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Abstract: Many real-world problems can be classified as multimodal optimization problems 
(MMOPs), which require to locate global optima as more as possible and refine the accuracy of 
found optima as high as possible. When dealing with MMOPs, how to divide population and obtain 
effective niches is a key to balance population diversity and convergence during evolution. In this 
paper, a self-organizing map (SOM) based differential evolution with dynamic selection strategy 
(SOMDE-DS) is proposed to improve the performance of differential evolution (DE) in solving 
MMOPs. Firstly, a SOM based method is introduced as a niching technique to divide population 
reasonably by using the similarity information among different individuals. Secondly, a variable 
neighborhood search (VNS) strategy is proposed to locate more possible optimal regions by 
expanding the search space. Thirdly, a dynamic selection (DS) strategy is designed to balance 
exploration and exploitation of the population by taking advantages of both local search strategy and 
global search strategy. The proposed SOMDE-DS is compared with several widely used multimodal 
optimization algorithms on benchmark CEC’2013. The experimental results show that SOMDE-DS 
is superior or competitive with the compared algorithms. 

Keywords: self-organizing map; differential evolution; multimodal optimization problem; niching; 
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1. Introduction 

Multimodal optimization problems (MMOPs), which require to find all optimal solutions 
simultaneously, have been investigated in recent years [1]. In the real world, many engineering 
problems have more than one solution, such as structural damage detection [2], varied-line-spacing 
holographic grating design problem [3], protein structure prediction [4], and job shop scheduling 
problem [5]. Therefore, traditional algorithms which deal with single-solution optimization 
problems no longer meet the practical needs, and the new effective multi-solution optimization 
algorithms need to be designed to solve an increasing number of complex multi-solution problems. 
However, how to balance the diversity and convergence of population is still a challenge when 
dealing with MMOPs.  

Evolutionary algorithms (EAs) have been an effective method for dealing with single-solution 
optimization problems for a long time, such as genetic algorithm (GA) [6], differential evolution 
(DE) [7–9], and particle swarm optimization (PSO) [10–13]. When EAs are used to solve 
single-solution optimization problems, all individuals within the population evolve towards the only 
one global optimum. While in MMOPs, there are multiple global optima to be found, and traditional 
EA methods cannot solve MMOPs effectively. Therefore, many scholars have adopted the improved 
EAs to solve MMOPs recently, such as the crowding clustering GA [14] that employs standard 
crowding strategy to eliminate genetic drift, the distance-based PSO [15] that eliminate the need to 
specify any niching parameter and the dual-strategy DE [16] that balance exploration and 
exploitation in generating offspring. 

Although many efforts have been put into solving MMOPs, there are still some limitations when 
dealing with MMOPs. Firstly, how to divide the population to form effective niches is a challenge. 
Secondly, niches created by some techniques cannot cover all the possible regions of global optima, 
making it impossible to find out all optima. Thirdly, how to balance exploration and exploitation 
remains a challenge. 

Therefore, this paper utilizes a self-organizing map (SOM) based niching method to deal with 
MMOPs. SOM has been a classic and useful tool in machine learning area for a long time [17,18], 
which can map high dimensional input data onto 2-dimensional plane while preserving the topology 
relations among input data. The potential of SOM in solving MMOPs is yet to be fully explored. 

Consequently, we propose a SOM based DE with dynamic selection (DS) strategy (SOMDE-DS) 
to solve MMOPs more effectively. The framework of proposed SOMDE-DS and the differences 
between a standard DE and SOMDE-DS in solving MMOPs are shown in Figure 1. The advantages 
of our SOMDE-DS are listed as follows. 

1) A SOM based niching method is proposed to divide the population reasonably by using 
similarity information among individuals. Specifically, the individuals with high similarities map to 
the same neuron and form a cohesive niche. 

2) A variable neighborhood search (VNS) strategy is introduced to expand the search space. 
For some niches that are too small to find global optima, the VNS is carried out to expand the sizes 
and further to locate more global optima. In this way, small-sized niches are enriched and thus can 
find more optima that locate outside of the original niches. 

3) A DS strategy based on the different evolution phases is proposed to balance the exploration 
and exploitation ability of population. Combining local selection and global selection strategy, DS 
strategy can explore more optima in the early evolution stage while maintain and refine found optima 
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in the later evolution stage. 

   

(a) (b) 

Figure 1. Differences between the framework of a traditional DE and SOMDE-DS in 
solving MMOPs. The three steps marked with dotted lines are improvements of 
SOMDE-DS on the foundation of traditional DE. (a) The framework of a common DE in 
solving MMOPs. (b) The framework of SOMDE-DS in solving MMOPs. 

The rest of this paper is organized as follows. In Section 2, the process of DE and SOM is 
introduced as background knowledge for SOMDE-DS. Then SOMDE-DS is detailed in Section 3. 
Following are thorough experiments in Section 4 to verify the ability of SOMDE-DS to solve 
MMOPs effectively. Finally, the conclusions are given in Section 5. 

2. Materials and methods 

2.1. DE and SOM 

2.1.1. DE 

DE, which is Proposed by R. Storn and K. V. Price in 1995 [19], is a powerful tool for global 
optimization over continuous spaces. In recent years, DE has been an attractive optimization tool for 
lots of researchers and the reasons are obvious [7]. Comparing with other EAs, DE has the 
advantages of simplicity, better performance and fewer control parameters [20]. These are also the 
reasons why we choose DE to make improvements on solving MMOPs. 
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1) Simplicity. A traditional DE consists of four steps, which are initialization, mutation, 
crossover and selection. Comparing with other EAs (e.g., genetic programming), DE is more 
straightforward and easier to implement, which makes it easier for researchers in other fields to make 
good use of it.  

2) Better performance. At the first international contest on evolutionary optimization held in 
Nagoya, Japan in 1996, DE ranks third among all optimization algorithms and first in all EAs [21]. 
In the following CEC competitions, DE still ranks high among all EAs. From CEC 2014 to CEC 
2016, DE variants take the first place in a continuous three years [22–24]. In CEC 2017 and CEC 
2018, the best DE variants still hold the third and the second place [25,26]. 

3) Fewer control parameters. In classic DE, there are only three parameters, that is, probability 
of crossover, scaling factor and population size. The way these parameters work and contribute to the 
result has been deeply studied in recent research [27]. It is easy for us to fine-tune these parameters 
to get better performance. 

Algorithm 1: DE 
Input: population size NP, probability of crossover pc, scaling factor F, and maximum number of 
generation G 
1 Randomly initialize first generation of population; 
2 For g = 1 to G 
3     For i = 1 to NP 
4         Perform the mutation operation according to Eq (1); 
5         Generate trial vector according to Eq (2); 
6         If f(uij,G+1) ≤ f(xi,G) 
7             xi,G+1 = xi,G; 
8         Else 
9             xi,G+1 = uij,G+1; 
10         End If 
11     End For 
12 End For 
13 End 

A classical DE algorithm can be divided into four steps: initialization, mutation, crossover, and 
selection. The framework of the original DE is shown in Algorithm 1. 

1) Initialization. Randomly initialize individual xi,G, where i = 1, …, NP. NP represents the 
size of population and G means the number of current generations. 

2) Mutation. Mutated individual vi is generated by 

, 1 1, 2, 3,( ),i G r G r G r GF    v x x x                          (1) 

where F is scaling factor and three different individuals chosen to mutate are represented by xr1,G, 
xr2,G and xr3,G. 

3) Crossover. Trial vector uij,G+1 is generated according to the following formula 
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where pc is probability of crossover. 
4) Selection. To select a better individual, uij,G+1 is compared with xi,G. If f(uij,G+1) is better than 

f(xi,G), uij,G+1 is inherited to next generation; otherwise xi,G is retained. 

2.1.2. SOM 

Algorithm 2: SOM framework 
Input: initial neighborhood radius 0 , initial learning rate 0 , maximum number of generation G, 

input data X, the dimension of input data D and neighboring function z 
1 Randomly initialize each neuron weight vectors w; 
2 For generation g = 1 to G 
3     Adjust neighborhood radius  : 

0 (1 )
g

G
     

4     Adjust learning rate  : 

0 (1 )
g

G
     

5     Randomly select a training point x X ; 
6     Find the winner neuron 'e  in all neurons e : 

21

' argmin e

e D

e
 

 x w ; 

7     Locate the set of all neighboring neurons E: 
'

2
{ |1 }e ee e D      E z z ; 

8     Update all neighboring neurons as  
'

2
exp( ( )u u e e e     w w z z x w ; 

9 End For 
10 End 
Output: a trained SOM model 

SOM, introduced by T. Kohonen in 1982, is a data-analysis method that visualizes similarity 
relations in a set of data items [17,18]. As a nonlinear projection tool, SOM can map data vectors 
with high dimensionality onto a 2-dimensional plane, preserving the topological relationship of the 
original vectors. In a trained SOM model, vectors with high similarity will be mapped to the same 
neuron [28]. In this paper, we take the advantages of SOM and use it as a clustering technique. 
Comparing with other unsupervised data-analysis methods like K-means clustering [29], the trained 
models of SOM are capable of capturing topologic relations that are the same as the source data and 
therefore clusters formed by SOM are more cohesive. The working mechanism of SOM is detailed in 
Algorithm 2 and the layout of SOM is illustrated in Figure 2. There are two layers in a standard SOM 
model, that are the competition layer and the input layer. Input vectors from input layer will be 
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mapped to the neurons in the competition layer, according to the similarity between input vectors and 
the neurons, which can be measured in the form of some kind of distance (i.e., Euclidean distance). 
Therefore, input vectors with high similarities will be mapped to the same neuron and cohesive 
clusters are formed. 

 

Figure 2. Layout of SOM. Input vectors with high similarity are mapped to the same neuron. 

2.1.3. SOM in solving continuous optimization problems 

Works have been done with SOM to solve continuous optimization problems. On the basis of 
PSO with elite learning strategy, Jing et al. combined it with SOM to tackle multimodal 
multi-objective problems. In reference [30], Qu et al. firstly employed speciation to solve multimodal 
multi-objective problems, where a self-organized mechanism is proposed to improve the 
performance of the speciation. Hu et al. [31] adopted SOM to build a good neighborhood relation for 
the improved pigeon-inspired optimization in order to better solve multimodal multi-objective 
optimization problems. Zhang et al. [32] used SOM to establish the neighborhood relationship 
among current solutions to control the generation of a new solution. A. Kashtiban and S. 
Khanmohammadi [33] use SOM based method to detect the number of niches, within which a simple 
GA is independently converging to the actual optima. In conclusion, SOM plays an important role in 
forming the neighborhood relationship. In this paper, SOM is used as the same way. 

2.2. Related works on MMOP 

In opposed to single-solution optimization problems [34], which have only one global optimum, 
MMOPs have multiple optimal solutions. In recent years, EAs have attracted a lot of attention in the 
field of solving MMOPs. However, in the beginning, EAs are designed for solving optimization 
problem with only one global optimum. Hence various modifications have been made to traditional 
EAs to enable them to handle MMOPs effectively. In general, there are three main methods that 
enable EAs to better solve MMOPs, including the niching-based methods, the novel evolution 
operator-based methods and the multiobjectivization-based methods. 
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1) Niching-based methods 
The idea of niching technique is to discover and maintain multiple subpopulations at the same 

time to ensure population diversity. When population diversity is ensured, finding and maintaining 
multiple solutions at the same time is possible.  

Lots of work have been done in incorporating EAs with niching techniques to better solve 
MMOPs. Yang et al. [35] took the difference among niches into consideration and develop an 
adaptive multimodal continuous ant colony optimization algorithm. A. Hackl et al. [36] used only 
clusters of fireflies which gather around promising local solutions to find better solutions. Two of the 
most well-known DE variants that incorporated niching technique are crowding DE (CDE) [37] and 
species-based DE (SDE) [38]. Combining the idea of neighborhood, Qu et al. [39] proposed 
neighborhood based CDE (NCDE) and neighborhood based SDE (NSDE). Li et al. [40] combined 
PSO and ring topology to propose r2PSO and r3PSO, which achieved the target of niching without 
niching parameters. Wei et al. [41] proposed a penalty-based DE, in which the neighboring solutions 
of elite solutions are penalized. Lin et al. [42] divide the population into multiple species by 
nearest-better clustering. Based on the affinity propagation clustering, Wang et al. [43] develop an 
automatic niching DE with contour prediction. Xu et al. [44] use detect-multimodal method to 
estimate the radius and use the estimated radius to divide the population into species. Liang et al. [45] 
combined a clustering-based special crowding distance method and a distance-based elite selection 
mechanism to enable DE to better solve multimodal multiobjective optimization problems. On the 
basis of affinity propagation clustering, Hu et al. [46] added a novel mutation and adaptive local 
search strategy to propose a niching backtracking search algorithm for solving multimodal 
multiobjective optimization problems. 

In conclusion, the core of niching-based method is niching technique. Lots of works have been 
done in integrating EAs with a novel niching technique, and then novel local search strategies are 
added to improve the performance in solving MMOPs. 

2) Novel evolution operator-based methods 
The novel evolution operator-based methods usually modify evolution operators to make EAs 

better solve MMOPs. Qu et al. [15] proposed a local search operator to enhance the search ability 
and convergence of PSO. Epitropakis et al. [47] develop two new mutation strategies that 
incorporated spatial information of possible solution without introducing any extra parameter. 
Besides, a novel reinitialization mechanism was also proposed by Epitropakis et al. [48] to 
investigate unexplored regions of search space while maintain the best found solutions. Wang [49] 
employed adaptive parameter control and example-based learning to enhance the performance of 
PSO in solving MMOPs. Liu et al. [50] use the dynamic regulation to improve local search ability 
effectively. 

To sum up, novel evolution operator-based methods focus on the modification on the 
evolutionary operations. Most of existing works are done in initialization, mutation and crossover to 
enhance the search ability of EAs in order to locate more optima at the same time. 

3) Multiobjectivization-based methods 
The idea of the multiobjectivization-based methods is to transform the MMOPs into the 

multiobjective optimization problems (MOPs). Then multi-objective optimization evolutionary 
algorithms (MOEAs) can be used to solve the transformed problem and multiple global optima of the 
original MMOPs can be obtained. Cheng et al. [51] transformed MMOPs into MOPs to approximate 
the fitness landscape of the original problem, and then a peak detection method was used to obtain 



5975 

Mathematical Biosciences and Engineering  Volume 19, Issue 6, 5968–5997. 

precise locations of global optima. Wang et al. [52] transformed MMOPs into MOPs with two 
conflicting objectives. Therefore, an MOEA is used to find the Pareto set of the MOP, and multiple 
optimal solutions of the MMOP can be located at the same time. Yu et al. [53] transformed MMOPs 
into MOPs with triple objectives, two of which conflict with each other and the extra objective can 
be used to improve the diversity of the population greatly. In reference [54], V. Steinhoff et al. 
proposed a single-objective multi-objective gradient sliding algorithm (SOMOGSA) to solve 
single-objective optimization problems using multi-objective approach. In reference [55], P. Aspar et 
al. examined the inner mechanisms of SOMOGSA to prove that single-objective optimization 
problems can be solved effectively by using multiobjectivization and the potential of 
multiobjectivization is huge. In reference [56], C. Grimme et al. studied the challenges and 
researched the potentials of solving continuous multimodal multi-objective optimization. 

Comparing with niching-based methods and novel evolution operator-based method, 
multiobjectivation-based methods are relatively new. The main focus of these methods is 
constructing extra objectives to make good use of the advantages of multiobjective optimization. 
Some works have been done in the mechanism of multiobjectivization, but the inner mechanism and 
the potential of multiobjectivizaiton are still to be fully discovered.  

2.3. SOMDE-DS 

In this section, the main framework of SOMDE-DS is firstly given. Secondly, the SOM-based 
niching strategy is introduced. Then, the VNS strategy and DS strategy are detailed, respectively. 

2.3.1. Main framework 

The framework of SOMDE-DS is given in Algorithm 3. Firstly, randomly initialize the 
population with size NP and set the number of current generations fe to 0. Secondly, we use the 
whole population of current generation to train a SOM and use it to divide the population into several 
niches. Then the VNS strategy is applied to enrich the small-sized niches and niches with overlap are 
obtained. Following is mutation and crossover operation. Finally, the DS strategy is used to update 
current population. 

Algorithm 3: Main framework 

Input: population size NP and maximum number of function evaluations MaxFEs 

1 Randomly initialize the population with size NP and set fe = 0 
2 While fe ≤ MaxFEs 
3     Train a SOM with current population; (Algorithm 2) 

4     Perform VNS strategy on the population to get niches with overlap; (Algorithm 4) 

5     For each individual xi 
6         Randomly select three different individuals within its niche to perform mutation and 
crossover operation and produce offspring vi; 
7         Use DS strategy to select individual qi; (Algorithm 5) 
8         If f(qi) ≤ f(vi) 
9             yi = vi; 
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10         Else 
11             yi = qi;    // yi is the next generation individual of xi 
12         End If 
13     End For 
14     For offspring yi 
15         xi = yi; 
16     End For 
17     fe = NP + fe; 
18 End While 
19 End 
Output: multiple solutions for objective functions 

2.3.2. SOM for niching 

Due to the fact that SOM can capture the original topologic information of the source data, 
SOM is used for niching in SOMDE-DS. The working mechanism of SOM is detailed in Algorithm 2. 
In the first step, we randomly initialize the SOM with small weight vectors to minimize the influence 
of initial weight vectors. Then we train a SOM with all individuals in current population. Every time 
an individual is put into the SOM, the corresponding winning weight vector and its neighboring 
weight vectors are calculated. Then all neighboring weight vectors, as well as the winning weight 
vector itself are updated. Figure 3 shows that after training, the model of SOM matched the 
distribution of the current population, and therefore a better clustering result can be obtained. 

   

(a) (b) 

Figure 3. (a) SOM before training and (b) SOM after training. 

2.3.3. VNS 

In the original DE, mutation operation is carried out within the whole population. Offspring 
generated in this manner may differ greatly from its parent. In solving single-solution optimization 
problems, this mutation strategy can fully explore the search space. However, this global mutation 
strategy cannot achieve satisfactory results when dealing with MMOPs since there are multiple 
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optimal regions in the whole search space. By using this kind of mutation strategy, it is easily to 
cause the whole population to converge to only one optimal solution, which contradicts the goal of 
MMOPs. Thus, niching technique is integrated with DE to make it better solve MMOPs. 

 

Figure 4. Niches enlarged by VNS strategy can locate more optimal regions. All 
individual in the same original niche map to the same neuron in SOM. 

By using the trained SOM, the whole population can be divided into several niches. However, 
there is a situation where the number of individuals of a specific niche is too small to find global 
optima. To improve this situation, we designed a VNS strategy to locate more optimal regions. 
Figure 4 shows that with VNS strategy, small niches are enlarged and thus are enabled to locate more 
optimal regions. The process for enlarging niches is described as follows. Firstly, all individuals 
which map to the same neuron form a niche. Secondly, if the number of individuals within the niche 
is below a certain number M, individuals from nearest neighboring niche are merged into the niche 
one by one until the size of the niche reaches M. M represents the minimal number of individuals 
within a single niche. When the number is too small, it may cause the loss of diversity of population, 
while when the number is too big, it may cost more computational resources without improving the 
results obviously. This process of VNS is detailed in Algorithm 4 

Algorithm 4: VNS 
Input: a trained SOM model and current population 
1 For each individual xi 
2     xi is put into the trained SOM and its corresponding winning neuron wi is calculated; 
3 End for 
4 For each neighboring neuron ei 
5     All individuals whose winning neuron is ei are grouped as a cluster ci; 
6 End for 
7 For each cluster ci 
8     For each cluster ci (j ≠ i) 
9         The distance between ci and ci is calculated as the Euclidean distance from ei to ej on 
the SOM; 
10     End for 
11     While the number of individuals with ci is smaller than M; 
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12         Add an individual from the nearest cluster to form niche ni 
13     End While 
14 End for 
15 End 
Output: niches for DE operations 

2.3.4. DS 

In the original DE, the produced offspring only competes with its parent. In this way, a better 
individual may be reserved but the opportunity to simultaneously eliminate a worse individual is lost. 
To improve this situation, a crowding based selection strategy is introduced in CDE [37], where 
every produced offspring competes with its nearest individual in the population. The crowding 
operation can be carried out within a single niche or the whole population. The former is called local 
selection while the latter is global selection. 

Local selection strategy with niching technique benefits for exploring new optima. In comparison, 
global selection strategy is good at maintain and refine found optima. To make good use of these two 
strategies, we combine local selection and global selection to get a DS strategy, adapting to the 
different stages of evolution. The idea of this strategy is to use local selection to explore new optima in 
the early evolution stage and to use global selection to maintain and refine found optima in the later 
stages. In practice, we set two thresholds, one is of maximum number of function evaluations fet and 
the other is of probability pl. When the threshold of maximum number of function evaluations fet is 
exceeded, only global selection strategy is used to maintain and refine found optima. 

When the number of current function evaluations is below the threshold, a random number pi 
between [0, 1] is generated to balance diversity and convergence. If pi is below the threshold of 
probability pl, local selection strategy is used to improve the convergence of population, otherwise, 
global selection strategy is used to maintain and refine best individuals. 

Both fet and pl work together to balance diversity and convergence of the population. The best 
setting of these two parameters for each function differs from each other. When fet and pl are too big, 
the algorithm cannot get a stable result. When they are too small, the algorithm may not converge 
well. With our preliminary tests, SOMDE-DS performs well when fet is 0.9 and pl is 0.6. The DS 
strategy is detailed in Algorithm 5. 

Algorithm 5: DS 
Input: current population and corresponding offspring 
1 For each individual xi 
2     pi is randomly generated in [0, 1]; 
3     If pi > pl and fe < fet 
4         Select the nearest individual qi of xi from its niche; 
5     Else 
6         Select the nearest individual qi of xi from the whole population; 
7     End if 
8 End for 
9 End 
Output: new population 
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3. Results 

This section is the experimental part, which mainly focuses on three contents. Firstly, 
SOMDE-DS and classic MMOP optimization algorithms are compared to verify its feasibility of 
solving MMOPs effectively. Secondly, we compared the situation of different mutation strategies and 
selection strategies in SOMDE-DS. Finally, the influence of different parameters on SOM is studied. 

3.1. Benchmark functions and compared algorithms 

CEC’2013 [57], a widely used benchmark function set for IEEE CEC’2013 special session and 
competition on niching methods for multimodal function optimization. This function set consists of 
20 multimodal test functions, dimensions of which range from 1 to 20. With widely used simple 
functions and complex composite functions included, CEC’2013 is regarded as a suitable benchmark 
for evaluation in solving MMOPs. 

To examine the ability of SOMDE-DS to solve MMOPs, we choose six well-known EAs with 
niching techniques to compete with SOMDE-DS, that are NCDE, NSDE, CDE, SDE, r2PSO and 
r3PSO. Among these six compared algorithms. CDE and SDE are DEs with two most well-known 
niching techniques. NCDE and NSDE is the development of classic CDE and SDE with the concept 
of neighborhood mutation. r2PSO and r3PSO are two well-known PSO algorithms with no extra 
niching parameters using ring topology. The performance of NCDE, NSDE, r2PSO and r3PSO in 
solving MMOPs are outstanding. Thus, competition with other six well-known multimodal 
algorithms should prove the superiority of SOM in niching and the ability of SOMDE-DS to better 
solve MMOPs. 

3.2. Performance metrics 

To measure the performance of SOMDE-DS and other multimodal optimization algorithms, two 
commonly used criteria peak ratio and success rate [58] are calculated by the results of 40 
independent runs on each function. 

3.1.1. Peak ratio 

Peak ratio (PR) is the ratio of average peaks detected out of all peaks in the given function by an 
algorithm. It can be calculated as Eq (3): 

_
,

_
ipeaks found

PR
no peak N





                             (3) 

where N is the number of runs for each test function, peaks_foundi is the number of global optima 
found in the ith run and no_peak is the number of global optima of the current test function. 

3.1.2. Success rate 

Success rate (SR) is the rate of successfully detecting all desired optima out of 11 runs for each 
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function. It can be calculated as Eq (4): 

,icount
SR

N
                                  (4) 

where counti denotes whether all global optima are found in this run or not. When all global optima 
are found, counti is 1 otherwise 0. 

PR measures the ability to find the global optima of an algorithm while SR represents the ability 
to find all global optima in a single run. To further illustrate the differences among tested algorithms, 
convergence is also telegraphed in several selected functions. 

3.1.3. Parameter settings 

The parameter settings of SOMDE-DS are as follows, probability of crossover pc as 0.5, scaling 
factor as 0.9, minimum size of niche M as 10, the threshold of number of function evaluations fet as 
0.9 MaxFEs , the threshold of probability pl as 0.6. The influences of these parameters are discussed 
in the experiment part. 

The parameter settings for other tested EAs are as follows. In CDE, scaling factor is 0.5, 
probability of crossover is 0.9 and crowding factor is 100. In SDE, the species radius is set to 0.5 for 
each benchmark function. The neighborhood size of NCDE and NSDE is set to 20. In r2PSO and 
r3PSO, φ is 4.1 and χ is 0.7298. The settings for CEC’2013 benchmark can be referred in [57]. All 
tested algorithms run 40 times independently for each function on the benchmark CEC’2013. 

3.2. The compared results between SOMDE-DS and other tested multimodal optimization algorithms 

Table 1. The compared results between SOMDE-DS and other tested multimodal 
optimization algorithms. 

F SOMDE NCDE CDE r2PSO r3PSO SDE NSDE 

PR SR PR SR PR SR PR SR PR SR PR SR PR SR 

F1 1.000 1.000 1.000 (≈) 1.000  1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 

(≈) 

1.000  1.000 

(≈) 

1.000 

F2 1.000 1.000 0.940 (+) 0.825  1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 0.780 

(+) 

0.725  0.840 

(+) 

0.800 

F3 1.000 1.000 1.000 (≈) 1.000  1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 

(≈) 

1.000  1.000 

(≈) 

1.000 

F4 1.000 1.000 1.000 (≈) 1.000  0.469 (+) 0.000 0.875 (+) 0.700 0.925 (≈) 0.775 0.100 

(+) 

0.000  0.187 

(+) 

0.000 

F5 1.000 1.000 1.000 (≈) 1.000  1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 0.450 

(+) 

0.400  0.500 

(+) 

0.000 

F6 0.993 0.900 0.936 (≈) 0.500  0.909 (≈) 0.550 0.033 (+) 0.000 0.050 (+) 0.000 0.014 

(+) 

0.000  0.028 

(+) 

0.000 

F7 0.800 0.000 0.830 (≈) 0.000  0.882 (≈) 0.000 0.360 (+) 0.000 0.250 (+) 0.000 0.019 

(+) 

0.000  0.028 

(+) 

0.000 

           Continued on next page
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F SOMDE NCDE CDE r2PSO r3PSO SDE NSDE 

PR SR PR SR PR SR PR SR PR SR PR SR PR SR 

F8 0.960 0.125 0.645 (+) 0.000  0.003 (+) 0.000 0.001 (+) 0.000 0.004 (+) 0.000 0.008 

(+) 

0.000  0.002 

(+) 

0.000 

F9 0.326 0.000 0.375 (≈) 0.000  0.483 (-) 0.000 0.060 (+) 0.000 0.058 (+) 0.000 0.003 

(+) 

0.000  0.003 

(+) 

0.000 

F10 1.000 1.000 1.000 (≈) 1.000  1.000 (≈) 1.000 0.687 (+) 0.100 0.646 (+) 0.000 0.058 

(+) 

0.000  0.033 

(+) 

0.000 

F11 0.792 0.000 0.636 (≈) 0.000  0.021 (+) 0.000 0.636 (≈) 0.000 0.617 (≈) 0.000 0.110 

(+) 

0.000  0.083 

(+) 

0.000 

F12 0.625 0.000 0.125 (+) 0.000  0.008 (+) 0.000 0.265 (+) 0.000 0.281 (+) 0.000 0.056 

(+) 

0.000  0.125 

(+) 

0.000 

F13 0.667 0.000 0.500 (≈) 0.000  0.015 (+) 0.000 0.500 (≈) 0.000 0.646 (≈) 0.000 0.083 

(+) 

0.000  0.125 

(+) 

0.000 

F14 0.667 0.000 0.667 (≈) 0.000  0.000 (+) 0.000 0.233 (+) 0.000 0.542 (≈) 0.000 0.037 

(+) 

0.000  0.108 

(+) 

0.000 

F15 0.375 0.000 0.269 (≈) 0.000  0.000 (+) 0.000 0.031 (+) 0.000 0.219 (≈) 0.000 0.068 

(+) 

0.000  0.069 

(+) 

0.000 

F16 0.667 0.000 0.667 (≈) 0.000  0.000 (+) 0.000 0.000 (+) 0.000 0.269 (+) 0.000 0.025 

(+) 

0.000  0.033 

(+) 

0.000 

F17 0.250 0.000 0.250 (≈) 0.000  0.000 (+) 0.000 0.000 (+) 0.000 0.150 (+) 0.000 0.000 

(+) 

0.000  0.009 

(+) 

0.000 

F18 0.375 0.000 0.333 (≈) 0.000  0.000 (+) 0.000 0.000 (+) 0.000 0.030 (+) 0.000 0.000 

(+) 

0.000  0.004 

(+) 

0.000 

F19 0.128 0.000 0.165 (≈) 0.000  0.000 (≈) 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000 0.000 

(≈) 

0.000  0.000 

(≈) 

0.000 

F20 0.056 0.000 0.000 (≈) 0.000  0.000 (≈) 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000 0.000 

(≈) 

0.000  0.000 

(≈) 

0.000 

≈ (SOMDE-DS is similar) 17 8 7 10 3 3 

+ (SOMDE-DS is better) 3 11 13 10 17 17 

− (SOMDE-DS is worse) 0 1 0 0 0 0 

Table 1 shows the results of SOMDE-DS and other widely used multimodal algorithms in 
solving MMOPs, where the best PR value of each function are emphasized in boldface. Besides, 
Mann-Whitney U test is carried out between SOMDE-DS and every other EA with a confidence 
interval of 95%. There are three different results in the test represented by three different symbols, 
that is “≈”, “+” and “−” respectively. “≈” means that the performance of SOMDE-DS on this function 
is similar to corresponding algorithm. “+” means that SOMDE-DS performs significantly better than 
corresponding algorithm, while “−” means that SOMDE-DS performs significantly to corresponding 
algorithm. From Table 1, it is clear that SOMDE-DS achieves the best results on most functions 
except for F7, F9 and F19. Among all multimodal algorithms, SOMDE-DS gets first place for 17 
times in total, which is the best among all tested algorithms. Besides that, the results of the 
Mann-Whitney U test also show that SOMDE-DS performs better than every other algorithm in the 
manner of statistics. 
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It can be clearly seen from Figure 5 that the SOMDE-DS performs better than other methods in 
comparison in selected four functions (i.e., F2, F9, F11 and F18). Specifically, SOMDE-DS 
converges faster and finds more optima in any situation. 

In addition, to better illustrate the convergence of SOMDE-DS, the fitness landscape and 
distribution of all individuals under three different situations are listed. Specifically, four different 
functions (i.e., F3, F7, F10 and F11) are shown in Figures 6–9 respectively and each of them includes 
the results of initialization, the results after several generations of evolution and the final results. F3 
is a simple 2D function with only 1 global optimum and 4 local optima. In addition to locating the 
only 1 global optimum, SOMDE-DS also locates the 4 local optima, which proves its superiority in 
niching. Both F7 and F10 are widely used benchmark functions with multiple global optima. The 
number of global optima of F7 is 18, and that of F10 is 12. From Figures 7 and 8, it can be observed 
that in the early stage of evolutions, niches are formed around every global optimum. At the end of 
evolutions, every global optimum of both two functions is located. F11 is a complex composite 
function with 6 global optima. It can be seen from Figure 9 that, SOMDE-DS is still able to most 
optima of F11. 

  
(a) (b) 

  

(c) (d) 

Figure 5. Average number of peaks found by tested algorithms on (a) F2, (b) F9, (c) F11, 
and (d) F18. 
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(a) (b) (c) 

Figure 6. Fitness landscape and population distributions of F3 after (a) initialization, (b) 
20 iterations and (c) final iterations. 

 

(a) (b) (c) 

Figure 7. Fitness landscape and population distributions of F3 after (a) initialization, (b) 
30 iterations and (c) final iterations. 

 

(a) (b) (c) 

Figure 8. Fitness landscape and population distributions of F3 after (a) initialization, (b) 
30 iterations and (c) final iterations. 
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(a) (b) (c) 

Figure 9. Fitness landscape and population distributions of F3 after (a) initialization, (b) 
50 iterations and (c) final iterations. 

4. Discussion 

4.1. Parameter analysis 

There are three key parameters in SOMDE-DS, that is M for the minimal size of niches, fet for 
the threshold of max function evaluations and pl for the bound between global selection and local 
selection. In order to find out the influence of these three parameters, we conduct three comparison 
experiments. 

4.1.1. The study of M 

Table 2. The compared results among different values of M. 

F Original M = 5 M = 20 M = 30 

PR SR PR SR PR SR PR SR 

F1 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 0.000 

F2 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 

F3 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 

F4 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 

F5 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 

F6 0.995 0.909 0.975 (≈) 0.727 0.964 (≈) 0.818 0.954 (≈) 0.636 

F7 0.775 0.000 0.795 (≈) 0.000 0.891 (-) 0.182 0.793 (≈) 0.000 

F8 0.963 0.091 0.942 (≈) 0.000 0.944 (≈) 0.000 0.953 (≈) 0.000 

F9 0.327 0.000 0.297 (≈) 0.000 0.355 (≈) 0.000 0.285 (≈) 0.000 

F10 1.000 1.000 0.992 (≈) 0.909 1.000 (≈) 1.000 1.000 (≈) 0.000 

F11 0.787 0.000 0.682 (+) 0.000 0.727 (≈) 0.000 0.682 (+) 0.000 

F12 0.636 0.000 0.704 (≈) 0.000 0.341 (+) 0.000 0.667 (≈) 0.000 

F13 0.667 0.000 0.667 (≈) 0.000 0.651 (≈) 0.000 0.667 (≈) 0.000 

F14 0.667 0.000 0.667 (≈) 0.000 0.651 (≈) 0.000 0.667 (≈) 0.000 

F15 0.375 0.000 0.375 (≈) 0.000 0.193 (+) 0.000 0.329 (≈) 0.000 

       Continued on next page
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F Original M = 5 M = 20 M = 30 

PR SR PR SR PR SR PR SR 

F16 0.667 0.000 0.667 (≈) 0.000 0.575 (≈) 0.000 0.667 (≈) 0.000 

F17 0.250 0.000 0.250 (≈) 0.000 0.250 (≈) 0.000 0.239 (≈) 0.000 

F18 0.379 0.000 0.349 (≈) 0.000 0.182 (+) 0.000 0.348 (≈) 0.000 

F19 0.114 0.000 0.090 (≈) 0.000 0.000 (≈) 0.000 0.091 (≈) 0.000 

F20 0.045 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000 

≈ (SOMDE-DS is similar) 19 16 19 

+ (SOMDE-DS is better) 1 3 1 

− (SOMDE-DS is worse) 0 1 0 

From Table 2, when M is set to 10, SOMDE-DS gets the best performance. It can be seen that, 
the change of minimal size of niche M does not change the results significantly, and therefore, it is 
safe to say that, SOMDE-DS is not sensitive to the parameter M. 

4.1.2. The study of pl and fet 

Table 3. The compared results among different values of pl. 

F Original pl = 0.0 pl = 0.2 pl = 0.4 pl = 0.8 pl = 1.0 

PR SR PR SR PR SR PR SR PR SR PR SR 

F1 1.000 1.000 1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000 

F2 1.000 1.000 1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000 

F3 1.000 1.000 1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000 

F4 1.000 1.000 1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000 

F5 1.000 1.000 1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000 

F6 0.993 0.900 0.869 (+) 0.364  0.884 (+) 0.454 0.904 (+) 0.454  0.995 (≈) 0.909  0.768 (+) 0.091 

F7 0.800 0.000 0.697 (≈) 0.000  0.639(+) 0.000  0.702 (≈) 0.000  0.826 (≈) 0.000  0.869 (≈) 0.000 

F8 0.960 0.125 0.767 (+) 0.000  0.847 (+) 0.000  0.896 (≈) 0.000  0.910 (+) 0.000  0.669 (+) 0.000 

F9 0.326 0.000 0.180 (+) 0.000  0.199 (+) 0.000  0.228 (+) 0.000  0.363 (≈) 0.000  0.464 (-) 0.000 

F10 1.000 1.000 1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000 

F11 0.792 0.000 0.667 (+) 0.000  0.697 (+) 0.000  0.742 (≈) 0.000  0.667 (+) 0.000  0.742 (≈) 0.000 

F12 0.625 0.000 0.682 (≈) 0.000  0.716 (≈) 0.000  0.704 (≈) 0.000  0.648 (≈) 0.000  0.182 (+) 0.000 

F13 0.667 0.000 0.667 (≈) 0.000  0.667 (≈) 0.000  0.667 (≈) 0.000  0.667 (≈) 0.000  0.667 (≈) 0.000 

F14 0.667 0.000 0.667 (≈) 0.000  0.667 (≈) 0.000  0.667 (≈) 0.000  0.667 (≈) 0.000  0.667 (≈) 0.000 

F15 0.375 0.000 0.307 (≈) 0.000  0.341 (≈) 0.000  0.364 (≈) 0.000  0.318 (≈) 0.000  0.352 (≈) 0.000 

F16 0.667 0.000 0.636 (≈) 0.000  0.667 (≈) 0.000  0.651 (≈) 0.000  0.606 (≈) 0.000  0.591 (≈) 0.000 

F17 0.250 0.000 0.250 (≈) 0.000  0.250 (≈) 0.000  0.250 (≈) 0.000  0.261 (≈) 0.000  0.250 (≈) 0.000 

F18 0.375 0.000 0.348 (≈) 0.000  0.349 (≈) 0.000  0.348 (≈) 0.000  0.394 (≈) 0.000  0.364 (≈) 0.000 

F19 0.128 0.000 0.023 (≈) 0.000  0.023 (≈) 0.000  0.034 (≈) 0.000  0.011 (≈) 0.000  0.034 (≈) 0.000 

F20 0.056 0.000 0.000 (≈) 0.000  0.000 (≈) 0.000  0.000 (≈) 0.000  0.000 (≈) 0.000  0.000 (≈) 0.000 

≈ (SOMDE-DS is similar) 16 15 18 18 17 

+ (SOMDE-DS is better) 7 5 2 2 3 

− (SOMDE-DS is worse) 0 0 0 0 0 
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pl is an important parameter in DS strategy and the compared results among different values of pl 

is shown in Table 3. When the value of pl is too high, DS strategy prefers global selection and when the 
value is too low, local selection is preferred. The unbalance between global selection and local 
selection lead to worse results. The experiment results show that 0.6 may be a proper value for pl. 

fet is another important parameter in DS strategy and the compared results among different 
values of fet are shown in Table 4. When the value of fet is too low, local selection is inhibited, and 
thus the convergence of population is also suppressed. The results of other three values of fet are 
similar and this can be credited to the fast convergence of SOMDE-DS. 

In conclusion, pl should be a proper medium value between [0, 1] and fet should be a medium or 
higher value. The value of both pl and fet are involved in the exploration and exploitation of the 
proposed algorithm, and different values do make a difference to the results. 

Table 4. The compared results among different values of fet. 

F Original fet = 0.1 fet = 0.3 fet = 0.5 fet = 0.7 

PR SR PR SR PR SR PR SR PR SR 

F1 1.000 1.000 1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  

F2 1.000 1.000 1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  

F3 1.000 1.000 1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  

F4 1.000 1.000 1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  

F5 1.000 1.000 1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  

F6 0.993 0.900 0.980 (≈) 0.818  0.984 (≈) 0.727 0.990 (≈) 0.818  0.954 (≈) 0.636  

F7 0.800 0.000 0.864 (≈) 0.000  0.838(≈) 0.000  0.856 (≈) 0.000  0.805 (≈) 0.000  

F8 0.960 0.125 0.746 (+) 0.000  0.961 (≈) 0.000  0.985 (≈) 0.000  0.985 (≈) 0.182  

F9 0.326 0.000 0.441 (+) 0.000  0.398 (≈) 0.000  0.369 (≈) 0.000  0.355 (≈) 0.000  

F10 1.000 1.000 1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  

F11 0.792 0.000 0.727 (≈) 0.000  0.742 (≈) 0.000  0.712 (≈) 0.000  0.697 (≈) 0.000  

F12 0.625 0.000 0.443 (+) 0.000  0.681 (≈) 0.000  0.682 (≈) 0.000  0.716 (≈) 0.000  

F13 0.667 0.000 0.667 (≈) 0.000  0.667 (≈) 0.000  0.667 (≈) 0.000  0.667 (≈) 0.000  

F14 0.667 0.000 0.667 (≈) 0.000  0.667 (≈) 0.000  0.667 (≈) 0.000  0.667 (≈) 0.000  

F15 0.375 0.000 0.352 (≈) 0.000  0.341 (≈) 0.000  0.375 (≈) 0.000  0.352 (≈) 0.000  

F16 0.667 0.000 0.636 (≈) 0.000  0.667 (≈) 0.000  0.636 (≈) 0.000  0.636 (≈) 0.000  

F17 0.250 0.000 0.250 (≈) 0.000  0.250 (≈) 0.000  0.250 (≈) 0.000  0.250 (≈) 0.000  

F18 0.375 0.000 0.333 (≈) 0.000  0.348 (≈) 0.000  0.378 (≈) 0.000  0.394 (≈) 0.000  

F19 0.128 0.000 0.045 (≈) 0.000  0.091 (≈) 0.000  0.057 (≈) 0.000  0.028 (≈) 0.000  

F20 0.056 0.000 0.000 (≈) 0.000  0.000 (≈) 0.000  0.000 (≈) 0.000  0.000 (≈) 0.000  

≈ (Original is similar) 17 20 20 20 

+ (Original is better) 3 0 0 0 

− (Original is worse) 0 0 0 0 

4.2. Component analysis 

To investigate the influence of DE operators, we studied 3 mutation strategies and 2 selection 
strategies in addition to the original one. There is only one difference between each variant and our 
original method, either mutation or selection. 
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4.2.1. Mutation 

It can be seen from Table 5, that the local best individual guided mutation variant and global 
best individual guided mutation variant do not perform well. When the global best mutation strategy 
is used, the direction of mutation is dominated by the global best individual in the whole population, 
eliminating the role of clustering. Consequently, this variant degrades to a global best individual 
guided DE and it is no wonder that this variant does not perform well. The defect of the local best 
individual guided mutation variant is similar to that of the global one. Guided by the best individual 
in the niche, every other individual int the same niche is likely to converge to the same optima, 
leading to poor performance.  

Table 5. The compared results among different mutation strategies. 

F Original Current Mutation Local Best Mutation Global Best Mutation 

PR SR PR SR PR SR PR SR 

F1 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 0.500 (+) 0.000 

F2 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 0.758 (+) 0.182 

F3 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 

F4 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 0.250 (+) 0.000 

F5 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 0.727 (+) 0.455 

F6 0.995 0.909 0.843 (+) 0.000 0.480 (+) 0.000 0.066 (+) 0.000 

F7 0.775 0.000 0.884 (-) 0.000 0.593 (+) 0.000 0.199 (+) 0.000 

F8 0.963 0.091 0.017 (+) 0.000 0.397 (+) 0.000 0.012 (+) 0.000 

F9 0.327 0.000 0.423 (-) 0.000 0.310 (≈) 0.000 0.076 (+) 0.000 

F10 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 0.250 (+) 0.000 

F11 0.787 0.000 0.667 (+) 0.000 0.667 (+) 0.000 0.167 (+) 0.000 

F12 0.636 0.000 0.261 (+) 0.000 0.227 (+) 0.000 0.102 (+) 0.000 

F13 0.667 0.000 0.667 (≈) 0.000 0.652 (≈) 0.000 0.167 (+) 0.000 

F14 0.667 0.000 0.667 (≈) 0.000 0.667 (≈) 0.000 0.167 (+) 0.000 

F15 0.375 0.000 0.375 (≈) 0.000 0.364 (≈) 0.000 0.125 (+) 0.000 

F16 0.667 0.000 0.636 (≈) 0.000 0.667 (≈) 0.000 0.167 (+) 0.000 

F17 0.250 0.000 0.250 (≈) 0.000 0.250 (≈) 0.000 0.080 (+) 0.000 

F18 0.379 0.000 0.364 (≈) 0.000 0.467 (-) 0.000 0.167 (+) 0.000 

F19 0.114 0.000 0.091 (≈) 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000 

F20 0.045 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000 

≈ (Original is similar) 13 12 1 

+ (Original is better) 5 7 19 

− (Original is worse) 2 1 0 

Although the performance of the current mutation variant is not as good as the original one, it 
does perform way better than the two best individual guided mutation variants. Comparing the results 
of the original method with that of the current mutation variant, it is easy to notice that the current 
mutation variant does extremely bad in F8. Every offspring produced using the current mutation 
strategy is similar to its parent, meaning that the ability to explore new space is pretty weak. 
Therefore, this variant performs extremely badly in a 3D function with a wide search space like F8. 
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From the results, the original one is better. On balance, the original is more universal. 

4.2.2. Selection strategy 

From Table 6, notice that the original method does not perform as well as the global selection 
variant in F7 and F9 but performs way better than the latter in F8. It is a tradeoff of combining local 
selection and global selection. Comparing the local selection variant and the global one, the former 
performs better than the latter in F8 while worse in F7 and F9. Although the local selection variant is 
good at locating multiple global optima, it’s hard for it to maintain these global optima. There are up 
to 81 peaks in F8, meaning that there is more than one peak within a niche. Therefore, frequent 
selections in a small niche will lead to convergence to one peak, losing the diversity of the niche. 

Table 6. The compared results among different selection strategies. 

F Original Local Selection Global Selection 

PR SR PR SR PR SR 

F1 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 

F2 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 

F3 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 

F4 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 

F5 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 

F6 0.995 0.909 0.919 (+) 0.727 0.934 (≈) 0.545 

F7 0.775 0.000 0.747 (≈) 0.091 0.876 (-) 0.000 

F8 0.963 0.091 0.713 (+) 0.000 0.465 (+) 0.000 

F9 0.327 0.000 0.135 (+) 0.000 0.468 (-) 0.000 

F10 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 

F11 0.787 0.000 0.694 (≈) 0.000 0.758 (≈) 0.000 

F12 0.636 0.000 0.659 (≈) 0.000 0.102 (+) 0.000 

F13 0.667 0.000 0.667 (≈) 0.000 0.621 (≈) 0.000 

F14 0.667 0.000 0.667 (≈) 0.000 0.667 (≈) 0.000 

F15 0.375 0.000 0.364 (≈) 0.000 0.330 (≈) 0.000 

F16 0.667 0.000 0.636 (≈) 0.000 0.667 (≈) 0.000 

F17 0.250 0.000 0.250 (≈) 0.000 0.250 (≈) 0.000 

F18 0.379 0.000 0.409 (≈) 0.000 0.500 (-) 0.000 

F19 0.114 0.000 0.034 (≈) 0.000 0.100 (≈) 0.000 

F20 0.045 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000 

≈ (Original is similar) 16 14 

+ (Original is better) 4 3 

− (Original is worse) 0 3 

In conclusion, the local selection variant is good at locating multiple optima while global 
selection one is doing well in maintain found optima. Using DS strategy that combines local 
selection and global selection strategies, SOMDE-DS can explore new global optima as well as 
maintaining already found optima. 



5989 

Mathematical Biosciences and Engineering  Volume 19, Issue 6, 5968–5997. 

Through the analysis above, it can be considered that the original strategy, that is random 
mutation combined with DS strategy, provides the best performance. 

4.3. SOM analysis 

In this part, we dive into the core of our algorithm, SOM. We investigate two core components 
of SOM to see their influence on results of our proposed SOMDE-DS, one is neighborhood function 
and the other is the size of SOM.  

4.3.1. Neighborhood function 

Neighborhood function determines the rate of change of the neighborhood around the winner 
neuron [18]. A proper neighborhood function should be selected according to the dataset. We test 
four commonly used neighborhood functions to see how they work with our algorithm. The four 
functions are Gaussian, Mexican Hat, Triangle, and Bubble. The results are shown in Table 7. 

Table 7. The compared results among different neighborhood functions. 

F Original Mexican Hat Triangle Bubble 

PR SR PR SR PR SR PR SR 

F1 1.000 1.000 1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  

F2 1.000 1.000 1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  

F3 1.000 1.000 1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  

F4 1.000 1.000 1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  

F5 1.000 1.000 1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  

F6 0.995 0.909 0.944 (+) 0.636  0.838 (+) 0.182  0.737 (+) 0.000  

F7 0.775 0.000 0.881 (−) 0.000  0.866 (−) 0.000  0.871 (−) 0.000  

F8 0.963 0.091 0.746 (+) 0.000  0.639 (+) 0.000  0.710 (+) 0.000  

F9 0.327 0.000 0.461 (−) 0.000  0.451 (−) 0.000  0.471 (−) 0.000  

F10 1.000 1.000 1.000 (≈) 1.000  0.992 (≈) 0.909  1.000 (≈) 1.000  

F11 0.787 0.000 0.833 (≈) 0.273  0.682 (≈) 0.000  0.697 (≈) 0.000  

F12 0.636 0.000 0.250 (+) 0.000  0.182 (+) 0.000  0.250 (+) 0.000  

F13 0.667 0.000 0.667 (≈) 0.000  0.667 (≈) 0.000  0.667 (≈) 0.000  

F14 0.667 0.000 0.667 (≈) 0.000  0.667 (≈) 0.000  0.667 (≈) 0.000  

F15 0.375 0.000 0.375 (≈) 0.000  0.364 (≈) 0.000  0.352 (≈) 0.000  

F16 0.667 0.000 0.621 (≈) 0.000  0.667 (≈) 0.000  0.667 (≈) 0.000  

F17 0.250 0.000 0.250 (≈) 0.000  0.239 (≈) 0.000  0.250 (≈) 0.000  

F18 0.379 0.000 0.333 (+) 0.000  0.394 (≈) 0.000  0.364 (≈) 0.000  

F19 0.114 0.000 0.068 (≈) 0.000  0.034 (≈) 0.000  0.170 (≈) 0.000  

F20 0.045 0.000 0.000 (≈) 0.000  0.000 (≈) 0.000  0.000 (≈) 0.000  

≈ (SOMDE−DS is similar) 13 14 14 

+ (SOMDE−DS is better) 5 4 4 

− (SOMDE−DS is worse) 2 2 2 

From Table 7, it can be observed that the results of the four variants are similar, meaning that 
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neighborhood functions do not have a visible impact on the final results. As mentioned above, the 
selection of the neighborhood function is dominated by the dataset. However, all of the input data 
used in our SOM is randomly generated and evolves on their own, meaning that there is probably no 
particular pattern among these data. If there is, it should be credited to the target function, which 
guides the evolution of data. Hence in most cases, there is no significant difference between every 
two variants. Besides that, there is a situation where a variant performs better than the others in some 
functions, for example, the Gaussian variant performs the best in F8. The reason is that the Gaussian 
neighborhood function is the most suitable for F8. 

To draw a conclusion, there is no common pattern in the input data, hence the performance of 
the four variants is similar. Different neighborhood functions do not make great difference to the 
performance of SOMDE-DS. 

4.3.2. Size of SOM 

Another component that might influence the results of SOMDE-DS is the size of SOM. We set 

the size of SOM as 5 NP according to the widely accepted principle. In addition to the original 

size, we choose 3 different sizes for comparison, one is 3 by 3, one is 2 NP by 2 NP and 

the final one is NP by NP in ascending order. Most of the test functions in the benchmark CEC’ 
2013 have 6 or 8 global optima, and therefore 3 by 3 may be a suitable size to see whether a SOM 
with a size similar to the number of global optima would provide a better result. Likewise, we 

suggest that NP by NP is a suitable size to test whether a SOM with a size similar to the size of 
the population would provide a better result. And finally, we choose one more size between these two 

sizes, that is 2 NP by 2 NP for comparison. 

Table 8. The compared results among SOM of different sizes. 

F Original Size 1 Size 2 Size 3 

PR SR PR SR PR SR PR SR 

F1 1.000 1.000 1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  

F2 1.000 1.000 1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  

F3 1.000 1.000 1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  

F4 1.000 1.000 1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  

F5 1.000 1.000 1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  

F6 0.995 0.909 0.848 (+) 0.182  0.682 (+) 0.000  0.717 (+) 0.000  

F7 0.775 0.000 0.886 (≈) 0.000  0.876 (≈) 0.000  0.869 (≈) 0.000  

F8 0.963 0.091 0.296 (+) 0.000  0.584 (+) 0.000  0.755 (+) 0.000  

F9 0.327 0.000 0.473 (-) 0.000  0.465 (-) 0.000  0.455 (-) 0.000  

F10 1.000 1.000 1.000 (≈) 1.000  1.000 (≈) 1.000  1.000 (≈) 1.000  

F11 0.787 0.000 0.985 (-) 0.909  0.818 (≈) 0.091  0.697 (≈) 0.000  

F12 0.636 0.000 0.080 (+) 0.000  0.148 (+) 0.000  0.205 (+) 0.000  

F13 0.667 0.000 0.500 (+) 0.000  0.591 (≈) 0.000  0.667 (≈) 0.000  

F14 0.667 0.000 0.606 (≈) 0.000  0.652 (≈) 0.000  0.667 (≈) 0.000  

     Continued on next page



5991 

Mathematical Biosciences and Engineering  Volume 19, Issue 6, 5968–5997. 

F Original Size 1 Size 2 Size 3 

PR SR PR SR PR SR PR SR 

F15 0.375 0.000 0.375 (≈) 0.000  0.375 (≈) 0.000  0.352 (≈) 0.000  

F16 0.667 0.000 0.515 (≈) 0.000  0.515 (≈) 0.000  0.667 (≈) 0.000  

F17 0.250 0.000 0.250 (≈) 0.000  0.250 (≈) 0.000  0.250 (≈) 0.000  

F18 0.379 0.000 0.394 (≈) 0.000  0.349 (≈) 0.000  0.379 (≈) 0.000  

F19 0.114 0.000 0.000 (≈) 0.000  0.045 (≈) 0.000  0.136 (≈) 0.000  

F20 0.045 0.000 0.000 (≈) 0.000  0.000 (≈) 0.000  0.000 (≈) 0.000  

≈ (SOMDE-DS is similar) 13 16 16 

+ (SOMDE-DS is better) 5 3 3 

− (SOMDE-DS is worse) 2 1 1 

As it can be observed from Table 8, there is no significant difference among all these variants in 
most functions. That is to say, regardless of the size, SOM is capable of capturing the similarities 
among the whole population in most cases. 

Therefore, in most cases, neither neighborhood function nor the size of SOM does not have a 
significant effect on the performance. The former is caused by the randomness of the input data 
while the latter should be credited to the outstanding ability of SOM to capture the similarities in 
different sizes.  

4.4. Dielectric composite design problem 

The objective of this problem is to design a dielectric composite with desired effective 
permittivity in the direction of the field applied [59]. Usually, the desire composite consists of two 
different materials, and therefore the effective permittivity can be calculated as Eq (5): 

1 2

2 1

,
(1 )com k g

 
 


 

                               (5) 

where 1 and 2 are the permittivity of the first and the second material, respectively. com  is the 

permittivity of the composite and g is the concentration of the first material. Assume that the desired 
permittivity of the composite is 1.5, the permittivity of the first material ranges from 10 to 30 and the 
concentration of the first material varies between 0.1 and 0.9 [59]. Then the problem can be written 

as a multimodal optimization problem with parameters 1  and g as in Eq (6): 

1

min 1.5

0.1 0.9 ,

10 30

obj effg

g





  
  
  

                            (6) 

SOMDE-DS is used to solve this problem and the evolution is shown in Figure 10.  
At first, individuals are randomly generated. Then during the evolution, all individuals evolve 

towards their corresponding optima. It took a few iterations for almost all individuals to converge to 
global optima. It can be concluded that SOMDE-DS not only perform well in benchmark but also 
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can solve practical engineering problems. 

  

(a) (b) 

  

(c) (d) 

Figure 10. Fitness landscapes of dielectric composite design problem and population 
distribution during evolution. Population distribution after (a) initialization, (b) 5 
iterations, (c) 10 iteration ands (d) 20 iterations. 

5. Conclusions 

In this paper, a novel SOM based MMOP algorithm SOMDE-DS is proposed. SOM is trained 
with the current population and then used to divide the population into several clusters. Then, these 
clusters are further aggregated to form more reasonable and overlapping niches by proposed VNS. 
After the formation of these niches, the offspring are generated by the mutation and crossover 
operations. Finally, the proposed DS strategy can effectively select promising individuals into next 
generation.  

In conclusion, the SOM and VNS strategy ensure the similarity between individuals within the 
same niches and increase the possibility to locate more global optima. DS strategy effectively 
balance the ability of locating new optima and maintaining the found optima. Compared with several 
wildly used multimodal algorithms, SOMDE-DS can achieve satisfying results. Besides, the 
experimental results in solving a real-world application (i.e., dielectric composite design problem) 
also illustrate the effectiveness of our algorithm. 

Although the proposed SOMDE-DS algorithm performs well in solving MMOPs, there are still 
some limitations in this study. For example, the sensitivity study is done separately without 
considering the interaction effect between the different algorithm parameters. Therefore, further 
researches should fully figure out the interactive mechanisms of the different algorithm parameters. 
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