[1]
|
F. Hernández-Campos, K. Jeffay, F. D. Smith, Tracking the evolution of web traffic: 1995–2003, in 11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer Telecommunications Systems, (2003), 16–25. https://doi.org/10.1109/MASCOT.2003.1240638
|
[2]
|
H. Schulze, K. Mochalski, Internet study 2008/2009, Ipoque Rep., 37 (2009), 351–362.
|
[3]
|
T. Zimmermann, J. Rüth, B. Wolters, O. Hohlfeld, How HTTP/2 pushes the web: An empirical study of HTTP/2 server push, in 2017 IFIP Networking Conference (IFIP Networking) and Workshops, (2017), 1–9. https://doi.org/10.23919/IFIPNetworking.2017.8264830
|
[4]
|
O. Hohlfeld, J. Rüth, K. Wolsing, T. Zimmermann, Characterizing a meta-CDN, in International Conference on Passive and Active Network Measurement, (2018), 114–128. https://doi.org/10.1007/978-3-319-76481-8_9
|
[5]
|
F. Lichtblau, F. Streibelt, T. Krüger, P. Richter, A. Feldmann, Detection, classification, and analysis of inter-domain traffic with spoofed source IP addresses, in Proceedings of the 2017 Internet Measurement Conference, (2017), 86–99. https://doi.org/10.1145/3131365.3131367
|
[6]
|
A. Al-Najjar, S. Teed, J. Indulska, M. Portmann, Flow-based load balancing of web traffic using OpenFlow, in 2017 27th International Telecommunication Networks and Applications Conference (ITNAC), (2017), 1–6. https://doi.org/10.1109/ATNAC.2017.8215411
|
[7]
|
Cisco, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016–2021, 2017. Available from: https://www.ramonmillan.com.
|
[8]
|
W. Li, A. W. Moore, M. Canini, Classifying HTTP traffic in the new age, ACM SIGCOMM, 8 (2008), 17–22.
|
[9]
|
J. Liu, C. Fang, N. Ansari, Request dependency graph: A model for web usage mining in large-scale web of things, IEEE Internet Things J., 3 (2016), 598–608. https://doi.org/10.1109/JIOT.2015.2452964 doi: 10.1109/JIOT.2015.2452964
|
[10]
|
L. Vassio, I. Drago, M. Mellia, Detecting user actions from HTTP traces: toward an automatic approach, in 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), (2016), 50–55. https://doi.org/10.1109/IWCMC.2016.7577032
|
[11]
|
G. Scavo, Z. B. Houidi, S. Traverso, R. Teixeira, M. Mellia, WeBrowse: mining HTTP logs online for network-based content recommendation, preprint, arXiv: 1602.06678.
|
[12]
|
P. Fiadino, A. Bar, P. Casas, HTTPTag: a flexible on-line HTTP classification system for operational 3G networks, in 2013 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), (2013), 71–72. https://doi.org/10.1109/INFCOMW.2013.6970744
|
[13]
|
X. Gui, J. Liu, Q. Lv, C. Dong, Z. Lei, Probabilistic top-k query: model and application on web traffic analysis, China Commun., 13 (2016), 123–137. https://doi.org/10.1109/CC.2016.7513208 doi: 10.1109/CC.2016.7513208
|
[14]
|
J. Sun, L. She, H. Chen, W. Zhong, C. Chang, Z. Chen, et al., Automatically identifying apps in mobile traffic, Concurrency Comput. Pract. Exper., 28 (2016), 3927–3941. https://doi.org/10.1002/cpe.3703 doi: 10.1002/cpe.3703
|
[15]
|
G. Aceto, D. Ciuonzo, A. Montieri, A. Pescapé, Mobile encrypted traffic classification using deep learning: experimental evaluation, lessons learned, and challenges, IEEE Trans. Network Serv. Manage., 16 (2019), 445–458. https://doi.org/10.1109/TNSM.2019.2899085 doi: 10.1109/TNSM.2019.2899085
|
[16]
|
P. Białczak, W. Mazurczyk, Characterizing anomalies in malware-generated HTTP traffic, Secur. Commun. Networks, 2020 (2020). https://doi.org/10.1155/2020/8848863 doi: 10.1155/2020/8848863
|
[17]
|
J. Li, H. Zhang, Z. Wei, The weighted word2vec paragraph vectors for anomaly detection over HTTP traffic, IEEE Access, 8 (2020), 141787–141798. https://doi.org/10.1109/ACCESS.2020.3013849 doi: 10.1109/ACCESS.2020.3013849
|
[18]
|
G. D'Angelo, F. Palmieri, Network traffic classification using deep convolutional recurrent autoencoder neural networks for spatial–temporal features extraction, J. Network Comput. Appl., 173 (2021), 102890. https://doi.org/10.1016/j.jnca.2020.102890 doi: 10.1016/j.jnca.2020.102890
|
[19]
|
S. Dong, Y. Xia, T. Peng, Traffic identification model based on generative adversarial deep convolutional network, Ann. Telecommun., (2021), 1–15. https://doi.org/10.1007/s12243-021-00876-6 doi: 10.1007/s12243-021-00876-6
|
[20]
|
T. T. Nguyen, G. Armitage, A survey of techniques for internet traffic classification using machine learning, IEEE Commun. Surv. Tutorials, 10 (2008), 56–76. https://doi.org/10.1109/SURV.2008.080406 doi: 10.1109/SURV.2008.080406
|
[21]
|
A. Callado, C. Kamienski, G. Szabó, B. P. Gero, J. Kelner, S. Fernandes, et al., A survey on internet traffic identification, IEEE Commun. Surv. Tutorials, 11 (2009), 37–52. https://doi.org/10.1109/SURV.2009.090304 doi: 10.1109/SURV.2009.090304
|
[22]
|
A. Dainotti, A. Pescape, K. C. Claffy, Issues and future directions in traffic classification, IEEE Network, 26 (2012), 35–40. https://doi.org/10.1109/MNET.2012.6135854 doi: 10.1109/MNET.2012.6135854
|
[23]
|
M. Finsterbusch, C. Richter, E. Rocha, J. Muller, K. Hanssgen, A survey of payload-based traffic classification approaches, IEEE Commun. Surv. Tutorials, 16 (2013), 1135–1156. https://doi.org/10.1109/SURV.2013.100613.00161 doi: 10.1109/SURV.2013.100613.00161
|
[24]
|
D. Naboulsi, M. Fiore, S. Ribot, R. Stanica, Large-scale mobile traffic analysis: a survey, IEEE Commun. Surv. Tutorials, 18 (2015), 124–161. https://doi.org/10.1109/COMST.2015.2491361 doi: 10.1109/COMST.2015.2491361
|
[25]
|
P. Velan, M. Cermak, P. Celeda, M. Drasar, A survey of methods for encrypted traffic classification and analysis, Int. J. Network Manage., 25 (2015), 355–374. https://doi.org/10.1002/nem.1901 doi: 10.1002/nem.1901
|
[26]
|
D. Acarali, M. Rajarajan, N. Komninos, I. Herwono, Survey of approaches and features for the identification of HTTP-based botnet traffic, J. Network Comput. Appl., 76 (2016), 1–15. https://doi.org/10.1016/j.jnca.2016.10.007 doi: 10.1016/j.jnca.2016.10.007
|
[27]
|
W. Pan, G. Cheng, X. Guo, S. Huang, Review and perspective on encrypted traffic identification research, J. Commun., 37 (2016), 154–167. https://doi.org/10.11959/j.issn.1000-436x.2016187 doi: 10.11959/j.issn.1000-436x.2016187
|
[28]
|
F. Pacheco, E. Exposito, M. Gineste, C. Baudoin, J. Aguilar, Towards the deployment of machine learning solutions in network traffic classification: A systematic survey, IEEE Commun. Surv. Tutorials, 21 (2018), 1988–2014. https://doi.org/10.1109/COMST.2018.2883147 doi: 10.1109/COMST.2018.2883147
|
[29]
|
S. Rezaei, X. Liu, Deep learning for encrypted traffic classification: an overview, IEEE Commun. Mag., 57 (2019), 76–81. https://doi.org/10.1109/MCOM.2019.1800819 doi: 10.1109/MCOM.2019.1800819
|
[30]
|
A. D'Alconzo, I. Drago, A. Morichetta, M. Mellia, P. Casas, A survey on big data for network traffic monitoring and analysis, IEEE Trans. Network Serv. Manage., 16 (2019), 800–813. https://doi.org/10.1109/TNSM.2019.2933358 doi: 10.1109/TNSM.2019.2933358
|
[31]
|
W. M. Shbair, T. Cholez, J. François, I. Chrisment, A survey of HTTPS traffic and services identification approaches, preprint, arXiv: 2008.08339.
|
[32]
|
G. Aceto, D. Ciuonzo, A. Montieri, A. Pescape, Toward effective mobile encrypted traffic classification through deep learning, Neurocomputing, 409 (2020), 306–315. https://doi.org/10.1016/j.neucom.2020.05.036 doi: 10.1016/j.neucom.2020.05.036
|
[33]
|
A. Shahraki, M. Abbasi, A. Taherkordi, A. D. Jurcut, . Active learning for network traffic classification: a technical study, preprint, arXiv: 2106.06933.
|
[34]
|
S. Dong, R. Li, Traffic identification method based on multiple probabilistic neural network model, Neural Comput. Appl., 31 (2019), 473–487. https://doi.org/10.1007/s00521-017-3081-x doi: 10.1007/s00521-017-3081-x
|
[35]
|
H. Tang, Z. Li, Design and implementation of a DPI-Based P2P traffic control system, Inf. Secur. Commun. Privacy, 6 (2007).
|
[36]
|
M. Soysal, E. G. Schmidt, Machine learning algorithms for accurate flow-based network traffic classification: evaluation and comparison, Perform. Eval., 67 (2010), 451–467. https://doi.org/10.1016/j.peva.2010.01.001 doi: 10.1016/j.peva.2010.01.001
|
[37]
|
S. Dong, Multi class SVM algorithm with active learning for network traffic classification, Expert Syst. Appl., 176 (2021), 114885. https://doi.org/10.1016/j.eswa.2021.114885 doi: 10.1016/j.eswa.2021.114885
|
[38]
|
F. Haddadi, A. N. Zincir-Heywood, Benchmarking the effect of flow exporters and protocol filters on botnet traffic classification, IEEE Syst. J., 10 (2016), 1390–1401. https://doi.org/10.1109/JSYST.2014.2364743 doi: 10.1109/JSYST.2014.2364743
|
[39]
|
T. Bakhshi, B. Ghita, On internet traffic classification: A two-phased machine learning approach, J. Comput. Networks Commun., 2016 (2016). https://doi.org/10.1155/2016/2048302 doi: 10.1155/2016/2048302
|
[40]
|
S. Dong, X. Zhang, D. Zhou, Auto adaptive identification algorithm based on network traffic flow, Int. J. Comput. Commun. Control, 9 (2014), 672–685. http://dx.doi.org/10.1145/1080091.1080119 doi: 10.1145/1080091.1080119
|
[41]
|
Y. Dong, J. Zhao, J. Jin, Novel feature selection and classification of Internet video traffic based on a hierarchical scheme, Comput. Networks, 119 (2017), 102–111. https://doi.org/10.1016/j.comnet.2017.03.019 doi: 10.1016/j.comnet.2017.03.019
|
[42]
|
S. Dong, W. Liu, D. Zhou, Y. Qi, NSVM: A new SVM algorithm based on traffic flow metric, J. Internet Technol., 16 (2015), 1005–1014.
|
[43]
|
R. Dubin, A. Dvir, O. Pele, O. Hadar, I know what you saw last minute—encrypted http adaptive video streaming title classification, IEEE Trans. Inf. Forensics Secur., 12 (2017), 3039–3049. https://doi.org/10.1109/TIFS.2017.2730819 doi: 10.1109/TIFS.2017.2730819
|
[44]
|
H. D. Trinh, A. F. Gambin, L. Giupponi, M. Rossi, P. Dini, Mobile traffic classification through physical control channel fingerprinting: a deep learning approach, IEEE Trans. Network Serv. Manage., 2020 (2020). https://doi.org/10.1109/TNSM.2020.3028197 doi: 10.1109/TNSM.2020.3028197
|
[45]
|
M. Xie, J. Fu, Y. Wang, G. Peng, Monitoring and blocking methods of HTTP traffic injection in mobile web browser, J. Wuhan Univ., 63 (2017), 385–396.
|
[46]
|
G. Rizothanasis, N. Carlsson, A. Mahanti, Identifying user actions from HTTP (S) traffic, in 2016 IEEE 41st Conference on Local Computer Networks (LCN), (2016), 555–558. https://doi.org/10.1109/LCN.2016.91
|
[47]
|
J. Manzoor, I. Drago, R. Sadre, How HTTP/2 is changing web traffic and how to detect it, in 2017 Network Traffic Measurement and Analysis Conference (TMA), (2017), 1–9. https://doi.org/10.23919/TMA.2017.8002899
|
[48]
|
J. Muehlstein, Y. Zion, M. Bahumi, I. Kirshenboim, R. Dubin, A. Dvir, et al., Analyzing HTTPS encrypted traffic to identify user's operating system, browser and application, in 2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC), (2017), 1–6. https://doi.org/10.1109/CCNC.2017.8013420
|
[49]
|
T. Petsas, A. Papadogiannakis, M. Polychronakis, E. P. Markatos, T. Karagiannis, Measurement, modeling, and analysis of the mobile app ecosystem, ACM Trans. Model. Perform. Eval. Comput. Syst., 2 (2017), 7. https://doi.org/10.1145/2993419 doi: 10.1145/2993419
|
[50]
|
M. Rapoport, P. Suter, E. Wittern, O. Lhotak, J. Dolby, Who you gonna call? Analyzing web requests in Android applications, in 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR), (2017), 80–90. https://doi.org/10.1109/MSR.2017.11
|
[51]
|
Z. B. Houidi, G. Scavo, S. Ghamri-Doudane, A. Finamore, S. Traverso, M. Mellia, Gold mining in a river of internet content traffic, in International Workshop on Traffic Monitoring and Analysis, Springer, (2014), 91–103. https://doi.org/10.1007/978-3-642-54999-1_8
|
[52]
|
UNIBS, 2011. Available from: http://netweb.ing.unibs.it/ ntw/tools/traces/.
|
[53]
|
CIC, 2021. Available from: https://www.unb.ca/cic/datasets/.
|
[54]
|
UMass, 2021. Available from: http://skuld.cs.umass.edu/traces/network/README-webident2.
|
[55]
|
CAIDA, 2021. Available from: https://catalog.caida.org/search?query=types=dataset.
|
[56]
|
WIDE, 2021. Available from: http://mawi.wide.ad.jp/mawi/.
|
[57]
|
G. Maier, A. Feldmann, V. Paxson, A. Mark, On dominant characteristics of residential broadband internet traffic, in Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement Conference, (2009), 90–102. https://doi.org/10.1145/1644893.1644904
|
[58]
|
L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, K. Salamatian, Traffic classification on the fly, ACM SIGCOMM Comput. Commun. Rev., 36 (2006), 23–26. https://doi.org/10.1145/1129582.1129589 doi: 10.1145/1129582.1129589
|
[59]
|
L. Bernaille, R. Teixeira, K. Salamatian, Early application identification, in Proceedings of the 2006 ACM CoNEXT Conference, (2006), 1–12. https://doi.org/10.1145/1368436.1368445
|
[60]
|
L. Bernaille, R. Teixeira, Early recognition of encrypted applications, in International Conference on Passive and Active Network Measurement, (2007), 165–175. https://doi.org/10.1007/978-3-540-71617-4_17
|
[61]
|
A. Este, F. Gringoli, L. Salgarelli, On the stability of the information carried by traffic flow features at the packet level, ACM SIGCOMM Comput. Commun. Rev., 39 (2009), 13–18. https://doi.org/10.1145/1568613.1568616 doi: 10.1145/1568613.1568616
|
[62]
|
N. Huang, G. Jai, H. Chao, Early identifying application traffic with application characteristics, in 2008 IEEE International Conference on Communications, (2008), 5788–5792. https://doi.org/10.1109/ICC.2008.1083
|
[63]
|
N. Huang, G. Jai, H. Chao, Y. Tzang, H. Chang, Application traffic classification at the early stage by characterizing application rounds, Inf. Sci., 232 (2013), 130–142. https://doi.org/10.1016/j.ins.2012.12.039 doi: 10.1016/j.ins.2012.12.039
|
[64]
|
T. T. Nguyen, G. Armitage, P. Branch, S. Zander, Timely and continuous machine-learning-based classification for interactive IP traffic, IEEE/ACM Trans. Networking, 20 (2012), 1880–1894. https://doi.org/10.1109/TNET.2012.2187305 doi: 10.1109/TNET.2012.2187305
|
[65]
|
G. He, M. Yang, J. Luo, L. Zhang, Online identification of tor anonymous communication traffic, J. Commun., 24 (2013), 540–556.
|
[66]
|
L. Chen, J. Gong, Fast application-level traffic classification using NetFlow records, J. Commun., 33 (2012), 145–152. https://doi.org/1000-436X(2012)01-0145-08
|
[67]
|
S. Dong, W. Ding, Traffic classification model based on fusion of multiple classifiers with flow preference, J. Commun., 34 (2013), 143–152. https://doi.org/10.3969/j.issn.1000-436x.2013.10.017 doi: 10.3969/j.issn.1000-436x.2013.10.017
|
[68]
|
V. Paxson, Empirically derived analytic models of wide-area TCP connections, IEEE/ACM Trans. Networking, 2 (1994), 316–336. https://doi.org/10.1109/90.330413 doi: 10.1109/90.330413
|
[69]
|
C. Dewes, A. Wichmann, A. Feldmann, An analysis of Internet chat systems, in Proceedings of the 3rd ACM SIGCOMM Conference on Internet Measurement, (2003), 51–64. https://doi.org/10.1145/948205.948214
|
[70]
|
T. Lang, G. Armitage, P. Branch, H. Choo, A synthetic traffic model for half-life, in Aust. Telecommun. Networks Appl. Conference, 2003 (2003), 1–5.
|
[71]
|
T. Lang, P. Branch, G. Armitage, A synthetic traffic model for Quake3, in Proceedings of the 2004 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, (2004), 233–238. https://doi.org/10.1145/1067343.1067373
|
[72]
|
S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland, K. Levitt, et al. The design of GrIDS: A graph-based intrusion detection system, in Technical Report CSE-99-2, UC Davis Computer Science Department, (1999).
|
[73]
|
M. Iliofotou, P. Pappu, M. Faloutsos, M. Mitzenmacher, S. Singh, G. Varghese, Network monitoring using traffic dispersion graphs (tdgs), in Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, (2007), 315–320. https://doi.org/10.1145/1298306.1298349
|
[74]
|
M. Iliofotou, H. Kim, M. Faloutsos, M. Mitzenmacher, P. Pappu, G. Varghese, Graption: a graph-based P2P traffic classification framework for the internet backbone, Comput. Networks, 55 (2011), 1909–1920. https://doi.org/10.1016/j.comnet.2011.01.020 doi: 10.1016/j.comnet.2011.01.020
|
[75]
|
Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2017–2022 White Paper, 2019. Available from: https://branden.biz/wp-content/uploads/2019/05/white-paper-c11-738429.pdf.
|
[76]
|
A. Gember, A. Anand, A. Akella, A comparative study of handheld and non-handheld traffic in campus wi-fi networks, in International Conference on Passive and Active Network Measurement, (2011), 173–183. https://doi.org/10.1007/978-3-642-19260-9_18
|
[77]
|
J. Liu, T. Li, G. Chen, Y. Hua, Z. Lei, Mining and modelling the dynamic patterns of service providers in cellular data network based on big data analysis, China Commun., 10 (2013), 25–26. https://doi.org/10.1109/CC.2013.6723876 doi: 10.1109/CC.2013.6723876
|
[78]
|
S. Dong, D. Zhou, W. Ding, Traffic classification model based on integration of multiple classifiers, J. Comput. Inf. Syst., 8 (2012), 10429–10437.
|
[79]
|
X. Gui, J. Liu, C. Li, Q. Lv, Z. Lei, Fine-grained analysis of cellular smartphone usage characteristics based on massive network traffic, J. China Univ. Posts Telecommun., 23 (2016), 70–75. https://doi.org/10.1016/S1005-8885(16)60035-3 doi: 10.1016/S1005-8885(16)60035-3
|
[80]
|
Y. Li, J. Yang, N. Ansari, Cellular smartphone traffic and user behavior analysis, in 2014 IEEE International Conference on Communications (ICC), (2014), 1326–1331. https://doi.org/10.1109/ICC.2014.6883505
|
[81]
|
M. Z. Shafiq, L. Ji, A. X. Liu, J. Wang, Characterizing and modeling internet traffic dynamics of cellular devices, in Proceedings of the ACM SIGMETRICS Joint International Conference on Measurement and Modeling of Computer Systems, (2011), 305–316. https://doi.org/10.1145/2007116.2007148
|
[82]
|
Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, S. Venkataraman, Identifying diverse usage behaviors of smartphone apps, in Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement conference, (2011), 329–344. https://doi.org/10.1145/2068816.2068847
|
[83]
|
F. T. Vincent, R. Spolaor, M. Conti, I. Martinovic, Appscanner: automatic fingerprinting of smartphone apps from encrypted network traffic, in 2016 IEEE European Symposium on Security and Privacy (EuroS & P), (2016), 439–454. https://doi.org/10.1109/EuroSP.2016.40
|
[84]
|
M. Shen, J. Zhang, L. Zhu, K. Xu, X. Du, Y. Liu, Encrypted traffic classification of decentralized applications on ethereum using feature fusion, in 2019 IEEE/ACM 27th International Symposium on Quality of Service (IWQoS), (2019), 1–10. https://doi.org/10.1145/3326285.3329053
|
[85]
|
G. Aceto, D. Ciuonzo, A. Montieri, A. Pescape, MIMETIC: mobile encrypted traffic classification using multimodal deep learning, Comput. Networks, 165 (2019), 106944. https://doi.org/10.1016/j.comnet.2019.106944 doi: 10.1016/j.comnet.2019.106944
|
[86]
|
G. Aceto, D. Ciuonzo, A. Montieri, A. Pescape, Multi-classification approaches for classifying mobile app traffic, J. Network Comput. Appl., 103 (2018), 131–145. https://doi.org/10.1016/j.jnca.2017.11.007 doi: 10.1016/j.jnca.2017.11.007
|
[87]
|
G. Xie, Q. Li, Y. Jiang, D. Tao, G. Shen, R. Li, et al., SAM: self-attention based deep learning method for online traffic classification, in Proceedings of the Workshop on Network Meets AI & ML, (2020), 14–20. https://doi.org/10.1145/3405671.3405811
|
[88]
|
C. Liu, L. He, G. Xiong, Z. Cao, Z. Li, Fs-net: a flow sequence network for encrypted traffic classification, in IEEE INFOCOM 2019-IEEE Conference on Computer Communications, (2019), 1171–1179. https://doi.org/10.1109/INFOCOM.2019.8737507
|
[89]
|
M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, J. Lloret, Network traffic classifier with convolutional and recurrent neural networks for internet of things, IEEE Access, 5 (2017), 18042–18050. https://doi.org/10.1109/ACCESS.2017.2747560 doi: 10.1109/ACCESS.2017.2747560
|
[90]
|
T. Shapira, Y. Shavitt, Flowpic: encrypted internet traffic classification is as easy as image recognition, in IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), (2019), 680–687. https://doi.org/10.1109/INFCOMW.2019.8845315
|
[91]
|
F-SECURE, Threat Description Bluetooth-Worm: SymbOS/Cabir, 2021. Available from: https://www.f-secure.com/v-descs/cabir.shtml.
|
[92]
|
F-SECURE, Mobile Threat Report Q4 2011, 2021. Available from: https://www.f-secure.com/documents/996508/1030743/mobile_threat_report_q4_2011.pdf.
|
[93]
|
F-SECURE, Threat Description Bluetooth-Worm: SymbOS/Cabir, 2021. Available from: https://www.f-secure.com/v-descs/worm_iphoneos_ikee.shtml.
|
[94]
|
GDATASECURITYLAB, FakePlayer, 2021. Available from: https://www.gdata.at/securitylabs/mobile/mobile-malware/.
|
[95]
|
F-SECURE, Mobile Threat Report 2012–2014, 2021. Available from: https://www.f-secure.com/en/web/labs_global/whitepapers.
|
[96]
|
APPTHORITY, Mobile Threat Report, 2021. Available from: http://info.appthority.com/hubfs/website-LEARN-content/Appthority-Mobile-Threat-Report-Q12015.pdf.
|
[97]
|
S. C. Peng, A survey on malware containment models in smartphones, Appl. Mech. Mater., 263 (2013), 3005–3011. https://doi.org/10.4028/www.scientific.net/AMM.263-266.3005 doi: 10.4028/www.scientific.net/AMM.263-266.3005
|
[98]
|
S. PENG, S. Yu, A. Yang, Smartphone malware and its propagation modeling: a survey, Commun. Surv. Tutorials, 16 (2014), 925–941. https://doi.org/10.1109/SURV.2013.070813.00214 doi: 10.1109/SURV.2013.070813.00214
|
[99]
|
G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, A. Ribagorda, Evolution, detection and analysis of malware for smart devices, Commun. Surv. Tutorials, 16 (2014), 961–987. https://doi.org/10.1109/SURV.2013.101613.00077 doi: 10.1109/SURV.2013.101613.00077
|
[100]
|
Y. Zhou, X. Jiang, Dissecting android malware: characterization and evolution, in 2012 IEEE Symposium on Security and Privacy, (2012), 95–109. https://doi.org10.1109/SP.2012.16
|
[101]
|
Y. Liu, L. Zhang, J. Liang, S. Qu, Z. Ni, Detecting trojan horses based on system behavior using machine learning method, in 2010 International Conference on Machine Learning and Cybernetics, (2010), 855–860. https://doi.org/10.1109/ICMLC.2010.5580591
|
[102]
|
V. K. Gudipati, A. Vetwal, V. Kumar, A. Adeniyi, A. Abuzneid, Detection of trojan horses by the analysis of system behavior and data packets, in 2015 Long Island Systems, Applications and Technology, (2015), 1–4. https://doi.org/10.1109/LISAT.2015.7160176
|
[103]
|
J. Nazario, T. Holz, As the net churns: fast-flux botnet observations, in 2008 3rd International Conference on Malicious and Unwanted Software (MALWARE), (2008), 24–31. https://doi.org/10.1109/MALWARE.2008.4690854
|
[104]
|
W. Yu, X. Wang, P. Calyam, D. Xuan, W. Zhao, Modeling and detection of camouflaging worm, IEEE Trans. Dependable Secure Comput., 8 (2011), 377–390. https://doi.org/10.1109/TDSC.2010.13 doi: 10.1109/TDSC.2010.13
|
[105]
|
NSFOCUS Information Technology Co. Ltd., XcodeGhost automatically Checking, 2015. Available from: https://cloud.nsfocus.com/#/krosa/views/initcdr/secalertindex.
|
[106]
|
PANGU JAILBREAK, Statistical Report for XcodeGhost Virus, 2015. Available from: http://x.pangu.io/.
|
[107]
|
A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, Y. Weiss, "Andromaly": a behavioral malware detection framework for android devices, J. Intell. Inf. Syst., 38 (2012), 161–190. https://doi.org/10.1007/s10844-010-0148-x doi: 10.1007/s10844-010-0148-x
|
[108]
|
Y. Cao, R. Ji, L. Ji, X. Shao, G. Lei, H. Wang, MPTCP-meLearning: a multi-expert learning-based MPTCP extension to enhance multipathing robustness against network attacks, IEICE Trans. Inf. Syst., E104-D (2021). https://doi.org/10.1587/transinf.2021NGP0009 doi: 10.1587/transinf.2021NGP0009
|
[109]
|
F. Song, L. Li, I. You, H. Zhang, Enabling heterogeneous deterministic networks with smart collaborative theory, IEEE Network, 35 (2021), 64–71. https://doi.org/10.1109/MNET.011.2000613 doi: 10.1109/MNET.011.2000613
|
[110]
|
F. Song, Z. Ai, H. Zhang, I. You, S. Li, Smart collaborative balancing for dependable network components in cyber-physical systems, IEEE Trans. Ind. Inf., 17 (2021), 6916–6924. https://doi.org/10.1109/TII.2020.3029766 doi: 10.1109/TII.2020.3029766
|
[111]
|
C. J. Wright, Towards Real Time Characterization of Grain Growth from the Melt, Columbia University, 2020.
|
[112]
|
G. Aceto, D. Ciuonzo, A. Montieri, A. Pescape, DISTILLER: encrypted traffic classification via multimodal multitask deep learning, J. Network Comput. Appl., 183 (2021), 102985. https://doi.org/10.1016/j.jnca.2021.102985 doi: 10.1016/j.jnca.2021.102985
|
[113]
|
Z. Bu, B. Zhou, P. Cheng, K. Zhang, Z. Ling, Encrypted network traffic classification using deep and parallel network-in-network models, IEEE Access, 8 (2020), 132950–132959. https://doi.org/10.1109/ACCESS.2020.3010637 doi: 10.1109/ACCESS.2020.3010637
|
[114]
|
G. Bovenzi, L. Yang, A. Finamore, A first look at class Incremental Learning in Deep Learning Mobile Traffic Classification, preprint, arXiv: 2107.04464.
|
[115]
|
F. Song, M. Zhu, Y. Zhou, I. You, H. Zhang, Smart collaborative tracking for ubiquitous power IoT in edge-cloud interplay domain, IEEE Internet Things J., 7 (2020), 6046–6055. https://doi.org/10.1109/JIOT.2019.2958097 doi: 10.1109/JIOT.2019.2958097
|
[116]
|
F. Song, Z. Ai, Y. Zhou, I. You, R. Choo, H. Zhang, Smart collaborative automation for receive buffer control in multipath industrial networks, IEEE Trans. Ind. Inf., 16 (2020), 1385–1394. https://doi.org/10.1109/TII.2019.2950109 doi: 10.1109/TII.2019.2950109
|