 0.01138{1} | 0.01587{13} | 0.01331{10} | 0.01633{14} | |
Dmax | 0.01911{3} | 0.01981{5} | 0.02163{9} | 0.01954{4} | 0.02131{7} | 0.04566{16} | 0.02006{6} | 0.01902{2} | 0.02212{10} | 0.02353{12} | 0.0225{11} | 0.03148{15} | 0.01709{1} | 0.02571{13} | 0.02146{8} | 0.026{14} | |
ASAE | 0.00468{3} | 0.0049{5} | 0.00541{9} | 0.00457{4} | 0.00543{7} | 0.00591{16} | 0.00445{6} | 0.00499{2} | 0.0063{10} | 0.00603{12} | 0.00566{11} | 0.01259{15} | 0.00568{1} | 0.00678{13} | 0.00524{8} | 0.0067{14} | |
∑Ranks | 21{2} | 43{5} | 90.5{10} | 41{4} | 84{9} | 135{15} | 52{6} | 32{3} | 107{12} | 93.5{11} | 78{8} | 138{16} | 18{1} | 121{14} | 61{7} | 109{13} |
Parameter | n | MLE | ADE | CVME | MPSE | OLSE | PCE | RTADE | WLSE | LTADE | MSADE | MSALDE | ADSOE | KE | MSSD | MSSLD | MSLND |
δ=2.5,γ=4.0 | 20 | 7.0 | 6.0 | 13.0 | 1.0 | 11.0 | 2.0 | 9.0 | 4.5 | 12.0 | 8.0 | 10.0 | 15.0 | 3.0 | 14.0 | 4.5 | 16.0 |
70 | 1.0 | 4.0 | 11.0 | 2.0 | 10.0 | 3.0 | 6.0 | 5.0 | 13.0 | 12.0 | 8.5 | 16.0 | 7.0 | 14.0 | 8.5 | 15.0 | |
150 | 1.0 | 3.0 | 9.0 | 2.0 | 11.0 | 4.0 | 6.0 | 5.0 | 13.0 | 12.0 | 10.0 | 16.0 | 8.0 | 15.0 | 7.0 | 14.0 | |
200 | 1.0 | 4.0 | 11.0 | 2.0 | 9.0 | 3.0 | 6.0 | 5.0 | 13.0 | 12.0 | 10.0 | 16.0 | 8.0 | 14.0 | 7.0 | 15.0 | |
300 | 1.0 | 4.0 | 8.0 | 3.0 | 11.0 | 2.0 | 5.0 | 6.0 | 12.0 | 13.0 | 9.0 | 16.0 | 10.0 | 15.0 | 7.0 | 14.0 | |
450 | 2.0 | 3.0 | 11.0 | 1.0 | 9.0 | 4.0 | 6.0 | 5.0 | 12.0 | 13.0 | 10.0 | 16.0 | 7.0 | 15.0 | 8.0 | 14.0 | |
δ=0.8,γ=0.3 | 20 | 2.0 | 3.0 | 9.0 | 1.0 | 7.0 | 15.0 | 5.0 | 4.0 | 10.0 | 11.0 | 8.0 | 16.0 | 12.0 | 14.0 | 6.0 | 13.0 |
70 | 4.0 | 2.0 | 8.5 | 5.0 | 7.0 | 15.0 | 3.0 | 1.0 | 8.5 | 12.0 | 10.0 | 16.0 | 11.0 | 13.0 | 6.0 | 14.0 | |
150 | 1.0 | 3.0 | 7.0 | 2.0 | 8.0 | 14.5 | 4.0 | 5.0 | 10.0 | 12.0 | 9.0 | 16.0 | 11.0 | 13.0 | 6.0 | 14.5 | |
200 | 3.0 | 1.0 | 7.0 | 4.0 | 6.0 | 15.0 | 5.0 | 2.0 | 10.0 | 12.0 | 9.0 | 16.0 | 11.0 | 13.0 | 8.0 | 14.0 | |
300 | 1.0 | 3.0 | 7.0 | 2.0 | 6.0 | 16.0 | 4.0 | 5.0 | 9.0 | 12.0 | 10.0 | 15.0 | 11.0 | 14.0 | 8.0 | 13.0 | |
450 | 3.0 | 2.0 | 6.0 | 1.0 | 7.0 | 16.0 | 5.0 | 4.0 | 11.0 | 12.0 | 10.0 | 15.0 | 8.0 | 13.0 | 9.0 | 14.0 | |
δ=0.4,γ=1.5 | 20 | 3.0 | 1.5 | 12.0 | 5.0 | 8.5 | 4.0 | 8.5 | 6.0 | 10.0 | 11.0 | 13.0 | 14.0 | 1.5 | 15.0 | 7.0 | 16.0 |
70 | 1.0 | 4.0 | 10.0 | 5.5 | 8.0 | 5.5 | 7.0 | 2.0 | 11.0 | 13.0 | 12.0 | 14.0 | 3.0 | 15.0 | 9.0 | 16.0 | |
150 | 1.0 | 5.0 | 10.0 | 2.0 | 8.0 | 4.0 | 7.0 | 6.0 | 9.0 | 14.0 | 12.0 | 13.0 | 3.0 | 15.0 | 11.0 | 16.0 | |
200 | 1.0 | 5.0 | 10.0 | 3.0 | 8.0 | 6.0 | 9.0 | 4.0 | 7.0 | 14.0 | 11.0 | 13.0 | 2.0 | 15.0 | 12.0 | 16.0 | |
300 | 3.0 | 5.0 | 9.5 | 1.0 | 8.0 | 6.0 | 7.0 | 2.0 | 9.5 | 14.0 | 13.0 | 12.0 | 4.0 | 15.0 | 11.0 | 16.0 | |
450 | 2.0 | 6.0 | 11.0 | 1.0 | 7.5 | 3.0 | 9.0 | 4.0 | 7.5 | 14.0 | 13.0 | 12.0 | 5.0 | 16.0 | 10.0 | 15.0 | |
δ=2.0,γ=0.75 | 20 | 7.0 | 4.0 | 12.0 | 1.0 | 11.0 | 9.5 | 6.0 | 5.0 | 13.0 | 9.5 | 8.0 | 15.0 | 2.0 | 14.0 | 3.0 | 16.0 |
70 | 2.0 | 7.0 | 10.0 | 1.0 | 8.5 | 11.0 | 5.5 | 4.0 | 13.0 | 12.0 | 8.5 | 16.0 | 3.0 | 14.0 | 5.5 | 15.0 | |
150 | 1.0 | 5.0 | 10.0 | 2.0 | 8.5 | 11.0 | 7.0 | 3.0 | 13.0 | 12.0 | 8.5 | 16.0 | 4.0 | 15.0 | 6.0 | 14.0 | |
200 | 1.0 | 3.0 | 10.0 | 2.0 | 8.0 | 12.0 | 5.0 | 7.0 | 11.0 | 13.0 | 9.0 | 16.0 | 4.0 | 14.0 | 6.0 | 15.0 | |
300 | 1.0 | 5.0 | 10.0 | 2.0 | 8.0 | 11.0 | 3.0 | 4.0 | 12.0 | 13.0 | 9.0 | 16.0 | 6.0 | 15.0 | 7.0 | 14.0 | |
450 | 1.0 | 5.0 | 10.0 | 2.0 | 8.0 | 12.0 | 4.0 | 3.0 | 11.0 | 13.0 | 9.0 | 16.0 | 6.0 | 15.0 | 7.0 | 14.0 | |
δ=3.5,γ=0.5 | 20 | 4.5 | 3.0 | 9.0 | 2.0 | 12.0 | 10.0 | 8.0 | 4.5 | 13.0 | 7.0 | 11.0 | 14.0 | 1.0 | 15.0 | 6.0 | 16.0 |
70 | 3.0 | 4.0 | 11.0 | 2.0 | 10.0 | 15.0 | 5.0 | 6.5 | 12.0 | 8.0 | 9.0 | 16.0 | 1.0 | 14.0 | 6.5 | 13.0 | |
150 | 3.0 | 5.0 | 10.0 | 1.0 | 9.0 | 15.0 | 6.0 | 4.0 | 12.0 | 11.0 | 8.0 | 16.0 | 2.0 | 13.0 | 7.0 | 14.0 | |
200 | 3.0 | 5.0 | 11.0 | 2.0 | 8.0 | 15.0 | 6.0 | 4.0 | 12.0 | 10.0 | 9.0 | 16.0 | 1.0 | 14.0 | 7.0 | 13.0 | |
300 | 2.5 | 4.0 | 10.0 | 2.5 | 8.0 | 15.0 | 6.0 | 5.0 | 12.0 | 11.0 | 9.0 | 16.0 | 1.0 | 13.0 | 7.0 | 14.0 | |
450 | 2.0 | 5.0 | 10.0 | 4.0 | 9.0 | 15.0 | 6.0 | 3.0 | 12.0 | 11.0 | 8.0 | 16.0 | 1.0 | 14.0 | 7.0 | 13.0 | |
∑ Ranks | 69.0 | 119.5 | 293.0 | 67.0 | 258.0 | 289.5 | 179.0 | 128.5 | 333.5 | 351.5 | 293.5 | 456.0 | 157.5 | 428.0 | 220.0 | 436.5 | |
Overall Rank | 2 | 3 | 10 | 1 | 8 | 9 | 6 | 4 | 12 | 13 | 11 | 16 | 5 | 14 | 7 | 15 |
To demonstrate the effectiveness of the proposed model, we have utilized two real-world datasets, one from agriculture and the other from medical sciences. The subsequent evaluation, application, and analysis of our model are detailed below. For the purpose of comparing our model, we selected several existing models that share similar characteristics and use HLD base function. The models chosen for this comparison include:
● The exponentiated generalized standard HLD (EGSHLD), developed by Cordeiro et al. [40].
● The exponentiated HLD, proposed by Seo and Kang [41].
● The Poisson generalized HLD (PGHLD), introduced by Muhammad and Liu [42].
● The Kumaraswamy HLD (KHLD), formulated by Usman et al. [43].
● The Type-Ⅱ half logistic Weibull distribution (HLWD), created by Hassan et al. [28].
● The PHLD, developed by Krishnarani [23].
These models were selected for their relevance and compatibility with the HLD base function framework, providing a robust basis for comparison with our proposed model.
First data:
This dataset discusses the total milk production in the first birth of 107 cows from the SINDI race [44]. These cows are property of the Carnauba farm, which belongs to the Agropecuaria Manoel Dantas Ltda (AMDA), located in Taperoa City, Paraiba (Brazil).
0.4365, 0.4260, 0.5140, 0.6907, 0.7471, 0.2605, 0.6196, 0.8781, 0.4990, 0.6058, 0.6891, 0.5770, 0.5394, 0.1479, 0.2356, 0.6012, 0.1525, 0.5483, 0.6927, 0.7261, 0.3323, 0.0671, 0.2361, 0.4800, 0.5707, 0.7131, 0.5853, 0.6768, 0.5350, 0.4151, 0.6789, 0.4576, 0.3259, 0.2303, 0.7687, 0.4371, 0.3383, 0.6114, 0.3480, 0.4564, 0.7804, 0.3406, 0.4823, 0.5912, 0.5744, 0.5481, 0.1131, 0.7290, 0.0168, 0.5529, 0.4530, 0.3891, 0.4752, 0.3134, 0.3175, 0.1167, 0.6750, 0.5113, 0.5447, 0.4143, 0.5627, 0.5150, 0.0776, 0.3945, 0.4553, 0.4470, 0.5285, 0.5232, 0.6465, 0.0650, 0.8492, 0.8147, 0.3627, 0.3906, 0.4438, 0.4612, 0.3188, 0.2160, 0.6707, 0.6220, 0.5629, 0.4675, 0.6844, 0.3413, 0.4332, 0.0854, 0.3821, 0.4694, 0.3635, 0.4111, 0.5349, 0.3751, 0.1546, 0.4517, 0.2681, 0.4049, 0.5553, 0.5878, 0.4741, 0.3598, 0.7629, 0.5941, 0.6174, 0.6860, 0.0609, 0.6488, 0.2747
We applied basic exploratory data analysis techniques to examine the dataset under study, with the results displayed in Figure 10. The left side shows a box plot, while the right side presents a total-time-on-test (TTT) plot. From the box plot, we observed that the data is approximately normally distributed. To understand the nature of the hazard function, we used the TTT plot as described by Aarset [45]. The TTT plot reveals a concave curve, indicating that the hazard function is increasing.
Second data:
The data presented by [46], characterized by right-skewness, represents the survival times of 121 breast cancer patients treated at a tertiary care center between 1929 and 1938.
"0.3, 0.3, 4.0, 5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5, 8.4, 8.4, 10.3, 11.0, 11.8, 12.2, 12.3, 13.5, 14.4, 14.4, 14.8, 15.5, 15.7, 16.2, 16.3, 16.5, 16.8, 17.2, 17.3, 17.5, 17.9, 19.8, 20.4, 20.9, 21.0, 21.0, 21.1, 23.0, 23.4, 23.6, 24.0, 24.0, 27.9, 28.2, 29.1, 30.0, 31.0, 31.0, 32.0, 35.0, 35.0, 37.0, 37.0, 37.0, 38.0, 38.0, 38.0, 39.0, 39.0, 40.0, 40.0, 40.0, 41.0, 41.0, 41.0, 42.0, 43.0, 43.0, 43.0, 44.0, 45.0, 45.0, 46.0, 46.0, 47.0, 48.0, 49.0, 51.0, 51.0, 51.0, 52.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 60.0, 60.0, 61.0, 62.0, 65.0, 65.0, 67.0, 67.0, 68.0, 69.0, 78.0, 80.0, 83.0, 88.0, 89.0, 90.0, 93.0, 96.0,103.0,105.0,109.0,109.0,111.0,115.0,117.0,125.0,126.0,127.0,129.0,129.0,139.0,154.0"
Similarly, the results are presented in Figure 14 for the second dataset. A box plot is displayed on the left, and on the right, a TTT plot is shown. The box plot indicates that the data is right-skewed along with some outliers. The TTT plot reveals a concave curve, indicating that the hazard function is increasing.
The parameters (δ,γ) of the proposed distribution are estimated using the ML method, implemented through the 'maxLik' package as described by Henningsen and Toomet [47]. This estimation is performed using R programming software [48], with further details available in Lambert [49]. The aforementioned candidate distributions and the SPHLD also fit the studied datasets. The MLEs and their corresponding standard errors (SEs) are calculated, with the results presented in Tables 2 and 4, respectively. We have also displayed the profile log-likelihood plots for both parameters of the proposed model in Figures 11 and 15, respectively, for both datasets. These plots indicate that the parameter estimation through the ML method is unique and consistent. PP plots of the models under comparison of the first and second datasets are presented in Figures 13 and 17.
Model Selection
To determine the best model among the candidates, we used several standard criteria: log-likelihood (−2logL), Akaike's information criterion (AIC), Bayesian information criterion (BIC), corrected AIC (CAIC), Hannan-Quinn information criterion (HQIC) and goodness-of-fit test statistics, including the Kolmogorov-Smirnov (KS) test, AD test, and CVM test. The corresponding p-values for these tests are denoted as p(KS), p(AD), and p(CVM), respectively. The best model is identified by the smallest values of (−2logL), AIC, BIC, CAIC, HQIC, KS, AD, and CVM, and the largest p-values, as recommended by Burnham and Anderson [50].
The results in Tables 3 and 5 show that the proposed SPHLD outperforms the other candidate models. This conclusion is further supported by the graphical representations of the fitted PDF and CDF shown in Figures 12 and 16, where the SPHLD provides the best fit for the data.
Model Validation
We calculated the KS distances between the fitted distribution function and the empirical distribution function for both datasets to evaluate the model's validity. The KS distances are 0.0635 and 0.0460, with corresponding p-values of 0.7812 and 0.9603, respectively. These calculations used the parameters estimated by the ML method. The results indicate that the SPHLD fits the data very well (see other metrics AD and CVM also in Tables 3 and 5).
This work provides a significant contribution to the creation of a flexible trigonometric extension of the PHLD. In particular, we use properties from the sine-generated family of distributions to create a novel two-parameter lifespan model, called the SPHLD. The primary reason behind this is that asymmetric datasets may make the new distribution more useful for simulating lifespan phenomena. The distribution takes on a number of asymmetric form configurations, as seen by the density function graphs of the SPHLD. In addition, the hazard rate graphs of the SPHLD showed both monotonic rises and declines. Statistical properties of the SPHLD that are computed include the quantile function, moments, central moments, incomplete moments, and stress-strength reliability. The SPHLD parameters are estimated using several different classical estimating methods. To assess the consistency of the various estimates and identify the most accurate estimating strategy, a simulation study was conducted based on a few accuracy metrics. The SPHLD outperforms several other distributions, according to analyses of actual data. Simulation analysis consistently demonstrated that the maximum product spacing exhibited the highest accuracy among the selected estimation techniques, followed by the maximum likelihood method, making it the preferred method for parameter estimation. The current study's primary limitation is its only focus on traditional estimating techniques for model parameters, which depend on complete sample data. Future studies can examine both Bayesian and traditional parameter estimation methods, with an emphasis on how they could be used in ranked set sampling.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This research is supported by researchers Supporting Project number (RSPD2025R548), King Saud University, Riyadh, Saudi Arabia.
The authors declare there are no conflicts of interest.
[1] |
R. Tanabe, H. Ishibuchi, A review of evolutionary multimodal multiobjective optimization, IEEE Trans. Evol. Comput., 24 (2020), 193-200. https://doi.org/10.1109/TEVC.2019.2909744 doi: 10.1109/TEVC.2019.2909744
![]() |
[2] |
D. Chen, Y. Li, A development on multimodal optimization technique and its application in structural damage detection, Appl. Soft Comput., 91 (2020), 106264. https://doi.org/10.1016/j.asoc.2020.106264 doi: 10.1016/j.asoc.2020.106264
![]() |
[3] |
K. Wang, J. Zheng, F. Lu, H. Gao, A. Palanisamy, S. Zhuang, Varied-line-spacing switchable holographic grating using polymer-dispersed liquid crystal, Appl. Opt., 55 (2016), 4952-4957. https://doi.org/10.1364/AO.55.004952 doi: 10.1364/AO.55.004952
![]() |
[4] | A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, et al., Improved protein structure prediction using potentials from deep learning, Nature, 577 (2020), 706-710. https://doi.org/10.1038/s41586-019-1923-7 |
[5] |
J. Zhang, G. Ding, Y. Zou, S. Qin, J. Fu, Review of job shop scheduling research and its new perspectives under Industry 4.0, J. Intell. Manuf., 30 (2019), 1809-1830. https://doi.org/10.1007/s10845-017-1350-2 doi: 10.1007/s10845-017-1350-2
![]() |
[6] | A. Lambora, K. Gupta, K. Chopra, Genetic algorithm—a literature review, in 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing, 2019. https://doi.org/10.1109/COMITCon.2019.8862255 |
[7] |
Bilal, M. Pant, H. Zaheer, L. Garcia-Hernandez, A. Abraham, Differential Evolution: a review of more than two decades of research, Eng. Appl. Artif. Intell., 90 (2020), 103479. https://doi.org/10.1016/j.engappai.2020.103479 doi: 10.1016/j.engappai.2020.103479
![]() |
[8] | H. Zhao, Z. H. Zhan, Y. Lin, X. F. Chen, X. N. Luo, J. Zhang, et al., Local binary pattern based adaptive differential evolution for multimodal optimization problems, IEEE Trans. Cybern., 50 (2020), 3343-3357. https://doi.org/10.1109/TCYB.2019.2927780 |
[9] | H. Zhao, Z. H. Zhan, J. Zhang, Adaptive guidance-based differential evolution with archive strategy for multimodal optimization problems, in Proceedings IEEE Congress on Evolutionary Computation, (2020), 1-8. https://doi.org/10.1109/CEC48606.2020.9185582 |
[10] | K. E. Parsopoulos, M. N. Vrahatis, Unified particle swarm optimization for solving constrained engineering optimization problems, in Advances in Natural Computation (eds. L. Wang, K. Chen, and Y. S. Ong), Springer Berlin Heidelberg, (2005), 582-591. https://doi.org/10.1007/11539902_71 |
[11] | J. Liang, S. Ge, B. Y. Qu, K. Yu, F. Liu, H. Yang, et al., Classified perturbation mutation based particle swarm optimization algorithm for parameters extraction of photovoltaic models, Energy Convers. Manag., 203 (2020), 112138. https://doi.org/10.1016/j.enconman.2019.112138 |
[12] | H. X. Chen, D. L. Fan, F. Lu, W. J. Huang, J. M. Huang, C. H. Cao, et al., Particle swarm optimization algorithm with mutation operator for particle filter noise reduction in mechanical fault diagnosis, Int. J. Pattern Recognit. Artif. Intell., 34 (2020), 2058012. https://doi.org/10.1142/S0218001420580124 |
[13] |
X. F. Song, Y. Zhang, Y. N. Guo, X. Y. Sun, Y. L. Wang, Variable-size cooperative coevolutionary particle swarm optimization for feature selection on high-dimensional data, IEEE Trans. Evol. Comput., 24 (2020), 882-895. https://doi.org/10.1109/TEVC.2020.2968743 doi: 10.1109/TEVC.2020.2968743
![]() |
[14] | L. Qing, W. Gang, Y. Zaiyue, W. Qiuping, Crowding clustering genetic algorithm for multimodal function optimization, Appl. Soft Comput., 8 (2008), 88-95. https://10.1016/j.asoc.2006.10.014 |
[15] |
B. Y. Qu, P. N. Suganthan, S. Das, A distance-based locally informed particle swarm model for multimodal optimization, IEEE Trans. Evol. Comput., 17 (2013), 387-402. https://doi.org/10.1109/TEVC.2012.2203138 doi: 10.1109/TEVC.2012.2203138
![]() |
[16] | Z. J. Wang, Z. H. Zhan, Y. Lin, W. J. Wu, H. Q. Yuan, T. L. Gu, et al., Dual-strategy differential evolution with affinity propagation clustering for multimodal optimization problems, IEEE Trans. Evol. Comput., 22 (2018), 894-908. https://doi.org/10.1109/TEVC.2017.2769108 |
[17] | T. Kohonen, Self-organized formation of topologically correct feature maps, Biol. Cybern., 43 (1982). https://doi.org/10.1007/BF00337288 |
[18] | T. Kohonen, Essentials of the self-organizing map, Neural Networks, 37 (2013), 52-65. https://doi.org/10.1016/j.neunet.2012.09.018 |
[19] |
R. Storn, K. Price, Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim., 11 (1997), 341-359, https://doi.org/10.1023/A:1008202821328 doi: 10.1023/A:1008202821328
![]() |
[20] |
B. Xue, M. Zhang, W. N. Browne, X. Yao, A survey on evolutionary computation approaches to feature selection, IEEE Trans. Evol. Comput., 20 (2016), 606-626. https://doi.org/10.1109/TEVC.2015.2504420 doi: 10.1109/TEVC.2015.2504420
![]() |
[21] | H. Bersini, M. Dorigo, S. Langerman, G. Seront, L. Gambardella, Results of the first international contest on evolutionary optimisation, in Proceedings of IEEE International Conference on Evolutionary Computation, (1996), 611-615. https://doi.org/10.1109/ICEC.1996.542670 |
[22] | S. M. Guo, J. S. H. Tsai, C. C. Yang, T. H. Hsu, A self-organizing approach for L-SHADE incorporated with eigenvector-based crossover and successful-parent-selecting framework on CEC 2015 benchmark set, in Proceedings IEEE Congress on Evolutionary Computation, (2015), 1003-1010. https://doi.org/10.1109/CEC.2015.7256999 |
[23] | N. Awad, M. Ali, P. Suganthan, R. Reynolds, An ensemble sinusoidal parameter adaptation incorporated with L-SHade for solving CEC2014 benchmark problems, in Proceedings IEEE Congress on Evolutionary Computation, (2016), 2958-2965. https://doi.org/10.1109/CEC.2016.7744163 |
[24] | R. Tanabe, A. Fukunaga, Improving the search performance of SHADE using linear population size reduction, in Proceedings IEEE Congress on Evolutionary Computation, (2014), 1658-1665. https://doi.org/0.1109/CEC.2014.6900380 |
[25] | N. Awad, M. Ali, P. Suganthan, Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems, in Proceedings IEEE Congress on Evolutionary Computation, (2017), 372-379. https://doi.org/10.1109/CEC.2017.7969336 |
[26] | S. Akhmedova, V. Stanovov, E. Senmenkin, LSHADE algorithm with a rank-based selective pressure strategy for the circular antenna array design problem, in International Conference on Informatics in Control, Automation and Robotics, (2018), 159-165. https://doi.org/10.5220/0006852501590165 |
[27] |
J. Brest, S. Greiner, B. Boskovic, M. Mernik, V. Zumer, Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems, IEEE Trans. Evol. Comput., 10 (2006), 646-657. https://doi.org/10.1109/TEVC.2006.872133 doi: 10.1109/TEVC.2006.872133
![]() |
[28] | X. Rui, D. Wunsch, Survey of clustering algorithms, IEEE Trans. Neural Networks, 16 (2005), 645-678. https://doi.org/10.1109/TNN.2005.845141 |
[29] |
T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, A. Y. Wu, An efficient k-means clustering algorithm: analysis and implementation, IEEE Trans. Pattern Anal. Mach. Intell., 24 (2002), 881-892. https://doi.org/10.1109/TPAMI.2002.1017616 doi: 10.1109/TPAMI.2002.1017616
![]() |
[30] |
B. Y. Qu, C. Li, J. Liang, L. Yan, K. Yu, Y. Zhu, A self-organized speciation based multi-objective particle swarm optimizer for multimodal multi-objective problems, Appl. Soft Comput., 86 (2020), 105886. https://doi.org/10.1016/j.asoc.2019.105886 doi: 10.1016/j.asoc.2019.105886
![]() |
[31] | Y. Hu, j. Wang, J. Liang, K. Yu, H. Song, Q. GUO, et al., A self-organizing multimodal multi-objective pigeon-inspired optimization algorithm, Sci. China Inf. Sci., 62 (2019), 70206. https://doi.org/10.1007/s11432-018-9754-6 |
[32] |
H. Zhang, A. Zhou, S. Song, Q. Zhang, X. Z. Gao, J. Zhang, A self-organizing multiobjective evolutionary algorithm, IEEE Trans. Evol. Comput., 20 (2016), 792-806. https://doi.org/10.1109/TEVC.2016.2521868 doi: 10.1109/TEVC.2016.2521868
![]() |
[33] |
A. M. Kashtiban, S. Khanmohammadi, A genetic algorithm with SOM neural network clustering for multimodal function optimization, J. Intell. Fuzzy Syst., 35 (2018), 4543-4556. https://doi.org/10.3233/JIFS-131344 doi: 10.3233/JIFS-131344
![]() |
[34] | K. Zielinski, R. Laur, Stopping criteria for differential evolution in constrained single-objective optimization, in Advances in Differential Evolution, (eds. U. K. Chakraborty), Springer Berlin Heidelberg, (2008), 111-138. https://doi.org/10.1007/978-3-540-68830-3_4 |
[35] | Q. Yang, W. N. Chen, Z. Yu, T. Gu, Y. Li, H. Zhang, J.Zhang, et al., Adaptive multimodal continuous ant colony optimization, IEEE Trans. Evol. Comput., 21 (2017), 191-205. https://doi.org/10.1109/TEVC.2016.2591064 |
[36] | A. Hackl, C. Magele, W. Renhart, Extended firefly algorithm for multimodal optimization, in Proceedings 19th International Symposium on Electrical Apparatus and Technologies, (2016), 1-4. https://doi.org/10.1109/SIELA.2016.7543010 |
[37] | R. Thomsen, Multimodal optimization using crowding-based differential evolution, in Proceedings of the 2004 Congress on Evolutionary Computation, (2004), 1382-1389. https://doi.org/10.1109/CEC.2004.1331058 |
[38] | A. Petrowski, A clearing procedure as a niching method for genetic algorithms, in Proceedings of IEEE International Conference on Evolutionary Computation, (1996), 798-803. https://doi.org/10.1109/ICEC.1996.542703 |
[39] |
B. Y. Qu, P. N. Suganthan, J. J. Liang, Differential evolution with neighborhood mutation for multimodal optimization, IEEE Trans. Evol. Comput., 16 (2012), 601-614. https://doi.org/10.1109/TEVC.2011.2161873 doi: 10.1109/TEVC.2011.2161873
![]() |
[40] |
X. Li, Niching without niching parameters: particle swarm optimization using a ring topology, IEEE Trans. Evol. Comput., 14 (2010), 150-169. https://https://doi.org/10.1109/TEVC.2009.2026270 doi: 10.1109/TEVC.2009.2026270
![]() |
[41] |
Z. Wei, W. Gao, G. Li, Q. Zhang, A penalty-based differential evolution for multimodal optimization, IEEE Trans. Cybern., 2021 (2021). https://doi.org/10.1109/TCYB.2021.3117359 doi: 10.1109/TCYB.2021.3117359
![]() |
[42] |
X. Lin, W. Luo, P. Xu, Differential evolution for multimodal optimization with species by nearest-better clustering, IEEE Trans. Cybern., 51 (2021), 970-983. https://doi.org/10.1109/TCYB.2019.2907657 doi: 10.1109/TCYB.2019.2907657
![]() |
[43] | Z. J. Wang, Z. H. Zhan, Y. Lin, W. J. Yu, H. Wang, S. Kwong, J. Zhang, et al., Automatic niching differential evolution with contour prediction approach for multimodal optimization problems, IEEE Trans. Evol. Comput., 24 (2020), 114-128. https://doi.org/10.1109/TEVC.2019.2910721 |
[44] | X. Zhuoran, M. Polojärvi, M. Yamamoto, M. Furukawa, Attraction basin estimating GA: an adaptive and efficient technique for multimodal optimization, in Proceedings IEEE Congress on Evolutionary Computation, (2013), 333-340. https://doi.org/10.1109/CEC.2013.6557588 |
[45] |
J. Liang, K. Qiao, T. Y. Cai, K. Yu, A clustering-based differential evolution algorithm for solving multimodal multi-objective optimization problems, Swarm Evol. Comput., 60 (2021), 100788. https://doi.org/10.1016/j.swevo.2020.100788 doi: 10.1016/j.swevo.2020.100788
![]() |
[46] |
Z. Hu, T. Zhou, Q. Su, M. Liu, A niching backtracking search algorithm with adaptive local search for multimodal multiobjective optimization, Swarm Evol. Comput., 69 (2022), 101031. https://doi.org/10.1016/j.swevo.2022.101031 doi: 10.1016/j.swevo.2022.101031
![]() |
[47] | M. G. Epitropakis, V. P. Plagianakos, M. N. Vrahatis, Finding multiple global optima exploiting differential evolution's niching capability, in Proceedings IEEE Symposium on Differential Evolution, (2011), 1-8. https://doi.org/10.1109/SDE.2011.5952058 |
[48] | M. G. Epitropakis, X. Li, E. K. Burke, A dynamic archive niching differential evolution algorithm for multimodal optimization, in Proceedings IEEE Congress on Evolutionary Computation, (2013), 79-86. https://doi.org/10.1109/CEC.2013.6557556 |
[49] | J. Wang, Enhancing particle swarm algorithm for multimodal optimization problems, in Proceedings International Conference on Computing Intelligence and Information System, (2017), 1-6. https://doi.org/10.1109/CIIS.2017.10 |
[50] | W. Liu, L. Liu, T. Zhang, J. Liu, Multimodal function optimization based on improved ABC algorithm, in Proceedings 9th International Symposium on Computational Intelligence and Design, (2016), 246-249. https://doi.org/10.1109/ISCID.2016.1063 |
[51] |
R. Cheng, M. Li, K. Li, X. Yao, Evolutionary multiobjective optimization-based multimodal optimization: fitness landscape approximation and peak detection, IEEE Trans. Evol. Comput., 22 (2018), 692-706. https://doi.org/10.1109/TEVC.2017.2744328 doi: 10.1109/TEVC.2017.2744328
![]() |
[52] |
Y. Wang, H. Li, G. G. Yen, W. Song, MOMMOP: multiobjective optimization for locating multiple optimal solutions of multimodal optimization problems, IEEE Trans. Cybern., 45 (2015), 830-843. https://doi.org/10.1109/TCYB.2014.2337117 doi: 10.1109/TCYB.2014.2337117
![]() |
[53] |
W. J. Yu, J. Y. Ji, Y. J. Gong, Q. Yang, J. Zhang, A tri-objective differential evolution approach for multimodal optimization, Inf. Sci., 423 (2018), 1-23. https://doi.org/10.1016/j.ins.2017.09.044 doi: 10.1016/j.ins.2017.09.044
![]() |
[54] | V. Steinhoff, P. Kerschke, P. Aspar, H. Trautmann, C. Grimme, Multiobjectivization of local search: single-objective optimization benefits from multi-objective gradient descent, in Proceedings IEEE Symposium Series on Computational Intelligence, (2020), 2445-2452. https://doi.org/10.1109/SSCI47803.2020.9308259 |
[55] | P. Aspar, P. Kerschke, V. Steinhoff, H. Trautmann, C. Grimme, Multi3: optimizing multimodal single-objective continuous problems in the multi-objective space by means of multiobjectivization, in Evolutionary Multi-Criterion Optimization (eds. H. Ishibuchi, et al.), (2021), 12654. https://doi.org/10.1007/978-3-030-72062-9_25 |
[56] | C. Grimme, P. Kerschke, P. Aspar, H. Trautmann, M. Preuss, A. Deutz, et al., Peeking beyond peaks: challenges and research potentials of continuous multimodal multi-objective optimization, Comput. Oper. Res., 136 (2021), 105489. https://doi.org/10.1016/j.cor.2021.105489 |
[57] | X. Li, A. Engelbrecht, M. G. Epitropakis, Benchmark functions for CEC'2013 special session and competition on niching methods for multimodal function optimization. Available from: https://www.epitropakis.co.uk/sites/default/files/pubs/cec2013-niching-benchmark-tech-report.pdf. |
[58] | W. Luo, Y. Qiao, X. Lin, P. Xu, M. Preuss, Hybridizing niching, particle swarm optimization, and evolution strategy for multimodal optimization, IEEE Trans. Cybern., 2020 (2020). https://doi.org/10.1109/TCYB.2020.3032995 |
[59] |
J. Alami, A. El-Imrani, Dielectric composite multimodal optimization using a multipopulation cultural algorithm, Intell. Data Anal., 12 (2008), 359-378. doi:10.3233/IDA-2008-12404 doi: 10.3233/IDA-2008-12404
![]() |
1. | Murat Genç, Ömer Özbilen, Sine Unit Exponentiated Half-Logistic Distribution: Theory, Estimation, and Applications in Reliability Modeling, 2025, 13, 2227-7390, 1871, 10.3390/math13111871 |
Parameters | Measures | ||||||||
δ | γ | Q(0.1) | Q(0.25) | Q(0.35) | Q(0.5) | Q(0.6) | Q(0.75) | Q(0.85) | Q(0.95) |
0.15 | 0.5 | 0.724887 | 4.68121 | 9.54363 | 21.3535 | 33.6724 | 64.8572 | 105.342 | 212.237 |
1.0 | 0.851403 | 2.16361 | 3.08928 | 4.62098 | 5.80279 | 8.0534 | 10.2636 | 14.5684 | |
3.0 | 0.947789 | 1.29338 | 1.45642 | 1.66563 | 1.79699 | 2.00444 | 2.1732 | 2.44233 | |
5.0 | 0.968338 | 1.16691 | 1.25306 | 1.35815 | 1.42144 | 1.51773 | 1.59316 | 1.70876 | |
7.0 | 0.977281 | 1.11656 | 1.17484 | 1.24441 | 1.28556 | 1.34718 | 1.39467 | 1.46623 | |
10 | 0.984042 | 1.08023 | 1.1194 | 1.1654 | 1.19224 | 1.23196 | 1.26221 | 1.3072 | |
0.6 | 0.5 | 0.0453054 | 0.292575 | 0.596477 | 1.33459 | 2.10452 | 4.05357 | 6.58386 | 13.2648 |
1.0 | 0.212851 | 0.540902 | 0.772319 | 1.15525 | 1.4507 | 2.01335 | 2.5659 | 3.64209 | |
3.0 | 0.59707 | 0.814779 | 0.917485 | 1.04928 | 1.13203 | 1.26272 | 1.36903 | 1.53857 | |
5.0 | 0.733863 | 0.884349 | 0.949641 | 1.02928 | 1.07725 | 1.15023 | 1.20739 | 1.295 | |
7.0 | 0.801698 | 0.915955 | 0.963765 | 1.02083 | 1.05459 | 1.10514 | 1.1441 | 1.2028 | |
10 | 0.856658 | 0.940398 | 0.974495 | 1.01454 | 1.03791 | 1.07249 | 1.09881 | 1.13798 | |
0.9 | 0.5 | 0.0201357 | 0.130033 | 0.265101 | 0.593152 | 0.935344 | 1.80159 | 2.92616 | 5.89547 |
1.0 | 0.1419 | 0.360602 | 0.514879 | 0.770164 | 0.967132 | 1.34223 | 1.7106 | 2.42806 | |
3.0 | 0.521588 | 0.711775 | 0.801497 | 0.916631 | 0.988922 | 1.10309 | 1.19596 | 1.34406 | |
5.0 | 0.676701 | 0.815465 | 0.875671 | 0.94911 | 0.993338 | 1.06063 | 1.11335 | 1.19413 | |
7.0 | 0.75658 | 0.864407 | 0.909526 | 0.96338 | 0.995237 | 1.04294 | 1.07971 | 1.13511 | |
10 | 0.822618 | 0.903031 | 0.935773 | 0.974223 | 0.996664 | 1.02987 | 1.05515 | 1.09276 | |
1.5 | 0.5 | 0.00724887 | 0.0468121 | 0.0954363 | 0.213535 | 0.336724 | 0.648572 | 1.05342 | 2.12237 |
1.0 | 0.0851403 | 0.216361 | 0.308928 | 0.462098 | 0.580279 | 0.80534 | 1.02636 | 1.45684 | |
3.0 | 0.439925 | 0.600334 | 0.676009 | 0.773116 | 0.834089 | 0.930379 | 1.00871 | 1.13363 | |
5.0 | 0.61098 | 0.736268 | 0.790626 | 0.856933 | 0.896866 | 0.957626 | 1.00522 | 1.07816 | |
7.0 | 0.703335 | 0.803573 | 0.845517 | 0.895581 | 0.925196 | 0.969546 | 1.00372 | 1.05522 | |
10 | 0.781652 | 0.85806 | 0.889172 | 0.925707 | 0.94703 | 0.978584 | 1.00261 | 1.03834 | |
2.5 | 0.5 | 0.00260959 | 0.0168523 | 0.0343571 | 0.0768725 | 0.121221 | 0.233486 | 0.37923 | 0.764053 |
1.0 | 0.0510842 | 0.129817 | 0.185357 | 0.277259 | 0.348167 | 0.483204 | 0.615817 | 0.874101 | |
3.0 | 0.371047 | 0.506341 | 0.570168 | 0.652071 | 0.703498 | 0.784712 | 0.85078 | 0.956138 | |
5.0 | 0.551642 | 0.664762 | 0.713841 | 0.773708 | 0.809762 | 0.864622 | 0.907591 | 0.973447 | |
7.0 | 0.653837 | 0.747021 | 0.786013 | 0.832554 | 0.860085 | 0.901313 | 0.933086 | 0.980961 | |
10 | 0.742726 | 0.815329 | 0.844891 | 0.879607 | 0.899868 | 0.92985 | 0.952676 | 0.986634 | |
4.5 | 0.5 | 0.00080543 | 0.00520134 | 0.010604 | 0.0237261 | 0.0374137 | 0.0720635 | 0.117046 | 0.235819 |
1.0 | 0.0283801 | 0.0721203 | 0.102976 | 0.154033 | 0.193426 | 0.268447 | 0.34212 | 0.485612 | |
3.0 | 0.305027 | 0.416248 | 0.468718 | 0.536049 | 0.578325 | 0.645088 | 0.699401 | 0.786013 | |
5.0 | 0.490459 | 0.591033 | 0.634669 | 0.687896 | 0.719951 | 0.768726 | 0.80693 | 0.865482 | |
7.0 | 0.601176 | 0.686855 | 0.722707 | 0.765499 | 0.790813 | 0.828721 | 0.857935 | 0.901954 | |
10 | 0.700328 | 0.768787 | 0.796661 | 0.829395 | 0.848499 | 0.87677 | 0.898293 | 0.930313 |
Model | Parameter | SE | Parameter | SE | Parameter | SE |
SPHLD(δ,γ) | 3.7870 | 0.4370 | 2.2162 | 0.1836 | – | – |
EGSHLD(α,β) | 7.0611 | 0.5863 | 3.3169 | 0.4593 | – | – |
EHLD(λ,θ) | 4.7771 | 0.3748 | 2.7077 | 0.3918 | – | – |
PGHLD(α,β,δ) | 0.5901 | 0.0916 | 2.6059 | 0.2187 | 133.3208 | 3.0465 |
KHLD(α,β,θ) | 2.5987 | 0.2161 | 141.1152 | 2.1935 | 0.5731 | 0.0893 |
HLWD(β,θ,δ) | 9.2668 | 0.0013 | 7.7567 | 0.0075 | 0.2865 | 0.0236 |
PHLD(δ,γ) | 6.3117 | 0.7676 | 2.2754 | 0.1877 | – | – |
Models | -2logL | AIC | BIC | CAIC | HQIC | KS | p(KS) | CVM | p(CVM) | AD | p(AD) |
SPHLD | -50.0009 | -46.0009 | -40.6552 | -45.8877 | -43.8338 | 0.0635 | 0.7812 | 0.1027 | 0.5727 | 0.8752 | 0.4295 |
EGSHLD | -18.5522 | -14.5522 | -9.2065 | -14.439 | -12.3851 | 0.1367 | 0.0367 | 0.678 | 0.0142 | 3.9479 | 0.0093 |
EHLD | -20.661 | -16.661 | -11.3154 | -16.5478 | -14.494 | 0.1291 | 0.0566 | 0.6068 | 0.0213 | 3.6361 | 0.0132 |
PGHLD | -41.7841 | -35.7841 | -27.7656 | -35.5556 | -32.5335 | 0.0868 | 0.3958 | 0.2084 | 0.2519 | 1.5726 | 0.1601 |
KHLD | -42.0805 | -36.0805 | -28.062 | -35.8519 | -32.8299 | 0.0865 | 0.4001 | 0.2067 | 0.255 | 1.5561 | 0.1637 |
HLWD | -50.7479 | -44.7479 | -36.7294 | -44.5193 | -41.4973 | 0.083 | 0.4532 | 0.1787 | 0.3131 | 1.088 | 0.3141 |
PHLD | -48.4568 | -44.4568 | -39.1112 | -44.3436 | -42.2898 | 0.0647 | 0.7624 | 0.1082 | 0.5469 | 0.9613 | 0.378 |
Model | parameter | SE | parameter | SE | parameter | SE |
SPHLD(δ,γ) | 0.0134 | 0.0048 | 1.0754 | 0.0806 | – | – |
EGSHLD(α,β) | 0.0271 | 0.0029 | 1.4176 | 0.1774 | – | – |
EHLD(λ,θ) | 0.0330 | 0.0030 | 1.1827 | 0.1406 | – | – |
PGHLD(α,β,δ) | 0.0029 | 6.0E-04 | 1.3095 | 0.0959 | 31.6416 | 3.0606 |
KHLD(α,β,θ) | 1.7763 | 2.0E-04 | 0.1171 | 0.0106 | 0.2100 | 1.0E-04 |
HLWD(β,θ,δ) | 3.2E-05 | 0.0000 | 2.3012 | 0.0925 | 0.5459 | 0.0382 |
PHLD(δ,γ) | 0.0188 | 0.0068 | 1.1120 | 0.0833 | – | – |
Models | -2logL | AIC | BIC | CAIC | HQIC | KS | p(KS) | CVM | p(CVM) | AD | p(AD) |
SPHLD | 1158.5700 | 1162.5700 | 1168.1620 | 1162.4700 | 1164.8410 | 0.0460 | 0.9603 | 0.0697 | 0.7543 | 0.5285 | 0.7176 |
EGSHLD | 1161.6180 | 1165.6180 | 1171.2090 | 1165.7180 | 1167.8890 | 0.0848 | 0.3489 | 0.0784 | 0.7023 | 0.5126 | 0.7337 |
EHLD | 1158.7411 | 1162.7411 | 1168.4002 | 1162.5110 | 1164.9820 | 0.0569 | 0.8286 | 0.0519 | 0.8652 | 0.4096 | 0.8389 |
PGHLD | 1158.6990 | 1164.1990 | 1172.5860 | 1164.4010 | 1167.6050 | 0.0606 | 0.7658 | 0.0522 | 0.8638 | 0.3987 | 0.8498 |
KHLD | 1163.9130 | 1169.9130 | 1178.3000 | 1170.1140 | 1173.3190 | 0.1032 | 0.1521 | 0.1349 | 0.4395 | 0.7670 | 0.5051 |
HLWD | 1158.8090 | 1163.0090 | 1171.3960 | 1163.2110 | 1166.4150 | 0.0538 | 0.8752 | 0.0634 | 0.7934 | 0.4578 | 0.7898 |
PHLD | 1158.6310 | 1162.6310 | 1168.8022 | 1162.5310 | 1164.8702 | 0.0492 | 0.9311 | 0.0597 | 0.8170 | 0.4685 | 0.7788 |
n | Est. | MLE | ADE | CVME | MPSE | OLSE | PCE | RTADE | WLSE | LTADE | MSADE | MSALDE | ADSOE | KE | MSSD | MSSLD | MSLND |
20 | BIAS(ˆδ) | 0.50997{10} | 0.47624{8} | 0.55618{14} | 0.4227{1} | 0.52808{11} | 0.45642{4} | 0.48106{9} | 0.4697{6} | 0.55874{15} | 0.47011{7} | 0.45026{3} | 0.69895{16} | 0.4578{5} | 0.54062{12} | 0.43213{2} | 0.55229{13} |
BIAS(ˆγ) | 0.65945{6} | 0.6582{5} | 0.7497{13} | 0.62205{2} | 0.73052{12} | 0.62897{3} | 0.70944{10} | 0.67628{8} | 0.7155{11} | 0.65291{4} | 0.70363{9} | 0.76909{14} | 0.55328{1} | 0.82507{15} | 0.66467{7} | 0.87293{16} | |
MSE(ˆδ) | 0.48274{13} | 0.3941{8} | 0.58214{15} | 0.27484{1} | 0.46439{12} | 0.33067{4} | 0.40226{9} | 0.37185{7} | 0.53257{14} | 0.3537{5} | 0.3227{3} | 0.7722{16} | 0.36868{6} | 0.4295{10} | 0.31669{2} | 0.44799{11} | |
MSE(ˆγ) | 0.75419{9} | 0.70861{5} | 0.97653{14} | 0.58115{2} | 0.87688{12} | 0.59901{3} | 0.84103{11} | 0.73695{7} | 0.79691{10} | 0.7111{6} | 0.73851{8} | 0.91542{13} | 0.53207{1} | 0.99521{15} | 0.69597{4} | 1.09317{16} | |
MRE(ˆδ) | 0.20399{10} | 0.1905{8} | 0.22247{14} | 0.16908{1} | 0.21123{11} | 0.18257{4} | 0.19243{9} | 0.18788{6} | 0.2235{15} | 0.18804{7} | 0.1801{3} | 0.27958{16} | 0.18312{5} | 0.21625{12} | 0.17285{2} | 0.22092{13} | |
MRE(ˆγ) | 0.16486{6} | 0.16455{5} | 0.18742{13} | 0.15551{2} | 0.18263{12} | 0.15724{3} | 0.17736{10} | 0.16907{8} | 0.17887{11} | 0.16323{4} | 0.17591{9} | 0.19227{14} | 0.13832{1} | 0.20627{15} | 0.16617{7} | 0.21823{16} | |
Dabs | 0.05542{1} | 0.05852{6} | 0.05875{7} | 0.05789{4} | 0.06077{10} | 0.05774{3} | 0.05704{2} | 0.05827{5} | 0.05946{9} | 0.06363{13} | 0.06702{14} | 0.06358{12} | 0.05891{8} | 0.06948{15} | 0.06084{11} | 0.0712{16} | |
Dmax | 0.09015{1} | 0.09333{7} | 0.09632{9} | 0.0904{2} | 0.09725{11} | 0.09107{3} | 0.09261{5} | 0.0929{6} | 0.09717{10} | 0.10099{12} | 0.10555{13} | 0.10614{14} | 0.09162{4} | 0.1109{15} | 0.09595{8} | 0.11392{16} | |
ASAE | 0.04585{1} | 0.04191{7} | 0.04337{9} | 0.04308{2} | 0.04118{11} | 0.04172{3} | 0.04508{5} | 0.04062{6} | 0.04319{10} | 0.05482{12} | 0.05271{13} | 0.05203{14} | 0.04583{4} | 0.05973{15} | 0.04937{8} | 0.06062{16} | |
∑Ranks | 66{7} | 56{6} | 106{13} | 20{1} | 93{11} | 30{2} | 73{9} | 54{4.5} | 101{12} | 72{8} | 75{10} | 127{15} | 40{3} | 124{14} | 54{4.5} | 133{16} | |
70 | BIAS(ˆδ) | 0.23302{3} | 0.2412{4} | 0.30468{12} | 0.22791{1} | 0.27786{11} | 0.23246{2} | 0.26005{8} | 0.25407{7} | 0.32622{15} | 0.27753{10} | 0.24555{5} | 0.49886{16} | 0.26772{9} | 0.31504{14} | 0.24582{6} | 0.30999{13} |
BIAS(ˆγ) | 0.3245{1} | 0.32947{2} | 0.39565{12} | 0.33268{3} | 0.38705{11} | 0.34282{5} | 0.37162{7} | 0.36078{6} | 0.40446{13} | 0.3758{8} | 0.38459{10} | 0.54412{16} | 0.33343{4} | 0.45321{14} | 0.38433{9} | 0.4608{15} | |
MSE(ˆδ) | 0.09308{3} | 0.09963{5} | 0.17211{14} | 0.08165{1} | 0.131{11} | 0.0835{2} | 0.12498{8} | 0.11594{7} | 0.19003{15} | 0.12754{10} | 0.09977{6} | 0.41958{16} | 0.12736{9} | 0.15069{13} | 0.09772{4} | 0.14683{12} | |
MSE(ˆγ) | 0.17324{2} | 0.17331{3} | 0.25132{12} | 0.16753{1} | 0.23172{10} | 0.18154{4} | 0.23363{11} | 0.20815{6} | 0.26128{13} | 0.22809{9} | 0.22537{7} | 0.4488{16} | 0.20041{5} | 0.32895{15} | 0.22666{8} | 0.32661{14} | |
MRE(ˆδ) | 0.09321{3} | 0.09648{4} | 0.12187{12} | 0.09117{1} | 0.11114{11} | 0.09299{2} | 0.10402{8} | 0.10163{7} | 0.13049{15} | 0.11101{10} | 0.09822{5} | 0.19954{16} | 0.10709{9} | 0.12602{14} | 0.09833{6} | 0.12399{13} | |
MRE(ˆγ) | 0.08113{1} | 0.08237{2} | 0.09891{12} | 0.08317{3} | 0.09676{11} | 0.0857{5} | 0.0929{7} | 0.0902{6} | 0.10112{13} | 0.09395{8} | 0.09615{10} | 0.13603{16} | 0.08336{4} | 0.1133{14} | 0.09608{9} | 0.1152{15} | |
Dabs | 0.0291{1} | 0.03155{7} | 0.03136{6} | 0.03121{5} | 0.03271{10} | 0.03079{2} | 0.03097{3} | 0.03118{4} | 0.03217{9} | 0.03687{13} | 0.0343{11} | 0.039{14} | 0.03186{8} | 0.03963{15} | 0.03489{12} | 0.03977{16} | |
Dmax | 0.04706{1} | 0.05079{5} | 0.05236{8} | 0.04993{3} | 0.05362{9} | 0.04926{2} | 0.05056{4} | 0.05084{6} | 0.05385{10} | 0.05874{13} | 0.0553{11} | 0.06884{16} | 0.05146{7} | 0.06406{14} | 0.05617{12} | 0.0649{15} | |
ASAE | 0.02068{1} | 0.0194{5} | 0.02022{8} | 0.02038{3} | 0.0197{9} | 0.01966{2} | 0.02055{4} | 0.01914{6} | 0.02024{10} | 0.0263{13} | 0.0254{11} | 0.02805{16} | 0.02126{7} | 0.02941{14} | 0.02373{12} | 0.02958{15} | |
∑Ranks | 24{1} | 34{4} | 93{11} | 25{2} | 88{10} | 27{3} | 64{6} | 50{5} | 109{13} | 94{12} | 77{8.5} | 140{16} | 65{7} | 128{14} | 77{8.5} | 129{15} | |
150 | BIAS(ˆδ) | 0.15673{2} | 0.15991{3} | 0.18883{10} | 0.15145{1} | 0.18886{11} | 0.16135{4} | 0.1763{8} | 0.16792{6} | 0.22306{15} | 0.19224{12} | 0.17614{7} | 0.37121{16} | 0.17811{9} | 0.21099{13} | 0.16783{5} | 0.21401{14} |
BIAS(ˆγ) | 0.21048{1} | 0.23683{4} | 0.26398{12} | 0.22694{2} | 0.25585{10} | 0.23069{3} | 0.25039{8} | 0.24322{6} | 0.28777{13} | 0.26282{11} | 0.25477{9} | 0.39249{16} | 0.23897{5} | 0.32228{15} | 0.24795{7} | 0.31651{14} | |
MSE(ˆδ) | 0.03876{2} | 0.0421{4} | 0.05973{11} | 0.03526{1} | 0.06179{12} | 0.03983{3} | 0.05052{8} | 0.04654{5} | 0.0843{15} | 0.05917{10} | 0.04776{7} | 0.22463{16} | 0.05493{9} | 0.07{13} | 0.04684{6} | 0.07287{14} | |
MSE(ˆγ) | 0.07143{1} | 0.08939{4} | 0.10989{11} | 0.07985{2} | 0.10559{10} | 0.08356{3} | 0.10142{8} | 0.09184{5} | 0.1303{13} | 0.11125{12} | 0.10348{9} | 0.24262{16} | 0.0989{7} | 0.15864{15} | 0.09643{6} | 0.15711{14} | |
MRE(ˆδ) | 0.06269{2} | 0.06396{3} | 0.07553{10} | 0.06058{1} | 0.07554{11} | 0.06454{4} | 0.07052{8} | 0.06717{6} | 0.08923{15} | 0.07689{12} | 0.07046{7} | 0.14849{16} | 0.07124{9} | 0.0844{13} | 0.06713{5} | 0.0856{14} | |
MRE(ˆγ) | 0.05262{1} | 0.05921{4} | 0.066{12} | 0.05674{2} | 0.06396{10} | 0.05767{3} | 0.0626{8} | 0.06081{6} | 0.07194{13} | 0.06571{11} | 0.06369{9} | 0.09812{16} | 0.05974{5} | 0.08057{15} | 0.06199{7} | 0.07913{14} | |
Dabs | 0.02054{1} | 0.02072{2} | 0.02154{6.5} | 0.0209{3} | 0.02214{8} | 0.02154{6.5} | 0.0215{5} | 0.02124{4} | 0.02222{10} | 0.02553{13} | 0.02417{12} | 0.02878{15} | 0.02217{9} | 0.029{16} | 0.02327{11} | 0.02835{14} | |
Dmax | 0.03296{1} | 0.03367{3} | 0.03572{7} | 0.03363{2} | 0.03616{9} | 0.03467{5} | 0.03506{6} | 0.03443{4} | 0.03725{10} | 0.04088{13} | 0.03877{12} | 0.0513{16} | 0.03581{8} | 0.04664{15} | 0.03742{11} | 0.04585{14} | |
ASAE | 0.01285{1} | 0.0121{3} | 0.01253{7} | 0.01291{2} | 0.0126{9} | 0.0126{5} | 0.01309{6} | 0.01218{4} | 0.01276{10} | 0.01719{13} | 0.01618{12} | 0.01927{16} | 0.0134{8} | 0.01885{15} | 0.01518{11} | 0.01927{14} | |
∑Ranks | 18{1} | 28{3} | 82.5{9} | 22{2} | 86{11} | 35.5{4} | 68{6} | 44{5} | 110{13} | 107{12} | 84{10} | 143{16} | 71{8} | 129{15} | 69{7} | 127{14} | |
200 | BIAS(ˆδ) | 0.13265{2} | 0.13595{3} | 0.1673{11} | 0.13118{1} | 0.16857{12} | 0.13838{5} | 0.13802{4} | 0.14025{6} | 0.18959{15} | 0.16663{10} | 0.15183{8} | 0.33625{16} | 0.16201{9} | 0.18672{14} | 0.14916{7} | 0.1847{13} |
BIAS(ˆγ) | 0.1819{1} | 0.2009{4} | 0.23223{11} | 0.19663{2} | 0.23062{10} | 0.19721{3} | 0.21404{7} | 0.20405{5} | 0.24252{13} | 0.23595{12} | 0.22556{9} | 0.35139{16} | 0.21768{8} | 0.26822{14} | 0.21092{6} | 0.28227{15} | |
MSE(ˆδ) | 0.02876{2} | 0.03111{5} | 0.04706{12} | 0.02608{1} | 0.04487{11} | 0.02986{3} | 0.02999{4} | 0.03198{6} | 0.05815{15} | 0.04388{9} | 0.03648{8} | 0.17779{16} | 0.04457{10} | 0.0543{14} | 0.03468{7} | 0.05337{13} | |
MSE(ˆγ) | 0.05319{1} | 0.06643{5} | 0.0866{11} | 0.05773{2} | 0.08181{9} | 0.06042{3} | 0.07294{7} | 0.0649{4} | 0.09347{13} | 0.0891{12} | 0.07835{8} | 0.18831{16} | 0.08335{10} | 0.10843{14} | 0.07018{6} | 0.12237{15} | |
MRE(ˆδ) | 0.05306{2} | 0.05438{3} | 0.06692{11} | 0.05247{1} | 0.06743{12} | 0.05535{5} | 0.05521{4} | 0.0561{6} | 0.07583{15} | 0.06665{10} | 0.06073{8} | 0.1345{16} | 0.0648{9} | 0.07469{14} | 0.05966{7} | 0.07388{13} | |
MRE(ˆγ) | 0.04548{1} | 0.05022{4} | 0.05806{11} | 0.04916{2} | 0.05765{10} | 0.0493{3} | 0.05351{7} | 0.05101{5} | 0.06063{13} | 0.05899{12} | 0.05639{9} | 0.08785{16} | 0.05442{8} | 0.06705{14} | 0.05273{6} | 0.07057{15} | |
Dabs | 0.01756{1} | 0.01875{6} | 0.01966{9} | 0.01806{2} | 0.01886{7} | 0.01851{3} | 0.01865{5} | 0.01857{4} | 0.02{10} | 0.02234{13} | 0.02071{12} | 0.02553{16} | 0.01939{8} | 0.02374{14} | 0.02001{11} | 0.02467{15} | |
Dmax | 0.02827{1} | 0.03015{5} | 0.03226{10} | 0.02899{2} | 0.03112{7} | 0.02971{3} | 0.03023{6} | 0.02997{4} | 0.03328{11} | 0.03587{13} | 0.03331{12} | 0.04625{16} | 0.03149{8} | 0.03869{14} | 0.03217{9} | 0.03998{15} | |
ASAE | 0.01079{1} | 0.01033{5} | 0.01064{10} | 0.01096{2} | 0.01058{7} | 0.0105{3} | 0.01128{6} | 0.01037{4} | 0.01071{11} | 0.01466{13} | 0.0135{12} | 0.01705{16} | 0.01127{8} | 0.01565{14} | 0.01282{9} | 0.01625{15} | |
∑Ranks | 18{1} | 36{4} | 91{11} | 21{2} | 82{9} | 31{3} | 54{6} | 42{5} | 111{13} | 104{12} | 86{10} | 144{16} | 79{8} | 126{14} | 70{7} | 129{15} | |
300 | BIAS(ˆδ) | 0.10974{2} | 0.11844{5} | 0.13179{9} | 0.10665{1} | 0.13783{12} | 0.1132{3} | 0.11493{4} | 0.11974{6} | 0.14628{13} | 0.13581{11} | 0.12478{8} | 0.2783{16} | 0.1341{10} | 0.15588{15} | 0.12086{7} | 0.14797{14} |
BIAS(ˆγ) | 0.14742{1} | 0.16142{3} | 0.18156{10} | 0.16198{4} | 0.1938{12} | 0.1533{2} | 0.16496{5} | 0.17827{7} | 0.1921{11} | 0.19653{13} | 0.17965{8} | 0.28618{16} | 0.18104{9} | 0.22094{15} | 0.17758{6} | 0.2143{14} | |
MSE(ˆδ) | 0.01875{2} | 0.02203{5} | 0.02817{9} | 0.01818{1} | 0.03043{12} | 0.02021{3} | 0.02064{4} | 0.02295{7} | 0.03499{13} | 0.02881{11} | 0.02412{8} | 0.12932{16} | 0.0286{10} | 0.03896{15} | 0.02229{6} | 0.03584{14} | |
MSE(ˆγ) | 0.03488{1} | 0.04131{4} | 0.05192{9} | 0.04036{3} | 0.05898{12} | 0.03722{2} | 0.04372{5} | 0.04954{7} | 0.05812{11} | 0.06262{13} | 0.05007{8} | 0.13548{16} | 0.05346{10} | 0.07594{15} | 0.04802{6} | 0.07302{14} | |
MRE(ˆδ) | 0.0439{2} | 0.04737{5} | 0.05272{9} | 0.04266{1} | 0.05513{12} | 0.04528{3} | 0.04597{4} | 0.0479{6} | 0.05851{13} | 0.05433{11} | 0.04991{8} | 0.11132{16} | 0.05364{10} | 0.06235{15} | 0.04834{7} | 0.05919{14} | |
MRE(ˆγ) | 0.03685{1} | 0.04036{3} | 0.04539{10} | 0.04049{4} | 0.04845{12} | 0.03832{2} | 0.04124{5} | 0.04457{7} | 0.04802{11} | 0.04913{13} | 0.04491{8} | 0.07155{16} | 0.04526{9} | 0.05524{15} | 0.04439{6} | 0.05357{14} | |
Dabs | 0.01362{1} | 0.01495{6} | 0.01533{8} | 0.01478{5} | 0.01539{9} | 0.01426{2} | 0.01476{4} | 0.01472{3} | 0.01529{7} | 0.01826{13} | 0.01734{12} | 0.02195{16} | 0.01583{10} | 0.0199{14} | 0.0161{11} | 0.02005{15} | |
Dmax | 0.02211{1} | 0.02424{6} | 0.02529{7} | 0.02366{3} | 0.02549{8} | 0.02312{2} | 0.02388{4} | 0.02416{5} | 0.0255{9} | 0.02944{13} | 0.02777{12} | 0.03943{16} | 0.0259{10} | 0.03232{15} | 0.02613{11} | 0.0323{14} | |
ASAE | 0.00851{1} | 0.00811{6} | 0.00842{7} | 0.00842{3} | 0.00824{8} | 0.00839{2} | 0.00871{4} | 0.00814{5} | 0.00844{9} | 0.01156{13} | 0.0109{12} | 0.01371{16} | 0.00883{10} | 0.01255{15} | 0.01019{11} | 0.01271{14} | |
∑Ranks | 19{1} | 38{4} | 77{8} | 27{3} | 92{11} | 23{2} | 44{5} | 50{6} | 95{12} | 111{13} | 84{9} | 144{16} | 88{10} | 133{15} | 71{7} | 128{14} | |
450 | BIAS(ˆδ) | 0.08895{2} | 0.09072{3} | 0.11445{12} | 0.08675{1} | 0.10738{10} | 0.09073{4} | 0.09415{5} | 0.0949{6} | 0.12204{13} | 0.11394{11} | 0.10417{8} | 0.22716{16} | 0.10475{9} | 0.12807{15} | 0.09963{7} | 0.12233{14} |
BIAS(ˆγ) | 0.1248{1} | 0.13118{4} | 0.15604{12} | 0.12656{2} | 0.15209{10} | 0.13038{3} | 0.15018{9} | 0.13814{5} | 0.15294{11} | 0.16044{13} | 0.14765{8} | 0.24681{16} | 0.14338{6} | 0.17673{15} | 0.14537{7} | 0.17526{14} | |
MSE(ˆδ) | 0.01257{2} | 0.01291{4} | 0.02057{11} | 0.01176{1} | 0.01849{10} | 0.01269{3} | 0.01407{5} | 0.01462{6} | 0.02287{13} | 0.02088{12} | 0.01688{8} | 0.08455{16} | 0.0176{9} | 0.02511{15} | 0.01571{7} | 0.02359{14} | |
MSE(ˆγ) | 0.0249{1} | 0.02715{4} | 0.03896{12} | 0.02562{2} | 0.03687{10} | 0.02638{3} | 0.03486{9} | 0.03042{5} | 0.03691{11} | 0.04153{13} | 0.03326{7} | 0.09873{16} | 0.03448{8} | 0.04877{15} | 0.03238{6} | 0.04832{14} | |
MRE(ˆδ) | 0.03558{2} | 0.03629{3.5} | 0.04578{12} | 0.0347{1} | 0.04295{10} | 0.03629{3.5} | 0.03766{5} | 0.03796{6} | 0.04881{13} | 0.04558{11} | 0.04167{8} | 0.09086{16} | 0.0419{9} | 0.05123{15} | 0.03985{7} | 0.04893{14} | |
MRE(ˆγ) | 0.0312{1} | 0.0328{4} | 0.03901{12} | 0.03164{2} | 0.03802{10} | 0.0326{3} | 0.03755{9} | 0.03453{5} | 0.03823{11} | 0.04011{13} | 0.03691{8} | 0.0617{16} | 0.03584{6} | 0.04418{15} | 0.03634{7} | 0.04381{14} | |
Dabs | 0.01206{3} | 0.0118{1} | 0.01283{9} | 0.01195{2} | 0.01252{6} | 0.0122{4} | 0.01285{10} | 0.01236{5} | 0.01279{8} | 0.0151{13} | 0.01376{12} | 0.01756{16} | 0.01274{7} | 0.01662{15} | 0.01351{11} | 0.01591{14} | |
Dmax | 0.0194{3} | 0.01913{1} | 0.02112{9} | 0.01918{2} | 0.02062{6} | 0.01963{4} | 0.0208{8} | 0.02007{5} | 0.02128{10} | 0.02436{13} | 0.02228{12} | 0.03163{16} | 0.02078{7} | 0.02684{15} | 0.02176{11} | 0.02572{14} | |
ASAE | 0.0068{3} | 0.00657{1} | 0.00666{9} | 0.0068{2} | 0.00659{6} | 0.00666{4} | 0.00675{8} | 0.00645{5} | 0.00672{10} | 0.00925{13} | 0.00841{12} | 0.01085{16} | 0.00715{7} | 0.01005{15} | 0.00797{11} | 0.01017{14} | |
∑Ranks | 24{2} | 26.5{3} | 94{11} | 21{1} | 75{9} | 31.5{4} | 67{6} | 44{5} | 96{12} | 112{13} | 83{10} | 144{16} | 71{7} | 134{15} | 74{8} | 127{14} |
n | Est. | MLE | ADE | CVME | MPSE | OLSE | PCE | RTADE | WLSE | LTADE | MSADE | MSALDE | ADSOE | KE | MSSD | MSSLD | MSLND |
20 | BIAS(ˆδ) | 0.13569{4} | 0.13611{5} | 0.14304{12} | 0.11914{1} | 0.13443{3} | 0.23732{16} | 0.13881{8} | 0.13078{2} | 0.145{13} | 0.14272{11} | 0.13867{7} | 0.15516{15} | 0.14722{14} | 0.13911{9} | 0.13978{10} | 0.13755{6} |
BIAS(ˆγ) | 0.04852{2} | 0.04836{1} | 0.06184{11} | 0.04882{3} | 0.05532{8} | 0.10105{16} | 0.05227{6} | 0.05221{5} | 0.05666{9} | 0.0622{12} | 0.05323{7} | 0.0738{15} | 0.05983{10} | 0.06465{13} | 0.04883{4} | 0.06543{14} | |
MSE(ˆδ) | 0.02924{3} | 0.03072{6.5} | 0.03339{12} | 0.02293{1} | 0.02941{4} | 0.08556{16} | 0.03083{9} | 0.02791{2} | 0.03622{14} | 0.03338{11} | 0.03296{10} | 0.04423{15} | 0.0359{13} | 0.03072{6.5} | 0.03037{5} | 0.03074{8} | |
MSE(ˆγ) | 0.00409{4} | 0.0038{3} | 0.00673{14} | 0.00366{1} | 0.00511{8} | 0.01506{16} | 0.00465{7} | 0.00459{6} | 0.00576{9} | 0.00621{12} | 0.00433{5} | 0.00882{15} | 0.00612{10} | 0.00618{11} | 0.00373{2} | 0.00633{13} | |
MRE(ˆδ) | 0.16961{4} | 0.17014{5} | 0.17881{12} | 0.14892{1} | 0.16804{3} | 0.29665{16} | 0.17352{8} | 0.16347{2} | 0.18125{13} | 0.1784{11} | 0.17334{7} | 0.19395{15} | 0.18402{14} | 0.17389{9} | 0.17473{10} | 0.17193{6} | |
MRE(ˆγ) | 0.16174{2} | 0.1612{1} | 0.20613{11} | 0.16273{3} | 0.18441{8} | 0.33685{16} | 0.17424{6} | 0.17403{5} | 0.18886{9} | 0.20735{12} | 0.17743{7} | 0.24601{15} | 0.19943{10} | 0.21551{13} | 0.16277{4} | 0.21812{14} | |
Dabs | 0.05531{1} | 0.05792{3} | 0.06031{6} | 0.05725{2} | 0.06112{9} | 0.10551{16} | 0.05954{5} | 0.05815{4} | 0.06079{8} | 0.06665{12} | 0.06419{11} | 0.06793{13} | 0.06068{7} | 0.07137{15} | 0.06132{10} | 0.07046{14} | |
Dmax | 0.09073{2} | 0.09264{3} | 0.10036{8} | 0.0902{1} | 0.09881{7} | 0.17373{16} | 0.09574{5} | 0.09359{4} | 0.1012{9} | 0.10726{12} | 0.10174{11} | 0.11822{15} | 0.10136{10} | 0.11505{14} | 0.09648{6} | 0.11428{13} | |
ASAE | 0.04603{2} | 0.04811{3} | 0.05374{8} | 0.04434{1} | 0.06565{7} | 0.0267{16} | 0.0424{5} | 0.04964{4} | 0.08063{9} | 0.04583{12} | 0.04342{11} | 0.42444{15} | 0.05812{10} | 0.0862{14} | 0.05103{6} | 0.08934{13} | |
∑Ranks | 28{2} | 34.5{3} | 96{9} | 17{1} | 62{7} | 129{15} | 56{5} | 38{4} | 97{10} | 98{11} | 68{8} | 134{16} | 99{12} | 104.5{14} | 60{6} | 103{13} | |
70 | BIAS(ˆδ) | 0.07296{5} | 0.06964{1} | 0.07359{7} | 0.07124{3} | 0.07313{6} | 0.18982{16} | 0.07141{4} | 0.06974{2} | 0.07362{8} | 0.0874{13} | 0.0797{11} | 0.08887{15} | 0.07713{10} | 0.08667{12} | 0.0757{9} | 0.08745{14} |
BIAS(ˆγ) | 0.02459{1} | 0.02612{5} | 0.03127{11} | 0.02602{4} | 0.0292{8} | 0.0696{16} | 0.02598{3} | 0.02544{2} | 0.02942{9} | 0.03295{12} | 0.02869{7} | 0.04133{15} | 0.03019{10} | 0.03481{14} | 0.02684{6} | 0.03435{13} | |
MSE(ˆδ) | 0.00838{5} | 0.00771{1.5} | 0.00865{7} | 0.00801{3} | 0.0085{6} | 0.0611{16} | 0.00817{4} | 0.00771{1.5} | 0.00869{8} | 0.01225{12} | 0.01009{11} | 0.01295{15} | 0.00958{10} | 0.01229{13} | 0.00905{9} | 0.01253{14} | |
MSE(ˆγ) | 0.00099{1} | 0.00108{4} | 0.00163{11} | 0.00104{3} | 0.00135{8} | 0.00721{16} | 0.00111{5} | 0.00103{2} | 0.00144{9} | 0.00171{12} | 0.00125{7} | 0.00265{15} | 0.00151{10} | 0.00187{14} | 0.00114{6} | 0.0018{13} | |
MRE(ˆδ) | 0.09119{5} | 0.08705{1} | 0.09199{7} | 0.08905{3} | 0.09141{6} | 0.23728{16} | 0.08926{4} | 0.08718{2} | 0.09203{8} | 0.10925{13} | 0.09963{11} | 0.11109{15} | 0.09642{10} | 0.10834{12} | 0.09462{9} | 0.10931{14} | |
MRE(ˆγ) | 0.08196{1} | 0.08707{5} | 0.10422{11} | 0.08674{4} | 0.09732{8} | 0.232{16} | 0.08659{3} | 0.0848{2} | 0.09806{9} | 0.10984{12} | 0.09562{7} | 0.13777{15} | 0.10063{10} | 0.11604{14} | 0.08946{6} | 0.1145{13} | |
Dabs | 0.03066{4} | 0.03051{2} | 0.0325{7} | 0.03188{5} | 0.03278{8} | 0.07892{16} | 0.03045{1} | 0.03058{3} | 0.03232{6} | 0.03856{12} | 0.03556{11} | 0.04174{15} | 0.0333{10} | 0.04018{13} | 0.03322{9} | 0.04055{14} | |
Dmax | 0.04975{3.5} | 0.04967{2} | 0.05402{8} | 0.05105{5} | 0.05348{7} | 0.12657{16} | 0.04963{1} | 0.04975{3.5} | 0.05403{9} | 0.06225{12} | 0.0567{11} | 0.07376{15} | 0.0551{10} | 0.06547{14} | 0.05338{6} | 0.06543{13} | |
ASAE | 0.0162{3.5} | 0.01797{2} | 0.02094{8} | 0.01643{5} | 0.02195{7} | 0.01337{16} | 0.01615{1} | 0.01862{3.5} | 0.02546{9} | 0.01928{12} | 0.01803{11} | 0.09751{15} | 0.02182{10} | 0.02609{14} | 0.01813{6} | 0.02645{13} | |
∑Ranks | 28.5{4} | 26.5{2} | 79{8.5} | 34{5} | 69{7} | 129{15} | 27{3} | 26{1} | 79{8.5} | 107{12} | 82{10} | 136{16} | 91{11} | 120{13} | 67{6} | 123{14} | |
150 | BIAS(ˆδ) | 0.04684{1} | 0.04829{3} | 0.04887{4.5} | 0.04806{2} | 0.04987{7} | 0.17968{16} | 0.04887{4.5} | 0.04975{6} | 0.05064{10} | 0.05928{12} | 0.05586{11} | 0.06197{13} | 0.05002{8} | 0.06334{14} | 0.05037{9} | 0.06384{15} |
BIAS(ˆγ) | 0.01666{1} | 0.01759{4} | 0.02009{10} | 0.01747{2} | 0.02006{9} | 0.06159{16} | 0.01832{5} | 0.0185{6} | 0.02003{8} | 0.0217{12} | 0.0192{7} | 0.02988{15} | 0.02063{11} | 0.02394{13} | 0.01753{3} | 0.02409{14} | |
MSE(ˆδ) | 0.00343{1} | 0.00367{3} | 0.00382{5} | 0.00363{2} | 0.00389{7} | 0.05875{16} | 0.00372{4} | 0.00387{6} | 0.00409{10} | 0.00543{12} | 0.00503{11} | 0.0063{14} | 0.00394{8} | 0.00615{13} | 0.00404{9} | 0.00634{15} | |
MSE(ˆγ) | 0.00045{1} | 0.00048{4} | 0.00064{10} | 0.00046{2} | 0.00062{8.5} | 0.00575{16} | 0.00054{5.5} | 0.00054{5.5} | 0.00062{8.5} | 0.00073{12} | 0.00056{7} | 0.0014{15} | 7e−04{11} | 9e−04{14} | 0.00047{3} | 0.00088{13} | |
MRE(ˆδ) | 0.05855{1} | 0.06037{3} | 0.06108{4.5} | 0.06008{2} | 0.06234{7} | 0.2246{16} | 0.06108{4.5} | 0.06219{6} | 0.0633{10} | 0.0741{12} | 0.06982{11} | 0.07746{13} | 0.06253{8} | 0.07917{14} | 0.06296{9} | 0.0798{15} | |
MRE(ˆγ) | 0.05553{1} | 0.05865{4} | 0.06697{10} | 0.05823{2} | 0.06687{9} | 0.2053{16} | 0.06107{5} | 0.06166{6} | 0.06675{8} | 0.07234{12} | 0.06399{7} | 0.09959{15} | 0.06876{11} | 0.07981{13} | 0.05845{3} | 0.08029{14} | |
Dabs | 0.02014{1} | 0.02095{2} | 0.02155{5} | 0.02132{3} | 0.02237{8} | 0.07261{16} | 0.02134{4} | 0.02169{6} | 0.02256{10} | 0.02615{12} | 0.02437{11} | 0.02995{15} | 0.02244{9} | 0.0284{13} | 0.02199{7} | 0.02844{14} | |
Dmax | 0.03246{1} | 0.03388{2} | 0.03559{7} | 0.03417{3} | 0.03664{8} | 0.11597{16} | 0.03474{4} | 0.03524{5} | 0.0373{10} | 0.04235{12} | 0.0391{11} | 0.05332{15} | 0.03699{9} | 0.04607{13} | 0.03549{6} | 0.04632{14} | |
ASAE | 0.00893{1} | 0.01018{2} | 0.01121{7} | 0.00853{3} | 0.01162{8} | 0.00883{16} | 0.009{4} | 0.00981{5} | 0.01321{10} | 0.01058{12} | 0.00981{11} | 0.03661{15} | 0.01211{9} | 0.01329{13} | 0.00993{6} | 0.01331{14} | |
∑Ranks | 11{1} | 33{3} | 66{7} | 19{2} | 74.5{8} | 128{14.5} | 40.5{4} | 52.5{5} | 87.5{10} | 104{12} | 81{9} | 129{16} | 91{11} | 123{13} | 56{6} | 128{14.5} | |
200 | BIAS(ˆδ) | 0.04341{8} | 0.03894{1} | 0.04242{5} | 0.04287{7} | 0.04155{3} | 0.16861{16} | 0.04223{4} | 0.04141{2} | 0.0428{6} | 0.0525{12} | 0.04708{10} | 0.05372{15} | 0.04369{9} | 0.05334{14} | 0.04767{11} | 0.05288{13} |
BIAS(ˆγ) | 0.01466{1} | 0.0152{3} | 0.01737{9} | 0.01482{2} | 0.01744{10} | 0.05522{16} | 0.01611{5} | 0.01546{4} | 0.01751{11} | 0.019{12} | 0.01669{7} | 0.026{15} | 0.01733{8} | 0.02049{13} | 0.01646{6} | 0.02067{14} | |
MSE(ˆδ) | 0.00301{8} | 0.00239{1} | 0.00281{4} | 0.0029{6} | 0.00279{3} | 0.05237{16} | 0.00282{5} | 0.00268{2} | 0.00291{7} | 0.00451{13} | 0.00352{10} | 0.00452{14} | 0.00307{9} | 0.00453{15} | 0.00356{11} | 0.00449{12} | |
MSE(ˆγ) | 0.00035{2} | 0.00038{3} | 0.00047{8} | 0.00034{1} | 0.00048{9} | 0.00465{16} | 4e−04{5} | 0.00039{4} | 0.00049{10.5} | 0.00056{12} | 0.00044{7} | 0.00111{15} | 0.00049{10.5} | 0.00064{13} | 0.00042{6} | 0.00067{14} | |
MRE(ˆδ) | 0.05427{8} | 0.04867{1} | 0.05302{5} | 0.05358{7} | 0.05194{3} | 0.21077{16} | 0.05278{4} | 0.05176{2} | 0.05349{6} | 0.06562{12} | 0.05885{10} | 0.06715{15} | 0.05462{9} | 0.06668{14} | 0.05959{11} | 0.06611{13} | |
MRE(ˆγ) | 0.04887{1} | 0.05067{3} | 0.05789{9} | 0.04941{2} | 0.05813{10} | 0.18407{16} | 0.05369{5} | 0.05154{4} | 0.05836{11} | 0.06333{12} | 0.05564{7} | 0.08668{15} | 0.05776{8} | 0.0683{13} | 0.05488{6} | 0.0689{14} | |
Dabs | 0.01861{4} | 0.01734{1} | 0.01893{7} | 0.01868{5} | 0.0188{6} | 0.06765{16} | 0.01843{3} | 0.01809{2} | 0.01907{8} | 0.02302{12} | 0.02074{11} | 0.02596{15} | 0.01938{9} | 0.0239{13} | 0.02062{10} | 0.02397{14} | |
Dmax | 0.02971{3} | 0.02823{1} | 0.03122{7} | 0.02995{4} | 0.03106{6} | 0.10653{16} | 0.02997{5} | 0.02958{2} | 0.0319{8} | 0.03705{12} | 0.03334{11} | 0.04661{15} | 0.03204{9} | 0.03867{13} | 0.03292{10} | 0.03921{14} | |
ASAE | 0.00707{3} | 0.00822{1} | 0.00916{7} | 0.00728{4} | 0.00916{6} | 0.00736{16} | 0.00708{5} | 0.00804{2} | 0.01016{8} | 0.00844{12} | 0.00794{11} | 0.02823{15} | 0.0094{9} | 0.01004{13} | 0.00783{10} | 0.0105{14} | |
∑Ranks | 36{3} | 22{1} | 64{7} | 37{4} | 59{6} | 131{15} | 49{5} | 29{2} | 80.5{10} | 105{12} | 78{9} | 134{16} | 82.5{11} | 120{13} | 75{8} | 122{14} | |
300 | BIAS(ˆδ) | 0.03359{1} | 0.03426{4} | 0.03522{5} | 0.03414{3} | 0.0339{2} | 0.15982{16} | 0.03524{6} | 0.03559{7} | 0.03562{8} | 0.04236{12} | 0.03961{11} | 0.04313{13} | 0.03677{9} | 0.04397{14} | 0.03893{10} | 0.04451{15} |
BIAS(ˆγ) | 0.01137{1} | 0.01228 ^{\{ 3 \}} | 0.01405 ^{\{ 9 \}} | 0.01219 ^{\{ 2 \}} | 0.01354 ^{\{ 7 \}} | 0.05028 ^{\{ 16 \}} | 0.01315 ^{\{ 5 \}} | 0.01242 ^{\{ 4 \}} | 0.01412 ^{\{ 10 \}} | 0.01532 ^{\{ 12 \}} | 0.01366 ^{\{ 8 \}} | 0.02121 ^{\{ 15 \}} | 0.01461 ^{\{ 11 \}} | 0.01687 ^{\{ 14 \}} | 0.01337 ^{\{ 6 \}} | 0.01621 ^{\{ 13 \}} | |
MSE( \hat{\delta} ) | 0.00174 ^{\{ 1 \}} | 0.00183 ^{\{ 3 \}} | 0.00192 ^{\{ 5 \}} | 0.00187 ^{\{ 4 \}} | 0.0018 ^{\{ 2 \}} | 0.04814 ^{\{ 16 \}} | 0.00198 ^{\{ 7 \}} | 0.00197 ^{\{ 6 \}} | 0.00199 ^{\{ 8 \}} | 0.00292 ^{\{ 12 \}} | 0.00245 ^{\{ 11 \}} | 0.003 ^{\{ 13 \}} | 0.00214 ^{\{ 9 \}} | 0.00314 ^{\{ 14 \}} | 0.00231 ^{\{ 10 \}} | 0.00318 ^{\{ 15 \}} | |
MSE( \hat{\gamma} ) | 0.00021 ^{\{ 1 \}} | 0.00023 ^{\{ 2.5 \}} | 0.00032 ^{\{ 9.5 \}} | 0.00023 ^{\{ 2.5 \}} | 0.00029 ^{\{ 8 \}} | 0.00397 ^{\{ 16 \}} | 0.00027 ^{\{ 5 \}} | 0.00025 ^{\{ 4 \}} | 0.00032 ^{\{ 9.5 \}} | 0.00036 ^{\{ 12 \}} | 0.00028 ^{\{ 6.5 \}} | 0.00074 ^{\{ 15 \}} | 0.00033 ^{\{ 11 \}} | 0.00045 ^{\{ 14 \}} | 0.00028 ^{\{ 6.5 \}} | 0.00043 ^{\{ 13 \}} | |
MRE( \hat{\delta} ) | 0.04199 ^{\{ 1 \}} | 0.04282 ^{\{ 4 \}} | 0.04403 ^{\{ 5 \}} | 0.04268 ^{\{ 3 \}} | 0.04238 ^{\{ 2 \}} | 0.19977 ^{\{ 16 \}} | 0.04404 ^{\{ 6 \}} | 0.04449 ^{\{ 7 \}} | 0.04453 ^{\{ 8 \}} | 0.05295 ^{\{ 12 \}} | 0.04952 ^{\{ 11 \}} | 0.05391 ^{\{ 13 \}} | 0.04597 ^{\{ 9 \}} | 0.05496 ^{\{ 14 \}} | 0.04866 ^{\{ 10 \}} | 0.05564 ^{\{ 15 \}} | |
MRE( \hat{\gamma} ) | 0.0379 ^{\{ 1 \}} | 0.04092 ^{\{ 3 \}} | 0.04685 ^{\{ 9 \}} | 0.04065 ^{\{ 2 \}} | 0.04512 ^{\{ 7 \}} | 0.16759 ^{\{ 16 \}} | 0.04382 ^{\{ 5 \}} | 0.04141 ^{\{ 4 \}} | 0.04707 ^{\{ 10 \}} | 0.05107 ^{\{ 12 \}} | 0.04554 ^{\{ 8 \}} | 0.0707 ^{\{ 15 \}} | 0.0487 ^{\{ 11 \}} | 0.05622 ^{\{ 14 \}} | 0.04456 ^{\{ 6 \}} | 0.05404 ^{\{ 13 \}} | |
D_{abs} | 0.01428 ^{\{ 1 \}} | 0.01493 ^{\{ 2 \}} | 0.01562 ^{\{ 7 \}} | 0.015 ^{\{ 3 \}} | 0.01523 ^{\{ 4 \}} | 0.06329 ^{\{ 16 \}} | 0.01533 ^{\{ 5 \}} | 0.01542 ^{\{ 6 \}} | 0.01592 ^{\{ 8 \}} | 0.01858 ^{\{ 12 \}} | 0.01711 ^{\{ 11 \}} | 0.02105 ^{\{ 15 \}} | 0.01634 ^{\{ 9 \}} | 0.0196 ^{\{ 13 \}} | 0.01678 ^{\{ 10 \}} | 0.01968 ^{\{ 14 \}} | |
D_{max} | 0.0231 ^{\{ 1 \}} | 0.02413 ^{\{ 3 \}} | 0.02571 ^{\{ 7 \}} | 0.02402 ^{\{ 2 \}} | 0.02497 ^{\{ 6 \}} | 0.09926 ^{\{ 16 \}} | 0.0248 ^{\{ 4 \}} | 0.02495 ^{\{ 5 \}} | 0.02655 ^{\{ 8 \}} | 0.02992 ^{\{ 12 \}} | 0.02754 ^{\{ 11 \}} | 0.03749 ^{\{ 15 \}} | 0.02695 ^{\{ 9 \}} | 0.03206 ^{\{ 14 \}} | 0.02701 ^{\{ 10 \}} | 0.0319 ^{\{ 13 \}} | |
ASAE | 0.00503 ^{\{ 1 \}} | 0.00586 ^{\{ 3 \}} | 0.00626 ^{\{ 7 \}} | 0.0051 ^{\{ 2 \}} | 0.00667 ^{\{ 6 \}} | 0.00572 ^{\{ 16 \}} | 0.00531 ^{\{ 4 \}} | 0.00569 ^{\{ 5 \}} | 0.00725 ^{\{ 8 \}} | 0.00629 ^{\{ 12 \}} | 0.0057 ^{\{ 11 \}} | 0.01823 ^{\{ 15 \}} | 0.00683 ^{\{ 9 \}} | 0.00742 ^{\{ 14 \}} | 0.00555 ^{\{ 10 \}} | 0.00735 ^{\{ 13 \}} | |
\sum Ranks | 9 ^{\{ 1 \}} | 32.5 ^{\{ 3 \}} | 65.5 ^{\{ 7 \}} | 23.5 ^{\{ 2 \}} | 49 ^{\{ 6 \}} | 135 ^{\{ 16 \}} | 46 ^{\{ 4 \}} | 48 ^{\{ 5 \}} | 82.5 ^{\{ 9 \}} | 106 ^{\{ 12 \}} | 83.5 ^{\{ 10 \}} | 130 ^{\{ 15 \}} | 90 ^{\{ 11 \}} | 126 ^{\{ 14 \}} | 72.5 ^{\{ 8 \}} | 125 ^{\{ 13 \}} | |
450 | BIAS( \hat{\delta} ) | 0.02849 ^{\{ 7 \}} | 0.02771 ^{\{ 3 \}} | 0.02723 ^{\{ 2 \}} | 0.0272 ^{\{ 1 \}} | 0.02835 ^{\{ 6 \}} | 0.14718 ^{\{ 16 \}} | 0.02885 ^{\{ 8 \}} | 0.02788 ^{\{ 4 \}} | 0.02901 ^{\{ 9 \}} | 0.03489 ^{\{ 12 \}} | 0.03154 ^{\{ 11 \}} | 0.03737 ^{\{ 15 \}} | 0.02814 ^{\{ 5 \}} | 0.03623 ^{\{ 13 \}} | 0.03103 ^{\{ 10 \}} | 0.037 ^{\{ 14 \}} |
BIAS( \hat{\gamma} ) | 0.00965 ^{\{ 2 \}} | 0.00997 ^{\{ 3 \}} | 0.01198 ^{\{ 11 \}} | 0.0093 ^{\{ 1 \}} | 0.01114 ^{\{ 9 \}} | 0.04448 ^{\{ 16 \}} | 0.01054 ^{\{ 6 \}} | 0.01018 ^{\{ 4 \}} | 0.01105 ^{\{ 8 \}} | 0.01207 ^{\{ 12 \}} | 0.01051 ^{\{ 5 \}} | 0.01806 ^{\{ 15 \}} | 0.01153 ^{\{ 10 \}} | 0.01314 ^{\{ 13 \}} | 0.01081 ^{\{ 7 \}} | 0.01315 ^{\{ 14 \}} | |
MSE( \hat{\delta} ) | 0.00125 ^{\{ 5.5 \}} | 0.00119 ^{\{ 2.5 \}} | 0.00119 ^{\{ 2.5 \}} | 0.00117 ^{\{ 1 \}} | 0.00127 ^{\{ 7 \}} | 0.04381 ^{\{ 16 \}} | 0.00128 ^{\{ 8 \}} | 0.00125 ^{\{ 5.5 \}} | 0.00132 ^{\{ 9 \}} | 0.00193 ^{\{ 12 \}} | 0.0016 ^{\{ 11 \}} | 0.0022 ^{\{ 14.5 \}} | 0.00123 ^{\{ 4 \}} | 0.00207 ^{\{ 13 \}} | 0.00151 ^{\{ 10 \}} | 0.0022 ^{\{ 14.5 \}} | |
MSE( \hat{\gamma} ) | 0.00015 ^{\{ 2 \}} | 0.00016 ^{\{ 3.5 \}} | 0.00022 ^{\{ 10.5 \}} | 0.00013 ^{\{ 1 \}} | 0.00019 ^{\{ 8.5 \}} | 0.00326 ^{\{ 16 \}} | 0.00018 ^{\{ 6 \}} | 0.00016 ^{\{ 3.5 \}} | 0.00019 ^{\{ 8.5 \}} | 0.00023 ^{\{ 12 \}} | 0.00018 ^{\{ 6 \}} | 0.00052 ^{\{ 15 \}} | 0.00022 ^{\{ 10.5 \}} | 0.00027 ^{\{ 13.5 \}} | 0.00018 ^{\{ 6 \}} | 0.00027 ^{\{ 13.5 \}} | |
MRE( \hat{\delta} ) | 0.03561 ^{\{ 7 \}} | 0.03463 ^{\{ 3 \}} | 0.03404 ^{\{ 2 \}} | 0.034 ^{\{ 1 \}} | 0.03543 ^{\{ 6 \}} | 0.18398 ^{\{ 16 \}} | 0.03606 ^{\{ 8 \}} | 0.03485 ^{\{ 4 \}} | 0.03627 ^{\{ 9 \}} | 0.04361 ^{\{ 12 \}} | 0.03943 ^{\{ 11 \}} | 0.04671 ^{\{ 15 \}} | 0.03518 ^{\{ 5 \}} | 0.04529 ^{\{ 13 \}} | 0.03879 ^{\{ 10 \}} | 0.04626 ^{\{ 14 \}} | |
MRE( \hat{\gamma} ) | 0.03216 ^{\{ 2 \}} | 0.03322 ^{\{ 3 \}} | 0.03995 ^{\{ 11 \}} | 0.03099 ^{\{ 1 \}} | 0.03715 ^{\{ 9 \}} | 0.14827 ^{\{ 16 \}} | 0.03512 ^{\{ 6 \}} | 0.03395 ^{\{ 4 \}} | 0.03684 ^{\{ 8 \}} | 0.04024 ^{\{ 12 \}} | 0.03502 ^{\{ 5 \}} | 0.0602 ^{\{ 15 \}} | 0.03843 ^{\{ 10 \}} | 0.04381 ^{\{ 13 \}} | 0.03602 ^{\{ 7 \}} | 0.04383 ^{\{ 14 \}} | |
D_{abs} | 0.01217 ^{\{ 3.5 \}} | 0.01203 ^{\{ 2 \}} | 0.01254 ^{\{ 5.5 \}} | 0.0118 ^{\{ 1 \}} | 0.01259 ^{\{ 7 \}} | 0.05777 ^{\{ 16 \}} | 0.01254 ^{\{ 5.5 \}} | 0.01217 ^{\{ 3.5 \}} | 0.01282 ^{\{ 9 \}} | 0.01499 ^{\{ 12 \}} | 0.01365 ^{\{ 11 \}} | 0.0179 ^{\{ 15 \}} | 0.01262 ^{\{ 8 \}} | 0.01585 ^{\{ 13 \}} | 0.01354 ^{\{ 10 \}} | 0.01633 ^{\{ 14 \}} | |
D_{max} | 0.01954 ^{\{ 2 \}} | 0.01966 ^{\{ 3 \}} | 0.02084 ^{\{ 7 \}} | 0.01902 ^{\{ 1 \}} | 0.0206 ^{\{ 6 \}} | 0.09011 ^{\{ 16 \}} | 0.02035 ^{\{ 5 \}} | 0.0197 ^{\{ 4 \}} | 0.02134 ^{\{ 9 \}} | 0.02413 ^{\{ 12 \}} | 0.02191 ^{\{ 11 \}} | 0.03217 ^{\{ 15 \}} | 0.02103 ^{\{ 8 \}} | 0.02567 ^{\{ 13 \}} | 0.02172 ^{\{ 10 \}} | 0.02642 ^{\{ 14 \}} | |
ASAE | 0.00367 ^{\{ 2 \}} | 0.00414 ^{\{ 3 \}} | 0.00475 ^{\{ 7 \}} | 0.00367 ^{\{ 1 \}} | 0.0047 ^{\{ 6 \}} | 0.00441 ^{\{ 16 \}} | 0.00389 ^{\{ 5 \}} | 0.00421 ^{\{ 4 \}} | 0.00514 ^{\{ 9 \}} | 0.00441 ^{\{ 12 \}} | 0.00441 ^{\{ 11 \}} | 0.01141 ^{\{ 15 \}} | 0.00498 ^{\{ 8 \}} | 0.00517 ^{\{ 13 \}} | 0.0041 ^{\{ 10 \}} | 0.00505 ^{\{ 14 \}} | |
\sum Ranks | 33 ^{\{ 3 \}} | 28 ^{\{ 2 \}} | 62.5 ^{\{ 6 \}} | 9 ^{\{ 1 \}} | 68.5 ^{\{ 7 \}} | 137 ^{\{ 16 \}} | 55.5 ^{\{ 5 \}} | 38.5 ^{\{ 4 \}} | 83.5 ^{\{ 11 \}} | 104 ^{\{ 12 \}} | 78 ^{\{ 10 \}} | 135.5 ^{\{ 15 \}} | 72.5 ^{\{ 8 \}} | 119.5 ^{\{ 13 \}} | 74 ^{\{ 9 \}} | 125 ^{\{ 14 \}} |
n | Est. | MLE | ADE | CVME | MPSE | OLSE | PCE | RTADE | WLSE | LTADE | MSADE | MSALDE | ADSOE | KE | MSSD | MSSLD | MSLND |
20 | BIAS( \hat{\delta} ) | 0.09101 ^{\{ 2 \}} | 0.09313 ^{\{ 5 \}} | 0.09815 ^{\{ 11 \}} | 0.09237 ^{\{ 4 \}} | 0.09432 ^{\{ 8 \}} | 0.09341 ^{\{ 6 \}} | 0.0981 ^{\{ 10 \}} | 0.09231 ^{\{ 3 \}} | 0.09406 ^{\{ 7 \}} | 0.10135 ^{\{ 13 \}} | 0.10156 ^{\{ 14 \}} | 0.09488 ^{\{ 9 \}} | 0.0905 ^{\{ 1 \}} | 0.10724 ^{\{ 16 \}} | 0.1011 ^{\{ 12 \}} | 0.10679 ^{\{ 15 \}} |
BIAS( \hat{\gamma} ) | 0.24286 ^{\{ 5 \}} | 0.23531 ^{\{ 2 \}} | 0.29982 ^{\{ 12 \}} | 0.24475 ^{\{ 8 \}} | 0.2741 ^{\{ 11 \}} | 0.24374 ^{\{ 6 \}} | 0.26941 ^{\{ 10 \}} | 0.26062 ^{\{ 9 \}} | 0.30261 ^{\{ 13 \}} | 0.24144 ^{\{ 4 \}} | 0.2443 ^{\{ 7 \}} | 0.34346 ^{\{ 16 \}} | 0.19995 ^{\{ 1 \}} | 0.31841 ^{\{ 14 \}} | 0.23577 ^{\{ 3 \}} | 0.32015 ^{\{ 15 \}} | |
MSE( \hat{\delta} ) | 0.01264 ^{\{ 1 \}} | 0.01384 ^{\{ 7 \}} | 0.01474 ^{\{ 10 \}} | 0.01362 ^{\{ 5 \}} | 0.01402 ^{\{ 8 \}} | 0.01346 ^{\{ 3 \}} | 0.01544 ^{\{ 11 \}} | 0.0135 ^{\{ 4 \}} | 0.01369 ^{\{ 6 \}} | 0.01643 ^{\{ 13 \}} | 0.0167 ^{\{ 14 \}} | 0.01406 ^{\{ 9 \}} | 0.01276 ^{\{ 2 \}} | 0.01786 ^{\{ 15 \}} | 0.01573 ^{\{ 12 \}} | 0.01802 ^{\{ 16 \}} | |
MSE( \hat{\gamma} ) | 0.10211 ^{\{ 8 \}} | 0.09051 ^{\{ 3 \}} | 0.15669 ^{\{ 14 \}} | 0.09054 ^{\{ 4 \}} | 0.12578 ^{\{ 10 \}} | 0.09169 ^{\{ 5 \}} | 0.1259 ^{\{ 11 \}} | 0.12059 ^{\{ 9 \}} | 0.15608 ^{\{ 13 \}} | 0.10091 ^{\{ 7 \}} | 0.09303 ^{\{ 6 \}} | 0.19169 ^{\{ 16 \}} | 0.07721 ^{\{ 1 \}} | 0.15596 ^{\{ 12 \}} | 0.0862 ^{\{ 2 \}} | 0.15691 ^{\{ 15 \}} | |
MRE( \hat{\delta} ) | 0.22752 ^{\{ 2 \}} | 0.23283 ^{\{ 5 \}} | 0.24537 ^{\{ 11 \}} | 0.23092 ^{\{ 4 \}} | 0.2358 ^{\{ 8 \}} | 0.23353 ^{\{ 6 \}} | 0.24524 ^{\{ 10 \}} | 0.23077 ^{\{ 3 \}} | 0.23515 ^{\{ 7 \}} | 0.25338 ^{\{ 13 \}} | 0.2539 ^{\{ 14 \}} | 0.23721 ^{\{ 9 \}} | 0.22626 ^{\{ 1 \}} | 0.2681 ^{\{ 16 \}} | 0.25275 ^{\{ 12 \}} | 0.26697 ^{\{ 15 \}} | |
MRE( \hat{\gamma} ) | 0.1619 ^{\{ 5 \}} | 0.15687 ^{\{ 2 \}} | 0.19988 ^{\{ 12 \}} | 0.16317 ^{\{ 8 \}} | 0.18273 ^{\{ 11 \}} | 0.16249 ^{\{ 6 \}} | 0.17961 ^{\{ 10 \}} | 0.17375 ^{\{ 9 \}} | 0.20174 ^{\{ 13 \}} | 0.16096 ^{\{ 4 \}} | 0.16286 ^{\{ 7 \}} | 0.22897 ^{\{ 16 \}} | 0.1333 ^{\{ 1 \}} | 0.21227 ^{\{ 14 \}} | 0.15718 ^{\{ 3 \}} | 0.21343 ^{\{ 15 \}} | |
D_{abs} | 0.05406 ^{\{ 1 \}} | 0.05653 ^{\{ 2 \}} | 0.059 ^{\{ 7 \}} | 0.05707 ^{\{ 3 \}} | 0.0592 ^{\{ 8 \}} | 0.05783 ^{\{ 4 \}} | 0.05875 ^{\{ 6 \}} | 0.0581 ^{\{ 5 \}} | 0.06031 ^{\{ 10 \}} | 0.06505 ^{\{ 13 \}} | 0.06303 ^{\{ 12 \}} | 0.06891 ^{\{ 14 \}} | 0.05967 ^{\{ 9 \}} | 0.07115 ^{\{ 16 \}} | 0.06078 ^{\{ 11 \}} | 0.07068 ^{\{ 15 \}} | |
D_{max} | 0.08883 ^{\{ 1 \}} | 0.09041 ^{\{ 3 \}} | 0.09875 ^{\{ 10 \}} | 0.09 ^{\{ 2 \}} | 0.09621 ^{\{ 9 \}} | 0.09085 ^{\{ 4 \}} | 0.09549 ^{\{ 7 \}} | 0.09422 ^{\{ 5 \}} | 0.10075 ^{\{ 12 \}} | 0.10336 ^{\{ 13 \}} | 0.09961 ^{\{ 11 \}} | 0.1194 ^{\{ 16 \}} | 0.09486 ^{\{ 6 \}} | 0.11513 ^{\{ 15 \}} | 0.096 ^{\{ 8 \}} | 0.11422 ^{\{ 14 \}} | |
ASAE | 0.04552 ^{\{ 1 \}} | 0.04129 ^{\{ 3 \}} | 0.04352 ^{\{ 10 \}} | 0.0421 ^{\{ 2 \}} | 0.04259 ^{\{ 9 \}} | 0.04025 ^{\{ 4 \}} | 0.04201 ^{\{ 7 \}} | 0.04014 ^{\{ 5 \}} | 0.04631 ^{\{ 12 \}} | 0.05495 ^{\{ 13 \}} | 0.05154 ^{\{ 11 \}} | 0.06866 ^{\{ 16 \}} | 0.04793 ^{\{ 6 \}} | 0.06063 ^{\{ 15 \}} | 0.049 ^{\{ 8 \}} | 0.06158 ^{\{ 14 \}} | |
\sum Ranks | 33 ^{\{ 3 \}} | 32 ^{\{ 1.5 \}} | 94 ^{\{ 12 \}} | 43 ^{\{ 5 \}} | 79 ^{\{ 8.5 \}} | 42 ^{\{ 4 \}} | 79 ^{\{ 8.5 \}} | 48 ^{\{ 6 \}} | 90 ^{\{ 10 \}} | 93 ^{\{ 11 \}} | 97 ^{\{ 13 \}} | 121 ^{\{ 14 \}} | 32 ^{\{ 1.5 \}} | 132 ^{\{ 15 \}} | 74 ^{\{ 7 \}} | 135 ^{\{ 16 \}} | |
70 | BIAS( \hat{\delta} ) | 0.0481 ^{\{ 2 \}} | 0.05165 ^{\{ 5 \}} | 0.05356 ^{\{ 11 \}} | 0.05241 ^{\{ 9 \}} | 0.05152 ^{\{ 4 \}} | 0.05205 ^{\{ 6 \}} | 0.05239 ^{\{ 8 \}} | 0.05128 ^{\{ 3 \}} | 0.05271 ^{\{ 10 \}} | 0.06183 ^{\{ 14 \}} | 0.05814 ^{\{ 13 \}} | 0.05235 ^{\{ 7 \}} | 0.04805 ^{\{ 1 \}} | 0.06292 ^{\{ 15 \}} | 0.05444 ^{\{ 12 \}} | 0.06617 ^{\{ 16 \}} |
BIAS( \hat{\gamma} ) | 0.11542 ^{\{ 1 \}} | 0.1306 ^{\{ 7 \}} | 0.15145 ^{\{ 12 \}} | 0.13011 ^{\{ 5 \}} | 0.1467 ^{\{ 11 \}} | 0.13022 ^{\{ 6 \}} | 0.13686 ^{\{ 8 \}} | 0.12861 ^{\{ 4 \}} | 0.15339 ^{\{ 13 \}} | 0.13907 ^{\{ 10 \}} | 0.13901 ^{\{ 9 \}} | 0.21446 ^{\{ 16 \}} | 0.11885 ^{\{ 2 \}} | 0.17721 ^{\{ 14 \}} | 0.12857 ^{\{ 3 \}} | 0.17739 ^{\{ 15 \}} | |
MSE( \hat{\delta} ) | 0.00371 ^{\{ 1 \}} | 0.00425 ^{\{ 6 \}} | 0.00459 ^{\{ 11 \}} | 0.0043 ^{\{ 8 \}} | 0.00415 ^{\{ 4 \}} | 0.00444 ^{\{ 10 \}} | 0.00423 ^{\{ 5 \}} | 0.0041 ^{\{ 3 \}} | 0.00442 ^{\{ 9 \}} | 0.00627 ^{\{ 14 \}} | 0.00532 ^{\{ 13 \}} | 0.00426 ^{\{ 7 \}} | 0.00378 ^{\{ 2 \}} | 0.00636 ^{\{ 15 \}} | 0.00471 ^{\{ 12 \}} | 0.00704 ^{\{ 16 \}} | |
MSE( \hat{\gamma} ) | 0.02207 ^{\{ 1 \}} | 0.02746 ^{\{ 7 \}} | 0.03672 ^{\{ 12 \}} | 0.02552 ^{\{ 3 \}} | 0.03476 ^{\{ 11 \}} | 0.02672 ^{\{ 6 \}} | 0.02954 ^{\{ 8 \}} | 0.02659 ^{\{ 5 \}} | 0.03801 ^{\{ 13 \}} | 0.03324 ^{\{ 10 \}} | 0.02999 ^{\{ 9 \}} | 0.07196 ^{\{ 16 \}} | 0.02561 ^{\{ 4 \}} | 0.04841 ^{\{ 14 \}} | 0.02515 ^{\{ 2 \}} | 0.04931 ^{\{ 15 \}} | |
MRE( \hat{\delta} ) | 0.12025 ^{\{ 2 \}} | 0.12913 ^{\{ 5 \}} | 0.13391 ^{\{ 11 \}} | 0.13103 ^{\{ 9 \}} | 0.1288 ^{\{ 4 \}} | 0.13013 ^{\{ 6 \}} | 0.13097 ^{\{ 8 \}} | 0.1282 ^{\{ 3 \}} | 0.13177 ^{\{ 10 \}} | 0.15459 ^{\{ 14 \}} | 0.14535 ^{\{ 13 \}} | 0.13087 ^{\{ 7 \}} | 0.12012 ^{\{ 1 \}} | 0.1573 ^{\{ 15 \}} | 0.1361 ^{\{ 12 \}} | 0.16544 ^{\{ 16 \}} | |
MRE( \hat{\gamma} ) | 0.07695 ^{\{ 1 \}} | 0.08707 ^{\{ 7 \}} | 0.10097 ^{\{ 12 \}} | 0.08674 ^{\{ 5 \}} | 0.0978 ^{\{ 11 \}} | 0.08681 ^{\{ 6 \}} | 0.09124 ^{\{ 8 \}} | 0.08574 ^{\{ 4 \}} | 0.10226 ^{\{ 13 \}} | 0.09271 ^{\{ 10 \}} | 0.09267 ^{\{ 9 \}} | 0.14297 ^{\{ 16 \}} | 0.07923 ^{\{ 2 \}} | 0.11814 ^{\{ 14 \}} | 0.08571 ^{\{ 3 \}} | 0.11826 ^{\{ 15 \}} | |
D_{abs} | 0.029 ^{\{ 1 \}} | 0.03098 ^{\{ 3 \}} | 0.03229 ^{\{ 9 \}} | 0.03129 ^{\{ 5 \}} | 0.03173 ^{\{ 8 \}} | 0.03149 ^{\{ 6 \}} | 0.03107 ^{\{ 4 \}} | 0.03048 ^{\{ 2 \}} | 0.03321 ^{\{ 11 \}} | 0.03821 ^{\{ 13 \}} | 0.03553 ^{\{ 12 \}} | 0.04234 ^{\{ 16 \}} | 0.03159 ^{\{ 7 \}} | 0.03854 ^{\{ 14 \}} | 0.03314 ^{\{ 10 \}} | 0.04108 ^{\{ 15 \}} | |
D_{max} | 0.04673 ^{\{ 1 \}} | 0.05004 ^{\{ 3 \}} | 0.05334 ^{\{ 10 \}} | 0.05006 ^{\{ 4 \}} | 0.05236 ^{\{ 8 \}} | 0.05032 ^{\{ 5 \}} | 0.05057 ^{\{ 6 \}} | 0.04942 ^{\{ 2 \}} | 0.05539 ^{\{ 11 \}} | 0.06103 ^{\{ 13 \}} | 0.05694 ^{\{ 12 \}} | 0.07498 ^{\{ 16 \}} | 0.05124 ^{\{ 7 \}} | 0.06295 ^{\{ 14 \}} | 0.0533 ^{\{ 9 \}} | 0.06672 ^{\{ 15 \}} | |
ASAE | 0.02027 ^{\{ 1 \}} | 0.0192 ^{\{ 3 \}} | 0.0198 ^{\{ 10 \}} | 0.02014 ^{\{ 4 \}} | 0.01985 ^{\{ 8 \}} | 0.01955 ^{\{ 5 \}} | 0.01938 ^{\{ 6 \}} | 0.01906 ^{\{ 2 \}} | 0.02191 ^{\{ 11 \}} | 0.02726 ^{\{ 13 \}} | 0.02532 ^{\{ 12 \}} | 0.03829 ^{\{ 16 \}} | 0.02211 ^{\{ 7 \}} | 0.02947 ^{\{ 14 \}} | 0.0234 ^{\{ 9 \}} | 0.03035 ^{\{ 15 \}} | |
\sum Ranks | 18 ^{\{ 1 \}} | 45 ^{\{ 4 \}} | 93 ^{\{ 10 \}} | 55 ^{\{ 5.5 \}} | 67 ^{\{ 8 \}} | 55 ^{\{ 5.5 \}} | 58 ^{\{ 7 \}} | 27 ^{\{ 2 \}} | 99 ^{\{ 11 \}} | 111 ^{\{ 13 \}} | 102 ^{\{ 12 \}} | 117 ^{\{ 14 \}} | 36 ^{\{ 3 \}} | 129 ^{\{ 15 \}} | 74 ^{\{ 9 \}} | 138 ^{\{ 16 \}} | |
150 | BIAS( \hat{\delta} ) | 0.03328 ^{\{ 1 \}} | 0.0353 ^{\{ 6 \}} | 0.0374 ^{\{ 11 \}} | 0.03498 ^{\{ 4 \}} | 0.03719 ^{\{ 10 \}} | 0.03551 ^{\{ 7 \}} | 0.03615 ^{\{ 9 \}} | 0.0356 ^{\{ 8 \}} | 0.03506 ^{\{ 5 \}} | 0.04183 ^{\{ 14 \}} | 0.03989 ^{\{ 13 \}} | 0.0349 ^{\{ 3 \}} | 0.03389 ^{\{ 2 \}} | 0.04561 ^{\{ 15 \}} | 0.03987 ^{\{ 12 \}} | 0.04643 ^{\{ 16 \}} |
BIAS( \hat{\gamma} ) | 0.08222 ^{\{ 2 \}} | 0.08757 ^{\{ 5 \}} | 0.10185 ^{\{ 12 \}} | 0.0854 ^{\{ 4 \}} | 0.09794 ^{\{ 10 \}} | 0.08475 ^{\{ 3 \}} | 0.09216 ^{\{ 7 \}} | 0.08967 ^{\{ 6 \}} | 0.10362 ^{\{ 13 \}} | 0.09947 ^{\{ 11 \}} | 0.09497 ^{\{ 9 \}} | 0.14629 ^{\{ 16 \}} | 0.08125 ^{\{ 1 \}} | 0.11894 ^{\{ 15 \}} | 0.09383 ^{\{ 8 \}} | 0.11833 ^{\{ 14 \}} | |
MSE( \hat{\delta} ) | 0.00173 ^{\{ 1 \}} | 0.00199 ^{\{ 8 \}} | 0.00217 ^{\{ 11 \}} | 0.00191 ^{\{ 3.5 \}} | 0.00212 ^{\{ 10 \}} | 0.00195 ^{\{ 6 \}} | 0.00203 ^{\{ 9 \}} | 0.00198 ^{\{ 7 \}} | 0.00194 ^{\{ 5 \}} | 0.00287 ^{\{ 14 \}} | 0.00253 ^{\{ 13 \}} | 0.00191 ^{\{ 3.5 \}} | 0.00185 ^{\{ 2 \}} | 0.00328 ^{\{ 15 \}} | 0.0025 ^{\{ 12 \}} | 0.0034 ^{\{ 16 \}} | |
MSE( \hat{\gamma} ) | 0.01055 ^{\{ 1 \}} | 0.01222 ^{\{ 5 \}} | 0.01657 ^{\{ 11 \}} | 0.01115 ^{\{ 3 \}} | 0.01489 ^{\{ 10 \}} | 0.0111 ^{\{ 2 \}} | 0.01324 ^{\{ 7 \}} | 0.01255 ^{\{ 6 \}} | 0.01754 ^{\{ 13 \}} | 0.01697 ^{\{ 12 \}} | 0.01365 ^{\{ 8 \}} | 0.03483 ^{\{ 16 \}} | 0.01219 ^{\{ 4 \}} | 0.02212 ^{\{ 15 \}} | 0.0138 ^{\{ 9 \}} | 0.02208 ^{\{ 14 \}} | |
MRE( \hat{\delta} ) | 0.0832 ^{\{ 1 \}} | 0.08825 ^{\{ 6 \}} | 0.09351 ^{\{ 11 \}} | 0.08745 ^{\{ 4 \}} | 0.09298 ^{\{ 10 \}} | 0.08878 ^{\{ 7 \}} | 0.09037 ^{\{ 9 \}} | 0.08899 ^{\{ 8 \}} | 0.08765 ^{\{ 5 \}} | 0.10457 ^{\{ 14 \}} | 0.09974 ^{\{ 13 \}} | 0.08726 ^{\{ 3 \}} | 0.08473 ^{\{ 2 \}} | 0.11402 ^{\{ 15 \}} | 0.09968 ^{\{ 12 \}} | 0.11607 ^{\{ 16 \}} | |
MRE( \hat{\gamma} ) | 0.05482 ^{\{ 2 \}} | 0.05838 ^{\{ 5 \}} | 0.0679 ^{\{ 12 \}} | 0.05693 ^{\{ 4 \}} | 0.0653 ^{\{ 10 \}} | 0.0565 ^{\{ 3 \}} | 0.06144 ^{\{ 7 \}} | 0.05978 ^{\{ 6 \}} | 0.06908 ^{\{ 13 \}} | 0.06631 ^{\{ 11 \}} | 0.06331 ^{\{ 9 \}} | 0.09753 ^{\{ 16 \}} | 0.05417 ^{\{ 1 \}} | 0.07929 ^{\{ 15 \}} | 0.06255 ^{\{ 8 \}} | 0.07889 ^{\{ 14 \}} | |
D_{abs} | 0.02013 ^{\{ 1 \}} | 0.0215 ^{\{ 5 \}} | 0.02248 ^{\{ 9 \}} | 0.02108 ^{\{ 2 \}} | 0.02243 ^{\{ 8 \}} | 0.02148 ^{\{ 4 \}} | 0.02155 ^{\{ 6 \}} | 0.02144 ^{\{ 3 \}} | 0.02261 ^{\{ 10 \}} | 0.02502 ^{\{ 13 \}} | 0.02394 ^{\{ 12 \}} | 0.02897 ^{\{ 16 \}} | 0.022 ^{\{ 7 \}} | 0.02727 ^{\{ 14 \}} | 0.02349 ^{\{ 11 \}} | 0.02805 ^{\{ 15 \}} | |
D_{max} | 0.03262 ^{\{ 1 \}} | 0.03483 ^{\{ 4 \}} | 0.03697 ^{\{ 9 \}} | 0.03385 ^{\{ 2 \}} | 0.03648 ^{\{ 8 \}} | 0.03435 ^{\{ 3 \}} | 0.035 ^{\{ 6 \}} | 0.03487 ^{\{ 5 \}} | 0.03781 ^{\{ 11 \}} | 0.04037 ^{\{ 13 \}} | 0.03849 ^{\{ 12 \}} | 0.05152 ^{\{ 16 \}} | 0.0357 ^{\{ 7 \}} | 0.0443 ^{\{ 14 \}} | 0.03754 ^{\{ 10 \}} | 0.04542 ^{\{ 15 \}} | |
ASAE | 0.01281 ^{\{ 1 \}} | 0.01235 ^{\{ 4 \}} | 0.01271 ^{\{ 9 \}} | 0.01282 ^{\{ 2 \}} | 0.01267 ^{\{ 8 \}} | 0.01243 ^{\{ 3 \}} | 0.01232 ^{\{ 6 \}} | 0.01213 ^{\{ 5 \}} | 0.01387 ^{\{ 11 \}} | 0.01723 ^{\{ 13 \}} | 0.01581 ^{\{ 12 \}} | 0.02473 ^{\{ 16 \}} | 0.01382 ^{\{ 7 \}} | 0.01923 ^{\{ 14 \}} | 0.01498 ^{\{ 10 \}} | 0.01922 ^{\{ 15 \}} | |
\sum Ranks | 17 ^{\{ 1 \}} | 47 ^{\{ 5 \}} | 92 ^{\{ 10 \}} | 34.5 ^{\{ 2 \}} | 81 ^{\{ 8 \}} | 39 ^{\{ 4 \}} | 62 ^{\{ 7 \}} | 50 ^{\{ 6 \}} | 85 ^{\{ 9 \}} | 115 ^{\{ 14 \}} | 101 ^{\{ 12 \}} | 105.5 ^{\{ 13 \}} | 35 ^{\{ 3 \}} | 133 ^{\{ 15 \}} | 93 ^{\{ 11 \}} | 134 ^{\{ 16 \}} | |
200 | BIAS( \hat{\delta} ) | 0.03004 ^{\{ 4 \}} | 0.03076 ^{\{ 7 \}} | 0.03085 ^{\{ 8 \}} | 0.03037 ^{\{ 5.5 \}} | 0.03139 ^{\{ 10 \}} | 0.03094 ^{\{ 9 \}} | 0.03282 ^{\{ 11 \}} | 0.03037 ^{\{ 5.5 \}} | 0.02938 ^{\{ 2 \}} | 0.03559 ^{\{ 14 \}} | 0.03323 ^{\{ 12 \}} | 0.02991 ^{\{ 3 \}} | 0.02875 ^{\{ 1 \}} | 0.03858 ^{\{ 15 \}} | 0.03377 ^{\{ 13 \}} | 0.04069 ^{\{ 16 \}} |
BIAS( \hat{\gamma} ) | 0.07131 ^{\{ 1 \}} | 0.07797 ^{\{ 6 \}} | 0.08532 ^{\{ 13 \}} | 0.07373 ^{\{ 2 \}} | 0.08203 ^{\{ 9 \}} | 0.07759 ^{\{ 5 \}} | 0.08374 ^{\{ 10 \}} | 0.07738 ^{\{ 4 \}} | 0.08435 ^{\{ 12 \}} | 0.08421 ^{\{ 11 \}} | 0.08068 ^{\{ 7 \}} | 0.13489 ^{\{ 16 \}} | 0.07469 ^{\{ 3 \}} | 0.10571 ^{\{ 15 \}} | 0.08089 ^{\{ 8 \}} | 0.1039 ^{\{ 14 \}} | |
MSE( \hat{\delta} ) | 0.00142 ^{\{ 3 \}} | 0.00152 ^{\{ 8 \}} | 0.00157 ^{\{ 10 \}} | 0.00146 ^{\{ 6 \}} | 0.00154 ^{\{ 9 \}} | 0.00149 ^{\{ 7 \}} | 0.00167 ^{\{ 11 \}} | 0.00144 ^{\{ 4 \}} | 0.00136 ^{\{ 2 \}} | 0.00206 ^{\{ 14 \}} | 0.00183 ^{\{ 12 \}} | 0.00145 ^{\{ 5 \}} | 0.00134 ^{\{ 1 \}} | 0.00244 ^{\{ 15 \}} | 0.00186 ^{\{ 13 \}} | 0.00262 ^{\{ 16 \}} | |
MSE( \hat{\gamma} ) | 0.00803 ^{\{ 1 \}} | 0.00955 ^{\{ 5 \}} | 0.01194 ^{\{ 13 \}} | 0.00849 ^{\{ 2 \}} | 0.01055 ^{\{ 9 \}} | 0.0093 ^{\{ 3 \}} | 0.01118 ^{\{ 10 \}} | 0.0094 ^{\{ 4 \}} | 0.01153 ^{\{ 11 \}} | 0.01156 ^{\{ 12 \}} | 0.01033 ^{\{ 8 \}} | 0.0292 ^{\{ 16 \}} | 0.00975 ^{\{ 6 \}} | 0.01744 ^{\{ 15 \}} | 0.01012 ^{\{ 7 \}} | 0.0172 ^{\{ 14 \}} | |
MRE( \hat{\delta} ) | 0.07511 ^{\{ 4 \}} | 0.0769 ^{\{ 7 \}} | 0.07713 ^{\{ 8 \}} | 0.07591 ^{\{ 5 \}} | 0.07847 ^{\{ 10 \}} | 0.07735 ^{\{ 9 \}} | 0.08205 ^{\{ 11 \}} | 0.07593 ^{\{ 6 \}} | 0.07344 ^{\{ 2 \}} | 0.08898 ^{\{ 14 \}} | 0.08307 ^{\{ 12 \}} | 0.07478 ^{\{ 3 \}} | 0.07188 ^{\{ 1 \}} | 0.09646 ^{\{ 15 \}} | 0.08444 ^{\{ 13 \}} | 0.10173 ^{\{ 16 \}} | |
MRE( \hat{\gamma} ) | 0.04754 ^{\{ 1 \}} | 0.05198 ^{\{ 6 \}} | 0.05688 ^{\{ 13 \}} | 0.04915 ^{\{ 2 \}} | 0.05469 ^{\{ 9 \}} | 0.05173 ^{\{ 5 \}} | 0.05583 ^{\{ 10 \}} | 0.05159 ^{\{ 4 \}} | 0.05623 ^{\{ 12 \}} | 0.05614 ^{\{ 11 \}} | 0.05379 ^{\{ 7 \}} | 0.08993 ^{\{ 16 \}} | 0.04979 ^{\{ 3 \}} | 0.07047 ^{\{ 15 \}} | 0.05393 ^{\{ 8 \}} | 0.06927 ^{\{ 14 \}} | |
D_{abs} | 0.01811 ^{\{ 3 \}} | 0.01815 ^{\{ 4 \}} | 0.01899 ^{\{ 8 \}} | 0.018 ^{\{ 1 \}} | 0.01939 ^{\{ 10 \}} | 0.01845 ^{\{ 6 \}} | 0.01901 ^{\{ 9 \}} | 0.01828 ^{\{ 5 \}} | 0.01873 ^{\{ 7 \}} | 0.02142 ^{\{ 13 \}} | 0.02013 ^{\{ 11 \}} | 0.02676 ^{\{ 16 \}} | 0.01806 ^{\{ 2 \}} | 0.0234 ^{\{ 14 \}} | 0.0203 ^{\{ 12 \}} | 0.02478 ^{\{ 15 \}} | |
D_{max} | 0.02912 ^{\{ 2 \}} | 0.02943 ^{\{ 3 \}} | 0.03145 ^{\{ 9 \}} | 0.02902 ^{\{ 1 \}} | 0.03166 ^{\{ 10 \}} | 0.02977 ^{\{ 6 \}} | 0.03086 ^{\{ 7 \}} | 0.02976 ^{\{ 5 \}} | 0.03113 ^{\{ 8 \}} | 0.03446 ^{\{ 13 \}} | 0.03244 ^{\{ 11 \}} | 0.04814 ^{\{ 16 \}} | 0.02955 ^{\{ 4 \}} | 0.03829 ^{\{ 14 \}} | 0.03269 ^{\{ 12 \}} | 0.04011 ^{\{ 15 \}} | |
ASAE | 0.01084 ^{\{ 2 \}} | 0.01041 ^{\{ 3 \}} | 0.01058 ^{\{ 9 \}} | 0.01075 ^{\{ 1 \}} | 0.01055 ^{\{ 10 \}} | 0.01059 ^{\{ 6 \}} | 0.01044 ^{\{ 7 \}} | 0.01026 ^{\{ 5 \}} | 0.01183 ^{\{ 8 \}} | 0.0146 ^{\{ 13 \}} | 0.01356 ^{\{ 11 \}} | 0.02271 ^{\{ 16 \}} | 0.01181 ^{\{ 4 \}} | 0.01657 ^{\{ 14 \}} | 0.013 ^{\{ 12 \}} | 0.01652 ^{\{ 15 \}} | |
\sum Ranks | 27 ^{\{ 1 \}} | 48 ^{\{ 5 \}} | 87 ^{\{ 10 \}} | 31.5 ^{\{ 3 \}} | 80 ^{\{ 8 \}} | 56 ^{\{ 6 \}} | 82 ^{\{ 9 \}} | 38.5 ^{\{ 4 \}} | 66 ^{\{ 7 \}} | 115 ^{\{ 14 \}} | 92 ^{\{ 11 \}} | 107 ^{\{ 13 \}} | 30 ^{\{ 2 \}} | 133 ^{\{ 15 \}} | 97 ^{\{ 12 \}} | 134 ^{\{ 16 \}} | |
300 | BIAS( \hat{\delta} ) | 0.02485 ^{\{ 6 \}} | 0.02476 ^{\{ 5 \}} | 0.02566 ^{\{ 9 \}} | 0.02457 ^{\{ 4 \}} | 0.02581 ^{\{ 11 \}} | 0.02534 ^{\{ 8 \}} | 0.02574 ^{\{ 10 \}} | 0.02419 ^{\{ 3 \}} | 0.02525 ^{\{ 7 \}} | 0.02979 ^{\{ 14 \}} | 0.02852 ^{\{ 13 \}} | 0.02323 ^{\{ 1 \}} | 0.02369 ^{\{ 2 \}} | 0.03294 ^{\{ 15 \}} | 0.02815 ^{\{ 12 \}} | 0.03398 ^{\{ 16 \}} |
BIAS( \hat{\gamma} ) | 0.0589 ^{\{ 2 \}} | 0.06119 ^{\{ 4 \}} | 0.07198 ^{\{ 11 \}} | 0.05917 ^{\{ 3 \}} | 0.07063 ^{\{ 10 \}} | 0.06366 ^{\{ 6 \}} | 0.06554 ^{\{ 7 \}} | 0.06125 ^{\{ 5 \}} | 0.0723 ^{\{ 12 \}} | 0.07294 ^{\{ 13 \}} | 0.06713 ^{\{ 9 \}} | 0.11461 ^{\{ 16 \}} | 0.0585 ^{\{ 1 \}} | 0.08189 ^{\{ 14 \}} | 0.06684 ^{\{ 8 \}} | 0.08506 ^{\{ 15 \}} | |
MSE( \hat{\delta} ) | 0.00097 ^{\{ 6 \}} | 0.00095 ^{\{ 5 \}} | 0.00104 ^{\{ 10 \}} | 0.00092 ^{\{ 3 \}} | 0.00106 ^{\{ 11 \}} | 0.00101 ^{\{ 8 \}} | 0.00102 ^{\{ 9 \}} | 0.00092 ^{\{ 3 \}} | 0.00099 ^{\{ 7 \}} | 0.00142 ^{\{ 14 \}} | 0.0013 ^{\{ 13 \}} | 0.00086 ^{\{ 1 \}} | 0.00092 ^{\{ 3 \}} | 0.00174 ^{\{ 15 \}} | 0.00123 ^{\{ 12 \}} | 0.0018 ^{\{ 16 \}} | |
MSE( \hat{\gamma} ) | 0.00544 ^{\{ 2 \}} | 0.00596 ^{\{ 4 \}} | 0.0081 ^{\{ 12 \}} | 0.00531 ^{\{ 1 \}} | 0.00802 ^{\{ 10 \}} | 0.0062 ^{\{ 6 \}} | 0.00676 ^{\{ 7 \}} | 0.00587 ^{\{ 3 \}} | 0.00807 ^{\{ 11 \}} | 0.00845 ^{\{ 13 \}} | 0.00716 ^{\{ 9 \}} | 0.0214 ^{\{ 16 \}} | 0.00613 ^{\{ 5 \}} | 0.01057 ^{\{ 14 \}} | 0.00699 ^{\{ 8 \}} | 0.01123 ^{\{ 15 \}} | |
MRE( \hat{\delta} ) | 0.06213 ^{\{ 6 \}} | 0.06189 ^{\{ 5 \}} | 0.06414 ^{\{ 9 \}} | 0.06142 ^{\{ 4 \}} | 0.06453 ^{\{ 11 \}} | 0.06335 ^{\{ 8 \}} | 0.06434 ^{\{ 10 \}} | 0.06047 ^{\{ 3 \}} | 0.06312 ^{\{ 7 \}} | 0.07448 ^{\{ 14 \}} | 0.07131 ^{\{ 13 \}} | 0.05807 ^{\{ 1 \}} | 0.05923 ^{\{ 2 \}} | 0.08235 ^{\{ 15 \}} | 0.07037 ^{\{ 12 \}} | 0.08494 ^{\{ 16 \}} | |
MRE( \hat{\gamma} ) | 0.03927 ^{\{ 2 \}} | 0.04079 ^{\{ 4 \}} | 0.04799 ^{\{ 11 \}} | 0.03945 ^{\{ 3 \}} | 0.04709 ^{\{ 10 \}} | 0.04244 ^{\{ 6 \}} | 0.0437 ^{\{ 7 \}} | 0.04083 ^{\{ 5 \}} | 0.0482 ^{\{ 12 \}} | 0.04863 ^{\{ 13 \}} | 0.04475 ^{\{ 9 \}} | 0.07641 ^{\{ 16 \}} | 0.039 ^{\{ 1 \}} | 0.0546 ^{\{ 14 \}} | 0.04456 ^{\{ 8 \}} | 0.05671 ^{\{ 15 \}} | |
D_{abs} | 0.0149 ^{\{ 2 \}} | 0.01502 ^{\{ 6 \}} | 0.01526 ^{\{ 8 \}} | 0.01465 ^{\{ 1 \}} | 0.01538 ^{\{ 9 \}} | 0.01498 ^{\{ 4 \}} | 0.01496 ^{\{ 3 \}} | 0.015 ^{\{ 5 \}} | 0.01612 ^{\{ 10 \}} | 0.01796 ^{\{ 13 \}} | 0.0173 ^{\{ 12 \}} | 0.02158 ^{\{ 16 \}} | 0.01508 ^{\{ 7 \}} | 0.01984 ^{\{ 14 \}} | 0.0167 ^{\{ 11 \}} | 0.02037 ^{\{ 15 \}} | |
D_{max} | 0.02397 ^{\{ 2 \}} | 0.02433 ^{\{ 5 \}} | 0.02518 ^{\{ 8 \}} | 0.02351 ^{\{ 1 \}} | 0.02527 ^{\{ 9 \}} | 0.02418 ^{\{ 3 \}} | 0.0243 ^{\{ 4 \}} | 0.02439 ^{\{ 6 \}} | 0.02685 ^{\{ 10 \}} | 0.02907 ^{\{ 13 \}} | 0.02777 ^{\{ 12 \}} | 0.0393 ^{\{ 16 \}} | 0.02464 ^{\{ 7 \}} | 0.0321 ^{\{ 14 \}} | 0.02686 ^{\{ 11 \}} | 0.03302 ^{\{ 15 \}} | |
ASAE | 0.00853 ^{\{ 2 \}} | 0.00807 ^{\{ 5 \}} | 0.00855 ^{\{ 8 \}} | 0.00844 ^{\{ 1 \}} | 0.00828 ^{\{ 9 \}} | 0.00845 ^{\{ 3 \}} | 0.00818 ^{\{ 4 \}} | 0.00806 ^{\{ 6 \}} | 0.00936 ^{\{ 10 \}} | 0.01155 ^{\{ 13 \}} | 0.01074 ^{\{ 12 \}} | 0.01805 ^{\{ 16 \}} | 0.00913 ^{\{ 7 \}} | 0.0133 ^{\{ 14 \}} | 0.01033 ^{\{ 11 \}} | 0.01291 ^{\{ 15 \}} | |
\sum Ranks | 35 ^{\{ 3 \}} | 40 ^{\{ 5 \}} | 86 ^{\{ 9.5 \}} | 25 ^{\{ 1 \}} | 85 ^{\{ 8 \}} | 55 ^{\{ 6 \}} | 60 ^{\{ 7 \}} | 34 ^{\{ 2 \}} | 86 ^{\{ 9.5 \}} | 120 ^{\{ 14 \}} | 102 ^{\{ 13 \}} | 99 ^{\{ 12 \}} | 37 ^{\{ 4 \}} | 130 ^{\{ 15 \}} | 93 ^{\{ 11 \}} | 137 ^{\{ 16 \}} | |
450 | BIAS( \hat{\delta} ) | 0.02044 ^{\{ 6 \}} | 0.02051 ^{\{ 8 \}} | 0.02116 ^{\{ 10 \}} | 0.019 ^{\{ 1 \}} | 0.02069 ^{\{ 9 \}} | 0.02027 ^{\{ 5 \}} | 0.02203 ^{\{ 11 \}} | 0.0205 ^{\{ 7 \}} | 0.02016 ^{\{ 4 \}} | 0.02427 ^{\{ 14 \}} | 0.02322 ^{\{ 13 \}} | 0.01969 ^{\{ 2 \}} | 0.01982 ^{\{ 3 \}} | 0.02696 ^{\{ 16 \}} | 0.02321 ^{\{ 12 \}} | 0.02623 ^{\{ 15 \}} |
BIAS( \hat{\gamma} ) | 0.04846 ^{\{ 2 \}} | 0.05228 ^{\{ 6 \}} | 0.0574 ^{\{ 13 \}} | 0.04793 ^{\{ 1 \}} | 0.05487 ^{\{ 9 \}} | 0.05183 ^{\{ 5 \}} | 0.05454 ^{\{ 8 \}} | 0.04955 ^{\{ 4 \}} | 0.0563 ^{\{ 11 \}} | 0.05671 ^{\{ 12 \}} | 0.05567 ^{\{ 10 \}} | 0.0905 ^{\{ 16 \}} | 0.04917 ^{\{ 3 \}} | 0.06732 ^{\{ 15 \}} | 0.05414 ^{\{ 7 \}} | 0.06462 ^{\{ 14 \}} | |
MSE( \hat{\delta} ) | 0.00067 ^{\{ 8 \}} | 0.00066 ^{\{ 5.5 \}} | 0.00069 ^{\{ 10 \}} | 0.00058 ^{\{ 1 \}} | 0.00067 ^{\{ 8 \}} | 0.00064 ^{\{ 3 \}} | 0.00075 ^{\{ 11 \}} | 0.00067 ^{\{ 8 \}} | 0.00065 ^{\{ 4 \}} | 0.00091 ^{\{ 14 \}} | 0.00083 ^{\{ 12 \}} | 0.00061 ^{\{ 2 \}} | 0.00066 ^{\{ 5.5 \}} | 0.00118 ^{\{ 16 \}} | 0.00084 ^{\{ 13 \}} | 0.0011 ^{\{ 15 \}} | |
MSE( \hat{\gamma} ) | 0.00365 ^{\{ 2 \}} | 0.00428 ^{\{ 5 \}} | 0.00512 ^{\{ 12 \}} | 0.0036 ^{\{ 1 \}} | 0.00482 ^{\{ 9 \}} | 0.00412 ^{\{ 4 \}} | 0.00455 ^{\{ 7 \}} | 0.00393 ^{\{ 3 \}} | 0.00511 ^{\{ 11 \}} | 0.00524 ^{\{ 13 \}} | 0.00483 ^{\{ 10 \}} | 0.01351 ^{\{ 16 \}} | 0.00454 ^{\{ 6 \}} | 0.00711 ^{\{ 15 \}} | 0.00458 ^{\{ 8 \}} | 0.00678 ^{\{ 14 \}} | |
MRE( \hat{\delta} ) | 0.0511 ^{\{ 6 \}} | 0.05128 ^{\{ 8 \}} | 0.05289 ^{\{ 10 \}} | 0.04749 ^{\{ 1 \}} | 0.05174 ^{\{ 9 \}} | 0.05068 ^{\{ 5 \}} | 0.05506 ^{\{ 11 \}} | 0.05125 ^{\{ 7 \}} | 0.05041 ^{\{ 4 \}} | 0.06067 ^{\{ 14 \}} | 0.05805 ^{\{ 13 \}} | 0.04922 ^{\{ 2 \}} | 0.04954 ^{\{ 3 \}} | 0.06741 ^{\{ 16 \}} | 0.05803 ^{\{ 12 \}} | 0.06557 ^{\{ 15 \}} | |
MRE( \hat{\gamma} ) | 0.03231 ^{\{ 2 \}} | 0.03485 ^{\{ 6 \}} | 0.03827 ^{\{ 13 \}} | 0.03195 ^{\{ 1 \}} | 0.03658 ^{\{ 9 \}} | 0.03456 ^{\{ 5 \}} | 0.03636 ^{\{ 8 \}} | 0.03303 ^{\{ 4 \}} | 0.03753 ^{\{ 11 \}} | 0.03781 ^{\{ 12 \}} | 0.03711 ^{\{ 10 \}} | 0.06033 ^{\{ 16 \}} | 0.03278 ^{\{ 3 \}} | 0.04488 ^{\{ 15 \}} | 0.03609 ^{\{ 7 \}} | 0.04308 ^{\{ 14 \}} | |
D_{abs} | 0.01212 ^{\{ 2 \}} | 0.01221 ^{\{ 4 \}} | 0.01301 ^{\{ 10 \}} | 0.01152 ^{\{ 1 \}} | 0.01267 ^{\{ 7 \}} | 0.01213 ^{\{ 3 \}} | 0.01268 ^{\{ 8 \}} | 0.01239 ^{\{ 5 \}} | 0.01284 ^{\{ 9 \}} | 0.01464 ^{\{ 13 \}} | 0.01405 ^{\{ 12 \}} | 0.01779 ^{\{ 16 \}} | 0.01241 ^{\{ 6 \}} | 0.01646 ^{\{ 15 \}} | 0.01395 ^{\{ 11 \}} | 0.01616 ^{\{ 14 \}} | |
D_{max} | 0.01948 ^{\{ 2 \}} | 0.01977 ^{\{ 4 \}} | 0.02134 ^{\{ 10 \}} | 0.01866 ^{\{ 1 \}} | 0.02076 ^{\{ 8 \}} | 0.01973 ^{\{ 3 \}} | 0.02045 ^{\{ 7 \}} | 0.01998 ^{\{ 5 \}} | 0.02125 ^{\{ 9 \}} | 0.0235 ^{\{ 13 \}} | 0.02262 ^{\{ 12 \}} | 0.03211 ^{\{ 16 \}} | 0.02026 ^{\{ 6 \}} | 0.02686 ^{\{ 15 \}} | 0.02237 ^{\{ 11 \}} | 0.02617 ^{\{ 14 \}} | |
ASAE | 0.00666 ^{\{ 2 \}} | 0.0065 ^{\{ 4 \}} | 0.00668 ^{\{ 10 \}} | 0.00664 ^{\{ 1 \}} | 0.00653 ^{\{ 8 \}} | 0.00681 ^{\{ 3 \}} | 0.00645 ^{\{ 7 \}} | 0.00643 ^{\{ 5 \}} | 0.0072 ^{\{ 9 \}} | 0.00914 ^{\{ 13 \}} | 0.00857 ^{\{ 12 \}} | 0.01371 ^{\{ 16 \}} | 0.00731 ^{\{ 6 \}} | 0.01032 ^{\{ 15 \}} | 0.00804 ^{\{ 11 \}} | 0.01033 ^{\{ 14 \}} | |
\sum Ranks | 36 ^{\{ 2 \}} | 49.5 ^{\{ 6 \}} | 95 ^{\{ 11 \}} | 13 ^{\{ 1 \}} | 72 ^{\{ 7.5 \}} | 41 ^{\{ 3 \}} | 73 ^{\{ 9 \}} | 44 ^{\{ 4 \}} | 72 ^{\{ 7.5 \}} | 118 ^{\{ 14 \}} | 104 ^{\{ 13 \}} | 102 ^{\{ 12 \}} | 45.5 ^{\{ 5 \}} | 137 ^{\{ 16 \}} | 92 ^{\{ 10 \}} | 130 ^{\{ 15 \}} |
n | Est. | MLE | ADE | CVME | MPSE | OLSE | PCE | RTADE | WLSE | LTADE | MSADE | MSALDE | ADSOE | KE | MSSD | MSSLD | MSLND |
20 | BIAS( \hat{\delta} ) | 0.3501 ^{\{ 9 \}} | 0.3437 ^{\{ 8 \}} | 0.40963 ^{\{ 14 \}} | 0.30095 ^{\{ 2 \}} | 0.39118 ^{\{ 13 \}} | 0.33084 ^{\{ 6 \}} | 0.33466 ^{\{ 7 \}} | 0.32993 ^{\{ 5 \}} | 0.42136 ^{\{ 15 \}} | 0.32471 ^{\{ 4 \}} | 0.35322 ^{\{ 10 \}} | 0.50199 ^{\{ 16 \}} | 0.24141 ^{\{ 1 \}} | 0.38085 ^{\{ 11 \}} | 0.324 ^{\{ 3 \}} | 0.38994 ^{\{ 12 \}} |
BIAS( \hat{\gamma} ) | 0.13283 ^{\{ 7.5 \}} | 0.12262 ^{\{ 2 \}} | 0.1403 ^{\{ 10.5 \}} | 0.11926 ^{\{ 1 \}} | 0.13649 ^{\{ 9 \}} | 0.15974 ^{\{ 14 \}} | 0.12869 ^{\{ 5 \}} | 0.13283 ^{\{ 7.5 \}} | 0.1403 ^{\{ 10.5 \}} | 0.14078 ^{\{ 12 \}} | 0.13085 ^{\{ 6 \}} | 0.15005 ^{\{ 13 \}} | 0.12789 ^{\{ 4 \}} | 0.16161 ^{\{ 15 \}} | 0.12295 ^{\{ 3 \}} | 0.16948 ^{\{ 16 \}} | |
MSE( \hat{\delta} ) | 0.24075 ^{\{ 12 \}} | 0.21192 ^{\{ 9 \}} | 0.3003 ^{\{ 14 \}} | 0.14184 ^{\{ 2 \}} | 0.25737 ^{\{ 13 \}} | 0.18243 ^{\{ 3 \}} | 0.2025 ^{\{ 7 \}} | 0.18359 ^{\{ 4 \}} | 0.31963 ^{\{ 15 \}} | 0.18816 ^{\{ 6 \}} | 0.208 ^{\{ 8 \}} | 0.4098 ^{\{ 16 \}} | 0.13207 ^{\{ 1 \}} | 0.21903 ^{\{ 10 \}} | 0.18787 ^{\{ 5 \}} | 0.22378 ^{\{ 11 \}} | |
MSE( \hat{\gamma} ) | 0.02909 ^{\{ 8 \}} | 0.02497 ^{\{ 3 \}} | 0.03288 ^{\{ 12 \}} | 0.02105 ^{\{ 1 \}} | 0.02988 ^{\{ 9 \}} | 0.03944 ^{\{ 14 \}} | 0.02878 ^{\{ 7 \}} | 0.02797 ^{\{ 5 \}} | 0.03213 ^{\{ 11 \}} | 0.03099 ^{\{ 10 \}} | 0.02507 ^{\{ 4 \}} | 0.03542 ^{\{ 13 \}} | 0.028 ^{\{ 6 \}} | 0.03951 ^{\{ 15 \}} | 0.02414 ^{\{ 2 \}} | 0.04133 ^{\{ 16 \}} | |
MRE( \hat{\delta} ) | 0.17505 ^{\{ 9 \}} | 0.17185 ^{\{ 8 \}} | 0.20481 ^{\{ 14 \}} | 0.15047 ^{\{ 2 \}} | 0.19559 ^{\{ 13 \}} | 0.16542 ^{\{ 6 \}} | 0.16733 ^{\{ 7 \}} | 0.16497 ^{\{ 5 \}} | 0.21068 ^{\{ 15 \}} | 0.16236 ^{\{ 4 \}} | 0.17661 ^{\{ 10 \}} | 0.25099 ^{\{ 16 \}} | 0.12071 ^{\{ 1 \}} | 0.19042 ^{\{ 11 \}} | 0.162 ^{\{ 3 \}} | 0.19497 ^{\{ 12 \}} | |
MRE( \hat{\gamma} ) | 0.17711 ^{\{ 7.5 \}} | 0.16349 ^{\{ 2 \}} | 0.18707 ^{\{ 11 \}} | 0.15901 ^{\{ 1 \}} | 0.18198 ^{\{ 9 \}} | 0.21299 ^{\{ 14 \}} | 0.17159 ^{\{ 5 \}} | 0.17711 ^{\{ 7.5 \}} | 0.18706 ^{\{ 10 \}} | 0.1877 ^{\{ 12 \}} | 0.17447 ^{\{ 6 \}} | 0.20007 ^{\{ 13 \}} | 0.17052 ^{\{ 4 \}} | 0.21549 ^{\{ 15 \}} | 0.16393 ^{\{ 3 \}} | 0.22597 ^{\{ 16 \}} | |
D_{abs} | 0.0565 ^{\{ 1 \}} | 0.05712 ^{\{ 4 \}} | 0.05886 ^{\{ 7 \}} | 0.05687 ^{\{ 2 \}} | 0.06327 ^{\{ 10 \}} | 0.06941 ^{\{ 14 \}} | 0.05914 ^{\{ 9 \}} | 0.05897 ^{\{ 8 \}} | 0.05881 ^{\{ 6 \}} | 0.06741 ^{\{ 13 \}} | 0.06656 ^{\{ 12 \}} | 0.06374 ^{\{ 11 \}} | 0.05703 ^{\{ 3 \}} | 0.07132 ^{\{ 15 \}} | 0.05801 ^{\{ 5 \}} | 0.07227 ^{\{ 16 \}} | |
D_{max} | 0.09202 ^{\{ 4 \}} | 0.09177 ^{\{ 3 \}} | 0.09715 ^{\{ 8 \}} | 0.08966 ^{\{ 1 \}} | 0.10075 ^{\{ 10 \}} | 0.11042 ^{\{ 14 \}} | 0.09523 ^{\{ 7 \}} | 0.09403 ^{\{ 6 \}} | 0.0975 ^{\{ 9 \}} | 0.10556 ^{\{ 12 \}} | 0.10428 ^{\{ 11 \}} | 0.10641 ^{\{ 13 \}} | 0.09022 ^{\{ 2 \}} | 0.11373 ^{\{ 15 \}} | 0.09277 ^{\{ 5 \}} | 0.1168 ^{\{ 16 \}} | |
ASAE | 0.0449 ^{\{ 4 \}} | 0.04202 ^{\{ 3 \}} | 0.04466 ^{\{ 8 \}} | 0.04118 ^{\{ 1 \}} | 0.04475 ^{\{ 10 \}} | 0.03873 ^{\{ 14 \}} | 0.03903 ^{\{ 7 \}} | 0.04015 ^{\{ 6 \}} | 0.05109 ^{\{ 9 \}} | 0.05226 ^{\{ 12 \}} | 0.04966 ^{\{ 11 \}} | 0.07747 ^{\{ 13 \}} | 0.04731 ^{\{ 2 \}} | 0.06494 ^{\{ 15 \}} | 0.04801 ^{\{ 5 \}} | 0.06415 ^{\{ 16 \}} | |
\sum Ranks | 66 ^{\{ 7 \}} | 44 ^{\{ 4 \}} | 96.5 ^{\{ 12 \}} | 16 ^{\{ 1 \}} | 93 ^{\{ 11 \}} | 86 ^{\{ 9.5 \}} | 56 ^{\{ 6 \}} | 51 ^{\{ 5 \}} | 103.5 ^{\{ 13 \}} | 86 ^{\{ 9.5 \}} | 78 ^{\{ 8 \}} | 127 ^{\{ 15 \}} | 31 ^{\{ 2 \}} | 122 ^{\{ 14 \}} | 39 ^{\{ 3 \}} | 129 ^{\{ 16 \}} | |
70 | BIAS( \hat{\delta} ) | 0.17171 ^{\{ 5 \}} | 0.18705 ^{\{ 9 \}} | 0.20507 ^{\{ 12 \}} | 0.15645 ^{\{ 2 \}} | 0.19235 ^{\{ 11 \}} | 0.17397 ^{\{ 7 \}} | 0.17091 ^{\{ 4 \}} | 0.17337 ^{\{ 6 \}} | 0.2287 ^{\{ 14 \}} | 0.18551 ^{\{ 8 \}} | 0.18797 ^{\{ 10 \}} | 0.35752 ^{\{ 16 \}} | 0.14934 ^{\{ 1 \}} | 0.22252 ^{\{ 13 \}} | 0.16562 ^{\{ 3 \}} | 0.23357 ^{\{ 15 \}} |
BIAS( \hat{\gamma} ) | 0.06108 ^{\{ 1 \}} | 0.06501 ^{\{ 3 \}} | 0.07395 ^{\{ 10 \}} | 0.0626 ^{\{ 2 \}} | 0.07357 ^{\{ 9 \}} | 0.09167 ^{\{ 15 \}} | 0.06922 ^{\{ 7 \}} | 0.06717 ^{\{ 5 \}} | 0.07612 ^{\{ 11 \}} | 0.08148 ^{\{ 12 \}} | 0.06963 ^{\{ 8 \}} | 0.10063 ^{\{ 16 \}} | 0.06762 ^{\{ 6 \}} | 0.08679 ^{\{ 13 \}} | 0.0654 ^{\{ 4 \}} | 0.09097 ^{\{ 14 \}} | |
MSE( \hat{\delta} ) | 0.04867 ^{\{ 5 \}} | 0.05793 ^{\{ 10 \}} | 0.07313 ^{\{ 12 \}} | 0.03837 ^{\{ 1 \}} | 0.06261 ^{\{ 11 \}} | 0.04746 ^{\{ 4 \}} | 0.05063 ^{\{ 7 \}} | 0.0502 ^{\{ 6 \}} | 0.08989 ^{\{ 14 \}} | 0.05706 ^{\{ 9 \}} | 0.0566 ^{\{ 8 \}} | 0.21988 ^{\{ 16 \}} | 0.04548 ^{\{ 3 \}} | 0.0789 ^{\{ 13 \}} | 0.04538 ^{\{ 2 \}} | 0.09541 ^{\{ 15 \}} | |
MSE( \hat{\gamma} ) | 0.006 ^{\{ 2 \}} | 0.00682 ^{\{ 3 \}} | 0.00895 ^{\{ 10 \}} | 0.00595 ^{\{ 1 \}} | 0.00885 ^{\{ 9 \}} | 0.01323 ^{\{ 15 \}} | 0.00798 ^{\{ 8 \}} | 0.00709 ^{\{ 5 \}} | 0.00943 ^{\{ 11 \}} | 0.01 ^{\{ 12 \}} | 0.00748 ^{\{ 6 \}} | 0.01549 ^{\{ 16 \}} | 0.00765 ^{\{ 7 \}} | 0.01163 ^{\{ 13 \}} | 0.00689 ^{\{ 4 \}} | 0.01282 ^{\{ 14 \}} | |
MRE( \hat{\delta} ) | 0.08586 ^{\{ 5 \}} | 0.09353 ^{\{ 9 \}} | 0.10253 ^{\{ 12 \}} | 0.07822 ^{\{ 2 \}} | 0.09617 ^{\{ 11 \}} | 0.08699 ^{\{ 7 \}} | 0.08546 ^{\{ 4 \}} | 0.08669 ^{\{ 6 \}} | 0.11435 ^{\{ 14 \}} | 0.09276 ^{\{ 8 \}} | 0.09399 ^{\{ 10 \}} | 0.17876 ^{\{ 16 \}} | 0.07467 ^{\{ 1 \}} | 0.11126 ^{\{ 13 \}} | 0.08281 ^{\{ 3 \}} | 0.11679 ^{\{ 15 \}} | |
MRE( \hat{\gamma} ) | 0.08144 ^{\{ 1 \}} | 0.08668 ^{\{ 3 \}} | 0.0986 ^{\{ 10 \}} | 0.08346 ^{\{ 2 \}} | 0.09809 ^{\{ 9 \}} | 0.12223 ^{\{ 15 \}} | 0.0923 ^{\{ 7 \}} | 0.08956 ^{\{ 5 \}} | 0.10149 ^{\{ 11 \}} | 0.10863 ^{\{ 12 \}} | 0.09284 ^{\{ 8 \}} | 0.13417 ^{\{ 16 \}} | 0.09016 ^{\{ 6 \}} | 0.11572 ^{\{ 13 \}} | 0.0872 ^{\{ 4 \}} | 0.12129 ^{\{ 14 \}} | |
D_{abs} | 0.03009 ^{\{ 2 \}} | 0.03133 ^{\{ 6 \}} | 0.03149 ^{\{ 7 \}} | 0.03058 ^{\{ 3 \}} | 0.03206 ^{\{ 8 \}} | 0.03927 ^{\{ 13 \}} | 0.03093 ^{\{ 5 \}} | 0.03076 ^{\{ 4 \}} | 0.03394 ^{\{ 10 \}} | 0.03862 ^{\{ 12 \}} | 0.03514 ^{\{ 11 \}} | 0.04015 ^{\{ 14 \}} | 0.0298 ^{\{ 1 \}} | 0.04024 ^{\{ 15 \}} | 0.0338 ^{\{ 9 \}} | 0.04049 ^{\{ 16 \}} | |
D_{max} | 0.0487 ^{\{ 2 \}} | 0.05096 ^{\{ 6 \}} | 0.05222 ^{\{ 8 \}} | 0.0488 ^{\{ 3 \}} | 0.05211 ^{\{ 7 \}} | 0.0631 ^{\{ 13 \}} | 0.0503 ^{\{ 5 \}} | 0.04996 ^{\{ 4 \}} | 0.05648 ^{\{ 11 \}} | 0.06186 ^{\{ 12 \}} | 0.05645 ^{\{ 10 \}} | 0.07057 ^{\{ 16 \}} | 0.04803 ^{\{ 1 \}} | 0.06548 ^{\{ 14 \}} | 0.05377 ^{\{ 9 \}} | 0.0661 ^{\{ 15 \}} | |
ASAE | 0.01898 ^{\{ 2 \}} | 0.01867 ^{\{ 6 \}} | 0.02002 ^{\{ 8 \}} | 0.01877 ^{\{ 3 \}} | 0.01966 ^{\{ 7 \}} | 0.01889 ^{\{ 13 \}} | 0.01739 ^{\{ 5 \}} | 0.01873 ^{\{ 4 \}} | 0.02301 ^{\{ 11 \}} | 0.02448 ^{\{ 12 \}} | 0.02275 ^{\{ 10 \}} | 0.03954 ^{\{ 16 \}} | 0.02094 ^{\{ 1 \}} | 0.02842 ^{\{ 14 \}} | 0.02149 ^{\{ 9 \}} | 0.02845 ^{\{ 15 \}} | |
\sum Ranks | 29 ^{\{ 2 \}} | 51 ^{\{ 7 \}} | 89 ^{\{ 10 \}} | 20 ^{\{ 1 \}} | 82 ^{\{ 8.5 \}} | 94 ^{\{ 11 \}} | 48 ^{\{ 5.5 \}} | 44 ^{\{ 4 \}} | 108 ^{\{ 13 \}} | 98 ^{\{ 12 \}} | 82 ^{\{ 8.5 \}} | 142 ^{\{ 16 \}} | 35 ^{\{ 3 \}} | 121 ^{\{ 14 \}} | 48 ^{\{ 5.5 \}} | 133 ^{\{ 15 \}} | |
150 | BIAS( \hat{\delta} ) | 0.10986 ^{\{ 1 \}} | 0.12035 ^{\{ 7 \}} | 0.13735 ^{\{ 12 \}} | 0.11316 ^{\{ 3 \}} | 0.13179 ^{\{ 10 \}} | 0.11926 ^{\{ 5 \}} | 0.12475 ^{\{ 8 \}} | 0.11964 ^{\{ 6 \}} | 0.15345 ^{\{ 14 \}} | 0.1338 ^{\{ 11 \}} | 0.12831 ^{\{ 9 \}} | 0.25651 ^{\{ 16 \}} | 0.11174 ^{\{ 2 \}} | 0.15491 ^{\{ 15 \}} | 0.11768 ^{\{ 4 \}} | 0.15252 ^{\{ 13 \}} |
BIAS( \hat{\gamma} ) | 0.04272 ^{\{ 1 \}} | 0.04461 ^{\{ 4 \}} | 0.04968 ^{\{ 9 \}} | 0.04411 ^{\{ 2 \}} | 0.04973 ^{\{ 10 \}} | 0.06877 ^{\{ 15 \}} | 0.04602 ^{\{ 6 \}} | 0.04415 ^{\{ 3 \}} | 0.05031 ^{\{ 11 \}} | 0.05342 ^{\{ 12 \}} | 0.04797 ^{\{ 7 \}} | 0.07337 ^{\{ 16 \}} | 0.04901 ^{\{ 8 \}} | 0.0609 ^{\{ 13 \}} | 0.04463 ^{\{ 5 \}} | 0.06118 ^{\{ 14 \}} | |
MSE( \hat{\delta} ) | 0.02001 ^{\{ 2 \}} | 0.02339 ^{\{ 7 \}} | 0.03028 ^{\{ 12 \}} | 0.01951 ^{\{ 1 \}} | 0.02911 ^{\{ 11 \}} | 0.02197 ^{\{ 3 \}} | 0.02439 ^{\{ 8 \}} | 0.02325 ^{\{ 6 \}} | 0.03819 ^{\{ 14 \}} | 0.02853 ^{\{ 10 \}} | 0.02588 ^{\{ 9 \}} | 0.10809 ^{\{ 16 \}} | 0.02284 ^{\{ 5 \}} | 0.03913 ^{\{ 15 \}} | 0.02198 ^{\{ 4 \}} | 0.03683 ^{\{ 13 \}} | |
MSE( \hat{\gamma} ) | 0.00289 ^{\{ 1 \}} | 0.0032 ^{\{ 5 \}} | 0.00395 ^{\{ 10 \}} | 0.0029 ^{\{ 2 \}} | 0.0039 ^{\{ 9 \}} | 0.00751 ^{\{ 15 \}} | 0.00335 ^{\{ 6 \}} | 0.00309 ^{\{ 4 \}} | 0.00402 ^{\{ 11 \}} | 0.00443 ^{\{ 12 \}} | 0.00362 ^{\{ 7 \}} | 0.00858 ^{\{ 16 \}} | 0.00387 ^{\{ 8 \}} | 0.00569 ^{\{ 14 \}} | 0.00308 ^{\{ 3 \}} | 0.00564 ^{\{ 13 \}} | |
MRE( \hat{\delta} ) | 0.05493 ^{\{ 1 \}} | 0.06017 ^{\{ 7 \}} | 0.06868 ^{\{ 12 \}} | 0.05658 ^{\{ 3 \}} | 0.06589 ^{\{ 10 \}} | 0.05963 ^{\{ 5 \}} | 0.06238 ^{\{ 8 \}} | 0.05982 ^{\{ 6 \}} | 0.07672 ^{\{ 14 \}} | 0.0669 ^{\{ 11 \}} | 0.06416 ^{\{ 9 \}} | 0.12826 ^{\{ 16 \}} | 0.05587 ^{\{ 2 \}} | 0.07745 ^{\{ 15 \}} | 0.05884 ^{\{ 4 \}} | 0.07626 ^{\{ 13 \}} | |
MRE( \hat{\gamma} ) | 0.05696 ^{\{ 1 \}} | 0.05947 ^{\{ 4 \}} | 0.06624 ^{\{ 9 \}} | 0.05882 ^{\{ 2 \}} | 0.0663 ^{\{ 10 \}} | 0.09169 ^{\{ 15 \}} | 0.06136 ^{\{ 6 \}} | 0.05886 ^{\{ 3 \}} | 0.06708 ^{\{ 11 \}} | 0.07123 ^{\{ 12 \}} | 0.06396 ^{\{ 7 \}} | 0.09782 ^{\{ 16 \}} | 0.06535 ^{\{ 8 \}} | 0.0812 ^{\{ 13 \}} | 0.05951 ^{\{ 5 \}} | 0.08157 ^{\{ 14 \}} | |
D_{abs} | 0.02101 ^{\{ 3 \}} | 0.02172 ^{\{ 6 \}} | 0.02246 ^{\{ 8 \}} | 0.02098 ^{\{ 2 \}} | 0.02175 ^{\{ 7 \}} | 0.02787 ^{\{ 15 \}} | 0.0214 ^{\{ 5 \}} | 0.02032 ^{\{ 1 \}} | 0.02305 ^{\{ 10 \}} | 0.02584 ^{\{ 12 \}} | 0.02481 ^{\{ 11 \}} | 0.02861 ^{\{ 16 \}} | 0.02131 ^{\{ 4 \}} | 0.02731 ^{\{ 13 \}} | 0.02247 ^{\{ 9 \}} | 0.02764 ^{\{ 14 \}} | |
D_{max} | 0.03392 ^{\{ 3 \}} | 0.03507 ^{\{ 6 \}} | 0.03694 ^{\{ 9 \}} | 0.03388 ^{\{ 2 \}} | 0.03583 ^{\{ 7 \}} | 0.04538 ^{\{ 15 \}} | 0.03497 ^{\{ 5 \}} | 0.03315 ^{\{ 1 \}} | 0.03822 ^{\{ 10 \}} | 0.04156 ^{\{ 12 \}} | 0.03964 ^{\{ 11 \}} | 0.05122 ^{\{ 16 \}} | 0.03487 ^{\{ 4 \}} | 0.04466 ^{\{ 13 \}} | 0.03605 ^{\{ 8 \}} | 0.04506 ^{\{ 14 \}} | |
ASAE | 0.01131 ^{\{ 3 \}} | 0.01145 ^{\{ 6 \}} | 0.01219 ^{\{ 9 \}} | 0.01132 ^{\{ 2 \}} | 0.01215 ^{\{ 7 \}} | 0.01202 ^{\{ 15 \}} | 0.01066 ^{\{ 5 \}} | 0.01124 ^{\{ 1 \}} | 0.01443 ^{\{ 10 \}} | 0.015 ^{\{ 12 \}} | 0.01418 ^{\{ 11 \}} | 0.02725 ^{\{ 16 \}} | 0.01299 ^{\{ 4 \}} | 0.01733 ^{\{ 13 \}} | 0.01318 ^{\{ 8 \}} | 0.01712 ^{\{ 14 \}} | |
\sum Ranks | 16 ^{\{ 1 \}} | 51 ^{\{ 5 \}} | 89 ^{\{ 10 \}} | 21 ^{\{ 2 \}} | 81 ^{\{ 8.5 \}} | 94 ^{\{ 11 \}} | 53 ^{\{ 7 \}} | 32 ^{\{ 3 \}} | 107 ^{\{ 13 \}} | 105 ^{\{ 12 \}} | 81 ^{\{ 8.5 \}} | 144 ^{\{ 16 \}} | 50 ^{\{ 4 \}} | 126 ^{\{ 15 \}} | 52 ^{\{ 6 \}} | 122 ^{\{ 14 \}} | |
200 | BIAS( \hat{\delta} ) | 0.09481 ^{\{ 2 \}} | 0.09919 ^{\{ 4 \}} | 0.11951 ^{\{ 12 \}} | 0.09731 ^{\{ 3 \}} | 0.11266 ^{\{ 9 \}} | 0.10231 ^{\{ 7 \}} | 0.10178 ^{\{ 6 \}} | 0.10627 ^{\{ 8 \}} | 0.12385 ^{\{ 13 \}} | 0.11765 ^{\{ 11 \}} | 0.11291 ^{\{ 10 \}} | 0.22789 ^{\{ 16 \}} | 0.09458 ^{\{ 1 \}} | 0.1277 ^{\{ 14 \}} | 0.10109 ^{\{ 5 \}} | 0.13459 ^{\{ 15 \}} |
BIAS( \hat{\gamma} ) | 0.03406 ^{\{ 1 \}} | 0.0368 ^{\{ 2 \}} | 0.04226 ^{\{ 10 \}} | 0.03738 ^{\{ 3 \}} | 0.04238 ^{\{ 11 \}} | 0.0608 ^{\{ 15 \}} | 0.03909 ^{\{ 5 \}} | 0.04036 ^{\{ 7 \}} | 0.04193 ^{\{ 9 \}} | 0.04674 ^{\{ 12 \}} | 0.04094 ^{\{ 8 \}} | 0.06563 ^{\{ 16 \}} | 0.03914 ^{\{ 6 \}} | 0.04865 ^{\{ 13 \}} | 0.03897 ^{\{ 4 \}} | 0.05024 ^{\{ 14 \}} | |
MSE( \hat{\delta} ) | 0.01449 ^{\{ 2 \}} | 0.01573 ^{\{ 3 \}} | 0.02331 ^{\{ 12 \}} | 0.01422 ^{\{ 1 \}} | 0.02019 ^{\{ 10 \}} | 0.01594 ^{\{ 5 \}} | 0.01647 ^{\{ 6 \}} | 0.01871 ^{\{ 8 \}} | 0.02608 ^{\{ 14 \}} | 0.02244 ^{\{ 11 \}} | 0.01954 ^{\{ 9 \}} | 0.08519 ^{\{ 16 \}} | 0.01677 ^{\{ 7 \}} | 0.0256 ^{\{ 13 \}} | 0.01579 ^{\{ 4 \}} | 0.02858 ^{\{ 15 \}} | |
MSE( \hat{\gamma} ) | 0.00188 ^{\{ 1 \}} | 0.00215 ^{\{ 3 \}} | 0.0029 ^{\{ 11 \}} | 0.00212 ^{\{ 2 \}} | 0.00277 ^{\{ 9 \}} | 0.00588 ^{\{ 15 \}} | 0.00242 ^{\{ 5 \}} | 0.00265 ^{\{ 8 \}} | 0.00286 ^{\{ 10 \}} | 0.00333 ^{\{ 12 \}} | 0.00259 ^{\{ 6 \}} | 0.00697 ^{\{ 16 \}} | 0.0026 ^{\{ 7 \}} | 0.00368 ^{\{ 13 \}} | 0.00236 ^{\{ 4 \}} | 0.00394 ^{\{ 14 \}} | |
MRE( \hat{\delta} ) | 0.0474 ^{\{ 2 \}} | 0.04959 ^{\{ 4 \}} | 0.05976 ^{\{ 12 \}} | 0.04865 ^{\{ 3 \}} | 0.05633 ^{\{ 9 \}} | 0.05116 ^{\{ 7 \}} | 0.05089 ^{\{ 6 \}} | 0.05313 ^{\{ 8 \}} | 0.06193 ^{\{ 13 \}} | 0.05882 ^{\{ 11 \}} | 0.05645 ^{\{ 10 \}} | 0.11394 ^{\{ 16 \}} | 0.04729 ^{\{ 1 \}} | 0.06385 ^{\{ 14 \}} | 0.05055 ^{\{ 5 \}} | 0.0673 ^{\{ 15 \}} | |
MRE( \hat{\gamma} ) | 0.04541 ^{\{ 1 \}} | 0.04906 ^{\{ 2 \}} | 0.05635 ^{\{ 10 \}} | 0.04984 ^{\{ 3 \}} | 0.0565 ^{\{ 11 \}} | 0.08107 ^{\{ 15 \}} | 0.05213 ^{\{ 5 \}} | 0.05382 ^{\{ 7 \}} | 0.05591 ^{\{ 9 \}} | 0.06232 ^{\{ 12 \}} | 0.05458 ^{\{ 8 \}} | 0.0875 ^{\{ 16 \}} | 0.05219 ^{\{ 6 \}} | 0.06487 ^{\{ 13 \}} | 0.05196 ^{\{ 4 \}} | 0.06698 ^{\{ 14 \}} | |
D_{abs} | 0.01776 ^{\{ 2 \}} | 0.01728 ^{\{ 1 \}} | 0.01877 ^{\{ 5 \}} | 0.01808 ^{\{ 3 \}} | 0.01905 ^{\{ 8 \}} | 0.02479 ^{\{ 14 \}} | 0.01893 ^{\{ 7 \}} | 0.0192 ^{\{ 9 \}} | 0.01888 ^{\{ 6 \}} | 0.02278 ^{\{ 12 \}} | 0.02095 ^{\{ 11 \}} | 0.02556 ^{\{ 16 \}} | 0.01809 ^{\{ 4 \}} | 0.02331 ^{\{ 13 \}} | 0.0194 ^{\{ 10 \}} | 0.02489 ^{\{ 15 \}} | |
D_{max} | 0.02854 ^{\{ 2 \}} | 0.02811 ^{\{ 1 \}} | 0.0311 ^{\{ 6 \}} | 0.02911 ^{\{ 3 \}} | 0.03125 ^{\{ 9 \}} | 0.04038 ^{\{ 15 \}} | 0.03059 ^{\{ 5 \}} | 0.03114 ^{\{ 8 \}} | 0.03133 ^{\{ 10 \}} | 0.03661 ^{\{ 12 \}} | 0.03376 ^{\{ 11 \}} | 0.04569 ^{\{ 16 \}} | 0.02932 ^{\{ 4 \}} | 0.03781 ^{\{ 13 \}} | 0.03112 ^{\{ 7 \}} | 0.04026 ^{\{ 14 \}} | |
ASAE | 0.00922 ^{\{ 2 \}} | 0.00948 ^{\{ 1 \}} | 0.01031 ^{\{ 6 \}} | 0.00924 ^{\{ 3 \}} | 0.0102 ^{\{ 9 \}} | 0.01022 ^{\{ 15 \}} | 0.00873 ^{\{ 5 \}} | 0.00939 ^{\{ 8 \}} | 0.01165 ^{\{ 10 \}} | 0.01246 ^{\{ 12 \}} | 0.01166 ^{\{ 11 \}} | 0.02331 ^{\{ 16 \}} | 0.01082 ^{\{ 4 \}} | 0.014 ^{\{ 13 \}} | 0.01085 ^{\{ 7 \}} | 0.01438 ^{\{ 14 \}} | |
\sum Ranks | 15 ^{\{ 1 \}} | 25 ^{\{ 3 \}} | 86 ^{\{ 10 \}} | 24 ^{\{ 2 \}} | 82 ^{\{ 8 \}} | 100 ^{\{ 12 \}} | 46 ^{\{ 5 \}} | 67 ^{\{ 7 \}} | 95 ^{\{ 11 \}} | 106 ^{\{ 13 \}} | 85 ^{\{ 9 \}} | 144 ^{\{ 16 \}} | 45 ^{\{ 4 \}} | 120 ^{\{ 14 \}} | 53 ^{\{ 6 \}} | 131 ^{\{ 15 \}} | |
300 | BIAS( \hat{\delta} ) | 0.08175 ^{\{ 4 \}} | 0.08302 ^{\{ 7 \}} | 0.09584 ^{\{ 11 \}} | 0.08295 ^{\{ 6 \}} | 0.0921 ^{\{ 10 \}} | 0.08157 ^{\{ 3 \}} | 0.08021 ^{\{ 2 \}} | 0.08213 ^{\{ 5 \}} | 0.10482 ^{\{ 13 \}} | 0.0976 ^{\{ 12 \}} | 0.08978 ^{\{ 9 \}} | 0.19508 ^{\{ 16 \}} | 0.07762 ^{\{ 1 \}} | 0.10747 ^{\{ 14 \}} | 0.08829 ^{\{ 8 \}} | 0.1103 ^{\{ 15 \}} |
BIAS( \hat{\gamma} ) | 0.02876 ^{\{ 1 \}} | 0.03099 ^{\{ 3 \}} | 0.0363 ^{\{ 10 \}} | 0.03037 ^{\{ 2 \}} | 0.03335 ^{\{ 9 \}} | 0.04885 ^{\{ 15 \}} | 0.03242 ^{\{ 5 \}} | 0.03128 ^{\{ 4 \}} | 0.03653 ^{\{ 11 \}} | 0.03663 ^{\{ 12 \}} | 0.03266 ^{\{ 7 \}} | 0.05563 ^{\{ 16 \}} | 0.03243 ^{\{ 6 \}} | 0.04199 ^{\{ 14 \}} | 0.03326 ^{\{ 8 \}} | 0.04146 ^{\{ 13 \}} | |
MSE( \hat{\delta} ) | 0.01057 ^{\{ 2.5 \}} | 0.01109 ^{\{ 6 \}} | 0.01455 ^{\{ 11 \}} | 0.01057 ^{\{ 2.5 \}} | 0.0136 ^{\{ 10 \}} | 0.01075 ^{\{ 4 \}} | 0.01013 ^{\{ 1 \}} | 0.01096 ^{\{ 5 \}} | 0.01746 ^{\{ 13 \}} | 0.01501 ^{\{ 12 \}} | 0.01281 ^{\{ 9 \}} | 0.06142 ^{\{ 16 \}} | 0.01129 ^{\{ 7 \}} | 0.01861 ^{\{ 14 \}} | 0.01214 ^{\{ 8 \}} | 0.0188 ^{\{ 15 \}} | |
MSE( \hat{\gamma} ) | 0.00135 ^{\{ 1 \}} | 0.00144 ^{\{ 3 \}} | 0.00207 ^{\{ 11 \}} | 0.0014 ^{\{ 2 \}} | 0.00178 ^{\{ 9 \}} | 0.0038 ^{\{ 15 \}} | 0.00168 ^{\{ 5 \}} | 0.00159 ^{\{ 4 \}} | 0.00206 ^{\{ 10 \}} | 0.0021 ^{\{ 12 \}} | 0.0017 ^{\{ 6.5 \}} | 0.00496 ^{\{ 16 \}} | 0.00174 ^{\{ 8 \}} | 0.00276 ^{\{ 14 \}} | 0.0017 ^{\{ 6.5 \}} | 0.00266 ^{\{ 13 \}} | |
MRE( \hat{\delta} ) | 0.04088 ^{\{ 4 \}} | 0.04151 ^{\{ 7 \}} | 0.04792 ^{\{ 11 \}} | 0.04148 ^{\{ 6 \}} | 0.04605 ^{\{ 10 \}} | 0.04078 ^{\{ 3 \}} | 0.04011 ^{\{ 2 \}} | 0.04106 ^{\{ 5 \}} | 0.05241 ^{\{ 13 \}} | 0.0488 ^{\{ 12 \}} | 0.04489 ^{\{ 9 \}} | 0.09754 ^{\{ 16 \}} | 0.03881 ^{\{ 1 \}} | 0.05373 ^{\{ 14 \}} | 0.04415 ^{\{ 8 \}} | 0.05515 ^{\{ 15 \}} | |
MRE( \hat{\gamma} ) | 0.03835 ^{\{ 1 \}} | 0.04132 ^{\{ 3 \}} | 0.04839 ^{\{ 10 \}} | 0.04049 ^{\{ 2 \}} | 0.04447 ^{\{ 9 \}} | 0.06514 ^{\{ 15 \}} | 0.04322 ^{\{ 5 \}} | 0.04171 ^{\{ 4 \}} | 0.0487 ^{\{ 11 \}} | 0.04883 ^{\{ 12 \}} | 0.04355 ^{\{ 7 \}} | 0.07418 ^{\{ 16 \}} | 0.04324 ^{\{ 6 \}} | 0.05599 ^{\{ 14 \}} | 0.04435 ^{\{ 8 \}} | 0.05528 ^{\{ 13 \}} | |
D_{abs} | 0.01451 ^{\{ 1 \}} | 0.01492 ^{\{ 4 \}} | 0.01568 ^{\{ 8 \}} | 0.01477 ^{\{ 3 \}} | 0.0151 ^{\{ 6 \}} | 0.01945 ^{\{ 13 \}} | 0.01508 ^{\{ 5 \}} | 0.01474 ^{\{ 2 \}} | 0.01613 ^{\{ 9 \}} | 0.01734 ^{\{ 12 \}} | 0.01679 ^{\{ 11 \}} | 0.02148 ^{\{ 16 \}} | 0.01519 ^{\{ 7 \}} | 0.02013 ^{\{ 15 \}} | 0.01651 ^{\{ 10 \}} | 0.01986 ^{\{ 14 \}} | |
D_{max} | 0.02346 ^{\{ 1 \}} | 0.02414 ^{\{ 4 \}} | 0.02588 ^{\{ 8 \}} | 0.02383 ^{\{ 2 \}} | 0.02478 ^{\{ 7 \}} | 0.03171 ^{\{ 13 \}} | 0.02446 ^{\{ 5 \}} | 0.02401 ^{\{ 3 \}} | 0.02676 ^{\{ 10 \}} | 0.02813 ^{\{ 12 \}} | 0.02693 ^{\{ 11 \}} | 0.03855 ^{\{ 16 \}} | 0.02454 ^{\{ 6 \}} | 0.03263 ^{\{ 15 \}} | 0.02665 ^{\{ 9 \}} | 0.03221 ^{\{ 14 \}} | |
ASAE | 0.00718 ^{\{ 1 \}} | 0.0073 ^{\{ 4 \}} | 0.0079 ^{\{ 8 \}} | 0.00719 ^{\{ 2 \}} | 0.00773 ^{\{ 7 \}} | 0.00792 ^{\{ 13 \}} | 0.00677 ^{\{ 5 \}} | 0.0072 ^{\{ 3 \}} | 0.00891 ^{\{ 10 \}} | 0.00949 ^{\{ 12 \}} | 0.00892 ^{\{ 11 \}} | 0.01824 ^{\{ 16 \}} | 0.0082 ^{\{ 6 \}} | 0.01104 ^{\{ 15 \}} | 0.00845 ^{\{ 9 \}} | 0.01089 ^{\{ 14 \}} | |
\sum Ranks | 17.5 ^{\{ 1 \}} | 42 ^{\{ 5 \}} | 87 ^{\{ 10 \}} | 28.5 ^{\{ 2 \}} | 76 ^{\{ 8 \}} | 89 ^{\{ 11 \}} | 31 ^{\{ 3 \}} | 36 ^{\{ 4 \}} | 101 ^{\{ 12 \}} | 109 ^{\{ 13 \}} | 81.5 ^{\{ 9 \}} | 144 ^{\{ 16 \}} | 51 ^{\{ 6 \}} | 129 ^{\{ 15 \}} | 75.5 ^{\{ 7 \}} | 126 ^{\{ 14 \}} | |
450 | BIAS( \hat{\delta} ) | 0.06326 ^{\{ 1 \}} | 0.06783 ^{\{ 5 \}} | 0.07928 ^{\{ 12 \}} | 0.06463 ^{\{ 3 \}} | 0.07265 ^{\{ 10 \}} | 0.06995 ^{\{ 8 \}} | 0.06595 ^{\{ 4 \}} | 0.06897 ^{\{ 6 \}} | 0.08425 ^{\{ 13 \}} | 0.07847 ^{\{ 11 \}} | 0.0712 ^{\{ 9 \}} | 0.16761 ^{\{ 16 \}} | 0.0639 ^{\{ 2 \}} | 0.09041 ^{\{ 15 \}} | 0.06952 ^{\{ 7 \}} | 0.08633 ^{\{ 14 \}} |
BIAS( \hat{\gamma} ) | 0.02415 ^{\{ 2 \}} | 0.02646 ^{\{ 6 \}} | 0.02954 ^{\{ 11 \}} | 0.02364 ^{\{ 1 \}} | 0.02695 ^{\{ 7 \}} | 0.04121 ^{\{ 15 \}} | 0.02631 ^{\{ 5 \}} | 0.02548 ^{\{ 3 \}} | 0.02907 ^{\{ 10 \}} | 0.03157 ^{\{ 12 \}} | 0.02792 ^{\{ 9 \}} | 0.04678 ^{\{ 16 \}} | 0.02769 ^{\{ 8 \}} | 0.03356 ^{\{ 13 \}} | 0.02597 ^{\{ 4 \}} | 0.03406 ^{\{ 14 \}} | |
MSE( \hat{\delta} ) | 0.00636 ^{\{ 2 \}} | 0.00728 ^{\{ 4 \}} | 0.00986 ^{\{ 11 \}} | 0.00632 ^{\{ 1 \}} | 0.00858 ^{\{ 10 \}} | 0.00755 ^{\{ 7 \}} | 0.0067 ^{\{ 3 \}} | 0.0074 ^{\{ 6 \}} | 0.01125 ^{\{ 13 \}} | 0.01001 ^{\{ 12 \}} | 0.00807 ^{\{ 9 \}} | 0.04645 ^{\{ 16 \}} | 0.00729 ^{\{ 5 \}} | 0.01315 ^{\{ 15 \}} | 0.00764 ^{\{ 8 \}} | 0.01145 ^{\{ 14 \}} | |
MSE( \hat{\gamma} ) | 0.00094 ^{\{ 2 \}} | 0.00109 ^{\{ 5 \}} | 0.0014 ^{\{ 11 \}} | 0.00087 ^{\{ 1 \}} | 0.00117 ^{\{ 7 \}} | 0.00268 ^{\{ 15 \}} | 0.00112 ^{\{ 6 \}} | 0.00102 ^{\{ 3 \}} | 0.00134 ^{\{ 10 \}} | 0.00149 ^{\{ 12 \}} | 0.00121 ^{\{ 8 \}} | 0.00357 ^{\{ 16 \}} | 0.00126 ^{\{ 9 \}} | 0.00178 ^{\{ 13 \}} | 0.00106 ^{\{ 4 \}} | 0.00182 ^{\{ 14 \}} | |
MRE( \hat{\delta} ) | 0.03163 ^{\{ 1 \}} | 0.03391 ^{\{ 5 \}} | 0.03964 ^{\{ 12 \}} | 0.03231 ^{\{ 3 \}} | 0.03632 ^{\{ 10 \}} | 0.03497 ^{\{ 8 \}} | 0.03298 ^{\{ 4 \}} | 0.03448 ^{\{ 6 \}} | 0.04212 ^{\{ 13 \}} | 0.03923 ^{\{ 11 \}} | 0.0356 ^{\{ 9 \}} | 0.0838 ^{\{ 16 \}} | 0.03195 ^{\{ 2 \}} | 0.0452 ^{\{ 15 \}} | 0.03476 ^{\{ 7 \}} | 0.04317 ^{\{ 14 \}} | |
MRE( \hat{\gamma} ) | 0.03221 ^{\{ 2 \}} | 0.03528 ^{\{ 6 \}} | 0.03939 ^{\{ 11 \}} | 0.03151 ^{\{ 1 \}} | 0.03594 ^{\{ 7 \}} | 0.05495 ^{\{ 15 \}} | 0.03508 ^{\{ 5 \}} | 0.03398 ^{\{ 3 \}} | 0.03876 ^{\{ 10 \}} | 0.04209 ^{\{ 12 \}} | 0.03723 ^{\{ 9 \}} | 0.06237 ^{\{ 16 \}} | 0.03693 ^{\{ 8 \}} | 0.04475 ^{\{ 13 \}} | 0.03463 ^{\{ 4 \}} | 0.04542 ^{\{ 14 \}} | |
D_{abs} | 0.0121 ^{\{ 3 \}} | 0.01181 ^{\{ 1 \}} | 0.01305 ^{\{ 10 \}} | 0.01242 ^{\{ 6 \}} | 0.01266 ^{\{ 8 \}} | 0.01607 ^{\{ 13 \}} | 0.01218 ^{\{ 4 \}} | 0.01194 ^{\{ 2 \}} | 0.01264 ^{\{ 7 \}} | 0.01499 ^{\{ 12 \}} | 0.01383 ^{\{ 11 \}} | 0.01823 ^{\{ 16 \}} | 0.01233 ^{\{ 5 \}} | 0.01656 ^{\{ 15 \}} | 0.0127 ^{\{ 9 \}} | 0.01614 ^{\{ 14 \}} | |
D_{max} | 0.01946 ^{\{ 2 \}} | 0.01932 ^{\{ 1 \}} | 0.02156 ^{\{ 10 \}} | 0.01984 ^{\{ 5 \}} | 0.02063 ^{\{ 8 \}} | 0.02631 ^{\{ 14 \}} | 0.01983 ^{\{ 4 \}} | 0.01948 ^{\{ 3 \}} | 0.02102 ^{\{ 9 \}} | 0.02419 ^{\{ 12 \}} | 0.02228 ^{\{ 11 \}} | 0.03279 ^{\{ 16 \}} | 0.02009 ^{\{ 6 \}} | 0.0268 ^{\{ 15 \}} | 0.02052 ^{\{ 7 \}} | 0.02612 ^{\{ 13 \}} | |
ASAE | 0.00557 ^{\{ 2 \}} | 0.00566 ^{\{ 1 \}} | 0.00609 ^{\{ 10 \}} | 0.00547 ^{\{ 5 \}} | 0.00601 ^{\{ 8 \}} | 0.00632 ^{\{ 14 \}} | 0.00522 ^{\{ 4 \}} | 0.00555 ^{\{ 3 \}} | 0.00684 ^{\{ 9 \}} | 0.00742 ^{\{ 12 \}} | 0.00691 ^{\{ 11 \}} | 0.01457 ^{\{ 16 \}} | 0.0063 ^{\{ 6 \}} | 0.00851 ^{\{ 15 \}} | 0.00659 ^{\{ 7 \}} | 0.00841 ^{\{ 13 \}} | |
\sum Ranks | 19 ^{\{ 1 \}} | 38 ^{\{ 5 \}} | 95 ^{\{ 10 \}} | 23 ^{\{ 2 \}} | 73 ^{\{ 8 \}} | 104 ^{\{ 12 \}} | 36 ^{\{ 4 \}} | 35 ^{\{ 3 \}} | 96 ^{\{ 11 \}} | 107 ^{\{ 13 \}} | 87 ^{\{ 9 \}} | 144 ^{\{ 16 \}} | 53 ^{\{ 6 \}} | 129 ^{\{ 15 \}} | 60 ^{\{ 7 \}} | 125 ^{\{ 14 \}} |
n | Est. | MLE | ADE | CVME | MPSE | OLSE | PCE | RTADE | WLSE | LTADE | MSADE | MSALDE | ADSOE | KE | MSSD | MSSLD | MSLND |
20 | BIAS( \hat{\delta} ) | 0.77168 ^{\{ 8 \}} | 0.76809 ^{\{ 7 \}} | 0.84661 ^{\{ 12 \}} | 0.71596 ^{\{ 4 \}} | 0.80149 ^{\{ 11 \}} | 0.70339 ^{\{ 3 \}} | 0.78376 ^{\{ 10 \}} | 0.76067 ^{\{ 6 \}} | 0.91526 ^{\{ 15 \}} | 0.59993 ^{\{ 2 \}} | 0.77341 ^{\{ 9 \}} | 1.05303 ^{\{ 16 \}} | 0.08104 ^{\{ 1 \}} | 0.87407 ^{\{ 14 \}} | 0.72763 ^{\{ 5 \}} | 0.87105 ^{\{ 13 \}} |
BIAS( \hat{\gamma} ) | 0.07775 ^{\{ 3 \}} | 0.07744 ^{\{ 2 \}} | 0.08311 ^{\{ 7 \}} | 0.08034 ^{\{ 4 \}} | 0.08821 ^{\{ 10 \}} | 0.11802 ^{\{ 16 \}} | 0.08311 ^{\{ 7 \}} | 0.08311 ^{\{ 7 \}} | 0.0899 ^{\{ 13 \}} | 0.08642 ^{\{ 9 \}} | 0.08946 ^{\{ 12 \}} | 0.08937 ^{\{ 11 \}} | 0.05695 ^{\{ 1 \}} | 0.09847 ^{\{ 14 \}} | 0.08049 ^{\{ 5 \}} | 0.10753 ^{\{ 15 \}} | |
MSE( \hat{\delta} ) | 1.06897 ^{\{ 12 \}} | 1.02191 ^{\{ 9 \}} | 1.21392 ^{\{ 14 \}} | 0.75581 ^{\{ 4 \}} | 1.02667 ^{\{ 11 \}} | 0.68575 ^{\{ 2 \}} | 1.07332 ^{\{ 13 \}} | 0.95724 ^{\{ 7 \}} | 1.33596 ^{\{ 15 \}} | 0.70539 ^{\{ 3 \}} | 0.9149 ^{\{ 6 \}} | 1.704 ^{\{ 16 \}} | 0.04444 ^{\{ 1 \}} | 1.02214 ^{\{ 10 \}} | 0.88171 ^{\{ 5 \}} | 0.99335 ^{\{ 8 \}} | |
MSE( \hat{\gamma} ) | 0.00998 ^{\{ 4 \}} | 0.00969 ^{\{ 3 \}} | 0.01129 ^{\{ 7 \}} | 0.00947 ^{\{ 2 \}} | 0.01163 ^{\{ 10 \}} | 0.02198 ^{\{ 16 \}} | 0.01154 ^{\{ 9 \}} | 0.01096 ^{\{ 6 \}} | 0.01247 ^{\{ 13 \}} | 0.01137 ^{\{ 8 \}} | 0.01187 ^{\{ 11 \}} | 0.01205 ^{\{ 12 \}} | 0.0054 ^{\{ 1 \}} | 0.01413 ^{\{ 14 \}} | 0.00999 ^{\{ 5 \}} | 0.01611 ^{\{ 15 \}} | |
MRE( \hat{\delta} ) | 0.22048 ^{\{ 8 \}} | 0.21945 ^{\{ 7 \}} | 0.24189 ^{\{ 12 \}} | 0.20456 ^{\{ 4 \}} | 0.229 ^{\{ 11 \}} | 0.20097 ^{\{ 3 \}} | 0.22393 ^{\{ 10 \}} | 0.21733 ^{\{ 6 \}} | 0.2615 ^{\{ 15 \}} | 0.17141 ^{\{ 2 \}} | 0.22097 ^{\{ 9 \}} | 0.30087 ^{\{ 16 \}} | 0.02315 ^{\{ 1 \}} | 0.24973 ^{\{ 14 \}} | 0.20789 ^{\{ 5 \}} | 0.24887 ^{\{ 13 \}} | |
MRE( \hat{\gamma} ) | 0.15551 ^{\{ 3 \}} | 0.15488 ^{\{ 2 \}} | 0.16622 ^{\{ 7 \}} | 0.16068 ^{\{ 4 \}} | 0.17641 ^{\{ 10 \}} | 0.23603 ^{\{ 16 \}} | 0.16623 ^{\{ 8 \}} | 0.16621 ^{\{ 6 \}} | 0.1798 ^{\{ 13 \}} | 0.17283 ^{\{ 9 \}} | 0.17893 ^{\{ 12 \}} | 0.17875 ^{\{ 11 \}} | 0.1139 ^{\{ 1 \}} | 0.19694 ^{\{ 14 \}} | 0.16098 ^{\{ 5 \}} | 0.21507 ^{\{ 15 \}} | |
D_{abs} | 0.05534 ^{\{ 2 \}} | 0.05541 ^{\{ 3 \}} | 0.05593 ^{\{ 5 \}} | 0.05852 ^{\{ 7 \}} | 0.06269 ^{\{ 11 \}} | 0.0826 ^{\{ 16 \}} | 0.05677 ^{\{ 6 \}} | 0.05553 ^{\{ 4 \}} | 0.05914 ^{\{ 8 \}} | 0.0676 ^{\{ 12 \}} | 0.06827 ^{\{ 13 \}} | 0.06145 ^{\{ 10 \}} | 0.05199 ^{\{ 1 \}} | 0.0697 ^{\{ 14 \}} | 0.05965 ^{\{ 9 \}} | 0.07496 ^{\{ 15 \}} | |
D_{max} | 0.08925 ^{\{ 3.5 \}} | 0.08825 ^{\{ 2 \}} | 0.09159 ^{\{ 6 \}} | 0.09215 ^{\{ 7 \}} | 0.09924 ^{\{ 10 \}} | 0.13153 ^{\{ 16 \}} | 0.09117 ^{\{ 5 \}} | 0.08925 ^{\{ 3.5 \}} | 0.09676 ^{\{ 9 \}} | 0.10384 ^{\{ 12 \}} | 0.10725 ^{\{ 13 \}} | 0.1017 ^{\{ 11 \}} | 0.07619 ^{\{ 1 \}} | 0.11139 ^{\{ 14 \}} | 0.09445 ^{\{ 8 \}} | 0.11954 ^{\{ 15 \}} | |
ASAE | 0.04532 ^{\{ 3.5 \}} | 0.04375 ^{\{ 2 \}} | 0.04621 ^{\{ 6 \}} | 0.04116 ^{\{ 7 \}} | 0.05013 ^{\{ 10 \}} | 0.03245 ^{\{ 16 \}} | 0.03944 ^{\{ 5 \}} | 0.04351 ^{\{ 3.5 \}} | 0.06002 ^{\{ 9 \}} | 0.04967 ^{\{ 12 \}} | 0.04615 ^{\{ 13 \}} | 0.09029 ^{\{ 11 \}} | 0.05507 ^{\{ 1 \}} | 0.06957 ^{\{ 14 \}} | 0.04822 ^{\{ 8 \}} | 0.07438 ^{\{ 15 \}} | |
\sum Ranks | 49.5 ^{\{ 4.5 \}} | 40 ^{\{ 3 \}} | 78 ^{\{ 9 \}} | 39 ^{\{ 2 \}} | 95 ^{\{ 12 \}} | 89 ^{\{ 10 \}} | 70 ^{\{ 8 \}} | 49.5 ^{\{ 4.5 \}} | 114 ^{\{ 13 \}} | 67 ^{\{ 7 \}} | 92 ^{\{ 11 \}} | 119 ^{\{ 14 \}} | 20 ^{\{ 1 \}} | 122 ^{\{ 15 \}} | 56 ^{\{ 6 \}} | 124 ^{\{ 16 \}} | |
70 | BIAS( \hat{\delta} ) | 0.38708 ^{\{ 2 \}} | 0.40421 ^{\{ 6 \}} | 0.51253 ^{\{ 13 \}} | 0.38794 ^{\{ 3 \}} | 0.44381 ^{\{ 10 \}} | 0.52357 ^{\{ 14 \}} | 0.39876 ^{\{ 5 \}} | 0.43209 ^{\{ 9 \}} | 0.54517 ^{\{ 15 \}} | 0.39048 ^{\{ 4 \}} | 0.42867 ^{\{ 8 \}} | 0.82893 ^{\{ 16 \}} | 0.04895 ^{\{ 1 \}} | 0.48272 ^{\{ 12 \}} | 0.40594 ^{\{ 7 \}} | 0.46834 ^{\{ 11 \}} |
BIAS( \hat{\gamma} ) | 0.04102 ^{\{ 2 \}} | 0.04177 ^{\{ 3 \}} | 0.05133 ^{\{ 12 \}} | 0.04363 ^{\{ 4 \}} | 0.04774 ^{\{ 9 \}} | 0.08577 ^{\{ 16 \}} | 0.04446 ^{\{ 5 \}} | 0.04528 ^{\{ 6 \}} | 0.05104 ^{\{ 11 \}} | 0.04919 ^{\{ 10 \}} | 0.04746 ^{\{ 8 \}} | 0.06662 ^{\{ 15 \}} | 0.03025 ^{\{ 1 \}} | 0.05524 ^{\{ 13 \}} | 0.04573 ^{\{ 7 \}} | 0.05577 ^{\{ 14 \}} | |
MSE( \hat{\delta} ) | 0.26609 ^{\{ 4 \}} | 0.27429 ^{\{ 5 \}} | 0.45976 ^{\{ 14 \}} | 0.2416 ^{\{ 2 \}} | 0.3468 ^{\{ 12 \}} | 0.41142 ^{\{ 13 \}} | 0.28375 ^{\{ 6 \}} | 0.33729 ^{\{ 10 \}} | 0.50461 ^{\{ 15 \}} | 0.28832 ^{\{ 7 \}} | 0.30255 ^{\{ 8 \}} | 1.1095 ^{\{ 16 \}} | 0.01393 ^{\{ 1 \}} | 0.33799 ^{\{ 11 \}} | 0.25368 ^{\{ 3 \}} | 0.32081 ^{\{ 9 \}} | |
MSE( \hat{\gamma} ) | 0.00277 ^{\{ 3 \}} | 0.00273 ^{\{ 2 \}} | 0.00412 ^{\{ 12 \}} | 0.00282 ^{\{ 4 \}} | 0.0036 ^{\{ 8.5 \}} | 0.01232 ^{\{ 16 \}} | 0.00322 ^{\{ 6 \}} | 0.00331 ^{\{ 7 \}} | 0.00403 ^{\{ 11 \}} | 0.00377 ^{\{ 10 \}} | 0.0036 ^{\{ 8.5 \}} | 0.00664 ^{\{ 15 \}} | 0.00148 ^{\{ 1 \}} | 0.00468 ^{\{ 13 \}} | 0.00314 ^{\{ 5 \}} | 0.00483 ^{\{ 14 \}} | |
MRE( \hat{\delta} ) | 0.11059 ^{\{ 2 \}} | 0.11549 ^{\{ 6 \}} | 0.14644 ^{\{ 13 \}} | 0.11084 ^{\{ 3 \}} | 0.1268 ^{\{ 10 \}} | 0.14959 ^{\{ 14 \}} | 0.11393 ^{\{ 5 \}} | 0.12345 ^{\{ 9 \}} | 0.15576 ^{\{ 15 \}} | 0.11156 ^{\{ 4 \}} | 0.12248 ^{\{ 8 \}} | 0.23684 ^{\{ 16 \}} | 0.01399 ^{\{ 1 \}} | 0.13792 ^{\{ 12 \}} | 0.11598 ^{\{ 7 \}} | 0.13381 ^{\{ 11 \}} | |
MRE( \hat{\gamma} ) | 0.08205 ^{\{ 2 \}} | 0.08354 ^{\{ 3 \}} | 0.10265 ^{\{ 12 \}} | 0.08726 ^{\{ 4 \}} | 0.09548 ^{\{ 9 \}} | 0.17154 ^{\{ 16 \}} | 0.08893 ^{\{ 5 \}} | 0.09056 ^{\{ 6 \}} | 0.10208 ^{\{ 11 \}} | 0.09837 ^{\{ 10 \}} | 0.09491 ^{\{ 8 \}} | 0.13324 ^{\{ 15 \}} | 0.0605 ^{\{ 1 \}} | 0.11047 ^{\{ 13 \}} | 0.09145 ^{\{ 7 \}} | 0.11155 ^{\{ 14 \}} | |
D_{abs} | 0.0317 ^{\{ 6 \}} | 0.03027 ^{\{ 2 \}} | 0.03218 ^{\{ 8 \}} | 0.03068 ^{\{ 3 \}} | 0.03193 ^{\{ 7 \}} | 0.0563 ^{\{ 16 \}} | 0.03165 ^{\{ 5 \}} | 0.03137 ^{\{ 4 \}} | 0.03254 ^{\{ 9 \}} | 0.03697 ^{\{ 12 \}} | 0.03626 ^{\{ 11 \}} | 0.03957 ^{\{ 14 \}} | 0.02778 ^{\{ 1 \}} | 0.03987 ^{\{ 15 \}} | 0.0337 ^{\{ 10 \}} | 0.03879 ^{\{ 13 \}} | |
D_{max} | 0.05069 ^{\{ 4 \}} | 0.049 ^{\{ 2 \}} | 0.0534 ^{\{ 8 \}} | 0.04924 ^{\{ 3 \}} | 0.0517 ^{\{ 7 \}} | 0.0913 ^{\{ 16 \}} | 0.05088 ^{\{ 5 \}} | 0.05097 ^{\{ 6 \}} | 0.0543 ^{\{ 10 \}} | 0.05856 ^{\{ 12 \}} | 0.05761 ^{\{ 11 \}} | 0.0694 ^{\{ 15 \}} | 0.04102 ^{\{ 1 \}} | 0.06417 ^{\{ 14 \}} | 0.05397 ^{\{ 9 \}} | 0.06242 ^{\{ 13 \}} | |
ASAE | 0.01744 ^{\{ 4 \}} | 0.01873 ^{\{ 2 \}} | 0.01989 ^{\{ 8 \}} | 0.01707 ^{\{ 3 \}} | 0.02058 ^{\{ 7 \}} | 0.01739 ^{\{ 16 \}} | 0.01678 ^{\{ 5 \}} | 0.01793 ^{\{ 6 \}} | 0.0238 ^{\{ 10 \}} | 0.02182 ^{\{ 12 \}} | 0.02093 ^{\{ 11 \}} | 0.04535 ^{\{ 15 \}} | 0.02255 ^{\{ 1 \}} | 0.02846 ^{\{ 14 \}} | 0.0197 ^{\{ 9 \}} | 0.02686 ^{\{ 13 \}} | |
\sum Ranks | 29 ^{\{ 3 \}} | 35 ^{\{ 4 \}} | 100 ^{\{ 11 \}} | 28 ^{\{ 2 \}} | 81.5 ^{\{ 10 \}} | 124 ^{\{ 15 \}} | 43 ^{\{ 5 \}} | 62 ^{\{ 6.5 \}} | 110 ^{\{ 12 \}} | 80 ^{\{ 8 \}} | 80.5 ^{\{ 9 \}} | 138 ^{\{ 16 \}} | 20 ^{\{ 1 \}} | 118 ^{\{ 14 \}} | 62 ^{\{ 6.5 \}} | 113 ^{\{ 13 \}} | |
150 | BIAS( \hat{\delta} ) | 0.25741 ^{\{ 3 \}} | 0.28723 ^{\{ 9 \}} | 0.33028 ^{\{ 11 \}} | 0.24728 ^{\{ 2 \}} | 0.32023 ^{\{ 10 \}} | 0.37796 ^{\{ 15 \}} | 0.27298 ^{\{ 4 \}} | 0.28018 ^{\{ 7 \}} | 0.37038 ^{\{ 14 \}} | 0.28436 ^{\{ 8 \}} | 0.27735 ^{\{ 6 \}} | 0.60911 ^{\{ 16 \}} | 0.04457 ^{\{ 1 \}} | 0.34047 ^{\{ 13 \}} | 0.27329 ^{\{ 5 \}} | 0.33688 ^{\{ 12 \}} |
BIAS( \hat{\gamma} ) | 0.02775 ^{\{ 3 \}} | 0.02945 ^{\{ 4 \}} | 0.03249 ^{\{ 9 \}} | 0.02752 ^{\{ 2 \}} | 0.03128 ^{\{ 6 \}} | 0.0686 ^{\{ 16 \}} | 0.03289 ^{\{ 10 \}} | 0.03047 ^{\{ 5 \}} | 0.03433 ^{\{ 12 \}} | 0.03355 ^{\{ 11 \}} | 0.0316 ^{\{ 8 \}} | 0.04711 ^{\{ 15 \}} | 0.02136 ^{\{ 1 \}} | 0.03692 ^{\{ 13 \}} | 0.03156 ^{\{ 7 \}} | 0.03824 ^{\{ 14 \}} | |
MSE( \hat{\delta} ) | 0.1146 ^{\{ 4 \}} | 0.13115 ^{\{ 8 \}} | 0.18661 ^{\{ 13 \}} | 0.09363 ^{\{ 2 \}} | 0.16818 ^{\{ 10 \}} | 0.21627 ^{\{ 14 \}} | 0.12654 ^{\{ 6 \}} | 0.12824 ^{\{ 7 \}} | 0.2379 ^{\{ 15 \}} | 0.15009 ^{\{ 9 \}} | 0.12349 ^{\{ 5 \}} | 0.60562 ^{\{ 16 \}} | 0.00764 ^{\{ 1 \}} | 0.16919 ^{\{ 11 \}} | 0.11448 ^{\{ 3 \}} | 0.1759 ^{\{ 12 \}} | |
MSE( \hat{\gamma} ) | 0.00128 ^{\{ 3 \}} | 0.00136 ^{\{ 4 \}} | 0.00171 ^{\{ 9.5 \}} | 0.00115 ^{\{ 2 \}} | 0.0016 ^{\{ 8 \}} | 0.00786 ^{\{ 16 \}} | 0.00171 ^{\{ 9.5 \}} | 0.00146 ^{\{ 5 \}} | 0.00193 ^{\{ 12 \}} | 0.00181 ^{\{ 11 \}} | 0.00154 ^{\{ 7 \}} | 0.00345 ^{\{ 15 \}} | 0.00073 ^{\{ 1 \}} | 0.00213 ^{\{ 13 \}} | 0.0015 ^{\{ 6 \}} | 0.00226 ^{\{ 14 \}} | |
MRE( \hat{\delta} ) | 0.07355 ^{\{ 3 \}} | 0.08206 ^{\{ 9 \}} | 0.09437 ^{\{ 11 \}} | 0.07065 ^{\{ 2 \}} | 0.09149 ^{\{ 10 \}} | 0.10799 ^{\{ 15 \}} | 0.078 ^{\{ 4 \}} | 0.08005 ^{\{ 7 \}} | 0.10582 ^{\{ 14 \}} | 0.08124 ^{\{ 8 \}} | 0.07924 ^{\{ 6 \}} | 0.17403 ^{\{ 16 \}} | 0.01274 ^{\{ 1 \}} | 0.09728 ^{\{ 13 \}} | 0.07808 ^{\{ 5 \}} | 0.09625 ^{\{ 12 \}} | |
MRE( \hat{\gamma} ) | 0.0555 ^{\{ 3 \}} | 0.0589 ^{\{ 4 \}} | 0.06498 ^{\{ 9 \}} | 0.05505 ^{\{ 2 \}} | 0.06256 ^{\{ 6 \}} | 0.13721 ^{\{ 16 \}} | 0.06579 ^{\{ 10 \}} | 0.06095 ^{\{ 5 \}} | 0.06866 ^{\{ 12 \}} | 0.0671 ^{\{ 11 \}} | 0.0632 ^{\{ 8 \}} | 0.09421 ^{\{ 15 \}} | 0.04272 ^{\{ 1 \}} | 0.07383 ^{\{ 13 \}} | 0.06313 ^{\{ 7 \}} | 0.07647 ^{\{ 14 \}} | |
D_{abs} | 0.02119 ^{\{ 4 \}} | 0.02149 ^{\{ 6 \}} | 0.02144 ^{\{ 5 \}} | 0.0207 ^{\{ 2 \}} | 0.02185 ^{\{ 7 \}} | 0.04339 ^{\{ 16 \}} | 0.02193 ^{\{ 8 \}} | 0.02111 ^{\{ 3 \}} | 0.02232 ^{\{ 9 \}} | 0.02592 ^{\{ 12 \}} | 0.02395 ^{\{ 10 \}} | 0.02881 ^{\{ 15 \}} | 0.01951 ^{\{ 1 \}} | 0.02737 ^{\{ 14 \}} | 0.0241 ^{\{ 11 \}} | 0.02658 ^{\{ 13 \}} | |
D_{max} | 0.03411 ^{\{ 3 \}} | 0.0349 ^{\{ 5 \}} | 0.03544 ^{\{ 6 \}} | 0.03309 ^{\{ 2 \}} | 0.0358 ^{\{ 8 \}} | 0.07038 ^{\{ 16 \}} | 0.03555 ^{\{ 7 \}} | 0.03433 ^{\{ 4 \}} | 0.03727 ^{\{ 9 \}} | 0.04136 ^{\{ 12 \}} | 0.03834 ^{\{ 10 \}} | 0.05089 ^{\{ 15 \}} | 0.02905 ^{\{ 1 \}} | 0.04409 ^{\{ 14 \}} | 0.03852 ^{\{ 11 \}} | 0.04319 ^{\{ 13 \}} | |
ASAE | 0.01006 ^{\{ 3 \}} | 0.01056 ^{\{ 5 \}} | 0.01175 ^{\{ 6 \}} | 0.00993 ^{\{ 2 \}} | 0.01159 ^{\{ 8 \}} | 0.01117 ^{\{ 16 \}} | 0.00977 ^{\{ 7 \}} | 0.01073 ^{\{ 4 \}} | 0.01372 ^{\{ 9 \}} | 0.01276 ^{\{ 12 \}} | 0.01202 ^{\{ 10 \}} | 0.0259 ^{\{ 15 \}} | 0.01249 ^{\{ 1 \}} | 0.01489 ^{\{ 14 \}} | 0.01124 ^{\{ 11 \}} | 0.01515 ^{\{ 13 \}} | |
\sum Ranks | 29 ^{\{ 3 \}} | 53 ^{\{ 5 \}} | 82.5 ^{\{ 10 \}} | 18 ^{\{ 1 \}} | 73 ^{\{ 9 \}} | 130 ^{\{ 15 \}} | 59.5 ^{\{ 6 \}} | 48 ^{\{ 4 \}} | 110 ^{\{ 12 \}} | 94 ^{\{ 11 \}} | 70 ^{\{ 8 \}} | 139 ^{\{ 16 \}} | 19 ^{\{ 2 \}} | 118 ^{\{ 13 \}} | 62 ^{\{ 7 \}} | 119 ^{\{ 14 \}} | |
200 | BIAS( \hat{\delta} ) | 0.22738 ^{\{ 3 \}} | 0.24049 ^{\{ 5 \}} | 0.28374 ^{\{ 11 \}} | 0.22633 ^{\{ 2 \}} | 0.26335 ^{\{ 10 \}} | 0.32776 ^{\{ 15 \}} | 0.24123 ^{\{ 7 \}} | 0.24084 ^{\{ 6 \}} | 0.31328 ^{\{ 14 \}} | 0.23175 ^{\{ 4 \}} | 0.25422 ^{\{ 9 \}} | 0.55912 ^{\{ 16 \}} | 0.04407 ^{\{ 1 \}} | 0.29393 ^{\{ 13 \}} | 0.24363 ^{\{ 8 \}} | 0.29313 ^{\{ 12 \}} |
BIAS( \hat{\gamma} ) | 0.02338 ^{\{ 2 \}} | 0.02475 ^{\{ 5 \}} | 0.02843 ^{\{ 10 \}} | 0.02441 ^{\{ 3 \}} | 0.02825 ^{\{ 9 \}} | 0.06116 ^{\{ 16 \}} | 0.02619 ^{\{ 6 \}} | 0.02451 ^{\{ 4 \}} | 0.02883 ^{\{ 11 \}} | 0.02977 ^{\{ 12 \}} | 0.0278 ^{\{ 8 \}} | 0.0442 ^{\{ 15 \}} | 0.01918 ^{\{ 1 \}} | 0.03334 ^{\{ 14 \}} | 0.02696 ^{\{ 7 \}} | 0.03238 ^{\{ 13 \}} | |
MSE( \hat{\delta} ) | 0.08379 ^{\{ 3 \}} | 0.09431 ^{\{ 5 \}} | 0.13122 ^{\{ 12 \}} | 0.07612 ^{\{ 2 \}} | 0.11804 ^{\{ 10 \}} | 0.16318 ^{\{ 15 \}} | 0.09553 ^{\{ 7 \}} | 0.09299 ^{\{ 4 \}} | 0.16137 ^{\{ 14 \}} | 0.10525 ^{\{ 9 \}} | 0.10263 ^{\{ 8 \}} | 0.50196 ^{\{ 16 \}} | 0.00749 ^{\{ 1 \}} | 0.13579 ^{\{ 13 \}} | 0.09516 ^{\{ 6 \}} | 0.13114 ^{\{ 11 \}} | |
MSE( \hat{\gamma} ) | 0.00087 ^{\{ 2 \}} | 0.00103 ^{\{ 5 \}} | 0.00131 ^{\{ 10 \}} | 0.00093 ^{\{ 3 \}} | 0.00129 ^{\{ 9 \}} | 0.00644 ^{\{ 16 \}} | 0.00109 ^{\{ 6 \}} | 0.00099 ^{\{ 4 \}} | 0.00133 ^{\{ 11 \}} | 0.00139 ^{\{ 12 \}} | 0.00122 ^{\{ 8 \}} | 0.00315 ^{\{ 15 \}} | 0.00059 ^{\{ 1 \}} | 0.00174 ^{\{ 14 \}} | 0.00116 ^{\{ 7 \}} | 0.00163 ^{\{ 13 \}} | |
MRE( \hat{\delta} ) | 0.06497 ^{\{ 3 \}} | 0.06871 ^{\{ 5 \}} | 0.08107 ^{\{ 11 \}} | 0.06467 ^{\{ 2 \}} | 0.07524 ^{\{ 10 \}} | 0.09365 ^{\{ 15 \}} | 0.06892 ^{\{ 7 \}} | 0.06881 ^{\{ 6 \}} | 0.08951 ^{\{ 14 \}} | 0.06621 ^{\{ 4 \}} | 0.07263 ^{\{ 9 \}} | 0.15975 ^{\{ 16 \}} | 0.01259 ^{\{ 1 \}} | 0.08398 ^{\{ 13 \}} | 0.06961 ^{\{ 8 \}} | 0.08375 ^{\{ 12 \}} | |
MRE( \hat{\gamma} ) | 0.04677 ^{\{ 2 \}} | 0.04949 ^{\{ 5 \}} | 0.05686 ^{\{ 10 \}} | 0.04883 ^{\{ 3 \}} | 0.0565 ^{\{ 9 \}} | 0.12232 ^{\{ 16 \}} | 0.05238 ^{\{ 6 \}} | 0.04901 ^{\{ 4 \}} | 0.05766 ^{\{ 11 \}} | 0.05954 ^{\{ 12 \}} | 0.05559 ^{\{ 8 \}} | 0.0884 ^{\{ 15 \}} | 0.03837 ^{\{ 1 \}} | 0.06669 ^{\{ 14 \}} | 0.05391 ^{\{ 7 \}} | 0.06477 ^{\{ 13 \}} | |
D_{abs} | 0.01842 ^{\{ 4 \}} | 0.01854 ^{\{ 5 \}} | 0.019 ^{\{ 8.5 \}} | 0.0174 ^{\{ 1 \}} | 0.019 ^{\{ 8.5 \}} | 0.03963 ^{\{ 16 \}} | 0.01868 ^{\{ 6 \}} | 0.01819 ^{\{ 3 \}} | 0.01897 ^{\{ 7 \}} | 0.02249 ^{\{ 12 \}} | 0.02071 ^{\{ 11 \}} | 0.02579 ^{\{ 15 \}} | 0.01775 ^{\{ 2 \}} | 0.02459 ^{\{ 14 \}} | 0.01959 ^{\{ 10 \}} | 0.02407 ^{\{ 13 \}} | |
D_{max} | 0.02964 ^{\{ 4 \}} | 0.03001 ^{\{ 5 \}} | 0.03123 ^{\{ 8 \}} | 0.02815 ^{\{ 2 \}} | 0.03104 ^{\{ 7 \}} | 0.06416 ^{\{ 16 \}} | 0.03029 ^{\{ 6 \}} | 0.02958 ^{\{ 3 \}} | 0.03168 ^{\{ 10 \}} | 0.03573 ^{\{ 12 \}} | 0.0332 ^{\{ 11 \}} | 0.04634 ^{\{ 15 \}} | 0.02642 ^{\{ 1 \}} | 0.03964 ^{\{ 14 \}} | 0.03162 ^{\{ 9 \}} | 0.03874 ^{\{ 13 \}} | |
ASAE | 0.00813 ^{\{ 4 \}} | 0.00859 ^{\{ 5 \}} | 0.00969 ^{\{ 8 \}} | 0.00828 ^{\{ 2 \}} | 0.00948 ^{\{ 7 \}} | 0.00933 ^{\{ 16 \}} | 0.00794 ^{\{ 6 \}} | 0.00848 ^{\{ 3 \}} | 0.01137 ^{\{ 10 \}} | 0.01065 ^{\{ 12 \}} | 0.00986 ^{\{ 11 \}} | 0.02451 ^{\{ 15 \}} | 0.01009 ^{\{ 1 \}} | 0.01255 ^{\{ 14 \}} | 0.00948 ^{\{ 9 \}} | 0.01222 ^{\{ 13 \}} | |
\sum Ranks | 25 ^{\{ 3 \}} | 45 ^{\{ 5 \}} | 89.5 ^{\{ 11 \}} | 21 ^{\{ 2 \}} | 79.5 ^{\{ 8 \}} | 131 ^{\{ 15 \}} | 52 ^{\{ 6 \}} | 38 ^{\{ 4 \}} | 105 ^{\{ 12 \}} | 89 ^{\{ 10 \}} | 82 ^{\{ 9 \}} | 139 ^{\{ 16 \}} | 20 ^{\{ 1 \}} | 124 ^{\{ 14 \}} | 70 ^{\{ 7 \}} | 114 ^{\{ 13 \}} | |
300 | BIAS( \hat{\delta} ) | 0.18765 ^{\{ 4 \}} | 0.18622 ^{\{ 3 \}} | 0.23491 ^{\{ 11 \}} | 0.18334 ^{\{ 2 \}} | 0.22584 ^{\{ 10 \}} | 0.27554 ^{\{ 15 \}} | 0.19962 ^{\{ 7 \}} | 0.19495 ^{\{ 5 \}} | 0.26373 ^{\{ 14 \}} | 0.20076 ^{\{ 8 \}} | 0.21238 ^{\{ 9 \}} | 0.45699 ^{\{ 16 \}} | 0.04033 ^{\{ 1 \}} | 0.24334 ^{\{ 13 \}} | 0.19542 ^{\{ 6 \}} | 0.23557 ^{\{ 12 \}} |
BIAS( \hat{\gamma} ) | 0.01932 ^{\{ 2 \}} | 0.02075 ^{\{ 4 \}} | 0.023 ^{\{ 10 \}} | 0.02042 ^{\{ 3 \}} | 0.02281 ^{\{ 9 \}} | 0.05248 ^{\{ 16 \}} | 0.02174 ^{\{ 6 \}} | 0.02078 ^{\{ 5 \}} | 0.02432 ^{\{ 12 \}} | 0.02395 ^{\{ 11 \}} | 0.02185 ^{\{ 7 \}} | 0.03616 ^{\{ 15 \}} | 0.01532 ^{\{ 1 \}} | 0.0263 ^{\{ 13 \}} | 0.02232 ^{\{ 8 \}} | 0.02669 ^{\{ 14 \}} | |
MSE( \hat{\delta} ) | 0.05495 ^{\{ 3 \}} | 0.0567 ^{\{ 4 \}} | 0.09068 ^{\{ 12 \}} | 0.05069 ^{\{ 2 \}} | 0.08238 ^{\{ 10 \}} | 0.11574 ^{\{ 15 \}} | 0.06299 ^{\{ 7 \}} | 0.06252 ^{\{ 6 \}} | 0.11564 ^{\{ 14 \}} | 0.07554 ^{\{ 9 \}} | 0.06987 ^{\{ 8 \}} | 0.34711 ^{\{ 16 \}} | 0.00682 ^{\{ 1 \}} | 0.09099 ^{\{ 13 \}} | 0.06187 ^{\{ 5 \}} | 0.08566 ^{\{ 11 \}} | |
MSE( \hat{\gamma} ) | 0.00059 ^{\{ 2 \}} | 0.00068 ^{\{ 4.5 \}} | 0.00087 ^{\{ 10 \}} | 0.00063 ^{\{ 3 \}} | 0.00083 ^{\{ 9 \}} | 0.00468 ^{\{ 16 \}} | 0.00074 ^{\{ 6 \}} | 0.00068 ^{\{ 4.5 \}} | 0.00095 ^{\{ 12 \}} | 0.00091 ^{\{ 11 \}} | 0.00076 ^{\{ 7 \}} | 0.00211 ^{\{ 15 \}} | 0.00038 ^{\{ 1 \}} | 0.00107 ^{\{ 13 \}} | 0.00078 ^{\{ 8 \}} | 0.00111 ^{\{ 14 \}} | |
MRE( \hat{\delta} ) | 0.05362 ^{\{ 4 \}} | 0.05321 ^{\{ 3 \}} | 0.06712 ^{\{ 11 \}} | 0.05238 ^{\{ 2 \}} | 0.06452 ^{\{ 10 \}} | 0.07873 ^{\{ 15 \}} | 0.05703 ^{\{ 7 \}} | 0.0557 ^{\{ 5 \}} | 0.07535 ^{\{ 14 \}} | 0.05736 ^{\{ 8 \}} | 0.06068 ^{\{ 9 \}} | 0.13057 ^{\{ 16 \}} | 0.01152 ^{\{ 1 \}} | 0.06953 ^{\{ 13 \}} | 0.05583 ^{\{ 6 \}} | 0.06731 ^{\{ 12 \}} | |
MRE( \hat{\gamma} ) | 0.03864 ^{\{ 2 \}} | 0.04151 ^{\{ 4 \}} | 0.046 ^{\{ 10 \}} | 0.04083 ^{\{ 3 \}} | 0.04562 ^{\{ 9 \}} | 0.10497 ^{\{ 16 \}} | 0.04347 ^{\{ 6 \}} | 0.04157 ^{\{ 5 \}} | 0.04865 ^{\{ 12 \}} | 0.0479 ^{\{ 11 \}} | 0.04369 ^{\{ 7 \}} | 0.07233 ^{\{ 15 \}} | 0.03065 ^{\{ 1 \}} | 0.05259 ^{\{ 13 \}} | 0.04465 ^{\{ 8 \}} | 0.05338 ^{\{ 14 \}} | |
D_{abs} | 0.01481 ^{\{ 3 \}} | 0.01449 ^{\{ 2 \}} | 0.01601 ^{\{ 10 \}} | 0.01499 ^{\{ 5 \}} | 0.0154 ^{\{ 6 \}} | 0.03369 ^{\{ 16 \}} | 0.01558 ^{\{ 7 \}} | 0.01493 ^{\{ 4 \}} | 0.01592 ^{\{ 9 \}} | 0.01812 ^{\{ 12 \}} | 0.01693 ^{\{ 11 \}} | 0.02121 ^{\{ 15 \}} | 0.01395 ^{\{ 1 \}} | 0.01943 ^{\{ 13 \}} | 0.01589 ^{\{ 8 \}} | 0.02021 ^{\{ 14 \}} | |
D_{max} | 0.02383 ^{\{ 3 \}} | 0.02354 ^{\{ 2 \}} | 0.02633 ^{\{ 9 \}} | 0.02408 ^{\{ 4 \}} | 0.02526 ^{\{ 7 \}} | 0.05415 ^{\{ 16 \}} | 0.02519 ^{\{ 6 \}} | 0.02434 ^{\{ 5 \}} | 0.02657 ^{\{ 10 \}} | 0.02892 ^{\{ 12 \}} | 0.02722 ^{\{ 11 \}} | 0.03806 ^{\{ 15 \}} | 0.02079 ^{\{ 1 \}} | 0.03138 ^{\{ 13 \}} | 0.02564 ^{\{ 8 \}} | 0.03239 ^{\{ 14 \}} | |
ASAE | 0.00611 ^{\{ 3 \}} | 0.00649 ^{\{ 2 \}} | 0.00725 ^{\{ 9 \}} | 0.00604 ^{\{ 4 \}} | 0.00719 ^{\{ 7 \}} | 0.00738 ^{\{ 16 \}} | 0.00603 ^{\{ 6 \}} | 0.00656 ^{\{ 5 \}} | 0.0085 ^{\{ 10 \}} | 0.00801 ^{\{ 12 \}} | 0.00734 ^{\{ 11 \}} | 0.01688 ^{\{ 15 \}} | 0.00749 ^{\{ 1 \}} | 0.00901 ^{\{ 13 \}} | 0.00699 ^{\{ 8 \}} | 0.00906 ^{\{ 14 \}} | |
\sum Ranks | 26 ^{\{ 2.5 \}} | 30.5 ^{\{ 4 \}} | 91 ^{\{ 10 \}} | 26 ^{\{ 2.5 \}} | 77 ^{\{ 8 \}} | 135 ^{\{ 15 \}} | 53 ^{\{ 6 \}} | 44.5 ^{\{ 5 \}} | 110 ^{\{ 12 \}} | 94 ^{\{ 11 \}} | 78 ^{\{ 9 \}} | 139 ^{\{ 16 \}} | 19 ^{\{ 1 \}} | 118 ^{\{ 13 \}} | 63 ^{\{ 7 \}} | 120 ^{\{ 14 \}} | |
450 | BIAS( \hat{\delta} ) | 0.14464 ^{\{ 2 \}} | 0.16061 ^{\{ 5 \}} | 0.18023 ^{\{ 11 \}} | 0.14937 ^{\{ 3 \}} | 0.18915 ^{\{ 12 \}} | 0.23554 ^{\{ 15 \}} | 0.16553 ^{\{ 6 \}} | 0.15659 ^{\{ 4 \}} | 0.20892 ^{\{ 14 \}} | 0.1712 ^{\{ 9 \}} | 0.17003 ^{\{ 8 \}} | 0.37407 ^{\{ 16 \}} | 0.03867 ^{\{ 1 \}} | 0.19508 ^{\{ 13 \}} | 0.16801 ^{\{ 7 \}} | 0.17316 ^{\{ 10 \}} |
BIAS( \hat{\gamma} ) | 0.01548 ^{\{ 2 \}} | 0.01727 ^{\{ 5 \}} | 0.02006 ^{\{ 12 \}} | 0.01612 ^{\{ 3 \}} | 0.01949 ^{\{ 9 \}} | 0.04544 ^{\{ 16 \}} | 0.01815 ^{\{ 7 \}} | 0.01616 ^{\{ 4 \}} | 0.01997 ^{\{ 11 \}} | 0.01955 ^{\{ 10 \}} | 0.01872 ^{\{ 8 \}} | 0.02942 ^{\{ 15 \}} | 0.01273 ^{\{ 1 \}} | 0.02202 ^{\{ 14 \}} | 0.01764 ^{\{ 6 \}} | 0.02132 ^{\{ 13 \}} | |
MSE( \hat{\delta} ) | 0.03395 ^{\{ 2 \}} | 0.04041 ^{\{ 5 \}} | 0.05534 ^{\{ 11 \}} | 0.03453 ^{\{ 3 \}} | 0.05704 ^{\{ 12 \}} | 0.08297 ^{\{ 15 \}} | 0.04494 ^{\{ 7 \}} | 0.03901 ^{\{ 4 \}} | 0.07116 ^{\{ 14 \}} | 0.05212 ^{\{ 10 \}} | 0.04508 ^{\{ 8 \}} | 0.21887 ^{\{ 16 \}} | 0.0053 ^{\{ 1 \}} | 0.0597 ^{\{ 13 \}} | 0.04395 ^{\{ 6 \}} | 0.04793 ^{\{ 9 \}} | |
MSE( \hat{\gamma} ) | 0.00038 ^{\{ 2 \}} | 0.00047 ^{\{ 5 \}} | 0.00062 ^{\{ 10.5 \}} | 4e-04 ^{\{ 3 \}} | 0.00059 ^{\{ 9 \}} | 0.00338 ^{\{ 16 \}} | 0.00052 ^{\{ 7 \}} | 0.00042 ^{\{ 4 \}} | 0.00063 ^{\{ 12 \}} | 0.00062 ^{\{ 10.5 \}} | 0.00055 ^{\{ 8 \}} | 0.00137 ^{\{ 15 \}} | 0.00025 ^{\{ 1 \}} | 0.00073 ^{\{ 14 \}} | 0.00049 ^{\{ 6 \}} | 0.00069 ^{\{ 13 \}} | |
MRE( \hat{\delta} ) | 0.04133 ^{\{ 2 \}} | 0.04589 ^{\{ 5 \}} | 0.0515 ^{\{ 11 \}} | 0.04268 ^{\{ 3 \}} | 0.05404 ^{\{ 12 \}} | 0.0673 ^{\{ 15 \}} | 0.04729 ^{\{ 6 \}} | 0.04474 ^{\{ 4 \}} | 0.05969 ^{\{ 14 \}} | 0.04891 ^{\{ 9 \}} | 0.04858 ^{\{ 8 \}} | 0.10688 ^{\{ 16 \}} | 0.01105 ^{\{ 1 \}} | 0.05574 ^{\{ 13 \}} | 0.048 ^{\{ 7 \}} | 0.04947 ^{\{ 10 \}} | |
MRE( \hat{\gamma} ) | 0.03095 ^{\{ 2 \}} | 0.03454 ^{\{ 5 \}} | 0.04013 ^{\{ 12 \}} | 0.03224 ^{\{ 3 \}} | 0.03897 ^{\{ 9 \}} | 0.09089 ^{\{ 16 \}} | 0.03631 ^{\{ 7 \}} | 0.03232 ^{\{ 4 \}} | 0.03993 ^{\{ 11 \}} | 0.0391 ^{\{ 10 \}} | 0.03745 ^{\{ 8 \}} | 0.05885 ^{\{ 15 \}} | 0.02546 ^{\{ 1 \}} | 0.04404 ^{\{ 14 \}} | 0.03528 ^{\{ 6 \}} | 0.04264 ^{\{ 13 \}} | |
D_{abs} | 0.01192 ^{\{ 3 \}} | 0.01219 ^{\{ 5 \}} | 0.01323 ^{\{ 8 \}} | 0.0121 ^{\{ 4 \}} | 0.01294 ^{\{ 7 \}} | 0.0284 ^{\{ 16 \}} | 0.0123 ^{\{ 6 \}} | 0.01173 ^{\{ 2 \}} | 0.01327 ^{\{ 9 \}} | 0.01469 ^{\{ 12 \}} | 0.01401 ^{\{ 11 \}} | 0.01758 ^{\{ 15 \}} | 0.01138 ^{\{ 1 \}} | 0.01587 ^{\{ 13 \}} | 0.01331 ^{\{ 10 \}} | 0.01633 ^{\{ 14 \}} | |
D_{max} | 0.01911 ^{\{ 3 \}} | 0.01981 ^{\{ 5 \}} | 0.02163 ^{\{ 9 \}} | 0.01954 ^{\{ 4 \}} | 0.02131 ^{\{ 7 \}} | 0.04566 ^{\{ 16 \}} | 0.02006 ^{\{ 6 \}} | 0.01902 ^{\{ 2 \}} | 0.02212 ^{\{ 10 \}} | 0.02353 ^{\{ 12 \}} | 0.0225 ^{\{ 11 \}} | 0.03148 ^{\{ 15 \}} | 0.01709 ^{\{ 1 \}} | 0.02571 ^{\{ 13 \}} | 0.02146 ^{\{ 8 \}} | 0.026 ^{\{ 14 \}} | |
ASAE | 0.00468 ^{\{ 3 \}} | 0.0049 ^{\{ 5 \}} | 0.00541 ^{\{ 9 \}} | 0.00457 ^{\{ 4 \}} | 0.00543 ^{\{ 7 \}} | 0.00591 ^{\{ 16 \}} | 0.00445 ^{\{ 6 \}} | 0.00499 ^{\{ 2 \}} | 0.0063 ^{\{ 10 \}} | 0.00603 ^{\{ 12 \}} | 0.00566 ^{\{ 11 \}} | 0.01259 ^{\{ 15 \}} | 0.00568 ^{\{ 1 \}} | 0.00678 ^{\{ 13 \}} | 0.00524 ^{\{ 8 \}} | 0.0067 ^{\{ 14 \}} | |
\sum Ranks | 21 ^{\{ 2 \}} | 43 ^{\{ 5 \}} | 90.5 ^{\{ 10 \}} | 41 ^{\{ 4 \}} | 84 ^{\{ 9 \}} | 135 ^{\{ 15 \}} | 52 ^{\{ 6 \}} | 32 ^{\{ 3 \}} | 107 ^{\{ 12 \}} | 93.5 ^{\{ 11 \}} | 78 ^{\{ 8 \}} | 138 ^{\{ 16 \}} | 18 ^{\{ 1 \}} | 121 ^{\{ 14 \}} | 61 ^{\{ 7 \}} | 109 ^{\{ 13 \}} |
Parameter | n | MLE | ADE | CVME | MPSE | OLSE | PCE | RTADE | WLSE | LTADE | MSADE | MSALDE | ADSOE | KE | MSSD | MSSLD | MSLND |
\delta=2.5, \gamma=4.0 | 20 | 7.0 | 6.0 | 13.0 | 1.0 | 11.0 | 2.0 | 9.0 | 4.5 | 12.0 | 8.0 | 10.0 | 15.0 | 3.0 | 14.0 | 4.5 | 16.0 |
70 | 1.0 | 4.0 | 11.0 | 2.0 | 10.0 | 3.0 | 6.0 | 5.0 | 13.0 | 12.0 | 8.5 | 16.0 | 7.0 | 14.0 | 8.5 | 15.0 | |
150 | 1.0 | 3.0 | 9.0 | 2.0 | 11.0 | 4.0 | 6.0 | 5.0 | 13.0 | 12.0 | 10.0 | 16.0 | 8.0 | 15.0 | 7.0 | 14.0 | |
200 | 1.0 | 4.0 | 11.0 | 2.0 | 9.0 | 3.0 | 6.0 | 5.0 | 13.0 | 12.0 | 10.0 | 16.0 | 8.0 | 14.0 | 7.0 | 15.0 | |
300 | 1.0 | 4.0 | 8.0 | 3.0 | 11.0 | 2.0 | 5.0 | 6.0 | 12.0 | 13.0 | 9.0 | 16.0 | 10.0 | 15.0 | 7.0 | 14.0 | |
450 | 2.0 | 3.0 | 11.0 | 1.0 | 9.0 | 4.0 | 6.0 | 5.0 | 12.0 | 13.0 | 10.0 | 16.0 | 7.0 | 15.0 | 8.0 | 14.0 | |
\delta=0.8, \gamma=0.3 | 20 | 2.0 | 3.0 | 9.0 | 1.0 | 7.0 | 15.0 | 5.0 | 4.0 | 10.0 | 11.0 | 8.0 | 16.0 | 12.0 | 14.0 | 6.0 | 13.0 |
70 | 4.0 | 2.0 | 8.5 | 5.0 | 7.0 | 15.0 | 3.0 | 1.0 | 8.5 | 12.0 | 10.0 | 16.0 | 11.0 | 13.0 | 6.0 | 14.0 | |
150 | 1.0 | 3.0 | 7.0 | 2.0 | 8.0 | 14.5 | 4.0 | 5.0 | 10.0 | 12.0 | 9.0 | 16.0 | 11.0 | 13.0 | 6.0 | 14.5 | |
200 | 3.0 | 1.0 | 7.0 | 4.0 | 6.0 | 15.0 | 5.0 | 2.0 | 10.0 | 12.0 | 9.0 | 16.0 | 11.0 | 13.0 | 8.0 | 14.0 | |
300 | 1.0 | 3.0 | 7.0 | 2.0 | 6.0 | 16.0 | 4.0 | 5.0 | 9.0 | 12.0 | 10.0 | 15.0 | 11.0 | 14.0 | 8.0 | 13.0 | |
450 | 3.0 | 2.0 | 6.0 | 1.0 | 7.0 | 16.0 | 5.0 | 4.0 | 11.0 | 12.0 | 10.0 | 15.0 | 8.0 | 13.0 | 9.0 | 14.0 | |
\delta=0.4, \gamma=1.5 | 20 | 3.0 | 1.5 | 12.0 | 5.0 | 8.5 | 4.0 | 8.5 | 6.0 | 10.0 | 11.0 | 13.0 | 14.0 | 1.5 | 15.0 | 7.0 | 16.0 |
70 | 1.0 | 4.0 | 10.0 | 5.5 | 8.0 | 5.5 | 7.0 | 2.0 | 11.0 | 13.0 | 12.0 | 14.0 | 3.0 | 15.0 | 9.0 | 16.0 | |
150 | 1.0 | 5.0 | 10.0 | 2.0 | 8.0 | 4.0 | 7.0 | 6.0 | 9.0 | 14.0 | 12.0 | 13.0 | 3.0 | 15.0 | 11.0 | 16.0 | |
200 | 1.0 | 5.0 | 10.0 | 3.0 | 8.0 | 6.0 | 9.0 | 4.0 | 7.0 | 14.0 | 11.0 | 13.0 | 2.0 | 15.0 | 12.0 | 16.0 | |
300 | 3.0 | 5.0 | 9.5 | 1.0 | 8.0 | 6.0 | 7.0 | 2.0 | 9.5 | 14.0 | 13.0 | 12.0 | 4.0 | 15.0 | 11.0 | 16.0 | |
450 | 2.0 | 6.0 | 11.0 | 1.0 | 7.5 | 3.0 | 9.0 | 4.0 | 7.5 | 14.0 | 13.0 | 12.0 | 5.0 | 16.0 | 10.0 | 15.0 | |
\delta=2.0, \gamma=0.75 | 20 | 7.0 | 4.0 | 12.0 | 1.0 | 11.0 | 9.5 | 6.0 | 5.0 | 13.0 | 9.5 | 8.0 | 15.0 | 2.0 | 14.0 | 3.0 | 16.0 |
70 | 2.0 | 7.0 | 10.0 | 1.0 | 8.5 | 11.0 | 5.5 | 4.0 | 13.0 | 12.0 | 8.5 | 16.0 | 3.0 | 14.0 | 5.5 | 15.0 | |
150 | 1.0 | 5.0 | 10.0 | 2.0 | 8.5 | 11.0 | 7.0 | 3.0 | 13.0 | 12.0 | 8.5 | 16.0 | 4.0 | 15.0 | 6.0 | 14.0 | |
200 | 1.0 | 3.0 | 10.0 | 2.0 | 8.0 | 12.0 | 5.0 | 7.0 | 11.0 | 13.0 | 9.0 | 16.0 | 4.0 | 14.0 | 6.0 | 15.0 | |
300 | 1.0 | 5.0 | 10.0 | 2.0 | 8.0 | 11.0 | 3.0 | 4.0 | 12.0 | 13.0 | 9.0 | 16.0 | 6.0 | 15.0 | 7.0 | 14.0 | |
450 | 1.0 | 5.0 | 10.0 | 2.0 | 8.0 | 12.0 | 4.0 | 3.0 | 11.0 | 13.0 | 9.0 | 16.0 | 6.0 | 15.0 | 7.0 | 14.0 | |
\delta=3.5, \gamma=0.5 | 20 | 4.5 | 3.0 | 9.0 | 2.0 | 12.0 | 10.0 | 8.0 | 4.5 | 13.0 | 7.0 | 11.0 | 14.0 | 1.0 | 15.0 | 6.0 | 16.0 |
70 | 3.0 | 4.0 | 11.0 | 2.0 | 10.0 | 15.0 | 5.0 | 6.5 | 12.0 | 8.0 | 9.0 | 16.0 | 1.0 | 14.0 | 6.5 | 13.0 | |
150 | 3.0 | 5.0 | 10.0 | 1.0 | 9.0 | 15.0 | 6.0 | 4.0 | 12.0 | 11.0 | 8.0 | 16.0 | 2.0 | 13.0 | 7.0 | 14.0 | |
200 | 3.0 | 5.0 | 11.0 | 2.0 | 8.0 | 15.0 | 6.0 | 4.0 | 12.0 | 10.0 | 9.0 | 16.0 | 1.0 | 14.0 | 7.0 | 13.0 | |
300 | 2.5 | 4.0 | 10.0 | 2.5 | 8.0 | 15.0 | 6.0 | 5.0 | 12.0 | 11.0 | 9.0 | 16.0 | 1.0 | 13.0 | 7.0 | 14.0 | |
450 | 2.0 | 5.0 | 10.0 | 4.0 | 9.0 | 15.0 | 6.0 | 3.0 | 12.0 | 11.0 | 8.0 | 16.0 | 1.0 | 14.0 | 7.0 | 13.0 | |
\sum Ranks | 69.0 | 119.5 | 293.0 | 67.0 | 258.0 | 289.5 | 179.0 | 128.5 | 333.5 | 351.5 | 293.5 | 456.0 | 157.5 | 428.0 | 220.0 | 436.5 | |
Overall Rank | 2 | 3 | 10 | 1 | 8 | 9 | 6 | 4 | 12 | 13 | 11 | 16 | 5 | 14 | 7 | 15 |
Parameters | Measures | ||||||||
\delta | \gamma | Q(0.1) | Q(0.25) | Q(0.35) | Q(0.5) | Q(0.6) | Q(0.75) | Q(0.85) | Q(0.95) |
0.15 | 0.5 | 0.724887 | 4.68121 | 9.54363 | 21.3535 | 33.6724 | 64.8572 | 105.342 | 212.237 |
1.0 | 0.851403 | 2.16361 | 3.08928 | 4.62098 | 5.80279 | 8.0534 | 10.2636 | 14.5684 | |
3.0 | 0.947789 | 1.29338 | 1.45642 | 1.66563 | 1.79699 | 2.00444 | 2.1732 | 2.44233 | |
5.0 | 0.968338 | 1.16691 | 1.25306 | 1.35815 | 1.42144 | 1.51773 | 1.59316 | 1.70876 | |
7.0 | 0.977281 | 1.11656 | 1.17484 | 1.24441 | 1.28556 | 1.34718 | 1.39467 | 1.46623 | |
10 | 0.984042 | 1.08023 | 1.1194 | 1.1654 | 1.19224 | 1.23196 | 1.26221 | 1.3072 | |
0.6 | 0.5 | 0.0453054 | 0.292575 | 0.596477 | 1.33459 | 2.10452 | 4.05357 | 6.58386 | 13.2648 |
1.0 | 0.212851 | 0.540902 | 0.772319 | 1.15525 | 1.4507 | 2.01335 | 2.5659 | 3.64209 | |
3.0 | 0.59707 | 0.814779 | 0.917485 | 1.04928 | 1.13203 | 1.26272 | 1.36903 | 1.53857 | |
5.0 | 0.733863 | 0.884349 | 0.949641 | 1.02928 | 1.07725 | 1.15023 | 1.20739 | 1.295 | |
7.0 | 0.801698 | 0.915955 | 0.963765 | 1.02083 | 1.05459 | 1.10514 | 1.1441 | 1.2028 | |
10 | 0.856658 | 0.940398 | 0.974495 | 1.01454 | 1.03791 | 1.07249 | 1.09881 | 1.13798 | |
0.9 | 0.5 | 0.0201357 | 0.130033 | 0.265101 | 0.593152 | 0.935344 | 1.80159 | 2.92616 | 5.89547 |
1.0 | 0.1419 | 0.360602 | 0.514879 | 0.770164 | 0.967132 | 1.34223 | 1.7106 | 2.42806 | |
3.0 | 0.521588 | 0.711775 | 0.801497 | 0.916631 | 0.988922 | 1.10309 | 1.19596 | 1.34406 | |
5.0 | 0.676701 | 0.815465 | 0.875671 | 0.94911 | 0.993338 | 1.06063 | 1.11335 | 1.19413 | |
7.0 | 0.75658 | 0.864407 | 0.909526 | 0.96338 | 0.995237 | 1.04294 | 1.07971 | 1.13511 | |
10 | 0.822618 | 0.903031 | 0.935773 | 0.974223 | 0.996664 | 1.02987 | 1.05515 | 1.09276 | |
1.5 | 0.5 | 0.00724887 | 0.0468121 | 0.0954363 | 0.213535 | 0.336724 | 0.648572 | 1.05342 | 2.12237 |
1.0 | 0.0851403 | 0.216361 | 0.308928 | 0.462098 | 0.580279 | 0.80534 | 1.02636 | 1.45684 | |
3.0 | 0.439925 | 0.600334 | 0.676009 | 0.773116 | 0.834089 | 0.930379 | 1.00871 | 1.13363 | |
5.0 | 0.61098 | 0.736268 | 0.790626 | 0.856933 | 0.896866 | 0.957626 | 1.00522 | 1.07816 | |
7.0 | 0.703335 | 0.803573 | 0.845517 | 0.895581 | 0.925196 | 0.969546 | 1.00372 | 1.05522 | |
10 | 0.781652 | 0.85806 | 0.889172 | 0.925707 | 0.94703 | 0.978584 | 1.00261 | 1.03834 | |
2.5 | 0.5 | 0.00260959 | 0.0168523 | 0.0343571 | 0.0768725 | 0.121221 | 0.233486 | 0.37923 | 0.764053 |
1.0 | 0.0510842 | 0.129817 | 0.185357 | 0.277259 | 0.348167 | 0.483204 | 0.615817 | 0.874101 | |
3.0 | 0.371047 | 0.506341 | 0.570168 | 0.652071 | 0.703498 | 0.784712 | 0.85078 | 0.956138 | |
5.0 | 0.551642 | 0.664762 | 0.713841 | 0.773708 | 0.809762 | 0.864622 | 0.907591 | 0.973447 | |
7.0 | 0.653837 | 0.747021 | 0.786013 | 0.832554 | 0.860085 | 0.901313 | 0.933086 | 0.980961 | |
10 | 0.742726 | 0.815329 | 0.844891 | 0.879607 | 0.899868 | 0.92985 | 0.952676 | 0.986634 | |
4.5 | 0.5 | 0.00080543 | 0.00520134 | 0.010604 | 0.0237261 | 0.0374137 | 0.0720635 | 0.117046 | 0.235819 |
1.0 | 0.0283801 | 0.0721203 | 0.102976 | 0.154033 | 0.193426 | 0.268447 | 0.34212 | 0.485612 | |
3.0 | 0.305027 | 0.416248 | 0.468718 | 0.536049 | 0.578325 | 0.645088 | 0.699401 | 0.786013 | |
5.0 | 0.490459 | 0.591033 | 0.634669 | 0.687896 | 0.719951 | 0.768726 | 0.80693 | 0.865482 | |
7.0 | 0.601176 | 0.686855 | 0.722707 | 0.765499 | 0.790813 | 0.828721 | 0.857935 | 0.901954 | |
10 | 0.700328 | 0.768787 | 0.796661 | 0.829395 | 0.848499 | 0.87677 | 0.898293 | 0.930313 |
Model | Parameter | SE | Parameter | SE | Parameter | SE |
SPHLD( \delta, \gamma ) | 3.7870 | 0.4370 | 2.2162 | 0.1836 | – | – |
EGSHLD( \alpha, \beta ) | 7.0611 | 0.5863 | 3.3169 | 0.4593 | – | – |
EHLD( \lambda, \theta ) | 4.7771 | 0.3748 | 2.7077 | 0.3918 | – | – |
PGHLD( \alpha, \beta, \delta ) | 0.5901 | 0.0916 | 2.6059 | 0.2187 | 133.3208 | 3.0465 |
KHLD( \alpha, \beta, \theta ) | 2.5987 | 0.2161 | 141.1152 | 2.1935 | 0.5731 | 0.0893 |
HLWD( \beta, \theta, \delta ) | 9.2668 | 0.0013 | 7.7567 | 0.0075 | 0.2865 | 0.0236 |
PHLD( \delta, \gamma ) | 6.3117 | 0.7676 | 2.2754 | 0.1877 | – | – |
Models | -2logL | AIC | BIC | CAIC | HQIC | KS | p(KS) | CVM | p(CVM) | AD | p(AD) |
SPHLD | -50.0009 | -46.0009 | -40.6552 | -45.8877 | -43.8338 | 0.0635 | 0.7812 | 0.1027 | 0.5727 | 0.8752 | 0.4295 |
EGSHLD | -18.5522 | -14.5522 | -9.2065 | -14.439 | -12.3851 | 0.1367 | 0.0367 | 0.678 | 0.0142 | 3.9479 | 0.0093 |
EHLD | -20.661 | -16.661 | -11.3154 | -16.5478 | -14.494 | 0.1291 | 0.0566 | 0.6068 | 0.0213 | 3.6361 | 0.0132 |
PGHLD | -41.7841 | -35.7841 | -27.7656 | -35.5556 | -32.5335 | 0.0868 | 0.3958 | 0.2084 | 0.2519 | 1.5726 | 0.1601 |
KHLD | -42.0805 | -36.0805 | -28.062 | -35.8519 | -32.8299 | 0.0865 | 0.4001 | 0.2067 | 0.255 | 1.5561 | 0.1637 |
HLWD | -50.7479 | -44.7479 | -36.7294 | -44.5193 | -41.4973 | 0.083 | 0.4532 | 0.1787 | 0.3131 | 1.088 | 0.3141 |
PHLD | -48.4568 | -44.4568 | -39.1112 | -44.3436 | -42.2898 | 0.0647 | 0.7624 | 0.1082 | 0.5469 | 0.9613 | 0.378 |
Model | parameter | SE | parameter | SE | parameter | SE |
SPHLD( \delta, \gamma ) | 0.0134 | 0.0048 | 1.0754 | 0.0806 | – | – |
EGSHLD( \alpha, \beta ) | 0.0271 | 0.0029 | 1.4176 | 0.1774 | – | – |
EHLD( \lambda, \theta ) | 0.0330 | 0.0030 | 1.1827 | 0.1406 | – | – |
PGHLD( \alpha, \beta, \delta ) | 0.0029 | 6.0E-04 | 1.3095 | 0.0959 | 31.6416 | 3.0606 |
KHLD( \alpha, \beta, \theta ) | 1.7763 | 2.0E-04 | 0.1171 | 0.0106 | 0.2100 | 1.0E-04 |
HLWD( \beta, \theta, \delta ) | 3.2E-05 | 0.0000 | 2.3012 | 0.0925 | 0.5459 | 0.0382 |
PHLD( \delta, \gamma ) | 0.0188 | 0.0068 | 1.1120 | 0.0833 | – | – |
Models | -2logL | AIC | BIC | CAIC | HQIC | KS | p(KS) | CVM | p(CVM) | AD | p(AD) |
SPHLD | 1158.5700 | 1162.5700 | 1168.1620 | 1162.4700 | 1164.8410 | 0.0460 | 0.9603 | 0.0697 | 0.7543 | 0.5285 | 0.7176 |
EGSHLD | 1161.6180 | 1165.6180 | 1171.2090 | 1165.7180 | 1167.8890 | 0.0848 | 0.3489 | 0.0784 | 0.7023 | 0.5126 | 0.7337 |
EHLD | 1158.7411 | 1162.7411 | 1168.4002 | 1162.5110 | 1164.9820 | 0.0569 | 0.8286 | 0.0519 | 0.8652 | 0.4096 | 0.8389 |
PGHLD | 1158.6990 | 1164.1990 | 1172.5860 | 1164.4010 | 1167.6050 | 0.0606 | 0.7658 | 0.0522 | 0.8638 | 0.3987 | 0.8498 |
KHLD | 1163.9130 | 1169.9130 | 1178.3000 | 1170.1140 | 1173.3190 | 0.1032 | 0.1521 | 0.1349 | 0.4395 | 0.7670 | 0.5051 |
HLWD | 1158.8090 | 1163.0090 | 1171.3960 | 1163.2110 | 1166.4150 | 0.0538 | 0.8752 | 0.0634 | 0.7934 | 0.4578 | 0.7898 |
PHLD | 1158.6310 | 1162.6310 | 1168.8022 | 1162.5310 | 1164.8702 | 0.0492 | 0.9311 | 0.0597 | 0.8170 | 0.4685 | 0.7788 |
n | Est. | MLE | ADE | CVME | MPSE | OLSE | PCE | RTADE | WLSE | LTADE | MSADE | MSALDE | ADSOE | KE | MSSD | MSSLD | MSLND |
20 | BIAS( \hat{\delta} ) | 0.50997 ^{\{ 10 \}} | 0.47624 ^{\{ 8 \}} | 0.55618 ^{\{ 14 \}} | 0.4227 ^{\{ 1 \}} | 0.52808 ^{\{ 11 \}} | 0.45642 ^{\{ 4 \}} | 0.48106 ^{\{ 9 \}} | 0.4697 ^{\{ 6 \}} | 0.55874 ^{\{ 15 \}} | 0.47011 ^{\{ 7 \}} | 0.45026 ^{\{ 3 \}} | 0.69895 ^{\{ 16 \}} | 0.4578 ^{\{ 5 \}} | 0.54062 ^{\{ 12 \}} | 0.43213 ^{\{ 2 \}} | 0.55229 ^{\{ 13 \}} |
BIAS( \hat{\gamma} ) | 0.65945 ^{\{ 6 \}} | 0.6582 ^{\{ 5 \}} | 0.7497 ^{\{ 13 \}} | 0.62205 ^{\{ 2 \}} | 0.73052 ^{\{ 12 \}} | 0.62897 ^{\{ 3 \}} | 0.70944 ^{\{ 10 \}} | 0.67628 ^{\{ 8 \}} | 0.7155 ^{\{ 11 \}} | 0.65291 ^{\{ 4 \}} | 0.70363 ^{\{ 9 \}} | 0.76909 ^{\{ 14 \}} | 0.55328 ^{\{ 1 \}} | 0.82507 ^{\{ 15 \}} | 0.66467 ^{\{ 7 \}} | 0.87293 ^{\{ 16 \}} | |
MSE( \hat{\delta} ) | 0.48274 ^{\{ 13 \}} | 0.3941 ^{\{ 8 \}} | 0.58214 ^{\{ 15 \}} | 0.27484 ^{\{ 1 \}} | 0.46439 ^{\{ 12 \}} | 0.33067 ^{\{ 4 \}} | 0.40226 ^{\{ 9 \}} | 0.37185 ^{\{ 7 \}} | 0.53257 ^{\{ 14 \}} | 0.3537 ^{\{ 5 \}} | 0.3227 ^{\{ 3 \}} | 0.7722 ^{\{ 16 \}} | 0.36868 ^{\{ 6 \}} | 0.4295 ^{\{ 10 \}} | 0.31669 ^{\{ 2 \}} | 0.44799 ^{\{ 11 \}} | |
MSE( \hat{\gamma} ) | 0.75419 ^{\{ 9 \}} | 0.70861 ^{\{ 5 \}} | 0.97653 ^{\{ 14 \}} | 0.58115 ^{\{ 2 \}} | 0.87688 ^{\{ 12 \}} | 0.59901 ^{\{ 3 \}} | 0.84103 ^{\{ 11 \}} | 0.73695 ^{\{ 7 \}} | 0.79691 ^{\{ 10 \}} | 0.7111 ^{\{ 6 \}} | 0.73851 ^{\{ 8 \}} | 0.91542 ^{\{ 13 \}} | 0.53207 ^{\{ 1 \}} | 0.99521 ^{\{ 15 \}} | 0.69597 ^{\{ 4 \}} | 1.09317 ^{\{ 16 \}} | |
MRE( \hat{\delta} ) | 0.20399 ^{\{ 10 \}} | 0.1905 ^{\{ 8 \}} | 0.22247 ^{\{ 14 \}} | 0.16908 ^{\{ 1 \}} | 0.21123 ^{\{ 11 \}} | 0.18257 ^{\{ 4 \}} | 0.19243 ^{\{ 9 \}} | 0.18788 ^{\{ 6 \}} | 0.2235 ^{\{ 15 \}} | 0.18804 ^{\{ 7 \}} | 0.1801 ^{\{ 3 \}} | 0.27958 ^{\{ 16 \}} | 0.18312 ^{\{ 5 \}} | 0.21625 ^{\{ 12 \}} | 0.17285 ^{\{ 2 \}} | 0.22092 ^{\{ 13 \}} | |
MRE( \hat{\gamma} ) | 0.16486 ^{\{ 6 \}} | 0.16455 ^{\{ 5 \}} | 0.18742 ^{\{ 13 \}} | 0.15551 ^{\{ 2 \}} | 0.18263 ^{\{ 12 \}} | 0.15724 ^{\{ 3 \}} | 0.17736 ^{\{ 10 \}} | 0.16907 ^{\{ 8 \}} | 0.17887 ^{\{ 11 \}} | 0.16323 ^{\{ 4 \}} | 0.17591 ^{\{ 9 \}} | 0.19227 ^{\{ 14 \}} | 0.13832 ^{\{ 1 \}} | 0.20627 ^{\{ 15 \}} | 0.16617 ^{\{ 7 \}} | 0.21823 ^{\{ 16 \}} | |
D_{abs} | 0.05542 ^{\{ 1 \}} | 0.05852 ^{\{ 6 \}} | 0.05875 ^{\{ 7 \}} | 0.05789 ^{\{ 4 \}} | 0.06077 ^{\{ 10 \}} | 0.05774 ^{\{ 3 \}} | 0.05704 ^{\{ 2 \}} | 0.05827 ^{\{ 5 \}} | 0.05946 ^{\{ 9 \}} | 0.06363 ^{\{ 13 \}} | 0.06702 ^{\{ 14 \}} | 0.06358 ^{\{ 12 \}} | 0.05891 ^{\{ 8 \}} | 0.06948 ^{\{ 15 \}} | 0.06084 ^{\{ 11 \}} | 0.0712 ^{\{ 16 \}} | |
D_{max} | 0.09015 ^{\{ 1 \}} | 0.09333 ^{\{ 7 \}} | 0.09632 ^{\{ 9 \}} | 0.0904 ^{\{ 2 \}} | 0.09725 ^{\{ 11 \}} | 0.09107 ^{\{ 3 \}} | 0.09261 ^{\{ 5 \}} | 0.0929 ^{\{ 6 \}} | 0.09717 ^{\{ 10 \}} | 0.10099 ^{\{ 12 \}} | 0.10555 ^{\{ 13 \}} | 0.10614 ^{\{ 14 \}} | 0.09162 ^{\{ 4 \}} | 0.1109 ^{\{ 15 \}} | 0.09595 ^{\{ 8 \}} | 0.11392 ^{\{ 16 \}} | |
ASAE | 0.04585 ^{\{ 1 \}} | 0.04191 ^{\{ 7 \}} | 0.04337 ^{\{ 9 \}} | 0.04308 ^{\{ 2 \}} | 0.04118 ^{\{ 11 \}} | 0.04172 ^{\{ 3 \}} | 0.04508 ^{\{ 5 \}} | 0.04062 ^{\{ 6 \}} | 0.04319 ^{\{ 10 \}} | 0.05482 ^{\{ 12 \}} | 0.05271 ^{\{ 13 \}} | 0.05203 ^{\{ 14 \}} | 0.04583 ^{\{ 4 \}} | 0.05973 ^{\{ 15 \}} | 0.04937 ^{\{ 8 \}} | 0.06062 ^{\{ 16 \}} | |
\sum Ranks | 66 ^{\{ 7 \}} | 56 ^{\{ 6 \}} | 106 ^{\{ 13 \}} | 20 ^{\{ 1 \}} | 93 ^{\{ 11 \}} | 30 ^{\{ 2 \}} | 73 ^{\{ 9 \}} | 54 ^{\{ 4.5 \}} | 101 ^{\{ 12 \}} | 72 ^{\{ 8 \}} | 75 ^{\{ 10 \}} | 127 ^{\{ 15 \}} | 40 ^{\{ 3 \}} | 124 ^{\{ 14 \}} | 54 ^{\{ 4.5 \}} | 133 ^{\{ 16 \}} | |
70 | BIAS( \hat{\delta} ) | 0.23302 ^{\{ 3 \}} | 0.2412 ^{\{ 4 \}} | 0.30468 ^{\{ 12 \}} | 0.22791 ^{\{ 1 \}} | 0.27786 ^{\{ 11 \}} | 0.23246 ^{\{ 2 \}} | 0.26005 ^{\{ 8 \}} | 0.25407 ^{\{ 7 \}} | 0.32622 ^{\{ 15 \}} | 0.27753 ^{\{ 10 \}} | 0.24555 ^{\{ 5 \}} | 0.49886 ^{\{ 16 \}} | 0.26772 ^{\{ 9 \}} | 0.31504 ^{\{ 14 \}} | 0.24582 ^{\{ 6 \}} | 0.30999 ^{\{ 13 \}} |
BIAS( \hat{\gamma} ) | 0.3245 ^{\{ 1 \}} | 0.32947 ^{\{ 2 \}} | 0.39565 ^{\{ 12 \}} | 0.33268 ^{\{ 3 \}} | 0.38705 ^{\{ 11 \}} | 0.34282 ^{\{ 5 \}} | 0.37162 ^{\{ 7 \}} | 0.36078 ^{\{ 6 \}} | 0.40446 ^{\{ 13 \}} | 0.3758 ^{\{ 8 \}} | 0.38459 ^{\{ 10 \}} | 0.54412 ^{\{ 16 \}} | 0.33343 ^{\{ 4 \}} | 0.45321 ^{\{ 14 \}} | 0.38433 ^{\{ 9 \}} | 0.4608 ^{\{ 15 \}} | |
MSE( \hat{\delta} ) | 0.09308 ^{\{ 3 \}} | 0.09963 ^{\{ 5 \}} | 0.17211 ^{\{ 14 \}} | 0.08165 ^{\{ 1 \}} | 0.131 ^{\{ 11 \}} | 0.0835 ^{\{ 2 \}} | 0.12498 ^{\{ 8 \}} | 0.11594 ^{\{ 7 \}} | 0.19003 ^{\{ 15 \}} | 0.12754 ^{\{ 10 \}} | 0.09977 ^{\{ 6 \}} | 0.41958 ^{\{ 16 \}} | 0.12736 ^{\{ 9 \}} | 0.15069 ^{\{ 13 \}} | 0.09772 ^{\{ 4 \}} | 0.14683 ^{\{ 12 \}} | |
MSE( \hat{\gamma} ) | 0.17324 ^{\{ 2 \}} | 0.17331 ^{\{ 3 \}} | 0.25132 ^{\{ 12 \}} | 0.16753 ^{\{ 1 \}} | 0.23172 ^{\{ 10 \}} | 0.18154 ^{\{ 4 \}} | 0.23363 ^{\{ 11 \}} | 0.20815 ^{\{ 6 \}} | 0.26128 ^{\{ 13 \}} | 0.22809 ^{\{ 9 \}} | 0.22537 ^{\{ 7 \}} | 0.4488 ^{\{ 16 \}} | 0.20041 ^{\{ 5 \}} | 0.32895 ^{\{ 15 \}} | 0.22666 ^{\{ 8 \}} | 0.32661 ^{\{ 14 \}} | |
MRE( \hat{\delta} ) | 0.09321 ^{\{ 3 \}} | 0.09648 ^{\{ 4 \}} | 0.12187 ^{\{ 12 \}} | 0.09117 ^{\{ 1 \}} | 0.11114 ^{\{ 11 \}} | 0.09299 ^{\{ 2 \}} | 0.10402 ^{\{ 8 \}} | 0.10163 ^{\{ 7 \}} | 0.13049 ^{\{ 15 \}} | 0.11101 ^{\{ 10 \}} | 0.09822 ^{\{ 5 \}} | 0.19954 ^{\{ 16 \}} | 0.10709 ^{\{ 9 \}} | 0.12602 ^{\{ 14 \}} | 0.09833 ^{\{ 6 \}} | 0.12399 ^{\{ 13 \}} | |
MRE( \hat{\gamma} ) | 0.08113 ^{\{ 1 \}} | 0.08237 ^{\{ 2 \}} | 0.09891 ^{\{ 12 \}} | 0.08317 ^{\{ 3 \}} | 0.09676 ^{\{ 11 \}} | 0.0857 ^{\{ 5 \}} | 0.0929 ^{\{ 7 \}} | 0.0902 ^{\{ 6 \}} | 0.10112 ^{\{ 13 \}} | 0.09395 ^{\{ 8 \}} | 0.09615 ^{\{ 10 \}} | 0.13603 ^{\{ 16 \}} | 0.08336 ^{\{ 4 \}} | 0.1133 ^{\{ 14 \}} | 0.09608 ^{\{ 9 \}} | 0.1152 ^{\{ 15 \}} | |
D_{abs} | 0.0291 ^{\{ 1 \}} | 0.03155 ^{\{ 7 \}} | 0.03136 ^{\{ 6 \}} | 0.03121 ^{\{ 5 \}} | 0.03271 ^{\{ 10 \}} | 0.03079 ^{\{ 2 \}} | 0.03097 ^{\{ 3 \}} | 0.03118 ^{\{ 4 \}} | 0.03217 ^{\{ 9 \}} | 0.03687 ^{\{ 13 \}} | 0.0343 ^{\{ 11 \}} | 0.039 ^{\{ 14 \}} | 0.03186 ^{\{ 8 \}} | 0.03963 ^{\{ 15 \}} | 0.03489 ^{\{ 12 \}} | 0.03977 ^{\{ 16 \}} | |
D_{max} | 0.04706 ^{\{ 1 \}} | 0.05079 ^{\{ 5 \}} | 0.05236 ^{\{ 8 \}} | 0.04993 ^{\{ 3 \}} | 0.05362 ^{\{ 9 \}} | 0.04926 ^{\{ 2 \}} | 0.05056 ^{\{ 4 \}} | 0.05084 ^{\{ 6 \}} | 0.05385 ^{\{ 10 \}} | 0.05874 ^{\{ 13 \}} | 0.0553 ^{\{ 11 \}} | 0.06884 ^{\{ 16 \}} | 0.05146 ^{\{ 7 \}} | 0.06406 ^{\{ 14 \}} | 0.05617 ^{\{ 12 \}} | 0.0649 ^{\{ 15 \}} | |
ASAE | 0.02068 ^{\{ 1 \}} | 0.0194 ^{\{ 5 \}} | 0.02022 ^{\{ 8 \}} | 0.02038 ^{\{ 3 \}} | 0.0197 ^{\{ 9 \}} | 0.01966 ^{\{ 2 \}} | 0.02055 ^{\{ 4 \}} | 0.01914 ^{\{ 6 \}} | 0.02024 ^{\{ 10 \}} | 0.0263 ^{\{ 13 \}} | 0.0254 ^{\{ 11 \}} | 0.02805 ^{\{ 16 \}} | 0.02126 ^{\{ 7 \}} | 0.02941 ^{\{ 14 \}} | 0.02373 ^{\{ 12 \}} | 0.02958 ^{\{ 15 \}} | |
\sum Ranks | 24 ^{\{ 1 \}} | 34 ^{\{ 4 \}} | 93 ^{\{ 11 \}} | 25 ^{\{ 2 \}} | 88 ^{\{ 10 \}} | 27 ^{\{ 3 \}} | 64 ^{\{ 6 \}} | 50 ^{\{ 5 \}} | 109 ^{\{ 13 \}} | 94 ^{\{ 12 \}} | 77 ^{\{ 8.5 \}} | 140 ^{\{ 16 \}} | 65 ^{\{ 7 \}} | 128 ^{\{ 14 \}} | 77 ^{\{ 8.5 \}} | 129 ^{\{ 15 \}} | |
150 | BIAS( \hat{\delta} ) | 0.15673 ^{\{ 2 \}} | 0.15991 ^{\{ 3 \}} | 0.18883 ^{\{ 10 \}} | 0.15145 ^{\{ 1 \}} | 0.18886 ^{\{ 11 \}} | 0.16135 ^{\{ 4 \}} | 0.1763 ^{\{ 8 \}} | 0.16792 ^{\{ 6 \}} | 0.22306 ^{\{ 15 \}} | 0.19224 ^{\{ 12 \}} | 0.17614 ^{\{ 7 \}} | 0.37121 ^{\{ 16 \}} | 0.17811 ^{\{ 9 \}} | 0.21099 ^{\{ 13 \}} | 0.16783 ^{\{ 5 \}} | 0.21401 ^{\{ 14 \}} |
BIAS( \hat{\gamma} ) | 0.21048 ^{\{ 1 \}} | 0.23683 ^{\{ 4 \}} | 0.26398 ^{\{ 12 \}} | 0.22694 ^{\{ 2 \}} | 0.25585 ^{\{ 10 \}} | 0.23069 ^{\{ 3 \}} | 0.25039 ^{\{ 8 \}} | 0.24322 ^{\{ 6 \}} | 0.28777 ^{\{ 13 \}} | 0.26282 ^{\{ 11 \}} | 0.25477 ^{\{ 9 \}} | 0.39249 ^{\{ 16 \}} | 0.23897 ^{\{ 5 \}} | 0.32228 ^{\{ 15 \}} | 0.24795 ^{\{ 7 \}} | 0.31651 ^{\{ 14 \}} | |
MSE( \hat{\delta} ) | 0.03876 ^{\{ 2 \}} | 0.0421 ^{\{ 4 \}} | 0.05973 ^{\{ 11 \}} | 0.03526 ^{\{ 1 \}} | 0.06179 ^{\{ 12 \}} | 0.03983 ^{\{ 3 \}} | 0.05052 ^{\{ 8 \}} | 0.04654 ^{\{ 5 \}} | 0.0843 ^{\{ 15 \}} | 0.05917 ^{\{ 10 \}} | 0.04776 ^{\{ 7 \}} | 0.22463 ^{\{ 16 \}} | 0.05493 ^{\{ 9 \}} | 0.07 ^{\{ 13 \}} | 0.04684 ^{\{ 6 \}} | 0.07287 ^{\{ 14 \}} | |
MSE( \hat{\gamma} ) | 0.07143 ^{\{ 1 \}} | 0.08939 ^{\{ 4 \}} | 0.10989 ^{\{ 11 \}} | 0.07985 ^{\{ 2 \}} | 0.10559 ^{\{ 10 \}} | 0.08356 ^{\{ 3 \}} | 0.10142 ^{\{ 8 \}} | 0.09184 ^{\{ 5 \}} | 0.1303 ^{\{ 13 \}} | 0.11125 ^{\{ 12 \}} | 0.10348 ^{\{ 9 \}} | 0.24262 ^{\{ 16 \}} | 0.0989 ^{\{ 7 \}} | 0.15864 ^{\{ 15 \}} | 0.09643 ^{\{ 6 \}} | 0.15711 ^{\{ 14 \}} | |
MRE( \hat{\delta} ) | 0.06269 ^{\{ 2 \}} | 0.06396 ^{\{ 3 \}} | 0.07553 ^{\{ 10 \}} | 0.06058 ^{\{ 1 \}} | 0.07554 ^{\{ 11 \}} | 0.06454 ^{\{ 4 \}} | 0.07052 ^{\{ 8 \}} | 0.06717 ^{\{ 6 \}} | 0.08923 ^{\{ 15 \}} | 0.07689 ^{\{ 12 \}} | 0.07046 ^{\{ 7 \}} | 0.14849 ^{\{ 16 \}} | 0.07124 ^{\{ 9 \}} | 0.0844 ^{\{ 13 \}} | 0.06713 ^{\{ 5 \}} | 0.0856 ^{\{ 14 \}} | |
MRE( \hat{\gamma} ) | 0.05262 ^{\{ 1 \}} | 0.05921 ^{\{ 4 \}} | 0.066 ^{\{ 12 \}} | 0.05674 ^{\{ 2 \}} | 0.06396 ^{\{ 10 \}} | 0.05767 ^{\{ 3 \}} | 0.0626 ^{\{ 8 \}} | 0.06081 ^{\{ 6 \}} | 0.07194 ^{\{ 13 \}} | 0.06571 ^{\{ 11 \}} | 0.06369 ^{\{ 9 \}} | 0.09812 ^{\{ 16 \}} | 0.05974 ^{\{ 5 \}} | 0.08057 ^{\{ 15 \}} | 0.06199 ^{\{ 7 \}} | 0.07913 ^{\{ 14 \}} | |
D_{abs} | 0.02054 ^{\{ 1 \}} | 0.02072 ^{\{ 2 \}} | 0.02154 ^{\{ 6.5 \}} | 0.0209 ^{\{ 3 \}} | 0.02214 ^{\{ 8 \}} | 0.02154 ^{\{ 6.5 \}} | 0.0215 ^{\{ 5 \}} | 0.02124 ^{\{ 4 \}} | 0.02222 ^{\{ 10 \}} | 0.02553 ^{\{ 13 \}} | 0.02417 ^{\{ 12 \}} | 0.02878 ^{\{ 15 \}} | 0.02217 ^{\{ 9 \}} | 0.029 ^{\{ 16 \}} | 0.02327 ^{\{ 11 \}} | 0.02835 ^{\{ 14 \}} | |
D_{max} | 0.03296 ^{\{ 1 \}} | 0.03367 ^{\{ 3 \}} | 0.03572 ^{\{ 7 \}} | 0.03363 ^{\{ 2 \}} | 0.03616 ^{\{ 9 \}} | 0.03467 ^{\{ 5 \}} | 0.03506 ^{\{ 6 \}} | 0.03443 ^{\{ 4 \}} | 0.03725 ^{\{ 10 \}} | 0.04088 ^{\{ 13 \}} | 0.03877 ^{\{ 12 \}} | 0.0513 ^{\{ 16 \}} | 0.03581 ^{\{ 8 \}} | 0.04664 ^{\{ 15 \}} | 0.03742 ^{\{ 11 \}} | 0.04585 ^{\{ 14 \}} | |
ASAE | 0.01285 ^{\{ 1 \}} | 0.0121 ^{\{ 3 \}} | 0.01253 ^{\{ 7 \}} | 0.01291 ^{\{ 2 \}} | 0.0126 ^{\{ 9 \}} | 0.0126 ^{\{ 5 \}} | 0.01309 ^{\{ 6 \}} | 0.01218 ^{\{ 4 \}} | 0.01276 ^{\{ 10 \}} | 0.01719 ^{\{ 13 \}} | 0.01618 ^{\{ 12 \}} | 0.01927 ^{\{ 16 \}} | 0.0134 ^{\{ 8 \}} | 0.01885 ^{\{ 15 \}} | 0.01518 ^{\{ 11 \}} | 0.01927 ^{\{ 14 \}} | |
\sum Ranks | 18 ^{\{ 1 \}} | 28 ^{\{ 3 \}} | 82.5 ^{\{ 9 \}} | 22 ^{\{ 2 \}} | 86 ^{\{ 11 \}} | 35.5 ^{\{ 4 \}} | 68 ^{\{ 6 \}} | 44 ^{\{ 5 \}} | 110 ^{\{ 13 \}} | 107 ^{\{ 12 \}} | 84 ^{\{ 10 \}} | 143 ^{\{ 16 \}} | 71 ^{\{ 8 \}} | 129 ^{\{ 15 \}} | 69 ^{\{ 7 \}} | 127 ^{\{ 14 \}} | |
200 | BIAS( \hat{\delta} ) | 0.13265 ^{\{ 2 \}} | 0.13595 ^{\{ 3 \}} | 0.1673 ^{\{ 11 \}} | 0.13118 ^{\{ 1 \}} | 0.16857 ^{\{ 12 \}} | 0.13838 ^{\{ 5 \}} | 0.13802 ^{\{ 4 \}} | 0.14025 ^{\{ 6 \}} | 0.18959 ^{\{ 15 \}} | 0.16663 ^{\{ 10 \}} | 0.15183 ^{\{ 8 \}} | 0.33625 ^{\{ 16 \}} | 0.16201 ^{\{ 9 \}} | 0.18672 ^{\{ 14 \}} | 0.14916 ^{\{ 7 \}} | 0.1847 ^{\{ 13 \}} |
BIAS( \hat{\gamma} ) | 0.1819 ^{\{ 1 \}} | 0.2009 ^{\{ 4 \}} | 0.23223 ^{\{ 11 \}} | 0.19663 ^{\{ 2 \}} | 0.23062 ^{\{ 10 \}} | 0.19721 ^{\{ 3 \}} | 0.21404 ^{\{ 7 \}} | 0.20405 ^{\{ 5 \}} | 0.24252 ^{\{ 13 \}} | 0.23595 ^{\{ 12 \}} | 0.22556 ^{\{ 9 \}} | 0.35139 ^{\{ 16 \}} | 0.21768 ^{\{ 8 \}} | 0.26822 ^{\{ 14 \}} | 0.21092 ^{\{ 6 \}} | 0.28227 ^{\{ 15 \}} | |
MSE( \hat{\delta} ) | 0.02876 ^{\{ 2 \}} | 0.03111 ^{\{ 5 \}} | 0.04706 ^{\{ 12 \}} | 0.02608 ^{\{ 1 \}} | 0.04487 ^{\{ 11 \}} | 0.02986 ^{\{ 3 \}} | 0.02999 ^{\{ 4 \}} | 0.03198 ^{\{ 6 \}} | 0.05815 ^{\{ 15 \}} | 0.04388 ^{\{ 9 \}} | 0.03648 ^{\{ 8 \}} | 0.17779 ^{\{ 16 \}} | 0.04457 ^{\{ 10 \}} | 0.0543 ^{\{ 14 \}} | 0.03468 ^{\{ 7 \}} | 0.05337 ^{\{ 13 \}} | |
MSE( \hat{\gamma} ) | 0.05319 ^{\{ 1 \}} | 0.06643 ^{\{ 5 \}} | 0.0866 ^{\{ 11 \}} | 0.05773 ^{\{ 2 \}} | 0.08181 ^{\{ 9 \}} | 0.06042 ^{\{ 3 \}} | 0.07294 ^{\{ 7 \}} | 0.0649 ^{\{ 4 \}} | 0.09347 ^{\{ 13 \}} | 0.0891 ^{\{ 12 \}} | 0.07835 ^{\{ 8 \}} | 0.18831 ^{\{ 16 \}} | 0.08335 ^{\{ 10 \}} | 0.10843 ^{\{ 14 \}} | 0.07018 ^{\{ 6 \}} | 0.12237 ^{\{ 15 \}} | |
MRE( \hat{\delta} ) | 0.05306 ^{\{ 2 \}} | 0.05438 ^{\{ 3 \}} | 0.06692 ^{\{ 11 \}} | 0.05247 ^{\{ 1 \}} | 0.06743 ^{\{ 12 \}} | 0.05535 ^{\{ 5 \}} | 0.05521 ^{\{ 4 \}} | 0.0561 ^{\{ 6 \}} | 0.07583 ^{\{ 15 \}} | 0.06665 ^{\{ 10 \}} | 0.06073 ^{\{ 8 \}} | 0.1345 ^{\{ 16 \}} | 0.0648 ^{\{ 9 \}} | 0.07469 ^{\{ 14 \}} | 0.05966 ^{\{ 7 \}} | 0.07388 ^{\{ 13 \}} | |
MRE( \hat{\gamma} ) | 0.04548 ^{\{ 1 \}} | 0.05022 ^{\{ 4 \}} | 0.05806 ^{\{ 11 \}} | 0.04916 ^{\{ 2 \}} | 0.05765 ^{\{ 10 \}} | 0.0493 ^{\{ 3 \}} | 0.05351 ^{\{ 7 \}} | 0.05101 ^{\{ 5 \}} | 0.06063 ^{\{ 13 \}} | 0.05899 ^{\{ 12 \}} | 0.05639 ^{\{ 9 \}} | 0.08785 ^{\{ 16 \}} | 0.05442 ^{\{ 8 \}} | 0.06705 ^{\{ 14 \}} | 0.05273 ^{\{ 6 \}} | 0.07057 ^{\{ 15 \}} | |
D_{abs} | 0.01756 ^{\{ 1 \}} | 0.01875 ^{\{ 6 \}} | 0.01966 ^{\{ 9 \}} | 0.01806 ^{\{ 2 \}} | 0.01886 ^{\{ 7 \}} | 0.01851 ^{\{ 3 \}} | 0.01865 ^{\{ 5 \}} | 0.01857 ^{\{ 4 \}} | 0.02 ^{\{ 10 \}} | 0.02234 ^{\{ 13 \}} | 0.02071 ^{\{ 12 \}} | 0.02553 ^{\{ 16 \}} | 0.01939 ^{\{ 8 \}} | 0.02374 ^{\{ 14 \}} | 0.02001 ^{\{ 11 \}} | 0.02467 ^{\{ 15 \}} | |
D_{max} | 0.02827 ^{\{ 1 \}} | 0.03015 ^{\{ 5 \}} | 0.03226 ^{\{ 10 \}} | 0.02899 ^{\{ 2 \}} | 0.03112 ^{\{ 7 \}} | 0.02971 ^{\{ 3 \}} | 0.03023 ^{\{ 6 \}} | 0.02997 ^{\{ 4 \}} | 0.03328 ^{\{ 11 \}} | 0.03587 ^{\{ 13 \}} | 0.03331 ^{\{ 12 \}} | 0.04625 ^{\{ 16 \}} | 0.03149 ^{\{ 8 \}} | 0.03869 ^{\{ 14 \}} | 0.03217 ^{\{ 9 \}} | 0.03998 ^{\{ 15 \}} | |
ASAE | 0.01079 ^{\{ 1 \}} | 0.01033 ^{\{ 5 \}} | 0.01064 ^{\{ 10 \}} | 0.01096 ^{\{ 2 \}} | 0.01058 ^{\{ 7 \}} | 0.0105 ^{\{ 3 \}} | 0.01128 ^{\{ 6 \}} | 0.01037 ^{\{ 4 \}} | 0.01071 ^{\{ 11 \}} | 0.01466 ^{\{ 13 \}} | 0.0135 ^{\{ 12 \}} | 0.01705 ^{\{ 16 \}} | 0.01127 ^{\{ 8 \}} | 0.01565 ^{\{ 14 \}} | 0.01282 ^{\{ 9 \}} | 0.01625 ^{\{ 15 \}} | |
\sum Ranks | 18 ^{\{ 1 \}} | 36 ^{\{ 4 \}} | 91 ^{\{ 11 \}} | 21 ^{\{ 2 \}} | 82 ^{\{ 9 \}} | 31 ^{\{ 3 \}} | 54 ^{\{ 6 \}} | 42 ^{\{ 5 \}} | 111 ^{\{ 13 \}} | 104 ^{\{ 12 \}} | 86 ^{\{ 10 \}} | 144 ^{\{ 16 \}} | 79 ^{\{ 8 \}} | 126 ^{\{ 14 \}} | 70 ^{\{ 7 \}} | 129 ^{\{ 15 \}} | |
300 | BIAS( \hat{\delta} ) | 0.10974 ^{\{ 2 \}} | 0.11844 ^{\{ 5 \}} | 0.13179 ^{\{ 9 \}} | 0.10665 ^{\{ 1 \}} | 0.13783 ^{\{ 12 \}} | 0.1132 ^{\{ 3 \}} | 0.11493 ^{\{ 4 \}} | 0.11974 ^{\{ 6 \}} | 0.14628 ^{\{ 13 \}} | 0.13581 ^{\{ 11 \}} | 0.12478 ^{\{ 8 \}} | 0.2783 ^{\{ 16 \}} | 0.1341 ^{\{ 10 \}} | 0.15588 ^{\{ 15 \}} | 0.12086 ^{\{ 7 \}} | 0.14797 ^{\{ 14 \}} |
BIAS( \hat{\gamma} ) | 0.14742 ^{\{ 1 \}} | 0.16142 ^{\{ 3 \}} | 0.18156 ^{\{ 10 \}} | 0.16198 ^{\{ 4 \}} | 0.1938 ^{\{ 12 \}} | 0.1533 ^{\{ 2 \}} | 0.16496 ^{\{ 5 \}} | 0.17827 ^{\{ 7 \}} | 0.1921 ^{\{ 11 \}} | 0.19653 ^{\{ 13 \}} | 0.17965 ^{\{ 8 \}} | 0.28618 ^{\{ 16 \}} | 0.18104 ^{\{ 9 \}} | 0.22094 ^{\{ 15 \}} | 0.17758 ^{\{ 6 \}} | 0.2143 ^{\{ 14 \}} | |
MSE( \hat{\delta} ) | 0.01875 ^{\{ 2 \}} | 0.02203 ^{\{ 5 \}} | 0.02817 ^{\{ 9 \}} | 0.01818 ^{\{ 1 \}} | 0.03043 ^{\{ 12 \}} | 0.02021 ^{\{ 3 \}} | 0.02064 ^{\{ 4 \}} | 0.02295 ^{\{ 7 \}} | 0.03499 ^{\{ 13 \}} | 0.02881 ^{\{ 11 \}} | 0.02412 ^{\{ 8 \}} | 0.12932 ^{\{ 16 \}} | 0.0286 ^{\{ 10 \}} | 0.03896 ^{\{ 15 \}} | 0.02229 ^{\{ 6 \}} | 0.03584 ^{\{ 14 \}} | |
MSE( \hat{\gamma} ) | 0.03488 ^{\{ 1 \}} | 0.04131 ^{\{ 4 \}} | 0.05192 ^{\{ 9 \}} | 0.04036 ^{\{ 3 \}} | 0.05898 ^{\{ 12 \}} | 0.03722 ^{\{ 2 \}} | 0.04372 ^{\{ 5 \}} | 0.04954 ^{\{ 7 \}} | 0.05812 ^{\{ 11 \}} | 0.06262 ^{\{ 13 \}} | 0.05007 ^{\{ 8 \}} | 0.13548 ^{\{ 16 \}} | 0.05346 ^{\{ 10 \}} | 0.07594 ^{\{ 15 \}} | 0.04802 ^{\{ 6 \}} | 0.07302 ^{\{ 14 \}} | |
MRE( \hat{\delta} ) | 0.0439 ^{\{ 2 \}} | 0.04737 ^{\{ 5 \}} | 0.05272 ^{\{ 9 \}} | 0.04266 ^{\{ 1 \}} | 0.05513 ^{\{ 12 \}} | 0.04528 ^{\{ 3 \}} | 0.04597 ^{\{ 4 \}} | 0.0479 ^{\{ 6 \}} | 0.05851 ^{\{ 13 \}} | 0.05433 ^{\{ 11 \}} | 0.04991 ^{\{ 8 \}} | 0.11132 ^{\{ 16 \}} | 0.05364 ^{\{ 10 \}} | 0.06235 ^{\{ 15 \}} | 0.04834 ^{\{ 7 \}} | 0.05919 ^{\{ 14 \}} | |
MRE( \hat{\gamma} ) | 0.03685 ^{\{ 1 \}} | 0.04036 ^{\{ 3 \}} | 0.04539 ^{\{ 10 \}} | 0.04049 ^{\{ 4 \}} | 0.04845 ^{\{ 12 \}} | 0.03832 ^{\{ 2 \}} | 0.04124 ^{\{ 5 \}} | 0.04457 ^{\{ 7 \}} | 0.04802 ^{\{ 11 \}} | 0.04913 ^{\{ 13 \}} | 0.04491 ^{\{ 8 \}} | 0.07155 ^{\{ 16 \}} | 0.04526 ^{\{ 9 \}} | 0.05524 ^{\{ 15 \}} | 0.04439 ^{\{ 6 \}} | 0.05357 ^{\{ 14 \}} | |
D_{abs} | 0.01362 ^{\{ 1 \}} | 0.01495 ^{\{ 6 \}} | 0.01533 ^{\{ 8 \}} | 0.01478 ^{\{ 5 \}} | 0.01539 ^{\{ 9 \}} | 0.01426 ^{\{ 2 \}} | 0.01476 ^{\{ 4 \}} | 0.01472 ^{\{ 3 \}} | 0.01529 ^{\{ 7 \}} | 0.01826 ^{\{ 13 \}} | 0.01734 ^{\{ 12 \}} | 0.02195 ^{\{ 16 \}} | 0.01583 ^{\{ 10 \}} | 0.0199 ^{\{ 14 \}} | 0.0161 ^{\{ 11 \}} | 0.02005 ^{\{ 15 \}} | |
D_{max} | 0.02211 ^{\{ 1 \}} | 0.02424 ^{\{ 6 \}} | 0.02529 ^{\{ 7 \}} | 0.02366 ^{\{ 3 \}} | 0.02549 ^{\{ 8 \}} | 0.02312 ^{\{ 2 \}} | 0.02388 ^{\{ 4 \}} | 0.02416 ^{\{ 5 \}} | 0.0255 ^{\{ 9 \}} | 0.02944 ^{\{ 13 \}} | 0.02777 ^{\{ 12 \}} | 0.03943 ^{\{ 16 \}} | 0.0259 ^{\{ 10 \}} | 0.03232 ^{\{ 15 \}} | 0.02613 ^{\{ 11 \}} | 0.0323 ^{\{ 14 \}} | |
ASAE | 0.00851 ^{\{ 1 \}} | 0.00811 ^{\{ 6 \}} | 0.00842 ^{\{ 7 \}} | 0.00842 ^{\{ 3 \}} | 0.00824 ^{\{ 8 \}} | 0.00839 ^{\{ 2 \}} | 0.00871 ^{\{ 4 \}} | 0.00814 ^{\{ 5 \}} | 0.00844 ^{\{ 9 \}} | 0.01156 ^{\{ 13 \}} | 0.0109 ^{\{ 12 \}} | 0.01371 ^{\{ 16 \}} | 0.00883 ^{\{ 10 \}} | 0.01255 ^{\{ 15 \}} | 0.01019 ^{\{ 11 \}} | 0.01271 ^{\{ 14 \}} | |
\sum Ranks | 19 ^{\{ 1 \}} | 38 ^{\{ 4 \}} | 77 ^{\{ 8 \}} | 27 ^{\{ 3 \}} | 92 ^{\{ 11 \}} | 23 ^{\{ 2 \}} | 44 ^{\{ 5 \}} | 50 ^{\{ 6 \}} | 95 ^{\{ 12 \}} | 111 ^{\{ 13 \}} | 84 ^{\{ 9 \}} | 144 ^{\{ 16 \}} | 88 ^{\{ 10 \}} | 133 ^{\{ 15 \}} | 71 ^{\{ 7 \}} | 128 ^{\{ 14 \}} | |
450 | BIAS( \hat{\delta} ) | 0.08895 ^{\{ 2 \}} | 0.09072 ^{\{ 3 \}} | 0.11445 ^{\{ 12 \}} | 0.08675 ^{\{ 1 \}} | 0.10738 ^{\{ 10 \}} | 0.09073 ^{\{ 4 \}} | 0.09415 ^{\{ 5 \}} | 0.0949 ^{\{ 6 \}} | 0.12204 ^{\{ 13 \}} | 0.11394 ^{\{ 11 \}} | 0.10417 ^{\{ 8 \}} | 0.22716 ^{\{ 16 \}} | 0.10475 ^{\{ 9 \}} | 0.12807 ^{\{ 15 \}} | 0.09963 ^{\{ 7 \}} | 0.12233 ^{\{ 14 \}} |
BIAS( \hat{\gamma} ) | 0.1248 ^{\{ 1 \}} | 0.13118 ^{\{ 4 \}} | 0.15604 ^{\{ 12 \}} | 0.12656 ^{\{ 2 \}} | 0.15209 ^{\{ 10 \}} | 0.13038 ^{\{ 3 \}} | 0.15018 ^{\{ 9 \}} | 0.13814 ^{\{ 5 \}} | 0.15294 ^{\{ 11 \}} | 0.16044 ^{\{ 13 \}} | 0.14765 ^{\{ 8 \}} | 0.24681 ^{\{ 16 \}} | 0.14338 ^{\{ 6 \}} | 0.17673 ^{\{ 15 \}} | 0.14537 ^{\{ 7 \}} | 0.17526 ^{\{ 14 \}} | |
MSE( \hat{\delta} ) | 0.01257 ^{\{ 2 \}} | 0.01291 ^{\{ 4 \}} | 0.02057 ^{\{ 11 \}} | 0.01176 ^{\{ 1 \}} | 0.01849 ^{\{ 10 \}} | 0.01269 ^{\{ 3 \}} | 0.01407 ^{\{ 5 \}} | 0.01462 ^{\{ 6 \}} | 0.02287 ^{\{ 13 \}} | 0.02088 ^{\{ 12 \}} | 0.01688 ^{\{ 8 \}} | 0.08455 ^{\{ 16 \}} | 0.0176 ^{\{ 9 \}} | 0.02511 ^{\{ 15 \}} | 0.01571 ^{\{ 7 \}} | 0.02359 ^{\{ 14 \}} | |
MSE( \hat{\gamma} ) | 0.0249 ^{\{ 1 \}} | 0.02715 ^{\{ 4 \}} | 0.03896 ^{\{ 12 \}} | 0.02562 ^{\{ 2 \}} | 0.03687 ^{\{ 10 \}} | 0.02638 ^{\{ 3 \}} | 0.03486 ^{\{ 9 \}} | 0.03042 ^{\{ 5 \}} | 0.03691 ^{\{ 11 \}} | 0.04153 ^{\{ 13 \}} | 0.03326 ^{\{ 7 \}} | 0.09873 ^{\{ 16 \}} | 0.03448 ^{\{ 8 \}} | 0.04877 ^{\{ 15 \}} | 0.03238 ^{\{ 6 \}} | 0.04832 ^{\{ 14 \}} | |
MRE( \hat{\delta} ) | 0.03558 ^{\{ 2 \}} | 0.03629 ^{\{ 3.5 \}} | 0.04578 ^{\{ 12 \}} | 0.0347 ^{\{ 1 \}} | 0.04295 ^{\{ 10 \}} | 0.03629 ^{\{ 3.5 \}} | 0.03766 ^{\{ 5 \}} | 0.03796 ^{\{ 6 \}} | 0.04881 ^{\{ 13 \}} | 0.04558 ^{\{ 11 \}} | 0.04167 ^{\{ 8 \}} | 0.09086 ^{\{ 16 \}} | 0.0419 ^{\{ 9 \}} | 0.05123 ^{\{ 15 \}} | 0.03985 ^{\{ 7 \}} | 0.04893 ^{\{ 14 \}} | |
MRE( \hat{\gamma} ) | 0.0312 ^{\{ 1 \}} | 0.0328 ^{\{ 4 \}} | 0.03901 ^{\{ 12 \}} | 0.03164 ^{\{ 2 \}} | 0.03802 ^{\{ 10 \}} | 0.0326 ^{\{ 3 \}} | 0.03755 ^{\{ 9 \}} | 0.03453 ^{\{ 5 \}} | 0.03823 ^{\{ 11 \}} | 0.04011 ^{\{ 13 \}} | 0.03691 ^{\{ 8 \}} | 0.0617 ^{\{ 16 \}} | 0.03584 ^{\{ 6 \}} | 0.04418 ^{\{ 15 \}} | 0.03634 ^{\{ 7 \}} | 0.04381 ^{\{ 14 \}} | |
D_{abs} | 0.01206 ^{\{ 3 \}} | 0.0118 ^{\{ 1 \}} | 0.01283 ^{\{ 9 \}} | 0.01195 ^{\{ 2 \}} | 0.01252 ^{\{ 6 \}} | 0.0122 ^{\{ 4 \}} | 0.01285 ^{\{ 10 \}} | 0.01236 ^{\{ 5 \}} | 0.01279 ^{\{ 8 \}} | 0.0151 ^{\{ 13 \}} | 0.01376 ^{\{ 12 \}} | 0.01756 ^{\{ 16 \}} | 0.01274 ^{\{ 7 \}} | 0.01662 ^{\{ 15 \}} | 0.01351 ^{\{ 11 \}} | 0.01591 ^{\{ 14 \}} | |
D_{max} | 0.0194 ^{\{ 3 \}} | 0.01913 ^{\{ 1 \}} | 0.02112 ^{\{ 9 \}} | 0.01918 ^{\{ 2 \}} | 0.02062 ^{\{ 6 \}} | 0.01963 ^{\{ 4 \}} | 0.0208 ^{\{ 8 \}} | 0.02007 ^{\{ 5 \}} | 0.02128 ^{\{ 10 \}} | 0.02436 ^{\{ 13 \}} | 0.02228 ^{\{ 12 \}} | 0.03163 ^{\{ 16 \}} | 0.02078 ^{\{ 7 \}} | 0.02684 ^{\{ 15 \}} | 0.02176 ^{\{ 11 \}} | 0.02572 ^{\{ 14 \}} | |
ASAE | 0.0068 ^{\{ 3 \}} | 0.00657 ^{\{ 1 \}} | 0.00666 ^{\{ 9 \}} | 0.0068 ^{\{ 2 \}} | 0.00659 ^{\{ 6 \}} | 0.00666 ^{\{ 4 \}} | 0.00675 ^{\{ 8 \}} | 0.00645 ^{\{ 5 \}} | 0.00672 ^{\{ 10 \}} | 0.00925 ^{\{ 13 \}} | 0.00841 ^{\{ 12 \}} | 0.01085 ^{\{ 16 \}} | 0.00715 ^{\{ 7 \}} | 0.01005 ^{\{ 15 \}} | 0.00797 ^{\{ 11 \}} | 0.01017 ^{\{ 14 \}} | |
\sum Ranks | 24 ^{\{ 2 \}} | 26.5 ^{\{ 3 \}} | 94 ^{\{ 11 \}} | 21 ^{\{ 1 \}} | 75 ^{\{ 9 \}} | 31.5 ^{\{ 4 \}} | 67 ^{\{ 6 \}} | 44 ^{\{ 5 \}} | 96 ^{\{ 12 \}} | 112 ^{\{ 13 \}} | 83 ^{\{ 10 \}} | 144 ^{\{ 16 \}} | 71 ^{\{ 7 \}} | 134 ^{\{ 15 \}} | 74 ^{\{ 8 \}} | 127 ^{\{ 14 \}} |
n | Est. | MLE | ADE | CVME | MPSE | OLSE | PCE | RTADE | WLSE | LTADE | MSADE | MSALDE | ADSOE | KE | MSSD | MSSLD | MSLND |
20 | BIAS( \hat{\delta} ) | 0.13569 ^{\{ 4 \}} | 0.13611 ^{\{ 5 \}} | 0.14304 ^{\{ 12 \}} | 0.11914 ^{\{ 1 \}} | 0.13443 ^{\{ 3 \}} | 0.23732 ^{\{ 16 \}} | 0.13881 ^{\{ 8 \}} | 0.13078 ^{\{ 2 \}} | 0.145 ^{\{ 13 \}} | 0.14272 ^{\{ 11 \}} | 0.13867 ^{\{ 7 \}} | 0.15516 ^{\{ 15 \}} | 0.14722 ^{\{ 14 \}} | 0.13911 ^{\{ 9 \}} | 0.13978 ^{\{ 10 \}} | 0.13755 ^{\{ 6 \}} |
BIAS( \hat{\gamma} ) | 0.04852 ^{\{ 2 \}} | 0.04836 ^{\{ 1 \}} | 0.06184 ^{\{ 11 \}} | 0.04882 ^{\{ 3 \}} | 0.05532 ^{\{ 8 \}} | 0.10105 ^{\{ 16 \}} | 0.05227 ^{\{ 6 \}} | 0.05221 ^{\{ 5 \}} | 0.05666 ^{\{ 9 \}} | 0.0622 ^{\{ 12 \}} | 0.05323 ^{\{ 7 \}} | 0.0738 ^{\{ 15 \}} | 0.05983 ^{\{ 10 \}} | 0.06465 ^{\{ 13 \}} | 0.04883 ^{\{ 4 \}} | 0.06543 ^{\{ 14 \}} | |
MSE( \hat{\delta} ) | 0.02924 ^{\{ 3 \}} | 0.03072 ^{\{ 6.5 \}} | 0.03339 ^{\{ 12 \}} | 0.02293 ^{\{ 1 \}} | 0.02941 ^{\{ 4 \}} | 0.08556 ^{\{ 16 \}} | 0.03083 ^{\{ 9 \}} | 0.02791 ^{\{ 2 \}} | 0.03622 ^{\{ 14 \}} | 0.03338 ^{\{ 11 \}} | 0.03296 ^{\{ 10 \}} | 0.04423 ^{\{ 15 \}} | 0.0359 ^{\{ 13 \}} | 0.03072 ^{\{ 6.5 \}} | 0.03037 ^{\{ 5 \}} | 0.03074 ^{\{ 8 \}} | |
MSE( \hat{\gamma} ) | 0.00409 ^{\{ 4 \}} | 0.0038 ^{\{ 3 \}} | 0.00673 ^{\{ 14 \}} | 0.00366 ^{\{ 1 \}} | 0.00511 ^{\{ 8 \}} | 0.01506 ^{\{ 16 \}} | 0.00465 ^{\{ 7 \}} | 0.00459 ^{\{ 6 \}} | 0.00576 ^{\{ 9 \}} | 0.00621 ^{\{ 12 \}} | 0.00433 ^{\{ 5 \}} | 0.00882 ^{\{ 15 \}} | 0.00612 ^{\{ 10 \}} | 0.00618 ^{\{ 11 \}} | 0.00373 ^{\{ 2 \}} | 0.00633 ^{\{ 13 \}} | |
MRE( \hat{\delta} ) | 0.16961 ^{\{ 4 \}} | 0.17014 ^{\{ 5 \}} | 0.17881 ^{\{ 12 \}} | 0.14892 ^{\{ 1 \}} | 0.16804 ^{\{ 3 \}} | 0.29665 ^{\{ 16 \}} | 0.17352 ^{\{ 8 \}} | 0.16347 ^{\{ 2 \}} | 0.18125 ^{\{ 13 \}} | 0.1784 ^{\{ 11 \}} | 0.17334 ^{\{ 7 \}} | 0.19395 ^{\{ 15 \}} | 0.18402 ^{\{ 14 \}} | 0.17389 ^{\{ 9 \}} | 0.17473 ^{\{ 10 \}} | 0.17193 ^{\{ 6 \}} | |
MRE( \hat{\gamma} ) | 0.16174 ^{\{ 2 \}} | 0.1612 ^{\{ 1 \}} | 0.20613 ^{\{ 11 \}} | 0.16273 ^{\{ 3 \}} | 0.18441 ^{\{ 8 \}} | 0.33685 ^{\{ 16 \}} | 0.17424 ^{\{ 6 \}} | 0.17403 ^{\{ 5 \}} | 0.18886 ^{\{ 9 \}} | 0.20735 ^{\{ 12 \}} | 0.17743 ^{\{ 7 \}} | 0.24601 ^{\{ 15 \}} | 0.19943 ^{\{ 10 \}} | 0.21551 ^{\{ 13 \}} | 0.16277 ^{\{ 4 \}} | 0.21812 ^{\{ 14 \}} | |
D_{abs} | 0.05531 ^{\{ 1 \}} | 0.05792 ^{\{ 3 \}} | 0.06031 ^{\{ 6 \}} | 0.05725 ^{\{ 2 \}} | 0.06112 ^{\{ 9 \}} | 0.10551 ^{\{ 16 \}} | 0.05954 ^{\{ 5 \}} | 0.05815 ^{\{ 4 \}} | 0.06079 ^{\{ 8 \}} | 0.06665 ^{\{ 12 \}} | 0.06419 ^{\{ 11 \}} | 0.06793 ^{\{ 13 \}} | 0.06068 ^{\{ 7 \}} | 0.07137 ^{\{ 15 \}} | 0.06132 ^{\{ 10 \}} | 0.07046 ^{\{ 14 \}} | |
D_{max} | 0.09073 ^{\{ 2 \}} | 0.09264 ^{\{ 3 \}} | 0.10036 ^{\{ 8 \}} | 0.0902 ^{\{ 1 \}} | 0.09881 ^{\{ 7 \}} | 0.17373 ^{\{ 16 \}} | 0.09574 ^{\{ 5 \}} | 0.09359 ^{\{ 4 \}} | 0.1012 ^{\{ 9 \}} | 0.10726 ^{\{ 12 \}} | 0.10174 ^{\{ 11 \}} | 0.11822 ^{\{ 15 \}} | 0.10136 ^{\{ 10 \}} | 0.11505 ^{\{ 14 \}} | 0.09648 ^{\{ 6 \}} | 0.11428 ^{\{ 13 \}} | |
ASAE | 0.04603 ^{\{ 2 \}} | 0.04811 ^{\{ 3 \}} | 0.05374 ^{\{ 8 \}} | 0.04434 ^{\{ 1 \}} | 0.06565 ^{\{ 7 \}} | 0.0267 ^{\{ 16 \}} | 0.0424 ^{\{ 5 \}} | 0.04964 ^{\{ 4 \}} | 0.08063 ^{\{ 9 \}} | 0.04583 ^{\{ 12 \}} | 0.04342 ^{\{ 11 \}} | 0.42444 ^{\{ 15 \}} | 0.05812 ^{\{ 10 \}} | 0.0862 ^{\{ 14 \}} | 0.05103 ^{\{ 6 \}} | 0.08934 ^{\{ 13 \}} | |
\sum Ranks | 28 ^{\{ 2 \}} | 34.5 ^{\{ 3 \}} | 96 ^{\{ 9 \}} | 17 ^{\{ 1 \}} | 62 ^{\{ 7 \}} | 129 ^{\{ 15 \}} | 56 ^{\{ 5 \}} | 38 ^{\{ 4 \}} | 97 ^{\{ 10 \}} | 98 ^{\{ 11 \}} | 68 ^{\{ 8 \}} | 134 ^{\{ 16 \}} | 99 ^{\{ 12 \}} | 104.5 ^{\{ 14 \}} | 60 ^{\{ 6 \}} | 103 ^{\{ 13 \}} | |
70 | BIAS( \hat{\delta} ) | 0.07296 ^{\{ 5 \}} | 0.06964 ^{\{ 1 \}} | 0.07359 ^{\{ 7 \}} | 0.07124 ^{\{ 3 \}} | 0.07313 ^{\{ 6 \}} | 0.18982 ^{\{ 16 \}} | 0.07141 ^{\{ 4 \}} | 0.06974 ^{\{ 2 \}} | 0.07362 ^{\{ 8 \}} | 0.0874 ^{\{ 13 \}} | 0.0797 ^{\{ 11 \}} | 0.08887 ^{\{ 15 \}} | 0.07713 ^{\{ 10 \}} | 0.08667 ^{\{ 12 \}} | 0.0757 ^{\{ 9 \}} | 0.08745 ^{\{ 14 \}} |
BIAS( \hat{\gamma} ) | 0.02459 ^{\{ 1 \}} | 0.02612 ^{\{ 5 \}} | 0.03127 ^{\{ 11 \}} | 0.02602 ^{\{ 4 \}} | 0.0292 ^{\{ 8 \}} | 0.0696 ^{\{ 16 \}} | 0.02598 ^{\{ 3 \}} | 0.02544 ^{\{ 2 \}} | 0.02942 ^{\{ 9 \}} | 0.03295 ^{\{ 12 \}} | 0.02869 ^{\{ 7 \}} | 0.04133 ^{\{ 15 \}} | 0.03019 ^{\{ 10 \}} | 0.03481 ^{\{ 14 \}} | 0.02684 ^{\{ 6 \}} | 0.03435 ^{\{ 13 \}} | |
MSE( \hat{\delta} ) | 0.00838 ^{\{ 5 \}} | 0.00771 ^{\{ 1.5 \}} | 0.00865 ^{\{ 7 \}} | 0.00801 ^{\{ 3 \}} | 0.0085 ^{\{ 6 \}} | 0.0611 ^{\{ 16 \}} | 0.00817 ^{\{ 4 \}} | 0.00771 ^{\{ 1.5 \}} | 0.00869 ^{\{ 8 \}} | 0.01225 ^{\{ 12 \}} | 0.01009 ^{\{ 11 \}} | 0.01295 ^{\{ 15 \}} | 0.00958 ^{\{ 10 \}} | 0.01229 ^{\{ 13 \}} | 0.00905 ^{\{ 9 \}} | 0.01253 ^{\{ 14 \}} | |
MSE( \hat{\gamma} ) | 0.00099 ^{\{ 1 \}} | 0.00108 ^{\{ 4 \}} | 0.00163 ^{\{ 11 \}} | 0.00104 ^{\{ 3 \}} | 0.00135 ^{\{ 8 \}} | 0.00721 ^{\{ 16 \}} | 0.00111 ^{\{ 5 \}} | 0.00103 ^{\{ 2 \}} | 0.00144 ^{\{ 9 \}} | 0.00171 ^{\{ 12 \}} | 0.00125 ^{\{ 7 \}} | 0.00265 ^{\{ 15 \}} | 0.00151 ^{\{ 10 \}} | 0.00187 ^{\{ 14 \}} | 0.00114 ^{\{ 6 \}} | 0.0018 ^{\{ 13 \}} | |
MRE( \hat{\delta} ) | 0.09119 ^{\{ 5 \}} | 0.08705 ^{\{ 1 \}} | 0.09199 ^{\{ 7 \}} | 0.08905 ^{\{ 3 \}} | 0.09141 ^{\{ 6 \}} | 0.23728 ^{\{ 16 \}} | 0.08926 ^{\{ 4 \}} | 0.08718 ^{\{ 2 \}} | 0.09203 ^{\{ 8 \}} | 0.10925 ^{\{ 13 \}} | 0.09963 ^{\{ 11 \}} | 0.11109 ^{\{ 15 \}} | 0.09642 ^{\{ 10 \}} | 0.10834 ^{\{ 12 \}} | 0.09462 ^{\{ 9 \}} | 0.10931 ^{\{ 14 \}} | |
MRE( \hat{\gamma} ) | 0.08196 ^{\{ 1 \}} | 0.08707 ^{\{ 5 \}} | 0.10422 ^{\{ 11 \}} | 0.08674 ^{\{ 4 \}} | 0.09732 ^{\{ 8 \}} | 0.232 ^{\{ 16 \}} | 0.08659 ^{\{ 3 \}} | 0.0848 ^{\{ 2 \}} | 0.09806 ^{\{ 9 \}} | 0.10984 ^{\{ 12 \}} | 0.09562 ^{\{ 7 \}} | 0.13777 ^{\{ 15 \}} | 0.10063 ^{\{ 10 \}} | 0.11604 ^{\{ 14 \}} | 0.08946 ^{\{ 6 \}} | 0.1145 ^{\{ 13 \}} | |
D_{abs} | 0.03066 ^{\{ 4 \}} | 0.03051 ^{\{ 2 \}} | 0.0325 ^{\{ 7 \}} | 0.03188 ^{\{ 5 \}} | 0.03278 ^{\{ 8 \}} | 0.07892 ^{\{ 16 \}} | 0.03045 ^{\{ 1 \}} | 0.03058 ^{\{ 3 \}} | 0.03232 ^{\{ 6 \}} | 0.03856 ^{\{ 12 \}} | 0.03556 ^{\{ 11 \}} | 0.04174 ^{\{ 15 \}} | 0.0333 ^{\{ 10 \}} | 0.04018 ^{\{ 13 \}} | 0.03322 ^{\{ 9 \}} | 0.04055 ^{\{ 14 \}} | |
D_{max} | 0.04975 ^{\{ 3.5 \}} | 0.04967 ^{\{ 2 \}} | 0.05402 ^{\{ 8 \}} | 0.05105 ^{\{ 5 \}} | 0.05348 ^{\{ 7 \}} | 0.12657 ^{\{ 16 \}} | 0.04963 ^{\{ 1 \}} | 0.04975 ^{\{ 3.5 \}} | 0.05403 ^{\{ 9 \}} | 0.06225 ^{\{ 12 \}} | 0.0567 ^{\{ 11 \}} | 0.07376 ^{\{ 15 \}} | 0.0551 ^{\{ 10 \}} | 0.06547 ^{\{ 14 \}} | 0.05338 ^{\{ 6 \}} | 0.06543 ^{\{ 13 \}} | |
ASAE | 0.0162 ^{\{ 3.5 \}} | 0.01797 ^{\{ 2 \}} | 0.02094 ^{\{ 8 \}} | 0.01643 ^{\{ 5 \}} | 0.02195 ^{\{ 7 \}} | 0.01337 ^{\{ 16 \}} | 0.01615 ^{\{ 1 \}} | 0.01862 ^{\{ 3.5 \}} | 0.02546 ^{\{ 9 \}} | 0.01928 ^{\{ 12 \}} | 0.01803 ^{\{ 11 \}} | 0.09751 ^{\{ 15 \}} | 0.02182 ^{\{ 10 \}} | 0.02609 ^{\{ 14 \}} | 0.01813 ^{\{ 6 \}} | 0.02645 ^{\{ 13 \}} | |
\sum Ranks | 28.5 ^{\{ 4 \}} | 26.5 ^{\{ 2 \}} | 79 ^{\{ 8.5 \}} | 34 ^{\{ 5 \}} | 69 ^{\{ 7 \}} | 129 ^{\{ 15 \}} | 27 ^{\{ 3 \}} | 26 ^{\{ 1 \}} | 79 ^{\{ 8.5 \}} | 107 ^{\{ 12 \}} | 82 ^{\{ 10 \}} | 136 ^{\{ 16 \}} | 91 ^{\{ 11 \}} | 120 ^{\{ 13 \}} | 67 ^{\{ 6 \}} | 123 ^{\{ 14 \}} | |
150 | BIAS( \hat{\delta} ) | 0.04684 ^{\{ 1 \}} | 0.04829 ^{\{ 3 \}} | 0.04887 ^{\{ 4.5 \}} | 0.04806 ^{\{ 2 \}} | 0.04987 ^{\{ 7 \}} | 0.17968 ^{\{ 16 \}} | 0.04887 ^{\{ 4.5 \}} | 0.04975 ^{\{ 6 \}} | 0.05064 ^{\{ 10 \}} | 0.05928 ^{\{ 12 \}} | 0.05586 ^{\{ 11 \}} | 0.06197 ^{\{ 13 \}} | 0.05002 ^{\{ 8 \}} | 0.06334 ^{\{ 14 \}} | 0.05037 ^{\{ 9 \}} | 0.06384 ^{\{ 15 \}} |
BIAS( \hat{\gamma} ) | 0.01666 ^{\{ 1 \}} | 0.01759 ^{\{ 4 \}} | 0.02009 ^{\{ 10 \}} | 0.01747 ^{\{ 2 \}} | 0.02006 ^{\{ 9 \}} | 0.06159 ^{\{ 16 \}} | 0.01832 ^{\{ 5 \}} | 0.0185 ^{\{ 6 \}} | 0.02003 ^{\{ 8 \}} | 0.0217 ^{\{ 12 \}} | 0.0192 ^{\{ 7 \}} | 0.02988 ^{\{ 15 \}} | 0.02063 ^{\{ 11 \}} | 0.02394 ^{\{ 13 \}} | 0.01753 ^{\{ 3 \}} | 0.02409 ^{\{ 14 \}} | |
MSE( \hat{\delta} ) | 0.00343 ^{\{ 1 \}} | 0.00367 ^{\{ 3 \}} | 0.00382 ^{\{ 5 \}} | 0.00363 ^{\{ 2 \}} | 0.00389 ^{\{ 7 \}} | 0.05875 ^{\{ 16 \}} | 0.00372 ^{\{ 4 \}} | 0.00387 ^{\{ 6 \}} | 0.00409 ^{\{ 10 \}} | 0.00543 ^{\{ 12 \}} | 0.00503 ^{\{ 11 \}} | 0.0063 ^{\{ 14 \}} | 0.00394 ^{\{ 8 \}} | 0.00615 ^{\{ 13 \}} | 0.00404 ^{\{ 9 \}} | 0.00634 ^{\{ 15 \}} | |
MSE( \hat{\gamma} ) | 0.00045 ^{\{ 1 \}} | 0.00048 ^{\{ 4 \}} | 0.00064 ^{\{ 10 \}} | 0.00046 ^{\{ 2 \}} | 0.00062 ^{\{ 8.5 \}} | 0.00575 ^{\{ 16 \}} | 0.00054 ^{\{ 5.5 \}} | 0.00054 ^{\{ 5.5 \}} | 0.00062 ^{\{ 8.5 \}} | 0.00073 ^{\{ 12 \}} | 0.00056 ^{\{ 7 \}} | 0.0014 ^{\{ 15 \}} | 7e-04 ^{\{ 11 \}} | 9e-04 ^{\{ 14 \}} | 0.00047 ^{\{ 3 \}} | 0.00088 ^{\{ 13 \}} | |
MRE( \hat{\delta} ) | 0.05855 ^{\{ 1 \}} | 0.06037 ^{\{ 3 \}} | 0.06108 ^{\{ 4.5 \}} | 0.06008 ^{\{ 2 \}} | 0.06234 ^{\{ 7 \}} | 0.2246 ^{\{ 16 \}} | 0.06108 ^{\{ 4.5 \}} | 0.06219 ^{\{ 6 \}} | 0.0633 ^{\{ 10 \}} | 0.0741 ^{\{ 12 \}} | 0.06982 ^{\{ 11 \}} | 0.07746 ^{\{ 13 \}} | 0.06253 ^{\{ 8 \}} | 0.07917 ^{\{ 14 \}} | 0.06296 ^{\{ 9 \}} | 0.0798 ^{\{ 15 \}} | |
MRE( \hat{\gamma} ) | 0.05553 ^{\{ 1 \}} | 0.05865 ^{\{ 4 \}} | 0.06697 ^{\{ 10 \}} | 0.05823 ^{\{ 2 \}} | 0.06687 ^{\{ 9 \}} | 0.2053 ^{\{ 16 \}} | 0.06107 ^{\{ 5 \}} | 0.06166 ^{\{ 6 \}} | 0.06675 ^{\{ 8 \}} | 0.07234 ^{\{ 12 \}} | 0.06399 ^{\{ 7 \}} | 0.09959 ^{\{ 15 \}} | 0.06876 ^{\{ 11 \}} | 0.07981 ^{\{ 13 \}} | 0.05845 ^{\{ 3 \}} | 0.08029 ^{\{ 14 \}} | |
D_{abs} | 0.02014 ^{\{ 1 \}} | 0.02095 ^{\{ 2 \}} | 0.02155 ^{\{ 5 \}} | 0.02132 ^{\{ 3 \}} | 0.02237 ^{\{ 8 \}} | 0.07261 ^{\{ 16 \}} | 0.02134 ^{\{ 4 \}} | 0.02169 ^{\{ 6 \}} | 0.02256 ^{\{ 10 \}} | 0.02615 ^{\{ 12 \}} | 0.02437 ^{\{ 11 \}} | 0.02995 ^{\{ 15 \}} | 0.02244 ^{\{ 9 \}} | 0.0284 ^{\{ 13 \}} | 0.02199 ^{\{ 7 \}} | 0.02844 ^{\{ 14 \}} | |
D_{max} | 0.03246 ^{\{ 1 \}} | 0.03388 ^{\{ 2 \}} | 0.03559 ^{\{ 7 \}} | 0.03417 ^{\{ 3 \}} | 0.03664 ^{\{ 8 \}} | 0.11597 ^{\{ 16 \}} | 0.03474 ^{\{ 4 \}} | 0.03524 ^{\{ 5 \}} | 0.0373 ^{\{ 10 \}} | 0.04235 ^{\{ 12 \}} | 0.0391 ^{\{ 11 \}} | 0.05332 ^{\{ 15 \}} | 0.03699 ^{\{ 9 \}} | 0.04607 ^{\{ 13 \}} | 0.03549 ^{\{ 6 \}} | 0.04632 ^{\{ 14 \}} | |
ASAE | 0.00893 ^{\{ 1 \}} | 0.01018 ^{\{ 2 \}} | 0.01121 ^{\{ 7 \}} | 0.00853 ^{\{ 3 \}} | 0.01162 ^{\{ 8 \}} | 0.00883 ^{\{ 16 \}} | 0.009 ^{\{ 4 \}} | 0.00981 ^{\{ 5 \}} | 0.01321 ^{\{ 10 \}} | 0.01058 ^{\{ 12 \}} | 0.00981 ^{\{ 11 \}} | 0.03661 ^{\{ 15 \}} | 0.01211 ^{\{ 9 \}} | 0.01329 ^{\{ 13 \}} | 0.00993 ^{\{ 6 \}} | 0.01331 ^{\{ 14 \}} | |
\sum Ranks | 11 ^{\{ 1 \}} | 33 ^{\{ 3 \}} | 66 ^{\{ 7 \}} | 19 ^{\{ 2 \}} | 74.5 ^{\{ 8 \}} | 128 ^{\{ 14.5 \}} | 40.5 ^{\{ 4 \}} | 52.5 ^{\{ 5 \}} | 87.5 ^{\{ 10 \}} | 104 ^{\{ 12 \}} | 81 ^{\{ 9 \}} | 129 ^{\{ 16 \}} | 91 ^{\{ 11 \}} | 123 ^{\{ 13 \}} | 56 ^{\{ 6 \}} | 128 ^{\{ 14.5 \}} | |
200 | BIAS( \hat{\delta} ) | 0.04341 ^{\{ 8 \}} | 0.03894 ^{\{ 1 \}} | 0.04242 ^{\{ 5 \}} | 0.04287 ^{\{ 7 \}} | 0.04155 ^{\{ 3 \}} | 0.16861 ^{\{ 16 \}} | 0.04223 ^{\{ 4 \}} | 0.04141 ^{\{ 2 \}} | 0.0428 ^{\{ 6 \}} | 0.0525 ^{\{ 12 \}} | 0.04708 ^{\{ 10 \}} | 0.05372 ^{\{ 15 \}} | 0.04369 ^{\{ 9 \}} | 0.05334 ^{\{ 14 \}} | 0.04767 ^{\{ 11 \}} | 0.05288 ^{\{ 13 \}} |
BIAS( \hat{\gamma} ) | 0.01466 ^{\{ 1 \}} | 0.0152 ^{\{ 3 \}} | 0.01737 ^{\{ 9 \}} | 0.01482 ^{\{ 2 \}} | 0.01744 ^{\{ 10 \}} | 0.05522 ^{\{ 16 \}} | 0.01611 ^{\{ 5 \}} | 0.01546 ^{\{ 4 \}} | 0.01751 ^{\{ 11 \}} | 0.019 ^{\{ 12 \}} | 0.01669 ^{\{ 7 \}} | 0.026 ^{\{ 15 \}} | 0.01733 ^{\{ 8 \}} | 0.02049 ^{\{ 13 \}} | 0.01646 ^{\{ 6 \}} | 0.02067 ^{\{ 14 \}} | |
MSE( \hat{\delta} ) | 0.00301 ^{\{ 8 \}} | 0.00239 ^{\{ 1 \}} | 0.00281 ^{\{ 4 \}} | 0.0029 ^{\{ 6 \}} | 0.00279 ^{\{ 3 \}} | 0.05237 ^{\{ 16 \}} | 0.00282 ^{\{ 5 \}} | 0.00268 ^{\{ 2 \}} | 0.00291 ^{\{ 7 \}} | 0.00451 ^{\{ 13 \}} | 0.00352 ^{\{ 10 \}} | 0.00452 ^{\{ 14 \}} | 0.00307 ^{\{ 9 \}} | 0.00453 ^{\{ 15 \}} | 0.00356 ^{\{ 11 \}} | 0.00449 ^{\{ 12 \}} | |
MSE( \hat{\gamma} ) | 0.00035 ^{\{ 2 \}} | 0.00038 ^{\{ 3 \}} | 0.00047 ^{\{ 8 \}} | 0.00034 ^{\{ 1 \}} | 0.00048 ^{\{ 9 \}} | 0.00465 ^{\{ 16 \}} | 4e-04 ^{\{ 5 \}} | 0.00039 ^{\{ 4 \}} | 0.00049 ^{\{ 10.5 \}} | 0.00056 ^{\{ 12 \}} | 0.00044 ^{\{ 7 \}} | 0.00111 ^{\{ 15 \}} | 0.00049 ^{\{ 10.5 \}} | 0.00064 ^{\{ 13 \}} | 0.00042 ^{\{ 6 \}} | 0.00067 ^{\{ 14 \}} | |
MRE( \hat{\delta} ) | 0.05427 ^{\{ 8 \}} | 0.04867 ^{\{ 1 \}} | 0.05302 ^{\{ 5 \}} | 0.05358 ^{\{ 7 \}} | 0.05194 ^{\{ 3 \}} | 0.21077 ^{\{ 16 \}} | 0.05278 ^{\{ 4 \}} | 0.05176 ^{\{ 2 \}} | 0.05349 ^{\{ 6 \}} | 0.06562 ^{\{ 12 \}} | 0.05885 ^{\{ 10 \}} | 0.06715 ^{\{ 15 \}} | 0.05462 ^{\{ 9 \}} | 0.06668 ^{\{ 14 \}} | 0.05959 ^{\{ 11 \}} | 0.06611 ^{\{ 13 \}} | |
MRE( \hat{\gamma} ) | 0.04887 ^{\{ 1 \}} | 0.05067 ^{\{ 3 \}} | 0.05789 ^{\{ 9 \}} | 0.04941 ^{\{ 2 \}} | 0.05813 ^{\{ 10 \}} | 0.18407 ^{\{ 16 \}} | 0.05369 ^{\{ 5 \}} | 0.05154 ^{\{ 4 \}} | 0.05836 ^{\{ 11 \}} | 0.06333 ^{\{ 12 \}} | 0.05564 ^{\{ 7 \}} | 0.08668 ^{\{ 15 \}} | 0.05776 ^{\{ 8 \}} | 0.0683 ^{\{ 13 \}} | 0.05488 ^{\{ 6 \}} | 0.0689 ^{\{ 14 \}} | |
D_{abs} | 0.01861 ^{\{ 4 \}} | 0.01734 ^{\{ 1 \}} | 0.01893 ^{\{ 7 \}} | 0.01868 ^{\{ 5 \}} | 0.0188 ^{\{ 6 \}} | 0.06765 ^{\{ 16 \}} | 0.01843 ^{\{ 3 \}} | 0.01809 ^{\{ 2 \}} | 0.01907 ^{\{ 8 \}} | 0.02302 ^{\{ 12 \}} | 0.02074 ^{\{ 11 \}} | 0.02596 ^{\{ 15 \}} | 0.01938 ^{\{ 9 \}} | 0.0239 ^{\{ 13 \}} | 0.02062 ^{\{ 10 \}} | 0.02397 ^{\{ 14 \}} | |
D_{max} | 0.02971 ^{\{ 3 \}} | 0.02823 ^{\{ 1 \}} | 0.03122 ^{\{ 7 \}} | 0.02995 ^{\{ 4 \}} | 0.03106 ^{\{ 6 \}} | 0.10653 ^{\{ 16 \}} | 0.02997 ^{\{ 5 \}} | 0.02958 ^{\{ 2 \}} | 0.0319 ^{\{ 8 \}} | 0.03705 ^{\{ 12 \}} | 0.03334 ^{\{ 11 \}} | 0.04661 ^{\{ 15 \}} | 0.03204 ^{\{ 9 \}} | 0.03867 ^{\{ 13 \}} | 0.03292 ^{\{ 10 \}} | 0.03921 ^{\{ 14 \}} | |
ASAE | 0.00707 ^{\{ 3 \}} | 0.00822 ^{\{ 1 \}} | 0.00916 ^{\{ 7 \}} | 0.00728 ^{\{ 4 \}} | 0.00916 ^{\{ 6 \}} | 0.00736 ^{\{ 16 \}} | 0.00708 ^{\{ 5 \}} | 0.00804 ^{\{ 2 \}} | 0.01016 ^{\{ 8 \}} | 0.00844 ^{\{ 12 \}} | 0.00794 ^{\{ 11 \}} | 0.02823 ^{\{ 15 \}} | 0.0094 ^{\{ 9 \}} | 0.01004 ^{\{ 13 \}} | 0.00783 ^{\{ 10 \}} | 0.0105 ^{\{ 14 \}} | |
\sum Ranks | 36 ^{\{ 3 \}} | 22 ^{\{ 1 \}} | 64 ^{\{ 7 \}} | 37 ^{\{ 4 \}} | 59 ^{\{ 6 \}} | 131 ^{\{ 15 \}} | 49 ^{\{ 5 \}} | 29 ^{\{ 2 \}} | 80.5 ^{\{ 10 \}} | 105 ^{\{ 12 \}} | 78 ^{\{ 9 \}} | 134 ^{\{ 16 \}} | 82.5 ^{\{ 11 \}} | 120 ^{\{ 13 \}} | 75 ^{\{ 8 \}} | 122 ^{\{ 14 \}} | |
300 | BIAS( \hat{\delta} ) | 0.03359 ^{\{ 1 \}} | 0.03426 ^{\{ 4 \}} | 0.03522 ^{\{ 5 \}} | 0.03414 ^{\{ 3 \}} | 0.0339 ^{\{ 2 \}} | 0.15982 ^{\{ 16 \}} | 0.03524 ^{\{ 6 \}} | 0.03559 ^{\{ 7 \}} | 0.03562 ^{\{ 8 \}} | 0.04236 ^{\{ 12 \}} | 0.03961 ^{\{ 11 \}} | 0.04313 ^{\{ 13 \}} | 0.03677 ^{\{ 9 \}} | 0.04397 ^{\{ 14 \}} | 0.03893 ^{\{ 10 \}} | 0.04451 ^{\{ 15 \}} |
BIAS( \hat{\gamma} ) | 0.01137 ^{\{ 1 \}} | 0.01228 ^{\{ 3 \}} | 0.01405 ^{\{ 9 \}} | 0.01219 ^{\{ 2 \}} | 0.01354 ^{\{ 7 \}} | 0.05028 ^{\{ 16 \}} | 0.01315 ^{\{ 5 \}} | 0.01242 ^{\{ 4 \}} | 0.01412 ^{\{ 10 \}} | 0.01532 ^{\{ 12 \}} | 0.01366 ^{\{ 8 \}} | 0.02121 ^{\{ 15 \}} | 0.01461 ^{\{ 11 \}} | 0.01687 ^{\{ 14 \}} | 0.01337 ^{\{ 6 \}} | 0.01621 ^{\{ 13 \}} | |
MSE( \hat{\delta} ) | 0.00174 ^{\{ 1 \}} | 0.00183 ^{\{ 3 \}} | 0.00192 ^{\{ 5 \}} | 0.00187 ^{\{ 4 \}} | 0.0018 ^{\{ 2 \}} | 0.04814 ^{\{ 16 \}} | 0.00198 ^{\{ 7 \}} | 0.00197 ^{\{ 6 \}} | 0.00199 ^{\{ 8 \}} | 0.00292 ^{\{ 12 \}} | 0.00245 ^{\{ 11 \}} | 0.003 ^{\{ 13 \}} | 0.00214 ^{\{ 9 \}} | 0.00314 ^{\{ 14 \}} | 0.00231 ^{\{ 10 \}} | 0.00318 ^{\{ 15 \}} | |
MSE( \hat{\gamma} ) | 0.00021 ^{\{ 1 \}} | 0.00023 ^{\{ 2.5 \}} | 0.00032 ^{\{ 9.5 \}} | 0.00023 ^{\{ 2.5 \}} | 0.00029 ^{\{ 8 \}} | 0.00397 ^{\{ 16 \}} | 0.00027 ^{\{ 5 \}} | 0.00025 ^{\{ 4 \}} | 0.00032 ^{\{ 9.5 \}} | 0.00036 ^{\{ 12 \}} | 0.00028 ^{\{ 6.5 \}} | 0.00074 ^{\{ 15 \}} | 0.00033 ^{\{ 11 \}} | 0.00045 ^{\{ 14 \}} | 0.00028 ^{\{ 6.5 \}} | 0.00043 ^{\{ 13 \}} | |
MRE( \hat{\delta} ) | 0.04199 ^{\{ 1 \}} | 0.04282 ^{\{ 4 \}} | 0.04403 ^{\{ 5 \}} | 0.04268 ^{\{ 3 \}} | 0.04238 ^{\{ 2 \}} | 0.19977 ^{\{ 16 \}} | 0.04404 ^{\{ 6 \}} | 0.04449 ^{\{ 7 \}} | 0.04453 ^{\{ 8 \}} | 0.05295 ^{\{ 12 \}} | 0.04952 ^{\{ 11 \}} | 0.05391 ^{\{ 13 \}} | 0.04597 ^{\{ 9 \}} | 0.05496 ^{\{ 14 \}} | 0.04866 ^{\{ 10 \}} | 0.05564 ^{\{ 15 \}} | |
MRE( \hat{\gamma} ) | 0.0379 ^{\{ 1 \}} | 0.04092 ^{\{ 3 \}} | 0.04685 ^{\{ 9 \}} | 0.04065 ^{\{ 2 \}} | 0.04512 ^{\{ 7 \}} | 0.16759 ^{\{ 16 \}} | 0.04382 ^{\{ 5 \}} | 0.04141 ^{\{ 4 \}} | 0.04707 ^{\{ 10 \}} | 0.05107 ^{\{ 12 \}} | 0.04554 ^{\{ 8 \}} | 0.0707 ^{\{ 15 \}} | 0.0487 ^{\{ 11 \}} | 0.05622 ^{\{ 14 \}} | 0.04456 ^{\{ 6 \}} | 0.05404 ^{\{ 13 \}} | |
D_{abs} | 0.01428 ^{\{ 1 \}} | 0.01493 ^{\{ 2 \}} | 0.01562 ^{\{ 7 \}} | 0.015 ^{\{ 3 \}} | 0.01523 ^{\{ 4 \}} | 0.06329 ^{\{ 16 \}} | 0.01533 ^{\{ 5 \}} | 0.01542 ^{\{ 6 \}} | 0.01592 ^{\{ 8 \}} | 0.01858 ^{\{ 12 \}} | 0.01711 ^{\{ 11 \}} | 0.02105 ^{\{ 15 \}} | 0.01634 ^{\{ 9 \}} | 0.0196 ^{\{ 13 \}} | 0.01678 ^{\{ 10 \}} | 0.01968 ^{\{ 14 \}} | |
D_{max} | 0.0231 ^{\{ 1 \}} | 0.02413 ^{\{ 3 \}} | 0.02571 ^{\{ 7 \}} | 0.02402 ^{\{ 2 \}} | 0.02497 ^{\{ 6 \}} | 0.09926 ^{\{ 16 \}} | 0.0248 ^{\{ 4 \}} | 0.02495 ^{\{ 5 \}} | 0.02655 ^{\{ 8 \}} | 0.02992 ^{\{ 12 \}} | 0.02754 ^{\{ 11 \}} | 0.03749 ^{\{ 15 \}} | 0.02695 ^{\{ 9 \}} | 0.03206 ^{\{ 14 \}} | 0.02701 ^{\{ 10 \}} | 0.0319 ^{\{ 13 \}} | |
ASAE | 0.00503 ^{\{ 1 \}} | 0.00586 ^{\{ 3 \}} | 0.00626 ^{\{ 7 \}} | 0.0051 ^{\{ 2 \}} | 0.00667 ^{\{ 6 \}} | 0.00572 ^{\{ 16 \}} | 0.00531 ^{\{ 4 \}} | 0.00569 ^{\{ 5 \}} | 0.00725 ^{\{ 8 \}} | 0.00629 ^{\{ 12 \}} | 0.0057 ^{\{ 11 \}} | 0.01823 ^{\{ 15 \}} | 0.00683 ^{\{ 9 \}} | 0.00742 ^{\{ 14 \}} | 0.00555 ^{\{ 10 \}} | 0.00735 ^{\{ 13 \}} | |
\sum Ranks | 9 ^{\{ 1 \}} | 32.5 ^{\{ 3 \}} | 65.5 ^{\{ 7 \}} | 23.5 ^{\{ 2 \}} | 49 ^{\{ 6 \}} | 135 ^{\{ 16 \}} | 46 ^{\{ 4 \}} | 48 ^{\{ 5 \}} | 82.5 ^{\{ 9 \}} | 106 ^{\{ 12 \}} | 83.5 ^{\{ 10 \}} | 130 ^{\{ 15 \}} | 90 ^{\{ 11 \}} | 126 ^{\{ 14 \}} | 72.5 ^{\{ 8 \}} | 125 ^{\{ 13 \}} | |
450 | BIAS( \hat{\delta} ) | 0.02849 ^{\{ 7 \}} | 0.02771 ^{\{ 3 \}} | 0.02723 ^{\{ 2 \}} | 0.0272 ^{\{ 1 \}} | 0.02835 ^{\{ 6 \}} | 0.14718 ^{\{ 16 \}} | 0.02885 ^{\{ 8 \}} | 0.02788 ^{\{ 4 \}} | 0.02901 ^{\{ 9 \}} | 0.03489 ^{\{ 12 \}} | 0.03154 ^{\{ 11 \}} | 0.03737 ^{\{ 15 \}} | 0.02814 ^{\{ 5 \}} | 0.03623 ^{\{ 13 \}} | 0.03103 ^{\{ 10 \}} | 0.037 ^{\{ 14 \}} |
BIAS( \hat{\gamma} ) | 0.00965 ^{\{ 2 \}} | 0.00997 ^{\{ 3 \}} | 0.01198 ^{\{ 11 \}} | 0.0093 ^{\{ 1 \}} | 0.01114 ^{\{ 9 \}} | 0.04448 ^{\{ 16 \}} | 0.01054 ^{\{ 6 \}} | 0.01018 ^{\{ 4 \}} | 0.01105 ^{\{ 8 \}} | 0.01207 ^{\{ 12 \}} | 0.01051 ^{\{ 5 \}} | 0.01806 ^{\{ 15 \}} | 0.01153 ^{\{ 10 \}} | 0.01314 ^{\{ 13 \}} | 0.01081 ^{\{ 7 \}} | 0.01315 ^{\{ 14 \}} | |
MSE( \hat{\delta} ) | 0.00125 ^{\{ 5.5 \}} | 0.00119 ^{\{ 2.5 \}} | 0.00119 ^{\{ 2.5 \}} | 0.00117 ^{\{ 1 \}} | 0.00127 ^{\{ 7 \}} | 0.04381 ^{\{ 16 \}} | 0.00128 ^{\{ 8 \}} | 0.00125 ^{\{ 5.5 \}} | 0.00132 ^{\{ 9 \}} | 0.00193 ^{\{ 12 \}} | 0.0016 ^{\{ 11 \}} | 0.0022 ^{\{ 14.5 \}} | 0.00123 ^{\{ 4 \}} | 0.00207 ^{\{ 13 \}} | 0.00151 ^{\{ 10 \}} | 0.0022 ^{\{ 14.5 \}} | |
MSE( \hat{\gamma} ) | 0.00015 ^{\{ 2 \}} | 0.00016 ^{\{ 3.5 \}} | 0.00022 ^{\{ 10.5 \}} | 0.00013 ^{\{ 1 \}} | 0.00019 ^{\{ 8.5 \}} | 0.00326 ^{\{ 16 \}} | 0.00018 ^{\{ 6 \}} | 0.00016 ^{\{ 3.5 \}} | 0.00019 ^{\{ 8.5 \}} | 0.00023 ^{\{ 12 \}} | 0.00018 ^{\{ 6 \}} | 0.00052 ^{\{ 15 \}} | 0.00022 ^{\{ 10.5 \}} | 0.00027 ^{\{ 13.5 \}} | 0.00018 ^{\{ 6 \}} | 0.00027 ^{\{ 13.5 \}} | |
MRE( \hat{\delta} ) | 0.03561 ^{\{ 7 \}} | 0.03463 ^{\{ 3 \}} | 0.03404 ^{\{ 2 \}} | 0.034 ^{\{ 1 \}} | 0.03543 ^{\{ 6 \}} | 0.18398 ^{\{ 16 \}} | 0.03606 ^{\{ 8 \}} | 0.03485 ^{\{ 4 \}} | 0.03627 ^{\{ 9 \}} | 0.04361 ^{\{ 12 \}} | 0.03943 ^{\{ 11 \}} | 0.04671 ^{\{ 15 \}} | 0.03518 ^{\{ 5 \}} | 0.04529 ^{\{ 13 \}} | 0.03879 ^{\{ 10 \}} | 0.04626 ^{\{ 14 \}} | |
MRE( \hat{\gamma} ) | 0.03216 ^{\{ 2 \}} | 0.03322 ^{\{ 3 \}} | 0.03995 ^{\{ 11 \}} | 0.03099 ^{\{ 1 \}} | 0.03715 ^{\{ 9 \}} | 0.14827 ^{\{ 16 \}} | 0.03512 ^{\{ 6 \}} | 0.03395 ^{\{ 4 \}} | 0.03684 ^{\{ 8 \}} | 0.04024 ^{\{ 12 \}} | 0.03502 ^{\{ 5 \}} | 0.0602 ^{\{ 15 \}} | 0.03843 ^{\{ 10 \}} | 0.04381 ^{\{ 13 \}} | 0.03602 ^{\{ 7 \}} | 0.04383 ^{\{ 14 \}} | |
D_{abs} | 0.01217 ^{\{ 3.5 \}} | 0.01203 ^{\{ 2 \}} | 0.01254 ^{\{ 5.5 \}} | 0.0118 ^{\{ 1 \}} | 0.01259 ^{\{ 7 \}} | 0.05777 ^{\{ 16 \}} | 0.01254 ^{\{ 5.5 \}} | 0.01217 ^{\{ 3.5 \}} | 0.01282 ^{\{ 9 \}} | 0.01499 ^{\{ 12 \}} | 0.01365 ^{\{ 11 \}} | 0.0179 ^{\{ 15 \}} | 0.01262 ^{\{ 8 \}} | 0.01585 ^{\{ 13 \}} | 0.01354 ^{\{ 10 \}} | 0.01633 ^{\{ 14 \}} | |
D_{max} | 0.01954 ^{\{ 2 \}} | 0.01966 ^{\{ 3 \}} | 0.02084 ^{\{ 7 \}} | 0.01902 ^{\{ 1 \}} | 0.0206 ^{\{ 6 \}} | 0.09011 ^{\{ 16 \}} | 0.02035 ^{\{ 5 \}} | 0.0197 ^{\{ 4 \}} | 0.02134 ^{\{ 9 \}} | 0.02413 ^{\{ 12 \}} | 0.02191 ^{\{ 11 \}} | 0.03217 ^{\{ 15 \}} | 0.02103 ^{\{ 8 \}} | 0.02567 ^{\{ 13 \}} | 0.02172 ^{\{ 10 \}} | 0.02642 ^{\{ 14 \}} | |
ASAE | 0.00367 ^{\{ 2 \}} | 0.00414 ^{\{ 3 \}} | 0.00475 ^{\{ 7 \}} | 0.00367 ^{\{ 1 \}} | 0.0047 ^{\{ 6 \}} | 0.00441 ^{\{ 16 \}} | 0.00389 ^{\{ 5 \}} | 0.00421 ^{\{ 4 \}} | 0.00514 ^{\{ 9 \}} | 0.00441 ^{\{ 12 \}} | 0.00441 ^{\{ 11 \}} | 0.01141 ^{\{ 15 \}} | 0.00498 ^{\{ 8 \}} | 0.00517 ^{\{ 13 \}} | 0.0041 ^{\{ 10 \}} | 0.00505 ^{\{ 14 \}} | |
\sum Ranks | 33 ^{\{ 3 \}} | 28 ^{\{ 2 \}} | 62.5 ^{\{ 6 \}} | 9 ^{\{ 1 \}} | 68.5 ^{\{ 7 \}} | 137 ^{\{ 16 \}} | 55.5 ^{\{ 5 \}} | 38.5 ^{\{ 4 \}} | 83.5 ^{\{ 11 \}} | 104 ^{\{ 12 \}} | 78 ^{\{ 10 \}} | 135.5 ^{\{ 15 \}} | 72.5 ^{\{ 8 \}} | 119.5 ^{\{ 13 \}} | 74 ^{\{ 9 \}} | 125 ^{\{ 14 \}} |
n | Est. | MLE | ADE | CVME | MPSE | OLSE | PCE | RTADE | WLSE | LTADE | MSADE | MSALDE | ADSOE | KE | MSSD | MSSLD | MSLND |
20 | BIAS( \hat{\delta} ) | 0.09101 ^{\{ 2 \}} | 0.09313 ^{\{ 5 \}} | 0.09815 ^{\{ 11 \}} | 0.09237 ^{\{ 4 \}} | 0.09432 ^{\{ 8 \}} | 0.09341 ^{\{ 6 \}} | 0.0981 ^{\{ 10 \}} | 0.09231 ^{\{ 3 \}} | 0.09406 ^{\{ 7 \}} | 0.10135 ^{\{ 13 \}} | 0.10156 ^{\{ 14 \}} | 0.09488 ^{\{ 9 \}} | 0.0905 ^{\{ 1 \}} | 0.10724 ^{\{ 16 \}} | 0.1011 ^{\{ 12 \}} | 0.10679 ^{\{ 15 \}} |
BIAS( \hat{\gamma} ) | 0.24286 ^{\{ 5 \}} | 0.23531 ^{\{ 2 \}} | 0.29982 ^{\{ 12 \}} | 0.24475 ^{\{ 8 \}} | 0.2741 ^{\{ 11 \}} | 0.24374 ^{\{ 6 \}} | 0.26941 ^{\{ 10 \}} | 0.26062 ^{\{ 9 \}} | 0.30261 ^{\{ 13 \}} | 0.24144 ^{\{ 4 \}} | 0.2443 ^{\{ 7 \}} | 0.34346 ^{\{ 16 \}} | 0.19995 ^{\{ 1 \}} | 0.31841 ^{\{ 14 \}} | 0.23577 ^{\{ 3 \}} | 0.32015 ^{\{ 15 \}} | |
MSE( \hat{\delta} ) | 0.01264 ^{\{ 1 \}} | 0.01384 ^{\{ 7 \}} | 0.01474 ^{\{ 10 \}} | 0.01362 ^{\{ 5 \}} | 0.01402 ^{\{ 8 \}} | 0.01346 ^{\{ 3 \}} | 0.01544 ^{\{ 11 \}} | 0.0135 ^{\{ 4 \}} | 0.01369 ^{\{ 6 \}} | 0.01643 ^{\{ 13 \}} | 0.0167 ^{\{ 14 \}} | 0.01406 ^{\{ 9 \}} | 0.01276 ^{\{ 2 \}} | 0.01786 ^{\{ 15 \}} | 0.01573 ^{\{ 12 \}} | 0.01802 ^{\{ 16 \}} | |
MSE( \hat{\gamma} ) | 0.10211 ^{\{ 8 \}} | 0.09051 ^{\{ 3 \}} | 0.15669 ^{\{ 14 \}} | 0.09054 ^{\{ 4 \}} | 0.12578 ^{\{ 10 \}} | 0.09169 ^{\{ 5 \}} | 0.1259 ^{\{ 11 \}} | 0.12059 ^{\{ 9 \}} | 0.15608 ^{\{ 13 \}} | 0.10091 ^{\{ 7 \}} | 0.09303 ^{\{ 6 \}} | 0.19169 ^{\{ 16 \}} | 0.07721 ^{\{ 1 \}} | 0.15596 ^{\{ 12 \}} | 0.0862 ^{\{ 2 \}} | 0.15691 ^{\{ 15 \}} | |
MRE( \hat{\delta} ) | 0.22752 ^{\{ 2 \}} | 0.23283 ^{\{ 5 \}} | 0.24537 ^{\{ 11 \}} | 0.23092 ^{\{ 4 \}} | 0.2358 ^{\{ 8 \}} | 0.23353 ^{\{ 6 \}} | 0.24524 ^{\{ 10 \}} | 0.23077 ^{\{ 3 \}} | 0.23515 ^{\{ 7 \}} | 0.25338 ^{\{ 13 \}} | 0.2539 ^{\{ 14 \}} | 0.23721 ^{\{ 9 \}} | 0.22626 ^{\{ 1 \}} | 0.2681 ^{\{ 16 \}} | 0.25275 ^{\{ 12 \}} | 0.26697 ^{\{ 15 \}} | |
MRE( \hat{\gamma} ) | 0.1619 ^{\{ 5 \}} | 0.15687 ^{\{ 2 \}} | 0.19988 ^{\{ 12 \}} | 0.16317 ^{\{ 8 \}} | 0.18273 ^{\{ 11 \}} | 0.16249 ^{\{ 6 \}} | 0.17961 ^{\{ 10 \}} | 0.17375 ^{\{ 9 \}} | 0.20174 ^{\{ 13 \}} | 0.16096 ^{\{ 4 \}} | 0.16286 ^{\{ 7 \}} | 0.22897 ^{\{ 16 \}} | 0.1333 ^{\{ 1 \}} | 0.21227 ^{\{ 14 \}} | 0.15718 ^{\{ 3 \}} | 0.21343 ^{\{ 15 \}} | |
D_{abs} | 0.05406 ^{\{ 1 \}} | 0.05653 ^{\{ 2 \}} | 0.059 ^{\{ 7 \}} | 0.05707 ^{\{ 3 \}} | 0.0592 ^{\{ 8 \}} | 0.05783 ^{\{ 4 \}} | 0.05875 ^{\{ 6 \}} | 0.0581 ^{\{ 5 \}} | 0.06031 ^{\{ 10 \}} | 0.06505 ^{\{ 13 \}} | 0.06303 ^{\{ 12 \}} | 0.06891 ^{\{ 14 \}} | 0.05967 ^{\{ 9 \}} | 0.07115 ^{\{ 16 \}} | 0.06078 ^{\{ 11 \}} | 0.07068 ^{\{ 15 \}} | |
D_{max} | 0.08883 ^{\{ 1 \}} | 0.09041 ^{\{ 3 \}} | 0.09875 ^{\{ 10 \}} | 0.09 ^{\{ 2 \}} | 0.09621 ^{\{ 9 \}} | 0.09085 ^{\{ 4 \}} | 0.09549 ^{\{ 7 \}} | 0.09422 ^{\{ 5 \}} | 0.10075 ^{\{ 12 \}} | 0.10336 ^{\{ 13 \}} | 0.09961 ^{\{ 11 \}} | 0.1194 ^{\{ 16 \}} | 0.09486 ^{\{ 6 \}} | 0.11513 ^{\{ 15 \}} | 0.096 ^{\{ 8 \}} | 0.11422 ^{\{ 14 \}} | |
ASAE | 0.04552 ^{\{ 1 \}} | 0.04129 ^{\{ 3 \}} | 0.04352 ^{\{ 10 \}} | 0.0421 ^{\{ 2 \}} | 0.04259 ^{\{ 9 \}} | 0.04025 ^{\{ 4 \}} | 0.04201 ^{\{ 7 \}} | 0.04014 ^{\{ 5 \}} | 0.04631 ^{\{ 12 \}} | 0.05495 ^{\{ 13 \}} | 0.05154 ^{\{ 11 \}} | 0.06866 ^{\{ 16 \}} | 0.04793 ^{\{ 6 \}} | 0.06063 ^{\{ 15 \}} | 0.049 ^{\{ 8 \}} | 0.06158 ^{\{ 14 \}} | |
\sum Ranks | 33 ^{\{ 3 \}} | 32 ^{\{ 1.5 \}} | 94 ^{\{ 12 \}} | 43 ^{\{ 5 \}} | 79 ^{\{ 8.5 \}} | 42 ^{\{ 4 \}} | 79 ^{\{ 8.5 \}} | 48 ^{\{ 6 \}} | 90 ^{\{ 10 \}} | 93 ^{\{ 11 \}} | 97 ^{\{ 13 \}} | 121 ^{\{ 14 \}} | 32 ^{\{ 1.5 \}} | 132 ^{\{ 15 \}} | 74 ^{\{ 7 \}} | 135 ^{\{ 16 \}} | |
70 | BIAS( \hat{\delta} ) | 0.0481 ^{\{ 2 \}} | 0.05165 ^{\{ 5 \}} | 0.05356 ^{\{ 11 \}} | 0.05241 ^{\{ 9 \}} | 0.05152 ^{\{ 4 \}} | 0.05205 ^{\{ 6 \}} | 0.05239 ^{\{ 8 \}} | 0.05128 ^{\{ 3 \}} | 0.05271 ^{\{ 10 \}} | 0.06183 ^{\{ 14 \}} | 0.05814 ^{\{ 13 \}} | 0.05235 ^{\{ 7 \}} | 0.04805 ^{\{ 1 \}} | 0.06292 ^{\{ 15 \}} | 0.05444 ^{\{ 12 \}} | 0.06617 ^{\{ 16 \}} |
BIAS( \hat{\gamma} ) | 0.11542 ^{\{ 1 \}} | 0.1306 ^{\{ 7 \}} | 0.15145 ^{\{ 12 \}} | 0.13011 ^{\{ 5 \}} | 0.1467 ^{\{ 11 \}} | 0.13022 ^{\{ 6 \}} | 0.13686 ^{\{ 8 \}} | 0.12861 ^{\{ 4 \}} | 0.15339 ^{\{ 13 \}} | 0.13907 ^{\{ 10 \}} | 0.13901 ^{\{ 9 \}} | 0.21446 ^{\{ 16 \}} | 0.11885 ^{\{ 2 \}} | 0.17721 ^{\{ 14 \}} | 0.12857 ^{\{ 3 \}} | 0.17739 ^{\{ 15 \}} | |
MSE( \hat{\delta} ) | 0.00371 ^{\{ 1 \}} | 0.00425 ^{\{ 6 \}} | 0.00459 ^{\{ 11 \}} | 0.0043 ^{\{ 8 \}} | 0.00415 ^{\{ 4 \}} | 0.00444 ^{\{ 10 \}} | 0.00423 ^{\{ 5 \}} | 0.0041 ^{\{ 3 \}} | 0.00442 ^{\{ 9 \}} | 0.00627 ^{\{ 14 \}} | 0.00532 ^{\{ 13 \}} | 0.00426 ^{\{ 7 \}} | 0.00378 ^{\{ 2 \}} | 0.00636 ^{\{ 15 \}} | 0.00471 ^{\{ 12 \}} | 0.00704 ^{\{ 16 \}} | |
MSE( \hat{\gamma} ) | 0.02207 ^{\{ 1 \}} | 0.02746 ^{\{ 7 \}} | 0.03672 ^{\{ 12 \}} | 0.02552 ^{\{ 3 \}} | 0.03476 ^{\{ 11 \}} | 0.02672 ^{\{ 6 \}} | 0.02954 ^{\{ 8 \}} | 0.02659 ^{\{ 5 \}} | 0.03801 ^{\{ 13 \}} | 0.03324 ^{\{ 10 \}} | 0.02999 ^{\{ 9 \}} | 0.07196 ^{\{ 16 \}} | 0.02561 ^{\{ 4 \}} | 0.04841 ^{\{ 14 \}} | 0.02515 ^{\{ 2 \}} | 0.04931 ^{\{ 15 \}} | |
MRE( \hat{\delta} ) | 0.12025 ^{\{ 2 \}} | 0.12913 ^{\{ 5 \}} | 0.13391 ^{\{ 11 \}} | 0.13103 ^{\{ 9 \}} | 0.1288 ^{\{ 4 \}} | 0.13013 ^{\{ 6 \}} | 0.13097 ^{\{ 8 \}} | 0.1282 ^{\{ 3 \}} | 0.13177 ^{\{ 10 \}} | 0.15459 ^{\{ 14 \}} | 0.14535 ^{\{ 13 \}} | 0.13087 ^{\{ 7 \}} | 0.12012 ^{\{ 1 \}} | 0.1573 ^{\{ 15 \}} | 0.1361 ^{\{ 12 \}} | 0.16544 ^{\{ 16 \}} | |
MRE( \hat{\gamma} ) | 0.07695 ^{\{ 1 \}} | 0.08707 ^{\{ 7 \}} | 0.10097 ^{\{ 12 \}} | 0.08674 ^{\{ 5 \}} | 0.0978 ^{\{ 11 \}} | 0.08681 ^{\{ 6 \}} | 0.09124 ^{\{ 8 \}} | 0.08574 ^{\{ 4 \}} | 0.10226 ^{\{ 13 \}} | 0.09271 ^{\{ 10 \}} | 0.09267 ^{\{ 9 \}} | 0.14297 ^{\{ 16 \}} | 0.07923 ^{\{ 2 \}} | 0.11814 ^{\{ 14 \}} | 0.08571 ^{\{ 3 \}} | 0.11826 ^{\{ 15 \}} | |
D_{abs} | 0.029 ^{\{ 1 \}} | 0.03098 ^{\{ 3 \}} | 0.03229 ^{\{ 9 \}} | 0.03129 ^{\{ 5 \}} | 0.03173 ^{\{ 8 \}} | 0.03149 ^{\{ 6 \}} | 0.03107 ^{\{ 4 \}} | 0.03048 ^{\{ 2 \}} | 0.03321 ^{\{ 11 \}} | 0.03821 ^{\{ 13 \}} | 0.03553 ^{\{ 12 \}} | 0.04234 ^{\{ 16 \}} | 0.03159 ^{\{ 7 \}} | 0.03854 ^{\{ 14 \}} | 0.03314 ^{\{ 10 \}} | 0.04108 ^{\{ 15 \}} | |
D_{max} | 0.04673 ^{\{ 1 \}} | 0.05004 ^{\{ 3 \}} | 0.05334 ^{\{ 10 \}} | 0.05006 ^{\{ 4 \}} | 0.05236 ^{\{ 8 \}} | 0.05032 ^{\{ 5 \}} | 0.05057 ^{\{ 6 \}} | 0.04942 ^{\{ 2 \}} | 0.05539 ^{\{ 11 \}} | 0.06103 ^{\{ 13 \}} | 0.05694 ^{\{ 12 \}} | 0.07498 ^{\{ 16 \}} | 0.05124 ^{\{ 7 \}} | 0.06295 ^{\{ 14 \}} | 0.0533 ^{\{ 9 \}} | 0.06672 ^{\{ 15 \}} | |
ASAE | 0.02027 ^{\{ 1 \}} | 0.0192 ^{\{ 3 \}} | 0.0198 ^{\{ 10 \}} | 0.02014 ^{\{ 4 \}} | 0.01985 ^{\{ 8 \}} | 0.01955 ^{\{ 5 \}} | 0.01938 ^{\{ 6 \}} | 0.01906 ^{\{ 2 \}} | 0.02191 ^{\{ 11 \}} | 0.02726 ^{\{ 13 \}} | 0.02532 ^{\{ 12 \}} | 0.03829 ^{\{ 16 \}} | 0.02211 ^{\{ 7 \}} | 0.02947 ^{\{ 14 \}} | 0.0234 ^{\{ 9 \}} | 0.03035 ^{\{ 15 \}} | |
\sum Ranks | 18 ^{\{ 1 \}} | 45 ^{\{ 4 \}} | 93 ^{\{ 10 \}} | 55 ^{\{ 5.5 \}} | 67 ^{\{ 8 \}} | 55 ^{\{ 5.5 \}} | 58 ^{\{ 7 \}} | 27 ^{\{ 2 \}} | 99 ^{\{ 11 \}} | 111 ^{\{ 13 \}} | 102 ^{\{ 12 \}} | 117 ^{\{ 14 \}} | 36 ^{\{ 3 \}} | 129 ^{\{ 15 \}} | 74 ^{\{ 9 \}} | 138 ^{\{ 16 \}} | |
150 | BIAS( \hat{\delta} ) | 0.03328 ^{\{ 1 \}} | 0.0353 ^{\{ 6 \}} | 0.0374 ^{\{ 11 \}} | 0.03498 ^{\{ 4 \}} | 0.03719 ^{\{ 10 \}} | 0.03551 ^{\{ 7 \}} | 0.03615 ^{\{ 9 \}} | 0.0356 ^{\{ 8 \}} | 0.03506 ^{\{ 5 \}} | 0.04183 ^{\{ 14 \}} | 0.03989 ^{\{ 13 \}} | 0.0349 ^{\{ 3 \}} | 0.03389 ^{\{ 2 \}} | 0.04561 ^{\{ 15 \}} | 0.03987 ^{\{ 12 \}} | 0.04643 ^{\{ 16 \}} |
BIAS( \hat{\gamma} ) | 0.08222 ^{\{ 2 \}} | 0.08757 ^{\{ 5 \}} | 0.10185 ^{\{ 12 \}} | 0.0854 ^{\{ 4 \}} | 0.09794 ^{\{ 10 \}} | 0.08475 ^{\{ 3 \}} | 0.09216 ^{\{ 7 \}} | 0.08967 ^{\{ 6 \}} | 0.10362 ^{\{ 13 \}} | 0.09947 ^{\{ 11 \}} | 0.09497 ^{\{ 9 \}} | 0.14629 ^{\{ 16 \}} | 0.08125 ^{\{ 1 \}} | 0.11894 ^{\{ 15 \}} | 0.09383 ^{\{ 8 \}} | 0.11833 ^{\{ 14 \}} | |
MSE( \hat{\delta} ) | 0.00173 ^{\{ 1 \}} | 0.00199 ^{\{ 8 \}} | 0.00217 ^{\{ 11 \}} | 0.00191 ^{\{ 3.5 \}} | 0.00212 ^{\{ 10 \}} | 0.00195 ^{\{ 6 \}} | 0.00203 ^{\{ 9 \}} | 0.00198 ^{\{ 7 \}} | 0.00194 ^{\{ 5 \}} | 0.00287 ^{\{ 14 \}} | 0.00253 ^{\{ 13 \}} | 0.00191 ^{\{ 3.5 \}} | 0.00185 ^{\{ 2 \}} | 0.00328 ^{\{ 15 \}} | 0.0025 ^{\{ 12 \}} | 0.0034 ^{\{ 16 \}} | |
MSE( \hat{\gamma} ) | 0.01055 ^{\{ 1 \}} | 0.01222 ^{\{ 5 \}} | 0.01657 ^{\{ 11 \}} | 0.01115 ^{\{ 3 \}} | 0.01489 ^{\{ 10 \}} | 0.0111 ^{\{ 2 \}} | 0.01324 ^{\{ 7 \}} | 0.01255 ^{\{ 6 \}} | 0.01754 ^{\{ 13 \}} | 0.01697 ^{\{ 12 \}} | 0.01365 ^{\{ 8 \}} | 0.03483 ^{\{ 16 \}} | 0.01219 ^{\{ 4 \}} | 0.02212 ^{\{ 15 \}} | 0.0138 ^{\{ 9 \}} | 0.02208 ^{\{ 14 \}} | |
MRE( \hat{\delta} ) | 0.0832 ^{\{ 1 \}} | 0.08825 ^{\{ 6 \}} | 0.09351 ^{\{ 11 \}} | 0.08745 ^{\{ 4 \}} | 0.09298 ^{\{ 10 \}} | 0.08878 ^{\{ 7 \}} | 0.09037 ^{\{ 9 \}} | 0.08899 ^{\{ 8 \}} | 0.08765 ^{\{ 5 \}} | 0.10457 ^{\{ 14 \}} | 0.09974 ^{\{ 13 \}} | 0.08726 ^{\{ 3 \}} | 0.08473 ^{\{ 2 \}} | 0.11402 ^{\{ 15 \}} | 0.09968 ^{\{ 12 \}} | 0.11607 ^{\{ 16 \}} | |
MRE( \hat{\gamma} ) | 0.05482 ^{\{ 2 \}} | 0.05838 ^{\{ 5 \}} | 0.0679 ^{\{ 12 \}} | 0.05693 ^{\{ 4 \}} | 0.0653 ^{\{ 10 \}} | 0.0565 ^{\{ 3 \}} | 0.06144 ^{\{ 7 \}} | 0.05978 ^{\{ 6 \}} | 0.06908 ^{\{ 13 \}} | 0.06631 ^{\{ 11 \}} | 0.06331 ^{\{ 9 \}} | 0.09753 ^{\{ 16 \}} | 0.05417 ^{\{ 1 \}} | 0.07929 ^{\{ 15 \}} | 0.06255 ^{\{ 8 \}} | 0.07889 ^{\{ 14 \}} | |
D_{abs} | 0.02013 ^{\{ 1 \}} | 0.0215 ^{\{ 5 \}} | 0.02248 ^{\{ 9 \}} | 0.02108 ^{\{ 2 \}} | 0.02243 ^{\{ 8 \}} | 0.02148 ^{\{ 4 \}} | 0.02155 ^{\{ 6 \}} | 0.02144 ^{\{ 3 \}} | 0.02261 ^{\{ 10 \}} | 0.02502 ^{\{ 13 \}} | 0.02394 ^{\{ 12 \}} | 0.02897 ^{\{ 16 \}} | 0.022 ^{\{ 7 \}} | 0.02727 ^{\{ 14 \}} | 0.02349 ^{\{ 11 \}} | 0.02805 ^{\{ 15 \}} | |
D_{max} | 0.03262 ^{\{ 1 \}} | 0.03483 ^{\{ 4 \}} | 0.03697 ^{\{ 9 \}} | 0.03385 ^{\{ 2 \}} | 0.03648 ^{\{ 8 \}} | 0.03435 ^{\{ 3 \}} | 0.035 ^{\{ 6 \}} | 0.03487 ^{\{ 5 \}} | 0.03781 ^{\{ 11 \}} | 0.04037 ^{\{ 13 \}} | 0.03849 ^{\{ 12 \}} | 0.05152 ^{\{ 16 \}} | 0.0357 ^{\{ 7 \}} | 0.0443 ^{\{ 14 \}} | 0.03754 ^{\{ 10 \}} | 0.04542 ^{\{ 15 \}} | |
ASAE | 0.01281 ^{\{ 1 \}} | 0.01235 ^{\{ 4 \}} | 0.01271 ^{\{ 9 \}} | 0.01282 ^{\{ 2 \}} | 0.01267 ^{\{ 8 \}} | 0.01243 ^{\{ 3 \}} | 0.01232 ^{\{ 6 \}} | 0.01213 ^{\{ 5 \}} | 0.01387 ^{\{ 11 \}} | 0.01723 ^{\{ 13 \}} | 0.01581 ^{\{ 12 \}} | 0.02473 ^{\{ 16 \}} | 0.01382 ^{\{ 7 \}} | 0.01923 ^{\{ 14 \}} | 0.01498 ^{\{ 10 \}} | 0.01922 ^{\{ 15 \}} | |
\sum Ranks | 17 ^{\{ 1 \}} | 47 ^{\{ 5 \}} | 92 ^{\{ 10 \}} | 34.5 ^{\{ 2 \}} | 81 ^{\{ 8 \}} | 39 ^{\{ 4 \}} | 62 ^{\{ 7 \}} | 50 ^{\{ 6 \}} | 85 ^{\{ 9 \}} | 115 ^{\{ 14 \}} | 101 ^{\{ 12 \}} | 105.5 ^{\{ 13 \}} | 35 ^{\{ 3 \}} | 133 ^{\{ 15 \}} | 93 ^{\{ 11 \}} | 134 ^{\{ 16 \}} | |
200 | BIAS( \hat{\delta} ) | 0.03004 ^{\{ 4 \}} | 0.03076 ^{\{ 7 \}} | 0.03085 ^{\{ 8 \}} | 0.03037 ^{\{ 5.5 \}} | 0.03139 ^{\{ 10 \}} | 0.03094 ^{\{ 9 \}} | 0.03282 ^{\{ 11 \}} | 0.03037 ^{\{ 5.5 \}} | 0.02938 ^{\{ 2 \}} | 0.03559 ^{\{ 14 \}} | 0.03323 ^{\{ 12 \}} | 0.02991 ^{\{ 3 \}} | 0.02875 ^{\{ 1 \}} | 0.03858 ^{\{ 15 \}} | 0.03377 ^{\{ 13 \}} | 0.04069 ^{\{ 16 \}} |
BIAS( \hat{\gamma} ) | 0.07131 ^{\{ 1 \}} | 0.07797 ^{\{ 6 \}} | 0.08532 ^{\{ 13 \}} | 0.07373 ^{\{ 2 \}} | 0.08203 ^{\{ 9 \}} | 0.07759 ^{\{ 5 \}} | 0.08374 ^{\{ 10 \}} | 0.07738 ^{\{ 4 \}} | 0.08435 ^{\{ 12 \}} | 0.08421 ^{\{ 11 \}} | 0.08068 ^{\{ 7 \}} | 0.13489 ^{\{ 16 \}} | 0.07469 ^{\{ 3 \}} | 0.10571 ^{\{ 15 \}} | 0.08089 ^{\{ 8 \}} | 0.1039 ^{\{ 14 \}} | |
MSE( \hat{\delta} ) | 0.00142 ^{\{ 3 \}} | 0.00152 ^{\{ 8 \}} | 0.00157 ^{\{ 10 \}} | 0.00146 ^{\{ 6 \}} | 0.00154 ^{\{ 9 \}} | 0.00149 ^{\{ 7 \}} | 0.00167 ^{\{ 11 \}} | 0.00144 ^{\{ 4 \}} | 0.00136 ^{\{ 2 \}} | 0.00206 ^{\{ 14 \}} | 0.00183 ^{\{ 12 \}} | 0.00145 ^{\{ 5 \}} | 0.00134 ^{\{ 1 \}} | 0.00244 ^{\{ 15 \}} | 0.00186 ^{\{ 13 \}} | 0.00262 ^{\{ 16 \}} | |
MSE( \hat{\gamma} ) | 0.00803 ^{\{ 1 \}} | 0.00955 ^{\{ 5 \}} | 0.01194 ^{\{ 13 \}} | 0.00849 ^{\{ 2 \}} | 0.01055 ^{\{ 9 \}} | 0.0093 ^{\{ 3 \}} | 0.01118 ^{\{ 10 \}} | 0.0094 ^{\{ 4 \}} | 0.01153 ^{\{ 11 \}} | 0.01156 ^{\{ 12 \}} | 0.01033 ^{\{ 8 \}} | 0.0292 ^{\{ 16 \}} | 0.00975 ^{\{ 6 \}} | 0.01744 ^{\{ 15 \}} | 0.01012 ^{\{ 7 \}} | 0.0172 ^{\{ 14 \}} | |
MRE( \hat{\delta} ) | 0.07511 ^{\{ 4 \}} | 0.0769 ^{\{ 7 \}} | 0.07713 ^{\{ 8 \}} | 0.07591 ^{\{ 5 \}} | 0.07847 ^{\{ 10 \}} | 0.07735 ^{\{ 9 \}} | 0.08205 ^{\{ 11 \}} | 0.07593 ^{\{ 6 \}} | 0.07344 ^{\{ 2 \}} | 0.08898 ^{\{ 14 \}} | 0.08307 ^{\{ 12 \}} | 0.07478 ^{\{ 3 \}} | 0.07188 ^{\{ 1 \}} | 0.09646 ^{\{ 15 \}} | 0.08444 ^{\{ 13 \}} | 0.10173 ^{\{ 16 \}} | |
MRE( \hat{\gamma} ) | 0.04754 ^{\{ 1 \}} | 0.05198 ^{\{ 6 \}} | 0.05688 ^{\{ 13 \}} | 0.04915 ^{\{ 2 \}} | 0.05469 ^{\{ 9 \}} | 0.05173 ^{\{ 5 \}} | 0.05583 ^{\{ 10 \}} | 0.05159 ^{\{ 4 \}} | 0.05623 ^{\{ 12 \}} | 0.05614 ^{\{ 11 \}} | 0.05379 ^{\{ 7 \}} | 0.08993 ^{\{ 16 \}} | 0.04979 ^{\{ 3 \}} | 0.07047 ^{\{ 15 \}} | 0.05393 ^{\{ 8 \}} | 0.06927 ^{\{ 14 \}} | |
D_{abs} | 0.01811 ^{\{ 3 \}} | 0.01815 ^{\{ 4 \}} | 0.01899 ^{\{ 8 \}} | 0.018 ^{\{ 1 \}} | 0.01939 ^{\{ 10 \}} | 0.01845 ^{\{ 6 \}} | 0.01901 ^{\{ 9 \}} | 0.01828 ^{\{ 5 \}} | 0.01873 ^{\{ 7 \}} | 0.02142 ^{\{ 13 \}} | 0.02013 ^{\{ 11 \}} | 0.02676 ^{\{ 16 \}} | 0.01806 ^{\{ 2 \}} | 0.0234 ^{\{ 14 \}} | 0.0203 ^{\{ 12 \}} | 0.02478 ^{\{ 15 \}} | |
D_{max} | 0.02912 ^{\{ 2 \}} | 0.02943 ^{\{ 3 \}} | 0.03145 ^{\{ 9 \}} | 0.02902 ^{\{ 1 \}} | 0.03166 ^{\{ 10 \}} | 0.02977 ^{\{ 6 \}} | 0.03086 ^{\{ 7 \}} | 0.02976 ^{\{ 5 \}} | 0.03113 ^{\{ 8 \}} | 0.03446 ^{\{ 13 \}} | 0.03244 ^{\{ 11 \}} | 0.04814 ^{\{ 16 \}} | 0.02955 ^{\{ 4 \}} | 0.03829 ^{\{ 14 \}} | 0.03269 ^{\{ 12 \}} | 0.04011 ^{\{ 15 \}} | |
ASAE | 0.01084 ^{\{ 2 \}} | 0.01041 ^{\{ 3 \}} | 0.01058 ^{\{ 9 \}} | 0.01075 ^{\{ 1 \}} | 0.01055 ^{\{ 10 \}} | 0.01059 ^{\{ 6 \}} | 0.01044 ^{\{ 7 \}} | 0.01026 ^{\{ 5 \}} | 0.01183 ^{\{ 8 \}} | 0.0146 ^{\{ 13 \}} | 0.01356 ^{\{ 11 \}} | 0.02271 ^{\{ 16 \}} | 0.01181 ^{\{ 4 \}} | 0.01657 ^{\{ 14 \}} | 0.013 ^{\{ 12 \}} | 0.01652 ^{\{ 15 \}} | |
\sum Ranks | 27 ^{\{ 1 \}} | 48 ^{\{ 5 \}} | 87 ^{\{ 10 \}} | 31.5 ^{\{ 3 \}} | 80 ^{\{ 8 \}} | 56 ^{\{ 6 \}} | 82 ^{\{ 9 \}} | 38.5 ^{\{ 4 \}} | 66 ^{\{ 7 \}} | 115 ^{\{ 14 \}} | 92 ^{\{ 11 \}} | 107 ^{\{ 13 \}} | 30 ^{\{ 2 \}} | 133 ^{\{ 15 \}} | 97 ^{\{ 12 \}} | 134 ^{\{ 16 \}} | |
300 | BIAS( \hat{\delta} ) | 0.02485 ^{\{ 6 \}} | 0.02476 ^{\{ 5 \}} | 0.02566 ^{\{ 9 \}} | 0.02457 ^{\{ 4 \}} | 0.02581 ^{\{ 11 \}} | 0.02534 ^{\{ 8 \}} | 0.02574 ^{\{ 10 \}} | 0.02419 ^{\{ 3 \}} | 0.02525 ^{\{ 7 \}} | 0.02979 ^{\{ 14 \}} | 0.02852 ^{\{ 13 \}} | 0.02323 ^{\{ 1 \}} | 0.02369 ^{\{ 2 \}} | 0.03294 ^{\{ 15 \}} | 0.02815 ^{\{ 12 \}} | 0.03398 ^{\{ 16 \}} |
BIAS( \hat{\gamma} ) | 0.0589 ^{\{ 2 \}} | 0.06119 ^{\{ 4 \}} | 0.07198 ^{\{ 11 \}} | 0.05917 ^{\{ 3 \}} | 0.07063 ^{\{ 10 \}} | 0.06366 ^{\{ 6 \}} | 0.06554 ^{\{ 7 \}} | 0.06125 ^{\{ 5 \}} | 0.0723 ^{\{ 12 \}} | 0.07294 ^{\{ 13 \}} | 0.06713 ^{\{ 9 \}} | 0.11461 ^{\{ 16 \}} | 0.0585 ^{\{ 1 \}} | 0.08189 ^{\{ 14 \}} | 0.06684 ^{\{ 8 \}} | 0.08506 ^{\{ 15 \}} | |
MSE( \hat{\delta} ) | 0.00097 ^{\{ 6 \}} | 0.00095 ^{\{ 5 \}} | 0.00104 ^{\{ 10 \}} | 0.00092 ^{\{ 3 \}} | 0.00106 ^{\{ 11 \}} | 0.00101 ^{\{ 8 \}} | 0.00102 ^{\{ 9 \}} | 0.00092 ^{\{ 3 \}} | 0.00099 ^{\{ 7 \}} | 0.00142 ^{\{ 14 \}} | 0.0013 ^{\{ 13 \}} | 0.00086 ^{\{ 1 \}} | 0.00092 ^{\{ 3 \}} | 0.00174 ^{\{ 15 \}} | 0.00123 ^{\{ 12 \}} | 0.0018 ^{\{ 16 \}} | |
MSE( \hat{\gamma} ) | 0.00544 ^{\{ 2 \}} | 0.00596 ^{\{ 4 \}} | 0.0081 ^{\{ 12 \}} | 0.00531 ^{\{ 1 \}} | 0.00802 ^{\{ 10 \}} | 0.0062 ^{\{ 6 \}} | 0.00676 ^{\{ 7 \}} | 0.00587 ^{\{ 3 \}} | 0.00807 ^{\{ 11 \}} | 0.00845 ^{\{ 13 \}} | 0.00716 ^{\{ 9 \}} | 0.0214 ^{\{ 16 \}} | 0.00613 ^{\{ 5 \}} | 0.01057 ^{\{ 14 \}} | 0.00699 ^{\{ 8 \}} | 0.01123 ^{\{ 15 \}} | |
MRE( \hat{\delta} ) | 0.06213 ^{\{ 6 \}} | 0.06189 ^{\{ 5 \}} | 0.06414 ^{\{ 9 \}} | 0.06142 ^{\{ 4 \}} | 0.06453 ^{\{ 11 \}} | 0.06335 ^{\{ 8 \}} | 0.06434 ^{\{ 10 \}} | 0.06047 ^{\{ 3 \}} | 0.06312 ^{\{ 7 \}} | 0.07448 ^{\{ 14 \}} | 0.07131 ^{\{ 13 \}} | 0.05807 ^{\{ 1 \}} | 0.05923 ^{\{ 2 \}} | 0.08235 ^{\{ 15 \}} | 0.07037 ^{\{ 12 \}} | 0.08494 ^{\{ 16 \}} | |
MRE( \hat{\gamma} ) | 0.03927 ^{\{ 2 \}} | 0.04079 ^{\{ 4 \}} | 0.04799 ^{\{ 11 \}} | 0.03945 ^{\{ 3 \}} | 0.04709 ^{\{ 10 \}} | 0.04244 ^{\{ 6 \}} | 0.0437 ^{\{ 7 \}} | 0.04083 ^{\{ 5 \}} | 0.0482 ^{\{ 12 \}} | 0.04863 ^{\{ 13 \}} | 0.04475 ^{\{ 9 \}} | 0.07641 ^{\{ 16 \}} | 0.039 ^{\{ 1 \}} | 0.0546 ^{\{ 14 \}} | 0.04456 ^{\{ 8 \}} | 0.05671 ^{\{ 15 \}} | |
D_{abs} | 0.0149 ^{\{ 2 \}} | 0.01502 ^{\{ 6 \}} | 0.01526 ^{\{ 8 \}} | 0.01465 ^{\{ 1 \}} | 0.01538 ^{\{ 9 \}} | 0.01498 ^{\{ 4 \}} | 0.01496 ^{\{ 3 \}} | 0.015 ^{\{ 5 \}} | 0.01612 ^{\{ 10 \}} | 0.01796 ^{\{ 13 \}} | 0.0173 ^{\{ 12 \}} | 0.02158 ^{\{ 16 \}} | 0.01508 ^{\{ 7 \}} | 0.01984 ^{\{ 14 \}} | 0.0167 ^{\{ 11 \}} | 0.02037 ^{\{ 15 \}} | |
D_{max} | 0.02397 ^{\{ 2 \}} | 0.02433 ^{\{ 5 \}} | 0.02518 ^{\{ 8 \}} | 0.02351 ^{\{ 1 \}} | 0.02527 ^{\{ 9 \}} | 0.02418 ^{\{ 3 \}} | 0.0243 ^{\{ 4 \}} | 0.02439 ^{\{ 6 \}} | 0.02685 ^{\{ 10 \}} | 0.02907 ^{\{ 13 \}} | 0.02777 ^{\{ 12 \}} | 0.0393 ^{\{ 16 \}} | 0.02464 ^{\{ 7 \}} | 0.0321 ^{\{ 14 \}} | 0.02686 ^{\{ 11 \}} | 0.03302 ^{\{ 15 \}} | |
ASAE | 0.00853 ^{\{ 2 \}} | 0.00807 ^{\{ 5 \}} | 0.00855 ^{\{ 8 \}} | 0.00844 ^{\{ 1 \}} | 0.00828 ^{\{ 9 \}} | 0.00845 ^{\{ 3 \}} | 0.00818 ^{\{ 4 \}} | 0.00806 ^{\{ 6 \}} | 0.00936 ^{\{ 10 \}} | 0.01155 ^{\{ 13 \}} | 0.01074 ^{\{ 12 \}} | 0.01805 ^{\{ 16 \}} | 0.00913 ^{\{ 7 \}} | 0.0133 ^{\{ 14 \}} | 0.01033 ^{\{ 11 \}} | 0.01291 ^{\{ 15 \}} | |
\sum Ranks | 35 ^{\{ 3 \}} | 40 ^{\{ 5 \}} | 86 ^{\{ 9.5 \}} | 25 ^{\{ 1 \}} | 85 ^{\{ 8 \}} | 55 ^{\{ 6 \}} | 60 ^{\{ 7 \}} | 34 ^{\{ 2 \}} | 86 ^{\{ 9.5 \}} | 120 ^{\{ 14 \}} | 102 ^{\{ 13 \}} | 99 ^{\{ 12 \}} | 37 ^{\{ 4 \}} | 130 ^{\{ 15 \}} | 93 ^{\{ 11 \}} | 137 ^{\{ 16 \}} | |
450 | BIAS( \hat{\delta} ) | 0.02044 ^{\{ 6 \}} | 0.02051 ^{\{ 8 \}} | 0.02116 ^{\{ 10 \}} | 0.019 ^{\{ 1 \}} | 0.02069 ^{\{ 9 \}} | 0.02027 ^{\{ 5 \}} | 0.02203 ^{\{ 11 \}} | 0.0205 ^{\{ 7 \}} | 0.02016 ^{\{ 4 \}} | 0.02427 ^{\{ 14 \}} | 0.02322 ^{\{ 13 \}} | 0.01969 ^{\{ 2 \}} | 0.01982 ^{\{ 3 \}} | 0.02696 ^{\{ 16 \}} | 0.02321 ^{\{ 12 \}} | 0.02623 ^{\{ 15 \}} |
BIAS( \hat{\gamma} ) | 0.04846 ^{\{ 2 \}} | 0.05228 ^{\{ 6 \}} | 0.0574 ^{\{ 13 \}} | 0.04793 ^{\{ 1 \}} | 0.05487 ^{\{ 9 \}} | 0.05183 ^{\{ 5 \}} | 0.05454 ^{\{ 8 \}} | 0.04955 ^{\{ 4 \}} | 0.0563 ^{\{ 11 \}} | 0.05671 ^{\{ 12 \}} | 0.05567 ^{\{ 10 \}} | 0.0905 ^{\{ 16 \}} | 0.04917 ^{\{ 3 \}} | 0.06732 ^{\{ 15 \}} | 0.05414 ^{\{ 7 \}} | 0.06462 ^{\{ 14 \}} | |
MSE( \hat{\delta} ) | 0.00067 ^{\{ 8 \}} | 0.00066 ^{\{ 5.5 \}} | 0.00069 ^{\{ 10 \}} | 0.00058 ^{\{ 1 \}} | 0.00067 ^{\{ 8 \}} | 0.00064 ^{\{ 3 \}} | 0.00075 ^{\{ 11 \}} | 0.00067 ^{\{ 8 \}} | 0.00065 ^{\{ 4 \}} | 0.00091 ^{\{ 14 \}} | 0.00083 ^{\{ 12 \}} | 0.00061 ^{\{ 2 \}} | 0.00066 ^{\{ 5.5 \}} | 0.00118 ^{\{ 16 \}} | 0.00084 ^{\{ 13 \}} | 0.0011 ^{\{ 15 \}} | |
MSE( \hat{\gamma} ) | 0.00365 ^{\{ 2 \}} | 0.00428 ^{\{ 5 \}} | 0.00512 ^{\{ 12 \}} | 0.0036 ^{\{ 1 \}} | 0.00482 ^{\{ 9 \}} | 0.00412 ^{\{ 4 \}} | 0.00455 ^{\{ 7 \}} | 0.00393 ^{\{ 3 \}} | 0.00511 ^{\{ 11 \}} | 0.00524 ^{\{ 13 \}} | 0.00483 ^{\{ 10 \}} | 0.01351 ^{\{ 16 \}} | 0.00454 ^{\{ 6 \}} | 0.00711 ^{\{ 15 \}} | 0.00458 ^{\{ 8 \}} | 0.00678 ^{\{ 14 \}} | |
MRE( \hat{\delta} ) | 0.0511 ^{\{ 6 \}} | 0.05128 ^{\{ 8 \}} | 0.05289 ^{\{ 10 \}} | 0.04749 ^{\{ 1 \}} | 0.05174 ^{\{ 9 \}} | 0.05068 ^{\{ 5 \}} | 0.05506 ^{\{ 11 \}} | 0.05125 ^{\{ 7 \}} | 0.05041 ^{\{ 4 \}} | 0.06067 ^{\{ 14 \}} | 0.05805 ^{\{ 13 \}} | 0.04922 ^{\{ 2 \}} | 0.04954 ^{\{ 3 \}} | 0.06741 ^{\{ 16 \}} | 0.05803 ^{\{ 12 \}} | 0.06557 ^{\{ 15 \}} | |
MRE( \hat{\gamma} ) | 0.03231 ^{\{ 2 \}} | 0.03485 ^{\{ 6 \}} | 0.03827 ^{\{ 13 \}} | 0.03195 ^{\{ 1 \}} | 0.03658 ^{\{ 9 \}} | 0.03456 ^{\{ 5 \}} | 0.03636 ^{\{ 8 \}} | 0.03303 ^{\{ 4 \}} | 0.03753 ^{\{ 11 \}} | 0.03781 ^{\{ 12 \}} | 0.03711 ^{\{ 10 \}} | 0.06033 ^{\{ 16 \}} | 0.03278 ^{\{ 3 \}} | 0.04488 ^{\{ 15 \}} | 0.03609 ^{\{ 7 \}} | 0.04308 ^{\{ 14 \}} | |
D_{abs} | 0.01212 ^{\{ 2 \}} | 0.01221 ^{\{ 4 \}} | 0.01301 ^{\{ 10 \}} | 0.01152 ^{\{ 1 \}} | 0.01267 ^{\{ 7 \}} | 0.01213 ^{\{ 3 \}} | 0.01268 ^{\{ 8 \}} | 0.01239 ^{\{ 5 \}} | 0.01284 ^{\{ 9 \}} | 0.01464 ^{\{ 13 \}} | 0.01405 ^{\{ 12 \}} | 0.01779 ^{\{ 16 \}} | 0.01241 ^{\{ 6 \}} | 0.01646 ^{\{ 15 \}} | 0.01395 ^{\{ 11 \}} | 0.01616 ^{\{ 14 \}} | |
D_{max} | 0.01948 ^{\{ 2 \}} | 0.01977 ^{\{ 4 \}} | 0.02134 ^{\{ 10 \}} | 0.01866 ^{\{ 1 \}} | 0.02076 ^{\{ 8 \}} | 0.01973 ^{\{ 3 \}} | 0.02045 ^{\{ 7 \}} | 0.01998 ^{\{ 5 \}} | 0.02125 ^{\{ 9 \}} | 0.0235 ^{\{ 13 \}} | 0.02262 ^{\{ 12 \}} | 0.03211 ^{\{ 16 \}} | 0.02026 ^{\{ 6 \}} | 0.02686 ^{\{ 15 \}} | 0.02237 ^{\{ 11 \}} | 0.02617 ^{\{ 14 \}} | |
ASAE | 0.00666 ^{\{ 2 \}} | 0.0065 ^{\{ 4 \}} | 0.00668 ^{\{ 10 \}} | 0.00664 ^{\{ 1 \}} | 0.00653 ^{\{ 8 \}} | 0.00681 ^{\{ 3 \}} | 0.00645 ^{\{ 7 \}} | 0.00643 ^{\{ 5 \}} | 0.0072 ^{\{ 9 \}} | 0.00914 ^{\{ 13 \}} | 0.00857 ^{\{ 12 \}} | 0.01371 ^{\{ 16 \}} | 0.00731 ^{\{ 6 \}} | 0.01032 ^{\{ 15 \}} | 0.00804 ^{\{ 11 \}} | 0.01033 ^{\{ 14 \}} | |
\sum Ranks | 36 ^{\{ 2 \}} | 49.5 ^{\{ 6 \}} | 95 ^{\{ 11 \}} | 13 ^{\{ 1 \}} | 72 ^{\{ 7.5 \}} | 41 ^{\{ 3 \}} | 73 ^{\{ 9 \}} | 44 ^{\{ 4 \}} | 72 ^{\{ 7.5 \}} | 118 ^{\{ 14 \}} | 104 ^{\{ 13 \}} | 102 ^{\{ 12 \}} | 45.5 ^{\{ 5 \}} | 137 ^{\{ 16 \}} | 92 ^{\{ 10 \}} | 130 ^{\{ 15 \}} |
n | Est. | MLE | ADE | CVME | MPSE | OLSE | PCE | RTADE | WLSE | LTADE | MSADE | MSALDE | ADSOE | KE | MSSD | MSSLD | MSLND |
20 | BIAS( \hat{\delta} ) | 0.3501 ^{\{ 9 \}} | 0.3437 ^{\{ 8 \}} | 0.40963 ^{\{ 14 \}} | 0.30095 ^{\{ 2 \}} | 0.39118 ^{\{ 13 \}} | 0.33084 ^{\{ 6 \}} | 0.33466 ^{\{ 7 \}} | 0.32993 ^{\{ 5 \}} | 0.42136 ^{\{ 15 \}} | 0.32471 ^{\{ 4 \}} | 0.35322 ^{\{ 10 \}} | 0.50199 ^{\{ 16 \}} | 0.24141 ^{\{ 1 \}} | 0.38085 ^{\{ 11 \}} | 0.324 ^{\{ 3 \}} | 0.38994 ^{\{ 12 \}} |
BIAS( \hat{\gamma} ) | 0.13283 ^{\{ 7.5 \}} | 0.12262 ^{\{ 2 \}} | 0.1403 ^{\{ 10.5 \}} | 0.11926 ^{\{ 1 \}} | 0.13649 ^{\{ 9 \}} | 0.15974 ^{\{ 14 \}} | 0.12869 ^{\{ 5 \}} | 0.13283 ^{\{ 7.5 \}} | 0.1403 ^{\{ 10.5 \}} | 0.14078 ^{\{ 12 \}} | 0.13085 ^{\{ 6 \}} | 0.15005 ^{\{ 13 \}} | 0.12789 ^{\{ 4 \}} | 0.16161 ^{\{ 15 \}} | 0.12295 ^{\{ 3 \}} | 0.16948 ^{\{ 16 \}} | |
MSE( \hat{\delta} ) | 0.24075 ^{\{ 12 \}} | 0.21192 ^{\{ 9 \}} | 0.3003 ^{\{ 14 \}} | 0.14184 ^{\{ 2 \}} | 0.25737 ^{\{ 13 \}} | 0.18243 ^{\{ 3 \}} | 0.2025 ^{\{ 7 \}} | 0.18359 ^{\{ 4 \}} | 0.31963 ^{\{ 15 \}} | 0.18816 ^{\{ 6 \}} | 0.208 ^{\{ 8 \}} | 0.4098 ^{\{ 16 \}} | 0.13207 ^{\{ 1 \}} | 0.21903 ^{\{ 10 \}} | 0.18787 ^{\{ 5 \}} | 0.22378 ^{\{ 11 \}} | |
MSE( \hat{\gamma} ) | 0.02909 ^{\{ 8 \}} | 0.02497 ^{\{ 3 \}} | 0.03288 ^{\{ 12 \}} | 0.02105 ^{\{ 1 \}} | 0.02988 ^{\{ 9 \}} | 0.03944 ^{\{ 14 \}} | 0.02878 ^{\{ 7 \}} | 0.02797 ^{\{ 5 \}} | 0.03213 ^{\{ 11 \}} | 0.03099 ^{\{ 10 \}} | 0.02507 ^{\{ 4 \}} | 0.03542 ^{\{ 13 \}} | 0.028 ^{\{ 6 \}} | 0.03951 ^{\{ 15 \}} | 0.02414 ^{\{ 2 \}} | 0.04133 ^{\{ 16 \}} | |
MRE( \hat{\delta} ) | 0.17505 ^{\{ 9 \}} | 0.17185 ^{\{ 8 \}} | 0.20481 ^{\{ 14 \}} | 0.15047 ^{\{ 2 \}} | 0.19559 ^{\{ 13 \}} | 0.16542 ^{\{ 6 \}} | 0.16733 ^{\{ 7 \}} | 0.16497 ^{\{ 5 \}} | 0.21068 ^{\{ 15 \}} | 0.16236 ^{\{ 4 \}} | 0.17661 ^{\{ 10 \}} | 0.25099 ^{\{ 16 \}} | 0.12071 ^{\{ 1 \}} | 0.19042 ^{\{ 11 \}} | 0.162 ^{\{ 3 \}} | 0.19497 ^{\{ 12 \}} | |
MRE( \hat{\gamma} ) | 0.17711 ^{\{ 7.5 \}} | 0.16349 ^{\{ 2 \}} | 0.18707 ^{\{ 11 \}} | 0.15901 ^{\{ 1 \}} | 0.18198 ^{\{ 9 \}} | 0.21299 ^{\{ 14 \}} | 0.17159 ^{\{ 5 \}} | 0.17711 ^{\{ 7.5 \}} | 0.18706 ^{\{ 10 \}} | 0.1877 ^{\{ 12 \}} | 0.17447 ^{\{ 6 \}} | 0.20007 ^{\{ 13 \}} | 0.17052 ^{\{ 4 \}} | 0.21549 ^{\{ 15 \}} | 0.16393 ^{\{ 3 \}} | 0.22597 ^{\{ 16 \}} | |
D_{abs} | 0.0565 ^{\{ 1 \}} | 0.05712 ^{\{ 4 \}} | 0.05886 ^{\{ 7 \}} | 0.05687 ^{\{ 2 \}} | 0.06327 ^{\{ 10 \}} | 0.06941 ^{\{ 14 \}} | 0.05914 ^{\{ 9 \}} | 0.05897 ^{\{ 8 \}} | 0.05881 ^{\{ 6 \}} | 0.06741 ^{\{ 13 \}} | 0.06656 ^{\{ 12 \}} | 0.06374 ^{\{ 11 \}} | 0.05703 ^{\{ 3 \}} | 0.07132 ^{\{ 15 \}} | 0.05801 ^{\{ 5 \}} | 0.07227 ^{\{ 16 \}} | |
D_{max} | 0.09202 ^{\{ 4 \}} | 0.09177 ^{\{ 3 \}} | 0.09715 ^{\{ 8 \}} | 0.08966 ^{\{ 1 \}} | 0.10075 ^{\{ 10 \}} | 0.11042 ^{\{ 14 \}} | 0.09523 ^{\{ 7 \}} | 0.09403 ^{\{ 6 \}} | 0.0975 ^{\{ 9 \}} | 0.10556 ^{\{ 12 \}} | 0.10428 ^{\{ 11 \}} | 0.10641 ^{\{ 13 \}} | 0.09022 ^{\{ 2 \}} | 0.11373 ^{\{ 15 \}} | 0.09277 ^{\{ 5 \}} | 0.1168 ^{\{ 16 \}} | |
ASAE | 0.0449 ^{\{ 4 \}} | 0.04202 ^{\{ 3 \}} | 0.04466 ^{\{ 8 \}} | 0.04118 ^{\{ 1 \}} | 0.04475 ^{\{ 10 \}} | 0.03873 ^{\{ 14 \}} | 0.03903 ^{\{ 7 \}} | 0.04015 ^{\{ 6 \}} | 0.05109 ^{\{ 9 \}} | 0.05226 ^{\{ 12 \}} | 0.04966 ^{\{ 11 \}} | 0.07747 ^{\{ 13 \}} | 0.04731 ^{\{ 2 \}} | 0.06494 ^{\{ 15 \}} | 0.04801 ^{\{ 5 \}} | 0.06415 ^{\{ 16 \}} | |
\sum Ranks | 66 ^{\{ 7 \}} | 44 ^{\{ 4 \}} | 96.5 ^{\{ 12 \}} | 16 ^{\{ 1 \}} | 93 ^{\{ 11 \}} | 86 ^{\{ 9.5 \}} | 56 ^{\{ 6 \}} | 51 ^{\{ 5 \}} | 103.5 ^{\{ 13 \}} | 86 ^{\{ 9.5 \}} | 78 ^{\{ 8 \}} | 127 ^{\{ 15 \}} | 31 ^{\{ 2 \}} | 122 ^{\{ 14 \}} | 39 ^{\{ 3 \}} | 129 ^{\{ 16 \}} | |
70 | BIAS( \hat{\delta} ) | 0.17171 ^{\{ 5 \}} | 0.18705 ^{\{ 9 \}} | 0.20507 ^{\{ 12 \}} | 0.15645 ^{\{ 2 \}} | 0.19235 ^{\{ 11 \}} | 0.17397 ^{\{ 7 \}} | 0.17091 ^{\{ 4 \}} | 0.17337 ^{\{ 6 \}} | 0.2287 ^{\{ 14 \}} | 0.18551 ^{\{ 8 \}} | 0.18797 ^{\{ 10 \}} | 0.35752 ^{\{ 16 \}} | 0.14934 ^{\{ 1 \}} | 0.22252 ^{\{ 13 \}} | 0.16562 ^{\{ 3 \}} | 0.23357 ^{\{ 15 \}} |
BIAS( \hat{\gamma} ) | 0.06108 ^{\{ 1 \}} | 0.06501 ^{\{ 3 \}} | 0.07395 ^{\{ 10 \}} | 0.0626 ^{\{ 2 \}} | 0.07357 ^{\{ 9 \}} | 0.09167 ^{\{ 15 \}} | 0.06922 ^{\{ 7 \}} | 0.06717 ^{\{ 5 \}} | 0.07612 ^{\{ 11 \}} | 0.08148 ^{\{ 12 \}} | 0.06963 ^{\{ 8 \}} | 0.10063 ^{\{ 16 \}} | 0.06762 ^{\{ 6 \}} | 0.08679 ^{\{ 13 \}} | 0.0654 ^{\{ 4 \}} | 0.09097 ^{\{ 14 \}} | |
MSE( \hat{\delta} ) | 0.04867 ^{\{ 5 \}} | 0.05793 ^{\{ 10 \}} | 0.07313 ^{\{ 12 \}} | 0.03837 ^{\{ 1 \}} | 0.06261 ^{\{ 11 \}} | 0.04746 ^{\{ 4 \}} | 0.05063 ^{\{ 7 \}} | 0.0502 ^{\{ 6 \}} | 0.08989 ^{\{ 14 \}} | 0.05706 ^{\{ 9 \}} | 0.0566 ^{\{ 8 \}} | 0.21988 ^{\{ 16 \}} | 0.04548 ^{\{ 3 \}} | 0.0789 ^{\{ 13 \}} | 0.04538 ^{\{ 2 \}} | 0.09541 ^{\{ 15 \}} | |
MSE( \hat{\gamma} ) | 0.006 ^{\{ 2 \}} | 0.00682 ^{\{ 3 \}} | 0.00895 ^{\{ 10 \}} | 0.00595 ^{\{ 1 \}} | 0.00885 ^{\{ 9 \}} | 0.01323 ^{\{ 15 \}} | 0.00798 ^{\{ 8 \}} | 0.00709 ^{\{ 5 \}} | 0.00943 ^{\{ 11 \}} | 0.01 ^{\{ 12 \}} | 0.00748 ^{\{ 6 \}} | 0.01549 ^{\{ 16 \}} | 0.00765 ^{\{ 7 \}} | 0.01163 ^{\{ 13 \}} | 0.00689 ^{\{ 4 \}} | 0.01282 ^{\{ 14 \}} | |
MRE( \hat{\delta} ) | 0.08586 ^{\{ 5 \}} | 0.09353 ^{\{ 9 \}} | 0.10253 ^{\{ 12 \}} | 0.07822 ^{\{ 2 \}} | 0.09617 ^{\{ 11 \}} | 0.08699 ^{\{ 7 \}} | 0.08546 ^{\{ 4 \}} | 0.08669 ^{\{ 6 \}} | 0.11435 ^{\{ 14 \}} | 0.09276 ^{\{ 8 \}} | 0.09399 ^{\{ 10 \}} | 0.17876 ^{\{ 16 \}} | 0.07467 ^{\{ 1 \}} | 0.11126 ^{\{ 13 \}} | 0.08281 ^{\{ 3 \}} | 0.11679 ^{\{ 15 \}} | |
MRE( \hat{\gamma} ) | 0.08144 ^{\{ 1 \}} | 0.08668 ^{\{ 3 \}} | 0.0986 ^{\{ 10 \}} | 0.08346 ^{\{ 2 \}} | 0.09809 ^{\{ 9 \}} | 0.12223 ^{\{ 15 \}} | 0.0923 ^{\{ 7 \}} | 0.08956 ^{\{ 5 \}} | 0.10149 ^{\{ 11 \}} | 0.10863 ^{\{ 12 \}} | 0.09284 ^{\{ 8 \}} | 0.13417 ^{\{ 16 \}} | 0.09016 ^{\{ 6 \}} | 0.11572 ^{\{ 13 \}} | 0.0872 ^{\{ 4 \}} | 0.12129 ^{\{ 14 \}} | |
D_{abs} | 0.03009 ^{\{ 2 \}} | 0.03133 ^{\{ 6 \}} | 0.03149 ^{\{ 7 \}} | 0.03058 ^{\{ 3 \}} | 0.03206 ^{\{ 8 \}} | 0.03927 ^{\{ 13 \}} | 0.03093 ^{\{ 5 \}} | 0.03076 ^{\{ 4 \}} | 0.03394 ^{\{ 10 \}} | 0.03862 ^{\{ 12 \}} | 0.03514 ^{\{ 11 \}} | 0.04015 ^{\{ 14 \}} | 0.0298 ^{\{ 1 \}} | 0.04024 ^{\{ 15 \}} | 0.0338 ^{\{ 9 \}} | 0.04049 ^{\{ 16 \}} | |
D_{max} | 0.0487 ^{\{ 2 \}} | 0.05096 ^{\{ 6 \}} | 0.05222 ^{\{ 8 \}} | 0.0488 ^{\{ 3 \}} | 0.05211 ^{\{ 7 \}} | 0.0631 ^{\{ 13 \}} | 0.0503 ^{\{ 5 \}} | 0.04996 ^{\{ 4 \}} | 0.05648 ^{\{ 11 \}} | 0.06186 ^{\{ 12 \}} | 0.05645 ^{\{ 10 \}} | 0.07057 ^{\{ 16 \}} | 0.04803 ^{\{ 1 \}} | 0.06548 ^{\{ 14 \}} | 0.05377 ^{\{ 9 \}} | 0.0661 ^{\{ 15 \}} | |
ASAE | 0.01898 ^{\{ 2 \}} | 0.01867 ^{\{ 6 \}} | 0.02002 ^{\{ 8 \}} | 0.01877 ^{\{ 3 \}} | 0.01966 ^{\{ 7 \}} | 0.01889 ^{\{ 13 \}} | 0.01739 ^{\{ 5 \}} | 0.01873 ^{\{ 4 \}} | 0.02301 ^{\{ 11 \}} | 0.02448 ^{\{ 12 \}} | 0.02275 ^{\{ 10 \}} | 0.03954 ^{\{ 16 \}} | 0.02094 ^{\{ 1 \}} | 0.02842 ^{\{ 14 \}} | 0.02149 ^{\{ 9 \}} | 0.02845 ^{\{ 15 \}} | |
\sum Ranks | 29 ^{\{ 2 \}} | 51 ^{\{ 7 \}} | 89 ^{\{ 10 \}} | 20 ^{\{ 1 \}} | 82 ^{\{ 8.5 \}} | 94 ^{\{ 11 \}} | 48 ^{\{ 5.5 \}} | 44 ^{\{ 4 \}} | 108 ^{\{ 13 \}} | 98 ^{\{ 12 \}} | 82 ^{\{ 8.5 \}} | 142 ^{\{ 16 \}} | 35 ^{\{ 3 \}} | 121 ^{\{ 14 \}} | 48 ^{\{ 5.5 \}} | 133 ^{\{ 15 \}} | |
150 | BIAS( \hat{\delta} ) | 0.10986 ^{\{ 1 \}} | 0.12035 ^{\{ 7 \}} | 0.13735 ^{\{ 12 \}} | 0.11316 ^{\{ 3 \}} | 0.13179 ^{\{ 10 \}} | 0.11926 ^{\{ 5 \}} | 0.12475 ^{\{ 8 \}} | 0.11964 ^{\{ 6 \}} | 0.15345 ^{\{ 14 \}} | 0.1338 ^{\{ 11 \}} | 0.12831 ^{\{ 9 \}} | 0.25651 ^{\{ 16 \}} | 0.11174 ^{\{ 2 \}} | 0.15491 ^{\{ 15 \}} | 0.11768 ^{\{ 4 \}} | 0.15252 ^{\{ 13 \}} |
BIAS( \hat{\gamma} ) | 0.04272 ^{\{ 1 \}} | 0.04461 ^{\{ 4 \}} | 0.04968 ^{\{ 9 \}} | 0.04411 ^{\{ 2 \}} | 0.04973 ^{\{ 10 \}} | 0.06877 ^{\{ 15 \}} | 0.04602 ^{\{ 6 \}} | 0.04415 ^{\{ 3 \}} | 0.05031 ^{\{ 11 \}} | 0.05342 ^{\{ 12 \}} | 0.04797 ^{\{ 7 \}} | 0.07337 ^{\{ 16 \}} | 0.04901 ^{\{ 8 \}} | 0.0609 ^{\{ 13 \}} | 0.04463 ^{\{ 5 \}} | 0.06118 ^{\{ 14 \}} | |
MSE( \hat{\delta} ) | 0.02001 ^{\{ 2 \}} | 0.02339 ^{\{ 7 \}} | 0.03028 ^{\{ 12 \}} | 0.01951 ^{\{ 1 \}} | 0.02911 ^{\{ 11 \}} | 0.02197 ^{\{ 3 \}} | 0.02439 ^{\{ 8 \}} | 0.02325 ^{\{ 6 \}} | 0.03819 ^{\{ 14 \}} | 0.02853 ^{\{ 10 \}} | 0.02588 ^{\{ 9 \}} | 0.10809 ^{\{ 16 \}} | 0.02284 ^{\{ 5 \}} | 0.03913 ^{\{ 15 \}} | 0.02198 ^{\{ 4 \}} | 0.03683 ^{\{ 13 \}} | |
MSE( \hat{\gamma} ) | 0.00289 ^{\{ 1 \}} | 0.0032 ^{\{ 5 \}} | 0.00395 ^{\{ 10 \}} | 0.0029 ^{\{ 2 \}} | 0.0039 ^{\{ 9 \}} | 0.00751 ^{\{ 15 \}} | 0.00335 ^{\{ 6 \}} | 0.00309 ^{\{ 4 \}} | 0.00402 ^{\{ 11 \}} | 0.00443 ^{\{ 12 \}} | 0.00362 ^{\{ 7 \}} | 0.00858 ^{\{ 16 \}} | 0.00387 ^{\{ 8 \}} | 0.00569 ^{\{ 14 \}} | 0.00308 ^{\{ 3 \}} | 0.00564 ^{\{ 13 \}} | |
MRE( \hat{\delta} ) | 0.05493 ^{\{ 1 \}} | 0.06017 ^{\{ 7 \}} | 0.06868 ^{\{ 12 \}} | 0.05658 ^{\{ 3 \}} | 0.06589 ^{\{ 10 \}} | 0.05963 ^{\{ 5 \}} | 0.06238 ^{\{ 8 \}} | 0.05982 ^{\{ 6 \}} | 0.07672 ^{\{ 14 \}} | 0.0669 ^{\{ 11 \}} | 0.06416 ^{\{ 9 \}} | 0.12826 ^{\{ 16 \}} | 0.05587 ^{\{ 2 \}} | 0.07745 ^{\{ 15 \}} | 0.05884 ^{\{ 4 \}} | 0.07626 ^{\{ 13 \}} | |
MRE( \hat{\gamma} ) | 0.05696 ^{\{ 1 \}} | 0.05947 ^{\{ 4 \}} | 0.06624 ^{\{ 9 \}} | 0.05882 ^{\{ 2 \}} | 0.0663 ^{\{ 10 \}} | 0.09169 ^{\{ 15 \}} | 0.06136 ^{\{ 6 \}} | 0.05886 ^{\{ 3 \}} | 0.06708 ^{\{ 11 \}} | 0.07123 ^{\{ 12 \}} | 0.06396 ^{\{ 7 \}} | 0.09782 ^{\{ 16 \}} | 0.06535 ^{\{ 8 \}} | 0.0812 ^{\{ 13 \}} | 0.05951 ^{\{ 5 \}} | 0.08157 ^{\{ 14 \}} | |
D_{abs} | 0.02101 ^{\{ 3 \}} | 0.02172 ^{\{ 6 \}} | 0.02246 ^{\{ 8 \}} | 0.02098 ^{\{ 2 \}} | 0.02175 ^{\{ 7 \}} | 0.02787 ^{\{ 15 \}} | 0.0214 ^{\{ 5 \}} | 0.02032 ^{\{ 1 \}} | 0.02305 ^{\{ 10 \}} | 0.02584 ^{\{ 12 \}} | 0.02481 ^{\{ 11 \}} | 0.02861 ^{\{ 16 \}} | 0.02131 ^{\{ 4 \}} | 0.02731 ^{\{ 13 \}} | 0.02247 ^{\{ 9 \}} | 0.02764 ^{\{ 14 \}} | |
D_{max} | 0.03392 ^{\{ 3 \}} | 0.03507 ^{\{ 6 \}} | 0.03694 ^{\{ 9 \}} | 0.03388 ^{\{ 2 \}} | 0.03583 ^{\{ 7 \}} | 0.04538 ^{\{ 15 \}} | 0.03497 ^{\{ 5 \}} | 0.03315 ^{\{ 1 \}} | 0.03822 ^{\{ 10 \}} | 0.04156 ^{\{ 12 \}} | 0.03964 ^{\{ 11 \}} | 0.05122 ^{\{ 16 \}} | 0.03487 ^{\{ 4 \}} | 0.04466 ^{\{ 13 \}} | 0.03605 ^{\{ 8 \}} | 0.04506 ^{\{ 14 \}} | |
ASAE | 0.01131 ^{\{ 3 \}} | 0.01145 ^{\{ 6 \}} | 0.01219 ^{\{ 9 \}} | 0.01132 ^{\{ 2 \}} | 0.01215 ^{\{ 7 \}} | 0.01202 ^{\{ 15 \}} | 0.01066 ^{\{ 5 \}} | 0.01124 ^{\{ 1 \}} | 0.01443 ^{\{ 10 \}} | 0.015 ^{\{ 12 \}} | 0.01418 ^{\{ 11 \}} | 0.02725 ^{\{ 16 \}} | 0.01299 ^{\{ 4 \}} | 0.01733 ^{\{ 13 \}} | 0.01318 ^{\{ 8 \}} | 0.01712 ^{\{ 14 \}} | |
\sum Ranks | 16 ^{\{ 1 \}} | 51 ^{\{ 5 \}} | 89 ^{\{ 10 \}} | 21 ^{\{ 2 \}} | 81 ^{\{ 8.5 \}} | 94 ^{\{ 11 \}} | 53 ^{\{ 7 \}} | 32 ^{\{ 3 \}} | 107 ^{\{ 13 \}} | 105 ^{\{ 12 \}} | 81 ^{\{ 8.5 \}} | 144 ^{\{ 16 \}} | 50 ^{\{ 4 \}} | 126 ^{\{ 15 \}} | 52 ^{\{ 6 \}} | 122 ^{\{ 14 \}} | |
200 | BIAS( \hat{\delta} ) | 0.09481 ^{\{ 2 \}} | 0.09919 ^{\{ 4 \}} | 0.11951 ^{\{ 12 \}} | 0.09731 ^{\{ 3 \}} | 0.11266 ^{\{ 9 \}} | 0.10231 ^{\{ 7 \}} | 0.10178 ^{\{ 6 \}} | 0.10627 ^{\{ 8 \}} | 0.12385 ^{\{ 13 \}} | 0.11765 ^{\{ 11 \}} | 0.11291 ^{\{ 10 \}} | 0.22789 ^{\{ 16 \}} | 0.09458 ^{\{ 1 \}} | 0.1277 ^{\{ 14 \}} | 0.10109 ^{\{ 5 \}} | 0.13459 ^{\{ 15 \}} |
BIAS( \hat{\gamma} ) | 0.03406 ^{\{ 1 \}} | 0.0368 ^{\{ 2 \}} | 0.04226 ^{\{ 10 \}} | 0.03738 ^{\{ 3 \}} | 0.04238 ^{\{ 11 \}} | 0.0608 ^{\{ 15 \}} | 0.03909 ^{\{ 5 \}} | 0.04036 ^{\{ 7 \}} | 0.04193 ^{\{ 9 \}} | 0.04674 ^{\{ 12 \}} | 0.04094 ^{\{ 8 \}} | 0.06563 ^{\{ 16 \}} | 0.03914 ^{\{ 6 \}} | 0.04865 ^{\{ 13 \}} | 0.03897 ^{\{ 4 \}} | 0.05024 ^{\{ 14 \}} | |
MSE( \hat{\delta} ) | 0.01449 ^{\{ 2 \}} | 0.01573 ^{\{ 3 \}} | 0.02331 ^{\{ 12 \}} | 0.01422 ^{\{ 1 \}} | 0.02019 ^{\{ 10 \}} | 0.01594 ^{\{ 5 \}} | 0.01647 ^{\{ 6 \}} | 0.01871 ^{\{ 8 \}} | 0.02608 ^{\{ 14 \}} | 0.02244 ^{\{ 11 \}} | 0.01954 ^{\{ 9 \}} | 0.08519 ^{\{ 16 \}} | 0.01677 ^{\{ 7 \}} | 0.0256 ^{\{ 13 \}} | 0.01579 ^{\{ 4 \}} | 0.02858 ^{\{ 15 \}} | |
MSE( \hat{\gamma} ) | 0.00188 ^{\{ 1 \}} | 0.00215 ^{\{ 3 \}} | 0.0029 ^{\{ 11 \}} | 0.00212 ^{\{ 2 \}} | 0.00277 ^{\{ 9 \}} | 0.00588 ^{\{ 15 \}} | 0.00242 ^{\{ 5 \}} | 0.00265 ^{\{ 8 \}} | 0.00286 ^{\{ 10 \}} | 0.00333 ^{\{ 12 \}} | 0.00259 ^{\{ 6 \}} | 0.00697 ^{\{ 16 \}} | 0.0026 ^{\{ 7 \}} | 0.00368 ^{\{ 13 \}} | 0.00236 ^{\{ 4 \}} | 0.00394 ^{\{ 14 \}} | |
MRE( \hat{\delta} ) | 0.0474 ^{\{ 2 \}} | 0.04959 ^{\{ 4 \}} | 0.05976 ^{\{ 12 \}} | 0.04865 ^{\{ 3 \}} | 0.05633 ^{\{ 9 \}} | 0.05116 ^{\{ 7 \}} | 0.05089 ^{\{ 6 \}} | 0.05313 ^{\{ 8 \}} | 0.06193 ^{\{ 13 \}} | 0.05882 ^{\{ 11 \}} | 0.05645 ^{\{ 10 \}} | 0.11394 ^{\{ 16 \}} | 0.04729 ^{\{ 1 \}} | 0.06385 ^{\{ 14 \}} | 0.05055 ^{\{ 5 \}} | 0.0673 ^{\{ 15 \}} | |
MRE( \hat{\gamma} ) | 0.04541 ^{\{ 1 \}} | 0.04906 ^{\{ 2 \}} | 0.05635 ^{\{ 10 \}} | 0.04984 ^{\{ 3 \}} | 0.0565 ^{\{ 11 \}} | 0.08107 ^{\{ 15 \}} | 0.05213 ^{\{ 5 \}} | 0.05382 ^{\{ 7 \}} | 0.05591 ^{\{ 9 \}} | 0.06232 ^{\{ 12 \}} | 0.05458 ^{\{ 8 \}} | 0.0875 ^{\{ 16 \}} | 0.05219 ^{\{ 6 \}} | 0.06487 ^{\{ 13 \}} | 0.05196 ^{\{ 4 \}} | 0.06698 ^{\{ 14 \}} | |
D_{abs} | 0.01776 ^{\{ 2 \}} | 0.01728 ^{\{ 1 \}} | 0.01877 ^{\{ 5 \}} | 0.01808 ^{\{ 3 \}} | 0.01905 ^{\{ 8 \}} | 0.02479 ^{\{ 14 \}} | 0.01893 ^{\{ 7 \}} | 0.0192 ^{\{ 9 \}} | 0.01888 ^{\{ 6 \}} | 0.02278 ^{\{ 12 \}} | 0.02095 ^{\{ 11 \}} | 0.02556 ^{\{ 16 \}} | 0.01809 ^{\{ 4 \}} | 0.02331 ^{\{ 13 \}} | 0.0194 ^{\{ 10 \}} | 0.02489 ^{\{ 15 \}} | |
D_{max} | 0.02854 ^{\{ 2 \}} | 0.02811 ^{\{ 1 \}} | 0.0311 ^{\{ 6 \}} | 0.02911 ^{\{ 3 \}} | 0.03125 ^{\{ 9 \}} | 0.04038 ^{\{ 15 \}} | 0.03059 ^{\{ 5 \}} | 0.03114 ^{\{ 8 \}} | 0.03133 ^{\{ 10 \}} | 0.03661 ^{\{ 12 \}} | 0.03376 ^{\{ 11 \}} | 0.04569 ^{\{ 16 \}} | 0.02932 ^{\{ 4 \}} | 0.03781 ^{\{ 13 \}} | 0.03112 ^{\{ 7 \}} | 0.04026 ^{\{ 14 \}} | |
ASAE | 0.00922 ^{\{ 2 \}} | 0.00948 ^{\{ 1 \}} | 0.01031 ^{\{ 6 \}} | 0.00924 ^{\{ 3 \}} | 0.0102 ^{\{ 9 \}} | 0.01022 ^{\{ 15 \}} | 0.00873 ^{\{ 5 \}} | 0.00939 ^{\{ 8 \}} | 0.01165 ^{\{ 10 \}} | 0.01246 ^{\{ 12 \}} | 0.01166 ^{\{ 11 \}} | 0.02331 ^{\{ 16 \}} | 0.01082 ^{\{ 4 \}} | 0.014 ^{\{ 13 \}} | 0.01085 ^{\{ 7 \}} | 0.01438 ^{\{ 14 \}} | |
\sum Ranks | 15 ^{\{ 1 \}} | 25 ^{\{ 3 \}} | 86 ^{\{ 10 \}} | 24 ^{\{ 2 \}} | 82 ^{\{ 8 \}} | 100 ^{\{ 12 \}} | 46 ^{\{ 5 \}} | 67 ^{\{ 7 \}} | 95 ^{\{ 11 \}} | 106 ^{\{ 13 \}} | 85 ^{\{ 9 \}} | 144 ^{\{ 16 \}} | 45 ^{\{ 4 \}} | 120 ^{\{ 14 \}} | 53 ^{\{ 6 \}} | 131 ^{\{ 15 \}} | |
300 | BIAS( \hat{\delta} ) | 0.08175 ^{\{ 4 \}} | 0.08302 ^{\{ 7 \}} | 0.09584 ^{\{ 11 \}} | 0.08295 ^{\{ 6 \}} | 0.0921 ^{\{ 10 \}} | 0.08157 ^{\{ 3 \}} | 0.08021 ^{\{ 2 \}} | 0.08213 ^{\{ 5 \}} | 0.10482 ^{\{ 13 \}} | 0.0976 ^{\{ 12 \}} | 0.08978 ^{\{ 9 \}} | 0.19508 ^{\{ 16 \}} | 0.07762 ^{\{ 1 \}} | 0.10747 ^{\{ 14 \}} | 0.08829 ^{\{ 8 \}} | 0.1103 ^{\{ 15 \}} |
BIAS( \hat{\gamma} ) | 0.02876 ^{\{ 1 \}} | 0.03099 ^{\{ 3 \}} | 0.0363 ^{\{ 10 \}} | 0.03037 ^{\{ 2 \}} | 0.03335 ^{\{ 9 \}} | 0.04885 ^{\{ 15 \}} | 0.03242 ^{\{ 5 \}} | 0.03128 ^{\{ 4 \}} | 0.03653 ^{\{ 11 \}} | 0.03663 ^{\{ 12 \}} | 0.03266 ^{\{ 7 \}} | 0.05563 ^{\{ 16 \}} | 0.03243 ^{\{ 6 \}} | 0.04199 ^{\{ 14 \}} | 0.03326 ^{\{ 8 \}} | 0.04146 ^{\{ 13 \}} | |
MSE( \hat{\delta} ) | 0.01057 ^{\{ 2.5 \}} | 0.01109 ^{\{ 6 \}} | 0.01455 ^{\{ 11 \}} | 0.01057 ^{\{ 2.5 \}} | 0.0136 ^{\{ 10 \}} | 0.01075 ^{\{ 4 \}} | 0.01013 ^{\{ 1 \}} | 0.01096 ^{\{ 5 \}} | 0.01746 ^{\{ 13 \}} | 0.01501 ^{\{ 12 \}} | 0.01281 ^{\{ 9 \}} | 0.06142 ^{\{ 16 \}} | 0.01129 ^{\{ 7 \}} | 0.01861 ^{\{ 14 \}} | 0.01214 ^{\{ 8 \}} | 0.0188 ^{\{ 15 \}} | |
MSE( \hat{\gamma} ) | 0.00135 ^{\{ 1 \}} | 0.00144 ^{\{ 3 \}} | 0.00207 ^{\{ 11 \}} | 0.0014 ^{\{ 2 \}} | 0.00178 ^{\{ 9 \}} | 0.0038 ^{\{ 15 \}} | 0.00168 ^{\{ 5 \}} | 0.00159 ^{\{ 4 \}} | 0.00206 ^{\{ 10 \}} | 0.0021 ^{\{ 12 \}} | 0.0017 ^{\{ 6.5 \}} | 0.00496 ^{\{ 16 \}} | 0.00174 ^{\{ 8 \}} | 0.00276 ^{\{ 14 \}} | 0.0017 ^{\{ 6.5 \}} | 0.00266 ^{\{ 13 \}} | |
MRE( \hat{\delta} ) | 0.04088 ^{\{ 4 \}} | 0.04151 ^{\{ 7 \}} | 0.04792 ^{\{ 11 \}} | 0.04148 ^{\{ 6 \}} | 0.04605 ^{\{ 10 \}} | 0.04078 ^{\{ 3 \}} | 0.04011 ^{\{ 2 \}} | 0.04106 ^{\{ 5 \}} | 0.05241 ^{\{ 13 \}} | 0.0488 ^{\{ 12 \}} | 0.04489 ^{\{ 9 \}} | 0.09754 ^{\{ 16 \}} | 0.03881 ^{\{ 1 \}} | 0.05373 ^{\{ 14 \}} | 0.04415 ^{\{ 8 \}} | 0.05515 ^{\{ 15 \}} | |
MRE( \hat{\gamma} ) | 0.03835 ^{\{ 1 \}} | 0.04132 ^{\{ 3 \}} | 0.04839 ^{\{ 10 \}} | 0.04049 ^{\{ 2 \}} | 0.04447 ^{\{ 9 \}} | 0.06514 ^{\{ 15 \}} | 0.04322 ^{\{ 5 \}} | 0.04171 ^{\{ 4 \}} | 0.0487 ^{\{ 11 \}} | 0.04883 ^{\{ 12 \}} | 0.04355 ^{\{ 7 \}} | 0.07418 ^{\{ 16 \}} | 0.04324 ^{\{ 6 \}} | 0.05599 ^{\{ 14 \}} | 0.04435 ^{\{ 8 \}} | 0.05528 ^{\{ 13 \}} | |
D_{abs} | 0.01451 ^{\{ 1 \}} | 0.01492 ^{\{ 4 \}} | 0.01568 ^{\{ 8 \}} | 0.01477 ^{\{ 3 \}} | 0.0151 ^{\{ 6 \}} | 0.01945 ^{\{ 13 \}} | 0.01508 ^{\{ 5 \}} | 0.01474 ^{\{ 2 \}} | 0.01613 ^{\{ 9 \}} | 0.01734 ^{\{ 12 \}} | 0.01679 ^{\{ 11 \}} | 0.02148 ^{\{ 16 \}} | 0.01519 ^{\{ 7 \}} | 0.02013 ^{\{ 15 \}} | 0.01651 ^{\{ 10 \}} | 0.01986 ^{\{ 14 \}} | |
D_{max} | 0.02346 ^{\{ 1 \}} | 0.02414 ^{\{ 4 \}} | 0.02588 ^{\{ 8 \}} | 0.02383 ^{\{ 2 \}} | 0.02478 ^{\{ 7 \}} | 0.03171 ^{\{ 13 \}} | 0.02446 ^{\{ 5 \}} | 0.02401 ^{\{ 3 \}} | 0.02676 ^{\{ 10 \}} | 0.02813 ^{\{ 12 \}} | 0.02693 ^{\{ 11 \}} | 0.03855 ^{\{ 16 \}} | 0.02454 ^{\{ 6 \}} | 0.03263 ^{\{ 15 \}} | 0.02665 ^{\{ 9 \}} | 0.03221 ^{\{ 14 \}} | |
ASAE | 0.00718 ^{\{ 1 \}} | 0.0073 ^{\{ 4 \}} | 0.0079 ^{\{ 8 \}} | 0.00719 ^{\{ 2 \}} | 0.00773 ^{\{ 7 \}} | 0.00792 ^{\{ 13 \}} | 0.00677 ^{\{ 5 \}} | 0.0072 ^{\{ 3 \}} | 0.00891 ^{\{ 10 \}} | 0.00949 ^{\{ 12 \}} | 0.00892 ^{\{ 11 \}} | 0.01824 ^{\{ 16 \}} | 0.0082 ^{\{ 6 \}} | 0.01104 ^{\{ 15 \}} | 0.00845 ^{\{ 9 \}} | 0.01089 ^{\{ 14 \}} | |
\sum Ranks | 17.5 ^{\{ 1 \}} | 42 ^{\{ 5 \}} | 87 ^{\{ 10 \}} | 28.5 ^{\{ 2 \}} | 76 ^{\{ 8 \}} | 89 ^{\{ 11 \}} | 31 ^{\{ 3 \}} | 36 ^{\{ 4 \}} | 101 ^{\{ 12 \}} | 109 ^{\{ 13 \}} | 81.5 ^{\{ 9 \}} | 144 ^{\{ 16 \}} | 51 ^{\{ 6 \}} | 129 ^{\{ 15 \}} | 75.5 ^{\{ 7 \}} | 126 ^{\{ 14 \}} | |
450 | BIAS( \hat{\delta} ) | 0.06326 ^{\{ 1 \}} | 0.06783 ^{\{ 5 \}} | 0.07928 ^{\{ 12 \}} | 0.06463 ^{\{ 3 \}} | 0.07265 ^{\{ 10 \}} | 0.06995 ^{\{ 8 \}} | 0.06595 ^{\{ 4 \}} | 0.06897 ^{\{ 6 \}} | 0.08425 ^{\{ 13 \}} | 0.07847 ^{\{ 11 \}} | 0.0712 ^{\{ 9 \}} | 0.16761 ^{\{ 16 \}} | 0.0639 ^{\{ 2 \}} | 0.09041 ^{\{ 15 \}} | 0.06952 ^{\{ 7 \}} | 0.08633 ^{\{ 14 \}} |
BIAS( \hat{\gamma} ) | 0.02415 ^{\{ 2 \}} | 0.02646 ^{\{ 6 \}} | 0.02954 ^{\{ 11 \}} | 0.02364 ^{\{ 1 \}} | 0.02695 ^{\{ 7 \}} | 0.04121 ^{\{ 15 \}} | 0.02631 ^{\{ 5 \}} | 0.02548 ^{\{ 3 \}} | 0.02907 ^{\{ 10 \}} | 0.03157 ^{\{ 12 \}} | 0.02792 ^{\{ 9 \}} | 0.04678 ^{\{ 16 \}} | 0.02769 ^{\{ 8 \}} | 0.03356 ^{\{ 13 \}} | 0.02597 ^{\{ 4 \}} | 0.03406 ^{\{ 14 \}} | |
MSE( \hat{\delta} ) | 0.00636 ^{\{ 2 \}} | 0.00728 ^{\{ 4 \}} | 0.00986 ^{\{ 11 \}} | 0.00632 ^{\{ 1 \}} | 0.00858 ^{\{ 10 \}} | 0.00755 ^{\{ 7 \}} | 0.0067 ^{\{ 3 \}} | 0.0074 ^{\{ 6 \}} | 0.01125 ^{\{ 13 \}} | 0.01001 ^{\{ 12 \}} | 0.00807 ^{\{ 9 \}} | 0.04645 ^{\{ 16 \}} | 0.00729 ^{\{ 5 \}} | 0.01315 ^{\{ 15 \}} | 0.00764 ^{\{ 8 \}} | 0.01145 ^{\{ 14 \}} | |
MSE( \hat{\gamma} ) | 0.00094 ^{\{ 2 \}} | 0.00109 ^{\{ 5 \}} | 0.0014 ^{\{ 11 \}} | 0.00087 ^{\{ 1 \}} | 0.00117 ^{\{ 7 \}} | 0.00268 ^{\{ 15 \}} | 0.00112 ^{\{ 6 \}} | 0.00102 ^{\{ 3 \}} | 0.00134 ^{\{ 10 \}} | 0.00149 ^{\{ 12 \}} | 0.00121 ^{\{ 8 \}} | 0.00357 ^{\{ 16 \}} | 0.00126 ^{\{ 9 \}} | 0.00178 ^{\{ 13 \}} | 0.00106 ^{\{ 4 \}} | 0.00182 ^{\{ 14 \}} | |
MRE( \hat{\delta} ) | 0.03163 ^{\{ 1 \}} | 0.03391 ^{\{ 5 \}} | 0.03964 ^{\{ 12 \}} | 0.03231 ^{\{ 3 \}} | 0.03632 ^{\{ 10 \}} | 0.03497 ^{\{ 8 \}} | 0.03298 ^{\{ 4 \}} | 0.03448 ^{\{ 6 \}} | 0.04212 ^{\{ 13 \}} | 0.03923 ^{\{ 11 \}} | 0.0356 ^{\{ 9 \}} | 0.0838 ^{\{ 16 \}} | 0.03195 ^{\{ 2 \}} | 0.0452 ^{\{ 15 \}} | 0.03476 ^{\{ 7 \}} | 0.04317 ^{\{ 14 \}} | |
MRE( \hat{\gamma} ) | 0.03221 ^{\{ 2 \}} | 0.03528 ^{\{ 6 \}} | 0.03939 ^{\{ 11 \}} | 0.03151 ^{\{ 1 \}} | 0.03594 ^{\{ 7 \}} | 0.05495 ^{\{ 15 \}} | 0.03508 ^{\{ 5 \}} | 0.03398 ^{\{ 3 \}} | 0.03876 ^{\{ 10 \}} | 0.04209 ^{\{ 12 \}} | 0.03723 ^{\{ 9 \}} | 0.06237 ^{\{ 16 \}} | 0.03693 ^{\{ 8 \}} | 0.04475 ^{\{ 13 \}} | 0.03463 ^{\{ 4 \}} | 0.04542 ^{\{ 14 \}} | |
D_{abs} | 0.0121 ^{\{ 3 \}} | 0.01181 ^{\{ 1 \}} | 0.01305 ^{\{ 10 \}} | 0.01242 ^{\{ 6 \}} | 0.01266 ^{\{ 8 \}} | 0.01607 ^{\{ 13 \}} | 0.01218 ^{\{ 4 \}} | 0.01194 ^{\{ 2 \}} | 0.01264 ^{\{ 7 \}} | 0.01499 ^{\{ 12 \}} | 0.01383 ^{\{ 11 \}} | 0.01823 ^{\{ 16 \}} | 0.01233 ^{\{ 5 \}} | 0.01656 ^{\{ 15 \}} | 0.0127 ^{\{ 9 \}} | 0.01614 ^{\{ 14 \}} | |
D_{max} | 0.01946 ^{\{ 2 \}} | 0.01932 ^{\{ 1 \}} | 0.02156 ^{\{ 10 \}} | 0.01984 ^{\{ 5 \}} | 0.02063 ^{\{ 8 \}} | 0.02631 ^{\{ 14 \}} | 0.01983 ^{\{ 4 \}} | 0.01948 ^{\{ 3 \}} | 0.02102 ^{\{ 9 \}} | 0.02419 ^{\{ 12 \}} | 0.02228 ^{\{ 11 \}} | 0.03279 ^{\{ 16 \}} | 0.02009 ^{\{ 6 \}} | 0.0268 ^{\{ 15 \}} | 0.02052 ^{\{ 7 \}} | 0.02612 ^{\{ 13 \}} | |
ASAE | 0.00557 ^{\{ 2 \}} | 0.00566 ^{\{ 1 \}} | 0.00609 ^{\{ 10 \}} | 0.00547 ^{\{ 5 \}} | 0.00601 ^{\{ 8 \}} | 0.00632 ^{\{ 14 \}} | 0.00522 ^{\{ 4 \}} | 0.00555 ^{\{ 3 \}} | 0.00684 ^{\{ 9 \}} | 0.00742 ^{\{ 12 \}} | 0.00691 ^{\{ 11 \}} | 0.01457 ^{\{ 16 \}} | 0.0063 ^{\{ 6 \}} | 0.00851 ^{\{ 15 \}} | 0.00659 ^{\{ 7 \}} | 0.00841 ^{\{ 13 \}} | |
\sum Ranks | 19 ^{\{ 1 \}} | 38 ^{\{ 5 \}} | 95 ^{\{ 10 \}} | 23 ^{\{ 2 \}} | 73 ^{\{ 8 \}} | 104 ^{\{ 12 \}} | 36 ^{\{ 4 \}} | 35 ^{\{ 3 \}} | 96 ^{\{ 11 \}} | 107 ^{\{ 13 \}} | 87 ^{\{ 9 \}} | 144 ^{\{ 16 \}} | 53 ^{\{ 6 \}} | 129 ^{\{ 15 \}} | 60 ^{\{ 7 \}} | 125 ^{\{ 14 \}} |
n | Est. | MLE | ADE | CVME | MPSE | OLSE | PCE | RTADE | WLSE | LTADE | MSADE | MSALDE | ADSOE | KE | MSSD | MSSLD | MSLND |
20 | BIAS( \hat{\delta} ) | 0.77168 ^{\{ 8 \}} | 0.76809 ^{\{ 7 \}} | 0.84661 ^{\{ 12 \}} | 0.71596 ^{\{ 4 \}} | 0.80149 ^{\{ 11 \}} | 0.70339 ^{\{ 3 \}} | 0.78376 ^{\{ 10 \}} | 0.76067 ^{\{ 6 \}} | 0.91526 ^{\{ 15 \}} | 0.59993 ^{\{ 2 \}} | 0.77341 ^{\{ 9 \}} | 1.05303 ^{\{ 16 \}} | 0.08104 ^{\{ 1 \}} | 0.87407 ^{\{ 14 \}} | 0.72763 ^{\{ 5 \}} | 0.87105 ^{\{ 13 \}} |
BIAS( \hat{\gamma} ) | 0.07775 ^{\{ 3 \}} | 0.07744 ^{\{ 2 \}} | 0.08311 ^{\{ 7 \}} | 0.08034 ^{\{ 4 \}} | 0.08821 ^{\{ 10 \}} | 0.11802 ^{\{ 16 \}} | 0.08311 ^{\{ 7 \}} | 0.08311 ^{\{ 7 \}} | 0.0899 ^{\{ 13 \}} | 0.08642 ^{\{ 9 \}} | 0.08946 ^{\{ 12 \}} | 0.08937 ^{\{ 11 \}} | 0.05695 ^{\{ 1 \}} | 0.09847 ^{\{ 14 \}} | 0.08049 ^{\{ 5 \}} | 0.10753 ^{\{ 15 \}} | |
MSE( \hat{\delta} ) | 1.06897 ^{\{ 12 \}} | 1.02191 ^{\{ 9 \}} | 1.21392 ^{\{ 14 \}} | 0.75581 ^{\{ 4 \}} | 1.02667 ^{\{ 11 \}} | 0.68575 ^{\{ 2 \}} | 1.07332 ^{\{ 13 \}} | 0.95724 ^{\{ 7 \}} | 1.33596 ^{\{ 15 \}} | 0.70539 ^{\{ 3 \}} | 0.9149 ^{\{ 6 \}} | 1.704 ^{\{ 16 \}} | 0.04444 ^{\{ 1 \}} | 1.02214 ^{\{ 10 \}} | 0.88171 ^{\{ 5 \}} | 0.99335 ^{\{ 8 \}} | |
MSE( \hat{\gamma} ) | 0.00998 ^{\{ 4 \}} | 0.00969 ^{\{ 3 \}} | 0.01129 ^{\{ 7 \}} | 0.00947 ^{\{ 2 \}} | 0.01163 ^{\{ 10 \}} | 0.02198 ^{\{ 16 \}} | 0.01154 ^{\{ 9 \}} | 0.01096 ^{\{ 6 \}} | 0.01247 ^{\{ 13 \}} | 0.01137 ^{\{ 8 \}} | 0.01187 ^{\{ 11 \}} | 0.01205 ^{\{ 12 \}} | 0.0054 ^{\{ 1 \}} | 0.01413 ^{\{ 14 \}} | 0.00999 ^{\{ 5 \}} | 0.01611 ^{\{ 15 \}} | |
MRE( \hat{\delta} ) | 0.22048 ^{\{ 8 \}} | 0.21945 ^{\{ 7 \}} | 0.24189 ^{\{ 12 \}} | 0.20456 ^{\{ 4 \}} | 0.229 ^{\{ 11 \}} | 0.20097 ^{\{ 3 \}} | 0.22393 ^{\{ 10 \}} | 0.21733 ^{\{ 6 \}} | 0.2615 ^{\{ 15 \}} | 0.17141 ^{\{ 2 \}} | 0.22097 ^{\{ 9 \}} | 0.30087 ^{\{ 16 \}} | 0.02315 ^{\{ 1 \}} | 0.24973 ^{\{ 14 \}} | 0.20789 ^{\{ 5 \}} | 0.24887 ^{\{ 13 \}} | |
MRE( \hat{\gamma} ) | 0.15551 ^{\{ 3 \}} | 0.15488 ^{\{ 2 \}} | 0.16622 ^{\{ 7 \}} | 0.16068 ^{\{ 4 \}} | 0.17641 ^{\{ 10 \}} | 0.23603 ^{\{ 16 \}} | 0.16623 ^{\{ 8 \}} | 0.16621 ^{\{ 6 \}} | 0.1798 ^{\{ 13 \}} | 0.17283 ^{\{ 9 \}} | 0.17893 ^{\{ 12 \}} | 0.17875 ^{\{ 11 \}} | 0.1139 ^{\{ 1 \}} | 0.19694 ^{\{ 14 \}} | 0.16098 ^{\{ 5 \}} | 0.21507 ^{\{ 15 \}} | |
D_{abs} | 0.05534 ^{\{ 2 \}} | 0.05541 ^{\{ 3 \}} | 0.05593 ^{\{ 5 \}} | 0.05852 ^{\{ 7 \}} | 0.06269 ^{\{ 11 \}} | 0.0826 ^{\{ 16 \}} | 0.05677 ^{\{ 6 \}} | 0.05553 ^{\{ 4 \}} | 0.05914 ^{\{ 8 \}} | 0.0676 ^{\{ 12 \}} | 0.06827 ^{\{ 13 \}} | 0.06145 ^{\{ 10 \}} | 0.05199 ^{\{ 1 \}} | 0.0697 ^{\{ 14 \}} | 0.05965 ^{\{ 9 \}} | 0.07496 ^{\{ 15 \}} | |
D_{max} | 0.08925 ^{\{ 3.5 \}} | 0.08825 ^{\{ 2 \}} | 0.09159 ^{\{ 6 \}} | 0.09215 ^{\{ 7 \}} | 0.09924 ^{\{ 10 \}} | 0.13153 ^{\{ 16 \}} | 0.09117 ^{\{ 5 \}} | 0.08925 ^{\{ 3.5 \}} | 0.09676 ^{\{ 9 \}} | 0.10384 ^{\{ 12 \}} | 0.10725 ^{\{ 13 \}} | 0.1017 ^{\{ 11 \}} | 0.07619 ^{\{ 1 \}} | 0.11139 ^{\{ 14 \}} | 0.09445 ^{\{ 8 \}} | 0.11954 ^{\{ 15 \}} | |
ASAE | 0.04532 ^{\{ 3.5 \}} | 0.04375 ^{\{ 2 \}} | 0.04621 ^{\{ 6 \}} | 0.04116 ^{\{ 7 \}} | 0.05013 ^{\{ 10 \}} | 0.03245 ^{\{ 16 \}} | 0.03944 ^{\{ 5 \}} | 0.04351 ^{\{ 3.5 \}} | 0.06002 ^{\{ 9 \}} | 0.04967 ^{\{ 12 \}} | 0.04615 ^{\{ 13 \}} | 0.09029 ^{\{ 11 \}} | 0.05507 ^{\{ 1 \}} | 0.06957 ^{\{ 14 \}} | 0.04822 ^{\{ 8 \}} | 0.07438 ^{\{ 15 \}} | |
\sum Ranks | 49.5 ^{\{ 4.5 \}} | 40 ^{\{ 3 \}} | 78 ^{\{ 9 \}} | 39 ^{\{ 2 \}} | 95 ^{\{ 12 \}} | 89 ^{\{ 10 \}} | 70 ^{\{ 8 \}} | 49.5 ^{\{ 4.5 \}} | 114 ^{\{ 13 \}} | 67 ^{\{ 7 \}} | 92 ^{\{ 11 \}} | 119 ^{\{ 14 \}} | 20 ^{\{ 1 \}} | 122 ^{\{ 15 \}} | 56 ^{\{ 6 \}} | 124 ^{\{ 16 \}} | |
70 | BIAS( \hat{\delta} ) | 0.38708 ^{\{ 2 \}} | 0.40421 ^{\{ 6 \}} | 0.51253 ^{\{ 13 \}} | 0.38794 ^{\{ 3 \}} | 0.44381 ^{\{ 10 \}} | 0.52357 ^{\{ 14 \}} | 0.39876 ^{\{ 5 \}} | 0.43209 ^{\{ 9 \}} | 0.54517 ^{\{ 15 \}} | 0.39048 ^{\{ 4 \}} | 0.42867 ^{\{ 8 \}} | 0.82893 ^{\{ 16 \}} | 0.04895 ^{\{ 1 \}} | 0.48272 ^{\{ 12 \}} | 0.40594 ^{\{ 7 \}} | 0.46834 ^{\{ 11 \}} |
BIAS( \hat{\gamma} ) | 0.04102 ^{\{ 2 \}} | 0.04177 ^{\{ 3 \}} | 0.05133 ^{\{ 12 \}} | 0.04363 ^{\{ 4 \}} | 0.04774 ^{\{ 9 \}} | 0.08577 ^{\{ 16 \}} | 0.04446 ^{\{ 5 \}} | 0.04528 ^{\{ 6 \}} | 0.05104 ^{\{ 11 \}} | 0.04919 ^{\{ 10 \}} | 0.04746 ^{\{ 8 \}} | 0.06662 ^{\{ 15 \}} | 0.03025 ^{\{ 1 \}} | 0.05524 ^{\{ 13 \}} | 0.04573 ^{\{ 7 \}} | 0.05577 ^{\{ 14 \}} | |
MSE( \hat{\delta} ) | 0.26609 ^{\{ 4 \}} | 0.27429 ^{\{ 5 \}} | 0.45976 ^{\{ 14 \}} | 0.2416 ^{\{ 2 \}} | 0.3468 ^{\{ 12 \}} | 0.41142 ^{\{ 13 \}} | 0.28375 ^{\{ 6 \}} | 0.33729 ^{\{ 10 \}} | 0.50461 ^{\{ 15 \}} | 0.28832 ^{\{ 7 \}} | 0.30255 ^{\{ 8 \}} | 1.1095 ^{\{ 16 \}} | 0.01393 ^{\{ 1 \}} | 0.33799 ^{\{ 11 \}} | 0.25368 ^{\{ 3 \}} | 0.32081 ^{\{ 9 \}} | |
MSE( \hat{\gamma} ) | 0.00277 ^{\{ 3 \}} | 0.00273 ^{\{ 2 \}} | 0.00412 ^{\{ 12 \}} | 0.00282 ^{\{ 4 \}} | 0.0036 ^{\{ 8.5 \}} | 0.01232 ^{\{ 16 \}} | 0.00322 ^{\{ 6 \}} | 0.00331 ^{\{ 7 \}} | 0.00403 ^{\{ 11 \}} | 0.00377 ^{\{ 10 \}} | 0.0036 ^{\{ 8.5 \}} | 0.00664 ^{\{ 15 \}} | 0.00148 ^{\{ 1 \}} | 0.00468 ^{\{ 13 \}} | 0.00314 ^{\{ 5 \}} | 0.00483 ^{\{ 14 \}} | |
MRE( \hat{\delta} ) | 0.11059 ^{\{ 2 \}} | 0.11549 ^{\{ 6 \}} | 0.14644 ^{\{ 13 \}} | 0.11084 ^{\{ 3 \}} | 0.1268 ^{\{ 10 \}} | 0.14959 ^{\{ 14 \}} | 0.11393 ^{\{ 5 \}} | 0.12345 ^{\{ 9 \}} | 0.15576 ^{\{ 15 \}} | 0.11156 ^{\{ 4 \}} | 0.12248 ^{\{ 8 \}} | 0.23684 ^{\{ 16 \}} | 0.01399 ^{\{ 1 \}} | 0.13792 ^{\{ 12 \}} | 0.11598 ^{\{ 7 \}} | 0.13381 ^{\{ 11 \}} | |
MRE( \hat{\gamma} ) | 0.08205 ^{\{ 2 \}} | 0.08354 ^{\{ 3 \}} | 0.10265 ^{\{ 12 \}} | 0.08726 ^{\{ 4 \}} | 0.09548 ^{\{ 9 \}} | 0.17154 ^{\{ 16 \}} | 0.08893 ^{\{ 5 \}} | 0.09056 ^{\{ 6 \}} | 0.10208 ^{\{ 11 \}} | 0.09837 ^{\{ 10 \}} | 0.09491 ^{\{ 8 \}} | 0.13324 ^{\{ 15 \}} | 0.0605 ^{\{ 1 \}} | 0.11047 ^{\{ 13 \}} | 0.09145 ^{\{ 7 \}} | 0.11155 ^{\{ 14 \}} | |
D_{abs} | 0.0317 ^{\{ 6 \}} | 0.03027 ^{\{ 2 \}} | 0.03218 ^{\{ 8 \}} | 0.03068 ^{\{ 3 \}} | 0.03193 ^{\{ 7 \}} | 0.0563 ^{\{ 16 \}} | 0.03165 ^{\{ 5 \}} | 0.03137 ^{\{ 4 \}} | 0.03254 ^{\{ 9 \}} | 0.03697 ^{\{ 12 \}} | 0.03626 ^{\{ 11 \}} | 0.03957 ^{\{ 14 \}} | 0.02778 ^{\{ 1 \}} | 0.03987 ^{\{ 15 \}} | 0.0337 ^{\{ 10 \}} | 0.03879 ^{\{ 13 \}} | |
D_{max} | 0.05069 ^{\{ 4 \}} | 0.049 ^{\{ 2 \}} | 0.0534 ^{\{ 8 \}} | 0.04924 ^{\{ 3 \}} | 0.0517 ^{\{ 7 \}} | 0.0913 ^{\{ 16 \}} | 0.05088 ^{\{ 5 \}} | 0.05097 ^{\{ 6 \}} | 0.0543 ^{\{ 10 \}} | 0.05856 ^{\{ 12 \}} | 0.05761 ^{\{ 11 \}} | 0.0694 ^{\{ 15 \}} | 0.04102 ^{\{ 1 \}} | 0.06417 ^{\{ 14 \}} | 0.05397 ^{\{ 9 \}} | 0.06242 ^{\{ 13 \}} | |
ASAE | 0.01744 ^{\{ 4 \}} | 0.01873 ^{\{ 2 \}} | 0.01989 ^{\{ 8 \}} | 0.01707 ^{\{ 3 \}} | 0.02058 ^{\{ 7 \}} | 0.01739 ^{\{ 16 \}} | 0.01678 ^{\{ 5 \}} | 0.01793 ^{\{ 6 \}} | 0.0238 ^{\{ 10 \}} | 0.02182 ^{\{ 12 \}} | 0.02093 ^{\{ 11 \}} | 0.04535 ^{\{ 15 \}} | 0.02255 ^{\{ 1 \}} | 0.02846 ^{\{ 14 \}} | 0.0197 ^{\{ 9 \}} | 0.02686 ^{\{ 13 \}} | |
\sum Ranks | 29 ^{\{ 3 \}} | 35 ^{\{ 4 \}} | 100 ^{\{ 11 \}} | 28 ^{\{ 2 \}} | 81.5 ^{\{ 10 \}} | 124 ^{\{ 15 \}} | 43 ^{\{ 5 \}} | 62 ^{\{ 6.5 \}} | 110 ^{\{ 12 \}} | 80 ^{\{ 8 \}} | 80.5 ^{\{ 9 \}} | 138 ^{\{ 16 \}} | 20 ^{\{ 1 \}} | 118 ^{\{ 14 \}} | 62 ^{\{ 6.5 \}} | 113 ^{\{ 13 \}} | |
150 | BIAS( \hat{\delta} ) | 0.25741 ^{\{ 3 \}} | 0.28723 ^{\{ 9 \}} | 0.33028 ^{\{ 11 \}} | 0.24728 ^{\{ 2 \}} | 0.32023 ^{\{ 10 \}} | 0.37796 ^{\{ 15 \}} | 0.27298 ^{\{ 4 \}} | 0.28018 ^{\{ 7 \}} | 0.37038 ^{\{ 14 \}} | 0.28436 ^{\{ 8 \}} | 0.27735 ^{\{ 6 \}} | 0.60911 ^{\{ 16 \}} | 0.04457 ^{\{ 1 \}} | 0.34047 ^{\{ 13 \}} | 0.27329 ^{\{ 5 \}} | 0.33688 ^{\{ 12 \}} |
BIAS( \hat{\gamma} ) | 0.02775 ^{\{ 3 \}} | 0.02945 ^{\{ 4 \}} | 0.03249 ^{\{ 9 \}} | 0.02752 ^{\{ 2 \}} | 0.03128 ^{\{ 6 \}} | 0.0686 ^{\{ 16 \}} | 0.03289 ^{\{ 10 \}} | 0.03047 ^{\{ 5 \}} | 0.03433 ^{\{ 12 \}} | 0.03355 ^{\{ 11 \}} | 0.0316 ^{\{ 8 \}} | 0.04711 ^{\{ 15 \}} | 0.02136 ^{\{ 1 \}} | 0.03692 ^{\{ 13 \}} | 0.03156 ^{\{ 7 \}} | 0.03824 ^{\{ 14 \}} | |
MSE( \hat{\delta} ) | 0.1146 ^{\{ 4 \}} | 0.13115 ^{\{ 8 \}} | 0.18661 ^{\{ 13 \}} | 0.09363 ^{\{ 2 \}} | 0.16818 ^{\{ 10 \}} | 0.21627 ^{\{ 14 \}} | 0.12654 ^{\{ 6 \}} | 0.12824 ^{\{ 7 \}} | 0.2379 ^{\{ 15 \}} | 0.15009 ^{\{ 9 \}} | 0.12349 ^{\{ 5 \}} | 0.60562 ^{\{ 16 \}} | 0.00764 ^{\{ 1 \}} | 0.16919 ^{\{ 11 \}} | 0.11448 ^{\{ 3 \}} | 0.1759 ^{\{ 12 \}} | |
MSE( \hat{\gamma} ) | 0.00128 ^{\{ 3 \}} | 0.00136 ^{\{ 4 \}} | 0.00171 ^{\{ 9.5 \}} | 0.00115 ^{\{ 2 \}} | 0.0016 ^{\{ 8 \}} | 0.00786 ^{\{ 16 \}} | 0.00171 ^{\{ 9.5 \}} | 0.00146 ^{\{ 5 \}} | 0.00193 ^{\{ 12 \}} | 0.00181 ^{\{ 11 \}} | 0.00154 ^{\{ 7 \}} | 0.00345 ^{\{ 15 \}} | 0.00073 ^{\{ 1 \}} | 0.00213 ^{\{ 13 \}} | 0.0015 ^{\{ 6 \}} | 0.00226 ^{\{ 14 \}} | |
MRE( \hat{\delta} ) | 0.07355 ^{\{ 3 \}} | 0.08206 ^{\{ 9 \}} | 0.09437 ^{\{ 11 \}} | 0.07065 ^{\{ 2 \}} | 0.09149 ^{\{ 10 \}} | 0.10799 ^{\{ 15 \}} | 0.078 ^{\{ 4 \}} | 0.08005 ^{\{ 7 \}} | 0.10582 ^{\{ 14 \}} | 0.08124 ^{\{ 8 \}} | 0.07924 ^{\{ 6 \}} | 0.17403 ^{\{ 16 \}} | 0.01274 ^{\{ 1 \}} | 0.09728 ^{\{ 13 \}} | 0.07808 ^{\{ 5 \}} | 0.09625 ^{\{ 12 \}} | |
MRE( \hat{\gamma} ) | 0.0555 ^{\{ 3 \}} | 0.0589 ^{\{ 4 \}} | 0.06498 ^{\{ 9 \}} | 0.05505 ^{\{ 2 \}} | 0.06256 ^{\{ 6 \}} | 0.13721 ^{\{ 16 \}} | 0.06579 ^{\{ 10 \}} | 0.06095 ^{\{ 5 \}} | 0.06866 ^{\{ 12 \}} | 0.0671 ^{\{ 11 \}} | 0.0632 ^{\{ 8 \}} | 0.09421 ^{\{ 15 \}} | 0.04272 ^{\{ 1 \}} | 0.07383 ^{\{ 13 \}} | 0.06313 ^{\{ 7 \}} | 0.07647 ^{\{ 14 \}} | |
D_{abs} | 0.02119 ^{\{ 4 \}} | 0.02149 ^{\{ 6 \}} | 0.02144 ^{\{ 5 \}} | 0.0207 ^{\{ 2 \}} | 0.02185 ^{\{ 7 \}} | 0.04339 ^{\{ 16 \}} | 0.02193 ^{\{ 8 \}} | 0.02111 ^{\{ 3 \}} | 0.02232 ^{\{ 9 \}} | 0.02592 ^{\{ 12 \}} | 0.02395 ^{\{ 10 \}} | 0.02881 ^{\{ 15 \}} | 0.01951 ^{\{ 1 \}} | 0.02737 ^{\{ 14 \}} | 0.0241 ^{\{ 11 \}} | 0.02658 ^{\{ 13 \}} | |
D_{max} | 0.03411 ^{\{ 3 \}} | 0.0349 ^{\{ 5 \}} | 0.03544 ^{\{ 6 \}} | 0.03309 ^{\{ 2 \}} | 0.0358 ^{\{ 8 \}} | 0.07038 ^{\{ 16 \}} | 0.03555 ^{\{ 7 \}} | 0.03433 ^{\{ 4 \}} | 0.03727 ^{\{ 9 \}} | 0.04136 ^{\{ 12 \}} | 0.03834 ^{\{ 10 \}} | 0.05089 ^{\{ 15 \}} | 0.02905 ^{\{ 1 \}} | 0.04409 ^{\{ 14 \}} | 0.03852 ^{\{ 11 \}} | 0.04319 ^{\{ 13 \}} | |
ASAE | 0.01006 ^{\{ 3 \}} | 0.01056 ^{\{ 5 \}} | 0.01175 ^{\{ 6 \}} | 0.00993 ^{\{ 2 \}} | 0.01159 ^{\{ 8 \}} | 0.01117 ^{\{ 16 \}} | 0.00977 ^{\{ 7 \}} | 0.01073 ^{\{ 4 \}} | 0.01372 ^{\{ 9 \}} | 0.01276 ^{\{ 12 \}} | 0.01202 ^{\{ 10 \}} | 0.0259 ^{\{ 15 \}} | 0.01249 ^{\{ 1 \}} | 0.01489 ^{\{ 14 \}} | 0.01124 ^{\{ 11 \}} | 0.01515 ^{\{ 13 \}} | |
\sum Ranks | 29 ^{\{ 3 \}} | 53 ^{\{ 5 \}} | 82.5 ^{\{ 10 \}} | 18 ^{\{ 1 \}} | 73 ^{\{ 9 \}} | 130 ^{\{ 15 \}} | 59.5 ^{\{ 6 \}} | 48 ^{\{ 4 \}} | 110 ^{\{ 12 \}} | 94 ^{\{ 11 \}} | 70 ^{\{ 8 \}} | 139 ^{\{ 16 \}} | 19 ^{\{ 2 \}} | 118 ^{\{ 13 \}} | 62 ^{\{ 7 \}} | 119 ^{\{ 14 \}} | |
200 | BIAS( \hat{\delta} ) | 0.22738 ^{\{ 3 \}} | 0.24049 ^{\{ 5 \}} | 0.28374 ^{\{ 11 \}} | 0.22633 ^{\{ 2 \}} | 0.26335 ^{\{ 10 \}} | 0.32776 ^{\{ 15 \}} | 0.24123 ^{\{ 7 \}} | 0.24084 ^{\{ 6 \}} | 0.31328 ^{\{ 14 \}} | 0.23175 ^{\{ 4 \}} | 0.25422 ^{\{ 9 \}} | 0.55912 ^{\{ 16 \}} | 0.04407 ^{\{ 1 \}} | 0.29393 ^{\{ 13 \}} | 0.24363 ^{\{ 8 \}} | 0.29313 ^{\{ 12 \}} |
BIAS( \hat{\gamma} ) | 0.02338 ^{\{ 2 \}} | 0.02475 ^{\{ 5 \}} | 0.02843 ^{\{ 10 \}} | 0.02441 ^{\{ 3 \}} | 0.02825 ^{\{ 9 \}} | 0.06116 ^{\{ 16 \}} | 0.02619 ^{\{ 6 \}} | 0.02451 ^{\{ 4 \}} | 0.02883 ^{\{ 11 \}} | 0.02977 ^{\{ 12 \}} | 0.0278 ^{\{ 8 \}} | 0.0442 ^{\{ 15 \}} | 0.01918 ^{\{ 1 \}} | 0.03334 ^{\{ 14 \}} | 0.02696 ^{\{ 7 \}} | 0.03238 ^{\{ 13 \}} | |
MSE( \hat{\delta} ) | 0.08379 ^{\{ 3 \}} | 0.09431 ^{\{ 5 \}} | 0.13122 ^{\{ 12 \}} | 0.07612 ^{\{ 2 \}} | 0.11804 ^{\{ 10 \}} | 0.16318 ^{\{ 15 \}} | 0.09553 ^{\{ 7 \}} | 0.09299 ^{\{ 4 \}} | 0.16137 ^{\{ 14 \}} | 0.10525 ^{\{ 9 \}} | 0.10263 ^{\{ 8 \}} | 0.50196 ^{\{ 16 \}} | 0.00749 ^{\{ 1 \}} | 0.13579 ^{\{ 13 \}} | 0.09516 ^{\{ 6 \}} | 0.13114 ^{\{ 11 \}} | |
MSE( \hat{\gamma} ) | 0.00087 ^{\{ 2 \}} | 0.00103 ^{\{ 5 \}} | 0.00131 ^{\{ 10 \}} | 0.00093 ^{\{ 3 \}} | 0.00129 ^{\{ 9 \}} | 0.00644 ^{\{ 16 \}} | 0.00109 ^{\{ 6 \}} | 0.00099 ^{\{ 4 \}} | 0.00133 ^{\{ 11 \}} | 0.00139 ^{\{ 12 \}} | 0.00122 ^{\{ 8 \}} | 0.00315 ^{\{ 15 \}} | 0.00059 ^{\{ 1 \}} | 0.00174 ^{\{ 14 \}} | 0.00116 ^{\{ 7 \}} | 0.00163 ^{\{ 13 \}} | |
MRE( \hat{\delta} ) | 0.06497 ^{\{ 3 \}} | 0.06871 ^{\{ 5 \}} | 0.08107 ^{\{ 11 \}} | 0.06467 ^{\{ 2 \}} | 0.07524 ^{\{ 10 \}} | 0.09365 ^{\{ 15 \}} | 0.06892 ^{\{ 7 \}} | 0.06881 ^{\{ 6 \}} | 0.08951 ^{\{ 14 \}} | 0.06621 ^{\{ 4 \}} | 0.07263 ^{\{ 9 \}} | 0.15975 ^{\{ 16 \}} | 0.01259 ^{\{ 1 \}} | 0.08398 ^{\{ 13 \}} | 0.06961 ^{\{ 8 \}} | 0.08375 ^{\{ 12 \}} | |
MRE( \hat{\gamma} ) | 0.04677 ^{\{ 2 \}} | 0.04949 ^{\{ 5 \}} | 0.05686 ^{\{ 10 \}} | 0.04883 ^{\{ 3 \}} | 0.0565 ^{\{ 9 \}} | 0.12232 ^{\{ 16 \}} | 0.05238 ^{\{ 6 \}} | 0.04901 ^{\{ 4 \}} | 0.05766 ^{\{ 11 \}} | 0.05954 ^{\{ 12 \}} | 0.05559 ^{\{ 8 \}} | 0.0884 ^{\{ 15 \}} | 0.03837 ^{\{ 1 \}} | 0.06669 ^{\{ 14 \}} | 0.05391 ^{\{ 7 \}} | 0.06477 ^{\{ 13 \}} | |
D_{abs} | 0.01842 ^{\{ 4 \}} | 0.01854 ^{\{ 5 \}} | 0.019 ^{\{ 8.5 \}} | 0.0174 ^{\{ 1 \}} | 0.019 ^{\{ 8.5 \}} | 0.03963 ^{\{ 16 \}} | 0.01868 ^{\{ 6 \}} | 0.01819 ^{\{ 3 \}} | 0.01897 ^{\{ 7 \}} | 0.02249 ^{\{ 12 \}} | 0.02071 ^{\{ 11 \}} | 0.02579 ^{\{ 15 \}} | 0.01775 ^{\{ 2 \}} | 0.02459 ^{\{ 14 \}} | 0.01959 ^{\{ 10 \}} | 0.02407 ^{\{ 13 \}} | |
D_{max} | 0.02964 ^{\{ 4 \}} | 0.03001 ^{\{ 5 \}} | 0.03123 ^{\{ 8 \}} | 0.02815 ^{\{ 2 \}} | 0.03104 ^{\{ 7 \}} | 0.06416 ^{\{ 16 \}} | 0.03029 ^{\{ 6 \}} | 0.02958 ^{\{ 3 \}} | 0.03168 ^{\{ 10 \}} | 0.03573 ^{\{ 12 \}} | 0.0332 ^{\{ 11 \}} | 0.04634 ^{\{ 15 \}} | 0.02642 ^{\{ 1 \}} | 0.03964 ^{\{ 14 \}} | 0.03162 ^{\{ 9 \}} | 0.03874 ^{\{ 13 \}} | |
ASAE | 0.00813 ^{\{ 4 \}} | 0.00859 ^{\{ 5 \}} | 0.00969 ^{\{ 8 \}} | 0.00828 ^{\{ 2 \}} | 0.00948 ^{\{ 7 \}} | 0.00933 ^{\{ 16 \}} | 0.00794 ^{\{ 6 \}} | 0.00848 ^{\{ 3 \}} | 0.01137 ^{\{ 10 \}} | 0.01065 ^{\{ 12 \}} | 0.00986 ^{\{ 11 \}} | 0.02451 ^{\{ 15 \}} | 0.01009 ^{\{ 1 \}} | 0.01255 ^{\{ 14 \}} | 0.00948 ^{\{ 9 \}} | 0.01222 ^{\{ 13 \}} | |
\sum Ranks | 25 ^{\{ 3 \}} | 45 ^{\{ 5 \}} | 89.5 ^{\{ 11 \}} | 21 ^{\{ 2 \}} | 79.5 ^{\{ 8 \}} | 131 ^{\{ 15 \}} | 52 ^{\{ 6 \}} | 38 ^{\{ 4 \}} | 105 ^{\{ 12 \}} | 89 ^{\{ 10 \}} | 82 ^{\{ 9 \}} | 139 ^{\{ 16 \}} | 20 ^{\{ 1 \}} | 124 ^{\{ 14 \}} | 70 ^{\{ 7 \}} | 114 ^{\{ 13 \}} | |
300 | BIAS( \hat{\delta} ) | 0.18765 ^{\{ 4 \}} | 0.18622 ^{\{ 3 \}} | 0.23491 ^{\{ 11 \}} | 0.18334 ^{\{ 2 \}} | 0.22584 ^{\{ 10 \}} | 0.27554 ^{\{ 15 \}} | 0.19962 ^{\{ 7 \}} | 0.19495 ^{\{ 5 \}} | 0.26373 ^{\{ 14 \}} | 0.20076 ^{\{ 8 \}} | 0.21238 ^{\{ 9 \}} | 0.45699 ^{\{ 16 \}} | 0.04033 ^{\{ 1 \}} | 0.24334 ^{\{ 13 \}} | 0.19542 ^{\{ 6 \}} | 0.23557 ^{\{ 12 \}} |
BIAS( \hat{\gamma} ) | 0.01932 ^{\{ 2 \}} | 0.02075 ^{\{ 4 \}} | 0.023 ^{\{ 10 \}} | 0.02042 ^{\{ 3 \}} | 0.02281 ^{\{ 9 \}} | 0.05248 ^{\{ 16 \}} | 0.02174 ^{\{ 6 \}} | 0.02078 ^{\{ 5 \}} | 0.02432 ^{\{ 12 \}} | 0.02395 ^{\{ 11 \}} | 0.02185 ^{\{ 7 \}} | 0.03616 ^{\{ 15 \}} | 0.01532 ^{\{ 1 \}} | 0.0263 ^{\{ 13 \}} | 0.02232 ^{\{ 8 \}} | 0.02669 ^{\{ 14 \}} | |
MSE( \hat{\delta} ) | 0.05495 ^{\{ 3 \}} | 0.0567 ^{\{ 4 \}} | 0.09068 ^{\{ 12 \}} | 0.05069 ^{\{ 2 \}} | 0.08238 ^{\{ 10 \}} | 0.11574 ^{\{ 15 \}} | 0.06299 ^{\{ 7 \}} | 0.06252 ^{\{ 6 \}} | 0.11564 ^{\{ 14 \}} | 0.07554 ^{\{ 9 \}} | 0.06987 ^{\{ 8 \}} | 0.34711 ^{\{ 16 \}} | 0.00682 ^{\{ 1 \}} | 0.09099 ^{\{ 13 \}} | 0.06187 ^{\{ 5 \}} | 0.08566 ^{\{ 11 \}} | |
MSE( \hat{\gamma} ) | 0.00059 ^{\{ 2 \}} | 0.00068 ^{\{ 4.5 \}} | 0.00087 ^{\{ 10 \}} | 0.00063 ^{\{ 3 \}} | 0.00083 ^{\{ 9 \}} | 0.00468 ^{\{ 16 \}} | 0.00074 ^{\{ 6 \}} | 0.00068 ^{\{ 4.5 \}} | 0.00095 ^{\{ 12 \}} | 0.00091 ^{\{ 11 \}} | 0.00076 ^{\{ 7 \}} | 0.00211 ^{\{ 15 \}} | 0.00038 ^{\{ 1 \}} | 0.00107 ^{\{ 13 \}} | 0.00078 ^{\{ 8 \}} | 0.00111 ^{\{ 14 \}} | |
MRE( \hat{\delta} ) | 0.05362 ^{\{ 4 \}} | 0.05321 ^{\{ 3 \}} | 0.06712 ^{\{ 11 \}} | 0.05238 ^{\{ 2 \}} | 0.06452 ^{\{ 10 \}} | 0.07873 ^{\{ 15 \}} | 0.05703 ^{\{ 7 \}} | 0.0557 ^{\{ 5 \}} | 0.07535 ^{\{ 14 \}} | 0.05736 ^{\{ 8 \}} | 0.06068 ^{\{ 9 \}} | 0.13057 ^{\{ 16 \}} | 0.01152 ^{\{ 1 \}} | 0.06953 ^{\{ 13 \}} | 0.05583 ^{\{ 6 \}} | 0.06731 ^{\{ 12 \}} | |
MRE( \hat{\gamma} ) | 0.03864 ^{\{ 2 \}} | 0.04151 ^{\{ 4 \}} | 0.046 ^{\{ 10 \}} | 0.04083 ^{\{ 3 \}} | 0.04562 ^{\{ 9 \}} | 0.10497 ^{\{ 16 \}} | 0.04347 ^{\{ 6 \}} | 0.04157 ^{\{ 5 \}} | 0.04865 ^{\{ 12 \}} | 0.0479 ^{\{ 11 \}} | 0.04369 ^{\{ 7 \}} | 0.07233 ^{\{ 15 \}} | 0.03065 ^{\{ 1 \}} | 0.05259 ^{\{ 13 \}} | 0.04465 ^{\{ 8 \}} | 0.05338 ^{\{ 14 \}} | |
D_{abs} | 0.01481 ^{\{ 3 \}} | 0.01449 ^{\{ 2 \}} | 0.01601 ^{\{ 10 \}} | 0.01499 ^{\{ 5 \}} | 0.0154 ^{\{ 6 \}} | 0.03369 ^{\{ 16 \}} | 0.01558 ^{\{ 7 \}} | 0.01493 ^{\{ 4 \}} | 0.01592 ^{\{ 9 \}} | 0.01812 ^{\{ 12 \}} | 0.01693 ^{\{ 11 \}} | 0.02121 ^{\{ 15 \}} | 0.01395 ^{\{ 1 \}} | 0.01943 ^{\{ 13 \}} | 0.01589 ^{\{ 8 \}} | 0.02021 ^{\{ 14 \}} | |
D_{max} | 0.02383 ^{\{ 3 \}} | 0.02354 ^{\{ 2 \}} | 0.02633 ^{\{ 9 \}} | 0.02408 ^{\{ 4 \}} | 0.02526 ^{\{ 7 \}} | 0.05415 ^{\{ 16 \}} | 0.02519 ^{\{ 6 \}} | 0.02434 ^{\{ 5 \}} | 0.02657 ^{\{ 10 \}} | 0.02892 ^{\{ 12 \}} | 0.02722 ^{\{ 11 \}} | 0.03806 ^{\{ 15 \}} | 0.02079 ^{\{ 1 \}} | 0.03138 ^{\{ 13 \}} | 0.02564 ^{\{ 8 \}} | 0.03239 ^{\{ 14 \}} | |
ASAE | 0.00611 ^{\{ 3 \}} | 0.00649 ^{\{ 2 \}} | 0.00725 ^{\{ 9 \}} | 0.00604 ^{\{ 4 \}} | 0.00719 ^{\{ 7 \}} | 0.00738 ^{\{ 16 \}} | 0.00603 ^{\{ 6 \}} | 0.00656 ^{\{ 5 \}} | 0.0085 ^{\{ 10 \}} | 0.00801 ^{\{ 12 \}} | 0.00734 ^{\{ 11 \}} | 0.01688 ^{\{ 15 \}} | 0.00749 ^{\{ 1 \}} | 0.00901 ^{\{ 13 \}} | 0.00699 ^{\{ 8 \}} | 0.00906 ^{\{ 14 \}} | |
\sum Ranks | 26 ^{\{ 2.5 \}} | 30.5 ^{\{ 4 \}} | 91 ^{\{ 10 \}} | 26 ^{\{ 2.5 \}} | 77 ^{\{ 8 \}} | 135 ^{\{ 15 \}} | 53 ^{\{ 6 \}} | 44.5 ^{\{ 5 \}} | 110 ^{\{ 12 \}} | 94 ^{\{ 11 \}} | 78 ^{\{ 9 \}} | 139 ^{\{ 16 \}} | 19 ^{\{ 1 \}} | 118 ^{\{ 13 \}} | 63 ^{\{ 7 \}} | 120 ^{\{ 14 \}} | |
450 | BIAS( \hat{\delta} ) | 0.14464 ^{\{ 2 \}} | 0.16061 ^{\{ 5 \}} | 0.18023 ^{\{ 11 \}} | 0.14937 ^{\{ 3 \}} | 0.18915 ^{\{ 12 \}} | 0.23554 ^{\{ 15 \}} | 0.16553 ^{\{ 6 \}} | 0.15659 ^{\{ 4 \}} | 0.20892 ^{\{ 14 \}} | 0.1712 ^{\{ 9 \}} | 0.17003 ^{\{ 8 \}} | 0.37407 ^{\{ 16 \}} | 0.03867 ^{\{ 1 \}} | 0.19508 ^{\{ 13 \}} | 0.16801 ^{\{ 7 \}} | 0.17316 ^{\{ 10 \}} |
BIAS( \hat{\gamma} ) | 0.01548 ^{\{ 2 \}} | 0.01727 ^{\{ 5 \}} | 0.02006 ^{\{ 12 \}} | 0.01612 ^{\{ 3 \}} | 0.01949 ^{\{ 9 \}} | 0.04544 ^{\{ 16 \}} | 0.01815 ^{\{ 7 \}} | 0.01616 ^{\{ 4 \}} | 0.01997 ^{\{ 11 \}} | 0.01955 ^{\{ 10 \}} | 0.01872 ^{\{ 8 \}} | 0.02942 ^{\{ 15 \}} | 0.01273 ^{\{ 1 \}} | 0.02202 ^{\{ 14 \}} | 0.01764 ^{\{ 6 \}} | 0.02132 ^{\{ 13 \}} | |
MSE( \hat{\delta} ) | 0.03395 ^{\{ 2 \}} | 0.04041 ^{\{ 5 \}} | 0.05534 ^{\{ 11 \}} | 0.03453 ^{\{ 3 \}} | 0.05704 ^{\{ 12 \}} | 0.08297 ^{\{ 15 \}} | 0.04494 ^{\{ 7 \}} | 0.03901 ^{\{ 4 \}} | 0.07116 ^{\{ 14 \}} | 0.05212 ^{\{ 10 \}} | 0.04508 ^{\{ 8 \}} | 0.21887 ^{\{ 16 \}} | 0.0053 ^{\{ 1 \}} | 0.0597 ^{\{ 13 \}} | 0.04395 ^{\{ 6 \}} | 0.04793 ^{\{ 9 \}} | |
MSE( \hat{\gamma} ) | 0.00038 ^{\{ 2 \}} | 0.00047 ^{\{ 5 \}} | 0.00062 ^{\{ 10.5 \}} | 4e-04 ^{\{ 3 \}} | 0.00059 ^{\{ 9 \}} | 0.00338 ^{\{ 16 \}} | 0.00052 ^{\{ 7 \}} | 0.00042 ^{\{ 4 \}} | 0.00063 ^{\{ 12 \}} | 0.00062 ^{\{ 10.5 \}} | 0.00055 ^{\{ 8 \}} | 0.00137 ^{\{ 15 \}} | 0.00025 ^{\{ 1 \}} | 0.00073 ^{\{ 14 \}} | 0.00049 ^{\{ 6 \}} | 0.00069 ^{\{ 13 \}} | |
MRE( \hat{\delta} ) | 0.04133 ^{\{ 2 \}} | 0.04589 ^{\{ 5 \}} | 0.0515 ^{\{ 11 \}} | 0.04268 ^{\{ 3 \}} | 0.05404 ^{\{ 12 \}} | 0.0673 ^{\{ 15 \}} | 0.04729 ^{\{ 6 \}} | 0.04474 ^{\{ 4 \}} | 0.05969 ^{\{ 14 \}} | 0.04891 ^{\{ 9 \}} | 0.04858 ^{\{ 8 \}} | 0.10688 ^{\{ 16 \}} | 0.01105 ^{\{ 1 \}} | 0.05574 ^{\{ 13 \}} | 0.048 ^{\{ 7 \}} | 0.04947 ^{\{ 10 \}} | |
MRE( \hat{\gamma} ) | 0.03095 ^{\{ 2 \}} | 0.03454 ^{\{ 5 \}} | 0.04013 ^{\{ 12 \}} | 0.03224 ^{\{ 3 \}} | 0.03897 ^{\{ 9 \}} | 0.09089 ^{\{ 16 \}} | 0.03631 ^{\{ 7 \}} | 0.03232 ^{\{ 4 \}} | 0.03993 ^{\{ 11 \}} | 0.0391 ^{\{ 10 \}} | 0.03745 ^{\{ 8 \}} | 0.05885 ^{\{ 15 \}} | 0.02546 ^{\{ 1 \}} | 0.04404 ^{\{ 14 \}} | 0.03528 ^{\{ 6 \}} | 0.04264 ^{\{ 13 \}} | |
D_{abs} | 0.01192 ^{\{ 3 \}} | 0.01219 ^{\{ 5 \}} | 0.01323 ^{\{ 8 \}} | 0.0121 ^{\{ 4 \}} | 0.01294 ^{\{ 7 \}} | 0.0284 ^{\{ 16 \}} | 0.0123 ^{\{ 6 \}} | 0.01173 ^{\{ 2 \}} | 0.01327 ^{\{ 9 \}} | 0.01469 ^{\{ 12 \}} | 0.01401 ^{\{ 11 \}} | 0.01758 ^{\{ 15 \}} | 0.01138 ^{\{ 1 \}} | 0.01587 ^{\{ 13 \}} | 0.01331 ^{\{ 10 \}} | 0.01633 ^{\{ 14 \}} | |
D_{max} | 0.01911 ^{\{ 3 \}} | 0.01981 ^{\{ 5 \}} | 0.02163 ^{\{ 9 \}} | 0.01954 ^{\{ 4 \}} | 0.02131 ^{\{ 7 \}} | 0.04566 ^{\{ 16 \}} | 0.02006 ^{\{ 6 \}} | 0.01902 ^{\{ 2 \}} | 0.02212 ^{\{ 10 \}} | 0.02353 ^{\{ 12 \}} | 0.0225 ^{\{ 11 \}} | 0.03148 ^{\{ 15 \}} | 0.01709 ^{\{ 1 \}} | 0.02571 ^{\{ 13 \}} | 0.02146 ^{\{ 8 \}} | 0.026 ^{\{ 14 \}} | |
ASAE | 0.00468 ^{\{ 3 \}} | 0.0049 ^{\{ 5 \}} | 0.00541 ^{\{ 9 \}} | 0.00457 ^{\{ 4 \}} | 0.00543 ^{\{ 7 \}} | 0.00591 ^{\{ 16 \}} | 0.00445 ^{\{ 6 \}} | 0.00499 ^{\{ 2 \}} | 0.0063 ^{\{ 10 \}} | 0.00603 ^{\{ 12 \}} | 0.00566 ^{\{ 11 \}} | 0.01259 ^{\{ 15 \}} | 0.00568 ^{\{ 1 \}} | 0.00678 ^{\{ 13 \}} | 0.00524 ^{\{ 8 \}} | 0.0067 ^{\{ 14 \}} | |
\sum Ranks | 21 ^{\{ 2 \}} | 43 ^{\{ 5 \}} | 90.5 ^{\{ 10 \}} | 41 ^{\{ 4 \}} | 84 ^{\{ 9 \}} | 135 ^{\{ 15 \}} | 52 ^{\{ 6 \}} | 32 ^{\{ 3 \}} | 107 ^{\{ 12 \}} | 93.5 ^{\{ 11 \}} | 78 ^{\{ 8 \}} | 138 ^{\{ 16 \}} | 18 ^{\{ 1 \}} | 121 ^{\{ 14 \}} | 61 ^{\{ 7 \}} | 109 ^{\{ 13 \}} |
Parameter | n | MLE | ADE | CVME | MPSE | OLSE | PCE | RTADE | WLSE | LTADE | MSADE | MSALDE | ADSOE | KE | MSSD | MSSLD | MSLND |
\delta=2.5, \gamma=4.0 | 20 | 7.0 | 6.0 | 13.0 | 1.0 | 11.0 | 2.0 | 9.0 | 4.5 | 12.0 | 8.0 | 10.0 | 15.0 | 3.0 | 14.0 | 4.5 | 16.0 |
70 | 1.0 | 4.0 | 11.0 | 2.0 | 10.0 | 3.0 | 6.0 | 5.0 | 13.0 | 12.0 | 8.5 | 16.0 | 7.0 | 14.0 | 8.5 | 15.0 | |
150 | 1.0 | 3.0 | 9.0 | 2.0 | 11.0 | 4.0 | 6.0 | 5.0 | 13.0 | 12.0 | 10.0 | 16.0 | 8.0 | 15.0 | 7.0 | 14.0 | |
200 | 1.0 | 4.0 | 11.0 | 2.0 | 9.0 | 3.0 | 6.0 | 5.0 | 13.0 | 12.0 | 10.0 | 16.0 | 8.0 | 14.0 | 7.0 | 15.0 | |
300 | 1.0 | 4.0 | 8.0 | 3.0 | 11.0 | 2.0 | 5.0 | 6.0 | 12.0 | 13.0 | 9.0 | 16.0 | 10.0 | 15.0 | 7.0 | 14.0 | |
450 | 2.0 | 3.0 | 11.0 | 1.0 | 9.0 | 4.0 | 6.0 | 5.0 | 12.0 | 13.0 | 10.0 | 16.0 | 7.0 | 15.0 | 8.0 | 14.0 | |
\delta=0.8, \gamma=0.3 | 20 | 2.0 | 3.0 | 9.0 | 1.0 | 7.0 | 15.0 | 5.0 | 4.0 | 10.0 | 11.0 | 8.0 | 16.0 | 12.0 | 14.0 | 6.0 | 13.0 |
70 | 4.0 | 2.0 | 8.5 | 5.0 | 7.0 | 15.0 | 3.0 | 1.0 | 8.5 | 12.0 | 10.0 | 16.0 | 11.0 | 13.0 | 6.0 | 14.0 | |
150 | 1.0 | 3.0 | 7.0 | 2.0 | 8.0 | 14.5 | 4.0 | 5.0 | 10.0 | 12.0 | 9.0 | 16.0 | 11.0 | 13.0 | 6.0 | 14.5 | |
200 | 3.0 | 1.0 | 7.0 | 4.0 | 6.0 | 15.0 | 5.0 | 2.0 | 10.0 | 12.0 | 9.0 | 16.0 | 11.0 | 13.0 | 8.0 | 14.0 | |
300 | 1.0 | 3.0 | 7.0 | 2.0 | 6.0 | 16.0 | 4.0 | 5.0 | 9.0 | 12.0 | 10.0 | 15.0 | 11.0 | 14.0 | 8.0 | 13.0 | |
450 | 3.0 | 2.0 | 6.0 | 1.0 | 7.0 | 16.0 | 5.0 | 4.0 | 11.0 | 12.0 | 10.0 | 15.0 | 8.0 | 13.0 | 9.0 | 14.0 | |
\delta=0.4, \gamma=1.5 | 20 | 3.0 | 1.5 | 12.0 | 5.0 | 8.5 | 4.0 | 8.5 | 6.0 | 10.0 | 11.0 | 13.0 | 14.0 | 1.5 | 15.0 | 7.0 | 16.0 |
70 | 1.0 | 4.0 | 10.0 | 5.5 | 8.0 | 5.5 | 7.0 | 2.0 | 11.0 | 13.0 | 12.0 | 14.0 | 3.0 | 15.0 | 9.0 | 16.0 | |
150 | 1.0 | 5.0 | 10.0 | 2.0 | 8.0 | 4.0 | 7.0 | 6.0 | 9.0 | 14.0 | 12.0 | 13.0 | 3.0 | 15.0 | 11.0 | 16.0 | |
200 | 1.0 | 5.0 | 10.0 | 3.0 | 8.0 | 6.0 | 9.0 | 4.0 | 7.0 | 14.0 | 11.0 | 13.0 | 2.0 | 15.0 | 12.0 | 16.0 | |
300 | 3.0 | 5.0 | 9.5 | 1.0 | 8.0 | 6.0 | 7.0 | 2.0 | 9.5 | 14.0 | 13.0 | 12.0 | 4.0 | 15.0 | 11.0 | 16.0 | |
450 | 2.0 | 6.0 | 11.0 | 1.0 | 7.5 | 3.0 | 9.0 | 4.0 | 7.5 | 14.0 | 13.0 | 12.0 | 5.0 | 16.0 | 10.0 | 15.0 | |
\delta=2.0, \gamma=0.75 | 20 | 7.0 | 4.0 | 12.0 | 1.0 | 11.0 | 9.5 | 6.0 | 5.0 | 13.0 | 9.5 | 8.0 | 15.0 | 2.0 | 14.0 | 3.0 | 16.0 |
70 | 2.0 | 7.0 | 10.0 | 1.0 | 8.5 | 11.0 | 5.5 | 4.0 | 13.0 | 12.0 | 8.5 | 16.0 | 3.0 | 14.0 | 5.5 | 15.0 | |
150 | 1.0 | 5.0 | 10.0 | 2.0 | 8.5 | 11.0 | 7.0 | 3.0 | 13.0 | 12.0 | 8.5 | 16.0 | 4.0 | 15.0 | 6.0 | 14.0 | |
200 | 1.0 | 3.0 | 10.0 | 2.0 | 8.0 | 12.0 | 5.0 | 7.0 | 11.0 | 13.0 | 9.0 | 16.0 | 4.0 | 14.0 | 6.0 | 15.0 | |
300 | 1.0 | 5.0 | 10.0 | 2.0 | 8.0 | 11.0 | 3.0 | 4.0 | 12.0 | 13.0 | 9.0 | 16.0 | 6.0 | 15.0 | 7.0 | 14.0 | |
450 | 1.0 | 5.0 | 10.0 | 2.0 | 8.0 | 12.0 | 4.0 | 3.0 | 11.0 | 13.0 | 9.0 | 16.0 | 6.0 | 15.0 | 7.0 | 14.0 | |
\delta=3.5, \gamma=0.5 | 20 | 4.5 | 3.0 | 9.0 | 2.0 | 12.0 | 10.0 | 8.0 | 4.5 | 13.0 | 7.0 | 11.0 | 14.0 | 1.0 | 15.0 | 6.0 | 16.0 |
70 | 3.0 | 4.0 | 11.0 | 2.0 | 10.0 | 15.0 | 5.0 | 6.5 | 12.0 | 8.0 | 9.0 | 16.0 | 1.0 | 14.0 | 6.5 | 13.0 | |
150 | 3.0 | 5.0 | 10.0 | 1.0 | 9.0 | 15.0 | 6.0 | 4.0 | 12.0 | 11.0 | 8.0 | 16.0 | 2.0 | 13.0 | 7.0 | 14.0 | |
200 | 3.0 | 5.0 | 11.0 | 2.0 | 8.0 | 15.0 | 6.0 | 4.0 | 12.0 | 10.0 | 9.0 | 16.0 | 1.0 | 14.0 | 7.0 | 13.0 | |
300 | 2.5 | 4.0 | 10.0 | 2.5 | 8.0 | 15.0 | 6.0 | 5.0 | 12.0 | 11.0 | 9.0 | 16.0 | 1.0 | 13.0 | 7.0 | 14.0 | |
450 | 2.0 | 5.0 | 10.0 | 4.0 | 9.0 | 15.0 | 6.0 | 3.0 | 12.0 | 11.0 | 8.0 | 16.0 | 1.0 | 14.0 | 7.0 | 13.0 | |
\sum Ranks | 69.0 | 119.5 | 293.0 | 67.0 | 258.0 | 289.5 | 179.0 | 128.5 | 333.5 | 351.5 | 293.5 | 456.0 | 157.5 | 428.0 | 220.0 | 436.5 | |
Overall Rank | 2 | 3 | 10 | 1 | 8 | 9 | 6 | 4 | 12 | 13 | 11 | 16 | 5 | 14 | 7 | 15 |