Most of the malignant melanomas are already in the middle and advanced stages when they are diagnosed, which is often accompanied by the metastasis and spread of other organs. Besides, the prognosis of patients is bleak. The characteristics of the local immune microenvironment in metastatic melanoma have important implications for both tumor progression and tumor treatment. In this study, data on patients with metastatic melanoma from the TCGA and GEO datasets were selected for immune, stromal, and estimate scores, and overlapping differentially expressed genes were screened. A nine-IRGs prognostic model (ALOX5AP, ARHGAP15, CCL8, FCER1G, GBP4, HCK, MMP9, RARRES2 and TRIM22) was established by univariate COX regression, LASSO and multivariate COX regression. Receiver operating characteristic curves were used to test the predictive accuracy of the model. Immune infiltration was analyzed by using CIBERSORT and Xcell in high-risk and low-risk groups. The immune infiltration of the high-risk group was significantly lower than that of the low-risk group. Immune checkpoint analysis revealed that the expression of PDCD1, CTLA4, TIGIT, CD274, HAVR2 and LAG3 demonstrated the visible difference in groups with different levels of risk scores. WGCNA analysis found that the yellow-green module contained seven genes from the nine-IRG prognostic model, and the yellow-green module had the highest correlation with risk scores. The results of GO and KEGG suggested that the genes in the yellow-green module were mainly enriched in immune-related biological processes. Finally, the expression characteristics of ALOX5AP, ARHGAP15, CCL8, FCER1G, GBP4, HCK, MMP9, RARRES2 and TRIM22 were analyzed between metastatic melanoma and normal samples. Overall, a prognostic model for metastatic melanoma based on the tumor immune microenvironment characteristics was established, which left plenty of space for further studies. It could function well in helping people to understand characteristics of the immune microenvironment in metastatic melanoma.
Citation: Jing Liu, Xuefang Zhang, Ting Ye, Yongjian Dong, Wenfeng Zhang, Fenglin Wu, Huaben Bo, Hongwei Shao, Rongxin Zhang, Han Shen. Prognostic modeling of patients with metastatic melanoma based on tumor immune microenvironment characteristics[J]. Mathematical Biosciences and Engineering, 2022, 19(2): 1448-1470. doi: 10.3934/mbe.2022067
[1] | Zhun Han, Hal L. Smith . Bacteriophage-resistant and bacteriophage-sensitive bacteria in a chemostat. Mathematical Biosciences and Engineering, 2012, 9(4): 737-765. doi: 10.3934/mbe.2012.9.737 |
[2] | Baojun Song, Wen Du, Jie Lou . Different types of backward bifurcations due to density-dependent treatments. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1651-1668. doi: 10.3934/mbe.2013.10.1651 |
[3] | Timothy C. Reluga, Jan Medlock . Resistance mechanisms matter in SIR models. Mathematical Biosciences and Engineering, 2007, 4(3): 553-563. doi: 10.3934/mbe.2007.4.553 |
[4] | Linda J. S. Allen, P. van den Driessche . Stochastic epidemic models with a backward bifurcation. Mathematical Biosciences and Engineering, 2006, 3(3): 445-458. doi: 10.3934/mbe.2006.3.445 |
[5] | Miller Cerón Gómez, Eduardo Ibarguen Mondragon, Eddy Lopez Molano, Arsenio Hidalgo-Troya, Maria A. Mármol-Martínez, Deisy Lorena Guerrero-Ceballos, Mario A. Pantoja, Camilo Paz-García, Jenny Gómez-Arrieta, Mariela Burbano-Rosero . Mathematical model of interaction Escherichia coli and Coliphages. Mathematical Biosciences and Engineering, 2023, 20(6): 9712-9727. doi: 10.3934/mbe.2023426 |
[6] | Kento Okuwa, Hisashi Inaba, Toshikazu Kuniya . An age-structured epidemic model with boosting and waning of immune status. Mathematical Biosciences and Engineering, 2021, 18(5): 5707-5736. doi: 10.3934/mbe.2021289 |
[7] | Lingli Zhou, Fengqing Fu, Yao Wang, Ling Yang . Interlocked feedback loops balance the adaptive immune response. Mathematical Biosciences and Engineering, 2022, 19(4): 4084-4100. doi: 10.3934/mbe.2022188 |
[8] | Olga Vasilyeva, Tamer Oraby, Frithjof Lutscher . Aggregation and environmental transmission in chronic wasting disease. Mathematical Biosciences and Engineering, 2015, 12(1): 209-231. doi: 10.3934/mbe.2015.12.209 |
[9] | Maoxing Liu, Yuming Chen . An SIRS model with differential susceptibility and infectivity on uncorrelated networks. Mathematical Biosciences and Engineering, 2015, 12(3): 415-429. doi: 10.3934/mbe.2015.12.415 |
[10] | G. V. R. K. Vithanage, Hsiu-Chuan Wei, Sophia R-J Jang . Bistability in a model of tumor-immune system interactions with an oncolytic viral therapy. Mathematical Biosciences and Engineering, 2022, 19(2): 1559-1587. doi: 10.3934/mbe.2022072 |
Most of the malignant melanomas are already in the middle and advanced stages when they are diagnosed, which is often accompanied by the metastasis and spread of other organs. Besides, the prognosis of patients is bleak. The characteristics of the local immune microenvironment in metastatic melanoma have important implications for both tumor progression and tumor treatment. In this study, data on patients with metastatic melanoma from the TCGA and GEO datasets were selected for immune, stromal, and estimate scores, and overlapping differentially expressed genes were screened. A nine-IRGs prognostic model (ALOX5AP, ARHGAP15, CCL8, FCER1G, GBP4, HCK, MMP9, RARRES2 and TRIM22) was established by univariate COX regression, LASSO and multivariate COX regression. Receiver operating characteristic curves were used to test the predictive accuracy of the model. Immune infiltration was analyzed by using CIBERSORT and Xcell in high-risk and low-risk groups. The immune infiltration of the high-risk group was significantly lower than that of the low-risk group. Immune checkpoint analysis revealed that the expression of PDCD1, CTLA4, TIGIT, CD274, HAVR2 and LAG3 demonstrated the visible difference in groups with different levels of risk scores. WGCNA analysis found that the yellow-green module contained seven genes from the nine-IRG prognostic model, and the yellow-green module had the highest correlation with risk scores. The results of GO and KEGG suggested that the genes in the yellow-green module were mainly enriched in immune-related biological processes. Finally, the expression characteristics of ALOX5AP, ARHGAP15, CCL8, FCER1G, GBP4, HCK, MMP9, RARRES2 and TRIM22 were analyzed between metastatic melanoma and normal samples. Overall, a prognostic model for metastatic melanoma based on the tumor immune microenvironment characteristics was established, which left plenty of space for further studies. It could function well in helping people to understand characteristics of the immune microenvironment in metastatic melanoma.
Bacteriophage or virulent phage is a virus which can grow and replicate by infecting bacteria. Once residing in bacteria, phage grow quickly, which result in the infection of bacteria and drive the bacteria to die [17]. Thus, we can view them as bacteria predators and use them to cure the diseases induced by infecting bacteria [9,35]. Phage therapy has become a promising method because of the emergence of antibiotic resistant bacteria [12,9]. Indeed, as a treatment, phages have several advantages over antibiotics. Phages replicate and grow exponentially, while antibiotics are not [47]. Generally speaking, a kind of phages infect only particular classes of bacteria, and this limitation of their host is very beneficial to cure the diseases. Moreover, phages are non-toxic, and cannot infect human cells. Hence, there are fewer side effects as compared to antibiotics [12,35].
It is important to understand the interaction dynamics between bacteria and phage to design an optimal scheme of phage therapy. There have been a number of papers that study the mathematical models of bacteriophages (see, for example, [1,2,3,4,8,9,10,11,21,23,28,42] and the references cited therein). Campbell [11] proposed a deterministic mathematical model for bacteria and phage, which is a system of differential equations containing two state variables, susceptible bacteria
It was observed that phage can exert pressure on bacteria to make them produce resistance through loss or modification of the receptor molecule to which a phage binds with an inferior competition ability for nutrient uptake [25]. More recently, biological evidences are found that there exists an adaptive immune system across bacteria, which is the Clustered regularly interspaced short palindromic repeats (CRISPRs) along with Cas proteins [6,14,13,18,26,27,31,41]. In this system, phage infection is memorized via a short invader sequence, called a proto-spacer, and added into the CRISPR locus of the host genome. And, the CRISPR/Cas system admits heritable immunity [14,13,18,26,31]. The replication of infecting phage in bacteria is aborted if their DNA matches the crRNAs (CRISPR RNAs) which contains these proto-spacer. On the other hand, if there is no perfect pairing between the proto-spacer and the foreign DNA (as in the case of a phage mutant), the CRISPR/Cas system is counteracted and replication of the phage DNA can occur [19,34,33,39]. Therefore, the CRISPR/Cas system participates in a constant evolutionary battle between phage and bacteria [7,13,27,47].
Mathematical models are powerful in understanding the population dynamics of bacteria and phages. Han and Smith [23] formulated a mathematical model that includes a phage-resistant bacteria, where the resistant bacteria is an inferior competitor for nutrient. Their analytical results provide a set of sufficient conditions for the phage-resistant bacteria to persist. Recently, mathematical models have been proposed to study the contributions of adaptive immune response from CRISPR/Cas in bacteria and phage coevolution [27,29]. In these papers, numerical simulations are used to find how the immune response affects the coexistence of sensitive strain and resistance strain of bacteria. In the present paper, we extend the model in [23] by incorporating the CRISPR/Cas immunity on phage dynamics. Following [23], we focus on five state variables:
Let
˙R=D(R0−R)−f(R)(S+μM),˙S=−DS+f(R)S−kSP,˙M=−DM+μf(R)M+εkSP−k′MP,˙I=−DI+(1−ε)kSP+k′MP−δI,˙P=−DP−kSP−kMP+bδI, | (1) |
where a dot denotes the differentiation with respect to time
The paper is organized as follows. In the next section we present the mathematical analysis of the model that include the stability and bifurcation of equilibria. Numerical simulations are provided in Section
In this section, we present the mathematical analysis for the stability and bifurcations of equilibria of (1). We start with the positivity and boundedness of solutions.
Proposition 1. All solutions of model (1) with nonnegative initial values are nonnegative. In particular, a solution
Proof. We examine only the last conclusion of the proposition. First, we claim that
S(t)=S(0)e∫t0[−D−kP(θ)+f(R(θ))]dθ>0. |
In a similar way we can show the positivity of
Proposition 2. All nonnegative solutions of model (1) are ultimately bounded.
Proof. Set
L(t)=R(t)+S(t)+M(t)+I(t)+1bP(t). |
Calculating the derivative of
˙L(t)=DR0−DR(t)−DS(t)−DM(t)−DI(t)−1bDP(t) −1bkS(t)P(t)−1bkM(t)P(t)≤DR0−DL(t). |
It follows that the nonnegative solutions of
lim supt→∞L(t)≤R0. | (2) |
Therefore, the nonnegative solutions of model (1) are ultimately bounded.
m>D,f(R0)>D. | (3) |
Then
μm>D,μf(R0)>D. | (4) |
It is easy to see that (3) and (4) imply
λ1<μλ2<λ2. |
Thus, the competitive exclusion in the absence of phage infection holds [24], and the boundary equilibrium
The basic reproduction number
F=(0(1−ε)k(R0−λ1)00), |
and
V=(D+δ0−bδD+k(R0−λ1)), |
and is defined as the spectral radius of
R0=√bδ(1−ε)k(R0−λ1)(D+δ)[D+k(R0−λ1)]. |
Analogously, the basic reproduction number
RM0=√bδκ(R0−λ2)(D+δ)[D+k(R0−λ2)]. |
Theorem 2.1. The infection-free equilibrium
The proof of Theorem 2.1 is postponed to Appendix.
Theorem 2.2. The infection-free equilibrium
Proof. Define a Lyapunov function by
V(t)=R(t)−R1−∫RR1f(R1)f(ξ)dξ+S(t)−S1−S1lnSS1+M(t)+I(t)+1bP(t), |
where
˙V(t)=(1−f(R1)f(R))˙R(t)+(1−S1S)˙S(t)+˙M(t)+˙I(t)+1b˙P(t)=D(R0−R)−D(R0−R)f(R1)f(R)+(S+μM)f(R1)+(D+kP−f(R))S1−DS−DM−DI−DbP−kSP+kMPb=D(R0−R1)(2−f(R1)f(R)−f(R)f(R1))−D(R−R1)(1−f(R1)f(R))−D(1−μ)M−DI+(kS1−Db)P−kSP+kMPb. |
Since
D0={(R,S,M,I,P)∣˙V=0}. |
It is easy to examine that the largest invariant set in
{(R,S,M,I,P)∣R=λ1,S=S1,M=0,I=0,P=0}. |
It follow from the LaSalle's invariance principle [22] that
In this subsection, we consider the infection equilibria of system (1) which satisfy
D(R0−R)−f(R)S−μf(R)M=0,−DS+f(R)S−kSP=0,−DM+μf(R)M+εkSP−k′MP=0,−DI+(1−ε)kSP+k′MP−δI=0,−DP−kSP−kMP+bδI=0. | (5) |
If
D(R0−R3)−μf(R3)M3=0,−DM3+μf(R3)M3−k′M3P3=0,−DI3+k′M3P3−δI3=0,−DP3−kM3P3+bδI3=0. |
It follows that
P3=μf(R3)−Dk′,M3=D(R0−R3)μf(R3),I3=k′M3P3D+δ, |
and
−DP3−kM3P3+bδI3=P3(kA2M3−D)=0, |
where
g(R3):=R23+(a+mA−R0)R3−R0a=0, | (6) |
where
A=μkD+δbδκ−(D+δ). |
By direct calculations, we obtain
g(R0)=mAR0>0,g(λ2)=(λ2−R0)(λ2+a)+mAλ2. |
Since
A<(R0−λ2)(λ2+a)mλ2=μ(R0−λ2)D, |
which is equivalent to
Theorem 2.3. The infection equilibrium
To study the local stability of infection equilibria
a1=kM3+3D+δ+μM3f′(R3),a2=kM3(μM3f′(R3)+2D−μf(R3))+D(2D+δ)+(2D+δ+μf(R3))μM3f′(R3),a3=DkM3(μM3f′(R3)+D−μf(R3))+D(D+δ)(μf(R3)−D)+μf(R3)μM3f′(R3)(2D+δ),a4=kA2(D+δ)(μM3f′(R3)+D)(μf(R3)−D). | (7) |
Moreover, for
λ3=f−1(D(1−κ)/(μ−κ)). | (8) |
Theorem 2.4. The infection-resistant equilibrium
κ<μ,R3>λ3,a1a2>a3,(a1a2−a3)a3−a4a21>0, | (9) |
and is unstable when
κ<μ,R3<λ3,a1a2>a3,(a1a2−a3)a3−a4a21>0. | (10) |
The proof of Theorem 2.4 is given in Appendix.
Let us now consider the existence of coexistence equilibrium of (1). Denote such an equilibrium by
P4=f(R4)−Dk,M4=εD(R0−R4)(f(R4)−D)[D−μf(R4)+με(f(R4)−D)+k′P4]f(R4),S4=D(R0−R4)[k′P4+D−μf(R4)][D−μf(R4)+με(f(R4)−D)+k′P4]f(R4),I4=[(1−ε)kS4+k′M4]P4D+δ. | (11) |
Since
f(R4)>D,k′P4+D−μf(R4)>0. | (12) |
Note that
F(R4):=k′P4+D−μf(R4)=D(1−κ)+(κ−μ)f(R4), |
where
Note that
−D+(bδκD+δ−1)kM4+(bδ1−εD+δ−1)kS4=0. | (13) |
Set
A1=bδ(1−ε)/(D+δ)−1,A2=bδκ/(D+δ)−1. | (14) |
Using (11) and
G(R4):=k(R0−R4)(e1+e2Df(R4))−(e3f(R4)+e4)=0, |
where
e1=κA1−μA1+εA2,e2=A1−κA1−εA2,e3=με−μ+κ,e4=(1−με−κ)D. |
Let
Evidently,
G(λ2)=−D+kA2(R0−λ2)=(D+k(R0−λ2))(RM−1). |
Thus,
G(λ1)=−D+kA1(R0−λ1)=(D+k(R0−λ1))(R20−1). |
Hence,
For the case where
G(λ3)=D(R0−λ3)(e1+e2Df(λ3))−(e3f(λ3)+e4)=D(R0−λ3)εA2(1−μ)1−κ−μεD(1−μ)μ−κ. |
Since
λ3≥R0−μ(1−κ)A2(μ−κ), | (15) |
and
λ3<R0−μ(1−κ)A2(μ−κ). | (16) |
Solve
b∗=D+δδ((μ−κ)(R0−λ3)(1−κ)μ+1). |
Notice that
P4=f(λ3)−Dk=D(1−κ)k(μ−κ),M4=D(R0−λ3)(f(λ3)−D)μf(λ3),I4=k′M4P4D+δ. |
Set
R∗:=R0RM0=√(D+k(R0−λ2))(1−ε)(R0−λ1)κ(R0−λ2)(D+k(R0−λ1)). |
Solving
ε=ε∗:=1−κ(R0−λ2)(D+k(R0−λ1))(D+k(R0−λ2))(R0−λ1). |
Thus,
Let us consider three cases:
The following Theorem states the existence of infection equilibria of (1) according to the above discussions.
Theorem 2.5. Let
For
Proof. Note that
This theorem indicates that the system (1) exhibits a backward bifurcation as
Notice that the equilibrium
Theorem 2.6. Let
For
For
The proof of this Theorem is omitted because it is similar to it for Theorem 2.5.
Theorem 2.6 presents the conditions for a forward bifurcation of the infection-free equilibrium and a transcritical bifurcation of the coexist equilibrium. Note that for
We now explore the persistence and extinction of phages in the case where
Theorem 2.7. Let
(
limt→∞(R(t),S(t),M(t),I(t),P(t))=(λ1,R0−λ1,0,0,0) |
if
(
lim inft→∞S(t)>η,lim inft→∞M(t)>η,lim inft→∞I(t)>η,lim inft→∞P(t)>η. |
Proof.
f∞=lim supt→∞f(t),f∞=lim inft→∞f(t). |
First, we claim that a positive solution of (1) admits
˙S≤−DS+f(R)S≤−DS+f(R0+η0−S)S,for all large t, |
where
˙I≤−DI+(1−ε)k(R0−λ1+η1)P−δI,˙P≤−DP−k(R0−λ1−η1)P+bδI, | (17) |
where
˙I=−DI+(1−ε)k(R0−λ1+η1)P−δI,˙P=−DP−k(R0−λ1−η1)P+bδI. | (18) |
The Jacobian matrix of (18) is
J1:=(−(D+δ)(1−ε)k(R0−λ1+η1)bδ−(D+k(R0−λ1−η1)). |
Since
˙R=D(R0−R)−f(R)(S+μM),˙S=−DS+f(R)S,˙M=−DM+μf(R)M. | (19) |
Since
X={(R,S,M,I,P):R≥0,S≥0,M≥0,I≥0,P≥0},X0={(R,S,M,I,P)∈X:I>0,P>0},∂X0=X∖X0. |
We wish to show that (1) is uniformly persistent with respect to
By Proposition 1, we see that both
J∂={(R,S,M,I,P)∈X:I=0,P=0}. |
It is clear that there are three equilibria
Note that (3) and (4) imply that a positive solution of (1) cannot approach
˙I≥−DI+(1−ε)k(R0−λ1−η2)P−δI,˙P≥−DP−k(R0−λ1+η2)P+bδI, | (20) |
where
J2:=(−(D+δ)(1−ε)k(R0−λ1−η2)bδ−(D+k(R0−λ1+η2)). |
Since
˙I=−DI+(1−ε)k(R0−λ1−η2)P−δI,˙P=−DP−k(R0−λ1+η2)P+bδI | (21) |
tend to infinity as
By adopting the same techniques as above, we can show that the population
˙M≥−DM+εkSP. |
This, together with the uniform persistence of population
In this section, we implement numerical simulations to illustrate the theoretical results and explore more interesting solution patterns of model (1). Take the same parameter values as those in [23] where
To demonstrate the second case where
To show the case
With the help of
As discussed above, a bistable coexistence between the infection-free equilibrium and an infection equilibrium may occur when
In this paper, we have developed a bacteriophage mathematical model based on CRISPR/Cas immune system. By combining theoretical analysis and numerical simulations, we have found that the model exhibits some new dynamical behaviors than the model without the immune responses in [23]. More specifically, the introduction of the CRISPR/Cas immune system induces a backward bifurcation from the infection-free equilibrium or a transcritical bifurcation from the coexist equilibrium, which means that although the basic infection reproduction number is below unity, the phage could coexist with bacteria. The coexistence of a stable infection-free equilibrium with a stable infection equilibrium(or stable coexist equilibrium), the bistable phenomenon of a stable infection-free equilibrium and a stable periodic solution are found, which are shown in panel (a) of Fig. 4 and panel (b) of Fig. 4. They provide reasonable explanations for the complexity of phage therapy [9,29] or bacteria-phages coevolution [13], and the coexistence of bacteria with phage in the biological experiments [20,29]. In contrast, there is no the backward bifurcation or bistable phenomena in the models of previous studies [23,42] where the immune response is ignored.
For case
The mathematical analysis for the stability and bifurcation of equilibria of (1) in this paper present some insights into the underlying phage infection mechanisms by considering the CRISPR/Cas system in bacteria. It will be interesting to consider the analytical conditions for the Hopf bifurcation and the homoclinic bifurcation of the model and reveal how the immune response affect these bifurcations. It will be also interesting to consider the effect of latent period of infection like it in [23] or the nonlinear death rates like those in [29]. We leave these as future researches.
We are very grateful to the anonymous referees for careful reading and valuable comments which have led to important improvements of our original manuscript.
Proof Theorem 2.1. Let
J(E1)=(−D−S1f′(λ1)−D−μD00S1f′(λ1)000−kS100−D+μD0εkS1000−D−δ(1−ε)kS1000bδ−D−kS1), |
where
(ω+D)(ω+S1f′(λ1))[ω2+(2D+δ+kS1)ω+f0](ω+D(1−μ))=0, |
where
f0=(D+kS1)(D+δ)(1−R20). |
Since
Proof Theorem 2.4. Evaluating the Jacobian of (1) at
J(E3)=(−D−μM3f′(R3)−f(R3)−μf(R3)000−D+f(R3)−kP3000μM3f′(R3)εkP300−k′M30(1−ε)kP3k′P3−D−δk′M30−kP3−kP3bδ−D−kM3). |
Using
(ω−f(R3)+kP3+D)(ω4+a1ω3+a2ω2+a3ω+a4)=0, |
where
F1(ω)=ω−f(R3)+kP3+D,F2(ω)=ω4+a1ω3+a2ω2+a3ω+a4. |
Note that
f(R3)−kP3−D=(1−μκ)f(R3)+(1κ−1)D:=F0(ω). |
It is easy to see
f(R3)>D(1−κ)μ−κ, |
which is equivalent to
[1] |
X. Li, Z. Li, X. Li, B. Liu, Z. Liu, Mechanisms of Tanshinone Ⅱ a inhibits malignant melanoma development through blocking autophagy signal transduction in A375 cell, BMC Cancer, 17 (2017), 357. doi: 10.1186/s12885-017-3329-y. doi: 10.1186/s12885-017-3329-y
![]() |
[2] | Y. Si, A. Lin, W. Ding, H. Meng, P. Luo, J. Zhang, CARD11 alteration as a candidate biomarker of skin cutaneous melanoma treated with immune checkpoint blockade, Am. J. Transl. Res., 13 (2021). |
[3] |
C. Trojaniello, J. J. Luke, P. A. Ascierto, Therapeutic advancements across clinical stages in melanoma, with a focus on targeted immunotherapy, Front. Oncol., 11 (2021), 670726. doi: 10.3389/fonc.2021.670726l. doi: 10.3389/fonc.2021.670726l
![]() |
[4] |
L. Tonella, V. Pala, R. Ponti, M. Rubatto, G. Gallo, L. Mastorino, et al., Prognostic and predictive biomarkers in stage Ⅲ melanoma: current insights and clinical implications, Int. J. Mol. Sci., 22 (2021). doi: 10.3390/ijms22094561. doi: 10.3390/ijms22094561
![]() |
[5] |
A. Villani, M. Scalvenzi, G. Fabbrocini, J. Ocampo-Candiani, S. S. Ocampo-Garza, Looking into a better future: novel therapies for metastatic melanoma, Dermatol. Ther. (Heidelb), 11 (2021), 751-767. doi: 10.1007/s13555-021-00525-9. doi: 10.1007/s13555-021-00525-9
![]() |
[6] |
F. Valenti, I. Falcone, S. Ungania, F. Desiderio, P. Giacomini, C. Bazzichetto, et al., Precision medicine and melanoma: multi-omics approaches to monitoring the immunotherapy response, Int. J. Mol. Sci., 22 (2021). doi: 10.3390/ijms22083837. doi: 10.3390/ijms22083837
![]() |
[7] |
S. Upadhrasta, L. Zheng, Strategies in developing immunotherapy for pancreatic cancer: recognizing and correcting multiple immune "Defects" in the tumor microenvironment, J. Clin. Med., 8 (2019). doi: 10.3390/jcm8091472. doi: 10.3390/jcm8091472
![]() |
[8] |
E. N. Scott, A. M. Gocher, C. J. Workman, D. A. A. Vignali, Regulatory T cells: Barriers of immune infiltration into the tumor microenvironment, Front. Immunol., 12 (2021), 702726. doi: 10.3389/fimmu.2021.702726. doi: 10.3389/fimmu.2021.702726
![]() |
[9] |
A. Pasetto, Y. C. Lu, Single-cell TCR and transcriptome analysis: An indispensable tool for studying T-cell biology and cancer immunotherapy, Front. Immunol., 12 (2021), 689091. doi: 10.3389/fimmu.2021.689091. doi: 10.3389/fimmu.2021.689091
![]() |
[10] |
P. F. Ferrucci, L. Pala, F. Conforti, E. Cocorocchio, Talimogene laherparepvec (T-VEC): An intralesional cancer immunotherapy for advanced melanoma, Cancers (Basel), 13 (2021). doi: 10.3390/cancers13061383. doi: 10.3390/cancers13061383
![]() |
[11] |
L. Peng, Z. Chen, Y. Chen, X. Wang, N. Tang, MIR155HG is a prognostic biomarker and associated with immune infiltration and immune checkpoint molecules expression in multiple cancers, Cancer Med., 8 (2019), 7161-7173. doi: 10.1002/cam4.2583. doi: 10.1002/cam4.2583
![]() |
[12] |
T. Adam, T. M. Becker, W. Chua, V. Bray, T. L. Roberts, The multiple potential biomarkers for predicting immunotherapy response-finding the needle in the haystack, Cancers (Basel), 13 (2021). doi: 10.3390/cancers13020277. doi: 10.3390/cancers13020277
![]() |
[13] |
B. Hu, Q. Wei, X. Li, M. Ju, L. Wang, C. Zhou, et al., Development of an IFNgamma response-related signature for predicting the survival of cutaneous melanoma, Cancer Med., 9 (2020), 8186-8201. doi: 10.1002/cam4.3438. doi: 10.1002/cam4.3438
![]() |
[14] |
H. Ying, A. Lin, J. Liang, J. Zhang, P. Luo, Association between FSIP2 mutation and an improved efficacy of immune checkpoint inhibitors in patients with skin cutaneous melanoma, Front. Mol. Biosci., 8 (2021), 629330. doi: 10.3389/fmolb.2021.629330. doi: 10.3389/fmolb.2021.629330
![]() |
[15] |
F. Gómez-Valenzuela, E. Escobar, R. Pérez-Tomás, V. P. Montecinos, The inflammatory profile of the tumor microenvironment, orchestrated by cyclooxygenase-2, promotes epithelial-mesenchymal transition, Front. Oncol., 11 (2021). doi: 10.3389/fonc.2021.686792. doi: 10.3389/fonc.2021.686792
![]() |
[16] |
M. Kakarla, S. ChallaSivaKanaka, S. W. Hayward, O. E. Franco, Race as a Contributor to Stromal Modulation of Tumor Progression, Cancers (Basel), 13 (2021). doi: 10.3390/cancers13112656. doi: 10.3390/cancers13112656
![]() |
[17] |
X. Huang, F. Zhang, D. He, X. Ji, J. Gao, W. Liu, et al., Immune-Related Gene SERPINE1 Is a Novel Biomarker for Diffuse Lower-Grade Gliomas via Large-Scale Analysis, Front. Oncol., 11 (2021), 646060. doi: 10.3389/fonc.2021.646060. doi: 10.3389/fonc.2021.646060
![]() |
[18] |
V. Romano, I. Belviso, A. Venuta, M. R. Ruocco, S. Masone, F. Aliotta, et al., Influence of tumor microenvironment and fibroblast population plasticity on melanoma growth, therapy resistance and immunoescape, Int. J. Mol. Sci., 22 (2021). doi: 10.3390/ijms22105283. doi: 10.3390/ijms22105283
![]() |
[19] |
J. Zhang, J. Zhang, C. Yuan, Y. Luo, Y. Li, P. Dai, et al., Establishment of the prognostic index of lung squamous cell carcinoma based on immunogenomic landscape analysis, Cancer Cell Int., 20 (2020), 330. doi: 10.1186/s12935-020-01429-y. doi: 10.1186/s12935-020-01429-y
![]() |
[20] |
B. Hu, Q. Wei, C. Zhou, M. Ju, L. Wang, L. Chen, et al., Analysis of immune subtypes based on immunogenomic profiling identifies prognostic signature for cutaneous melanoma, Int. Immunopharmacol., 89 (2020). doi: 10.1016/j.intimp.2020.107162. doi: 10.1016/j.intimp.2020.107162
![]() |
[21] |
W. Y. Cai, Z. N. Dong, X. T. Fu, L. Y. Lin, L. Wang, G. D. Ye, et al., Identification of a tumor microenvironment-relevant gene set-based prognostic signature and related therapy targets in gastric cancer, Theranostics, 10 (2020), 8633-8647. doi: 10.7150/thno.47938. doi: 10.7150/thno.47938
![]() |
[22] |
Y. Mei, M. M. Chen, H. Liang, L. Ma, A four-gene signature predicts survival and anti-CTLA4 immunotherapeutic responses based on immune classification of melanoma, Commun. Biol., 4 (2021), 383. doi: 10.1038/s42003-021-01911-x. doi: 10.1038/s42003-021-01911-x
![]() |
[23] |
Z. Yang, X. Liang, Y. Fu, Y. Liu, L. Zheng, F. Liu, et al., Identification of AUNIP as a candidate diagnostic and prognostic biomarker for oral squamous cell carcinoma, EBioMedicine, 47 (2019), 44-57. doi: 10.1016/j.ebiom.2019.08.013. doi: 10.1016/j.ebiom.2019.08.013
![]() |
[24] |
I. Falcone, F. Conciatori, C. Bazzichetto, G. Ferretti, F. Cognetti, L. Ciuffreda, et al., Tumor microenvironment: Implications in melanoma resistance to targeted therapy and immunotherapy, Cancers (Basel), 12 (2020). doi: 10.3390/cancers12102870. doi: 10.3390/cancers12102870
![]() |
[25] |
C. M. Balch, Revolutionary Advances in Immunotherapy for Melanoma Are Coming into the Surgical Arena: Are We Ready?, Ann. Surg. Oncol., 25 (2018), 1803-1806. doi: 10.1245/s10434-018-6516-4. doi: 10.1245/s10434-018-6516-4
![]() |
[26] |
L. B. Song, J. C. Luan, Q. J. Zhang, L. Chen, H. Y. Wang, X. C. Cao, et al., The identification and validation of a robust immune-associated gene signature in cutaneous melanoma, J. Immunol. Res., 2021 (2021), 6686284. doi: 10.1155/2021/6686284. doi: 10.1155/2021/6686284
![]() |
[27] |
V. Petrova, I. Arkhypov, R. Weber, C. Groth, P. Altevogt, J. Utikal, et al., Modern aspects of immunotherapy with checkpoint inhibitors in melanoma, Int. J. Mol. Sci., 21 (2020). doi: 10.3390/ijms21072367. doi: 10.3390/ijms21072367
![]() |
[28] |
C. Ceci, M. G. Atzori, P. M. Lacal, G. Graziani, Targeting tumor-associated macrophages to increase the efficacy of immune checkpoint inhibitors: A glimpse into novel therapeutic approaches for metastatic melanoma, Cancers (Basel), 12 (2020). doi: 10.3390/cancers12113401. doi: 10.3390/cancers12113401
![]() |
[29] |
N. M. Ratnam, S. C. Frederico, J. A. Gonzalez, M. R. Gilbert, Clinical correlates for immune checkpoint therapy: significance for CNS malignancies, Neurooncol. Adv., 3 (2021), 161. doi: 10.1093/noajnl/vdaa161. doi: 10.1093/noajnl/vdaa161
![]() |
[30] |
T. U. Marron, A. E. Ryan, S. M. Reddy, S. Kaczanowska, R. H. Younis, D. Thakkar, et al., Considerations for treatment duration in responders to immune checkpoint inhibitors, J. Immunother. Cancer, 9 (2021). doi: 10.1136/jitc-2020-001901. doi: 10.1136/jitc-2020-001901
![]() |
[31] |
J. Han, X. Xu, Z. Liu, Z. Li, Y. Wu, D. Zuo, Recent advances of molecular mechanisms of regulating PD-L1 expression in melanoma, Int. Immunopharmacol., 88 (2020), 106971. doi: 10.1016/j.intimp.2020.106971. doi: 10.1016/j.intimp.2020.106971
![]() |
[32] |
S. Bagchi, R. Yuan, E. G. Engleman, Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance, Annu. Rev. Pathol., 16 (2021), 223-249. doi: 10.1146/annurev-pathol-042020-042741. doi: 10.1146/annurev-pathol-042020-042741
![]() |
1. | Jingjing Wang, Hongchan Zheng, Yunfeng Jia, Dynamical analysis on a bacteria-phages model with delay and diffusion, 2021, 143, 09600779, 110597, 10.1016/j.chaos.2020.110597 | |
2. | WENDI WANG, DYNAMICS OF BACTERIA-PHAGE INTERACTIONS WITH IMMUNE RESPONSE IN A CHEMOSTAT, 2017, 25, 0218-3390, 697, 10.1142/S0218339017400010 | |
3. | Ei Ei Kyaw, Hongchan Zheng, Jingjing Wang, Htoo Kyaw Hlaing, Stability analysis and persistence of a phage therapy model, 2021, 18, 1551-0018, 5552, 10.3934/mbe.2021280 | |
4. | Ei Ei Kyaw, Hongchan Zheng, Jingjing Wang, Hopf bifurcation analysis of a phage therapy model, 2023, 18, 2157-5452, 87, 10.2140/camcos.2023.18.87 |