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Abstract: Most of the malignant melanomas are already in the middle and advanced stages when they 
are diagnosed, which is often accompanied by the metastasis and spread of other organs. Besides, the 
prognosis of patients is bleak. The characteristics of the local immune microenvironment in metastatic 
melanoma have important implications for both tumor progression and tumor treatment. In this study, 
data on patients with metastatic melanoma from the TCGA and GEO datasets were selected for 
immune, stromal, and estimate scores, and overlapping differentially expressed genes were screened. 
A nine-IRGs prognostic model (ALOX5AP, ARHGAP15, CCL8, FCER1G, GBP4, HCK, MMP9, 
RARRES2 and TRIM22) was established by univariate COX regression, LASSO and multivariate 
COX regression. Receiver operating characteristic curves were used to test the predictive accuracy of 
the model. Immune infiltration was analyzed by using CIBERSORT and Xcell in high-risk and low-
risk groups. The immune infiltration of the high-risk group was significantly lower than that of the 
low-risk group. Immune checkpoint analysis revealed that the expression of PDCD1, CTLA4, TIGIT, 
CD274, HAVR2 and LAG3 demonstrated the visible difference in groups with different levels of risk 
scores. WGCNA analysis found that the yellow-green module contained seven genes from the nine-
IRG prognostic model, and the yellow-green module had the highest correlation with risk scores. The 
results of GO and KEGG suggested that the genes in the yellow-green module were mainly enriched 
in immune-related biological processes. Finally, the expression characteristics of ALOX5AP, 
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ARHGAP15, CCL8, FCER1G, GBP4, HCK, MMP9, RARRES2 and TRIM22 were analyzed between 
metastatic melanoma and normal samples. Overall, a prognostic model for metastatic melanoma based 
on the tumor immune microenvironment characteristics was established, which left plenty of space for 
further studies. It could function well in helping people to understand characteristics of the immune 
microenvironment in metastatic melanoma. 

Keywords: metastatic melanoma; tumor microenvironment; ESTIMATE algorithm; prognostic model; 
bioinformatics 
 

1. Introduction  

Melanoma is a highly lethal skin malignancy with low morbidity, easily early metastasis [1]. 
There are approximately 200,000 new cases diagnosed each year worldwide, and the mortality rate is 
showing a rapid increase [2]. For melanoma in the early stage, complete resection of the primary tumor 
can achieve a good prognosis and be cured [3]. However, for melanoma in the late stage, especially 
stage IV melanoma, the risk of recurrence after surgery is high and the prognosis is poor [4]. Stage I 
and II involve localized disease, stage III is characterized by metastasis to the local lymphnodes, and 
stage IV represents distant metastasis [5]. In recent years, the management of patients with metastatic 
melanoma has evolved considerably through targeted therapies and immunotherapy [6]. These findings 
underscore the importance of discovering new prognostic biomarkers and immunotherapy for patients 
with stage III or IV melanoma who have developed metastases.  

Immunotherapy has become a new therapeutic approach to fight cancer by activating the immune 
system, which is widely used in various tumors, especially melanoma, lung cancer and renal cell 
carcinoma [7]. Significant progress has been made in prolonging patient survival and improving the 
patients’ living quality. The research of immunotherapy focuses on the recruitment of tumor-infiltrating 
T cells. T cells are important lymphocytes in tumor immunity and play a leading role in tumor 
immunity by not only playing an immunosurveillance role in the body but also correcting the body's 
tumor immune deficiency and directly killing tumor cells [8,9]. As a malignant tumor with a high 
mutation rate, melanoma with high immunogenicity can produce a large number of tumor antigens to 
be recognized by the immune system [10]. Immune checkpoint inhibitors are a kind of 
immunomodulator, which has completely changed the treatment strategy of tumors and become the 
standard therapy for a variety of tumors, including SKCM [11]. For example, CTLA-4 monoclonal 
antibody is a protein expressed on the surface of T cells. After binding to CD80/CD86 of antigen-
presenting cells, it can negatively regulate the immune response of T cells and block CTLA-4 to 
enhance the anti-tumor effect [12]. Effective immunotherapy largely depends on the immune status of 
the tumor microenvironment [13]. What’s more, immunotherapy would be more effective if the 
patients contain a high density of tumor-infiltrating lymphocytes. The tumor microenvironment is the 
cellular environment where the tumor is located, which composed of immune cells, mesenchymal cells, 
endothelial cells, inflammatory mediators and extracellular matrix molecules [14]. The cells and 
molecules of the tumor microenvironment are in a dynamic process that reflects the evolutionary nature 
of cancer and jointly promotes immune escape, tumor growth, and metastasis [15]. Immune and 
stromal cells are two major non-tumor components that are considered to be of great value in the 
diagnosis and prognosis of tumors [16,17]. There is growing evidence that the tumor 
microenvironment is strongly correlated with the survival of patients with metastatic melanoma treated 
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with immunotherapy [18]. Therefore, understanding the composition and function of the tumor 
microenvironment and screening for immune-related biological targets are essential to effectively 
control the progression of metastatic melanoma and improve the overall survival of patients with 
metastatic melanoma. 

In this study, samples with metastatic melanoma were obtained from the TCGA and GSE65904 
databases, and all samples were analyzed for immune, stromal and estimate scores by using the 
ESTIMATE algorithm. Taking differentially expressed genes (DEGs) as the object, the nine-IRGs 
prognostic model in metastatic melanoma was determined by univariate Cox regression, LASSO and 
multivariate Cox regression. This model could effectively distinguish the high and low risks of patients 
with metastatic melanoma, with patients in the low-risk group showing longer survival and more 
immune cell infiltration. Further analysis of the expression characteristics of the nine genes in the 
prognostic model in normal samples and in metastatic melanoma revealed that our study provided a 
potential model and biomarker for further immune-related work and personalized drugs for the 
treatment of patients with metastatic melanoma. 

2. Materials and methods 

2.1. Data collection and processing 

The RNA-seq FPKM data of skin melanoma patients, containing corresponding clinical data such 
as age, TNM, staging, gender, survival-time and status were downloaded from the TCGA database 
(https://tcga-data.nci.nih.gov/tcga/). 189 patients with metastatic melanoma in Stage III and Stage IV 
were screened for subsequent analysis. The gene expression data of GSE65904 were downloaded from 
the GEO database (https://www.ncbi.nlm.nih.gov/geo/) and 812 normal skin samples were obtained 
from the Genotype-Tissue Expression (GTEx) database(https://commonfund.nih.gov/GTEx/). 

2.2. Survival analysis of stromal, immune and estimate scores 

Stromal, immune and estimate scores for patients with metastatic melanoma were calculated by 
the ESTIMATE package of R software (Version: 3.6.3) in the GSE65904 and TCGA-SKCM cohorts. 
Survival analysis of stromal, immune and estimate scores was performed by Kaplan-Meyer analysis 
by using survival package. Statistical significance was tested by a log-rank test with the significance 
threshold for p-value set at 0.05. 

2.3. Differential expression analysis 

Patients with metastatic melanoma from the TCGA-SKCM and GSE65904 cohorts were divided 
into high and low score groups based on median immune score. Differentially expressed genes were 
analyzed using the limma package of R software in the GSE65904 cohort. Differential expression 
analysis of the count matrix of the samples was performed in the TCGA-SKCM cohort using the 
DESeq2 package. Genes with |log fold change| > 1 and adjusted p-values < 0.05 were considered to be 
significantly differentially expressed genes (DEGs). Venn diagram 
(https://bioinfogp.cnb.csic.es/tools/venny/index.html) was used to identify overlapping DEGs. The 
ClusterProfiler package was used for gene ontology (GO) enrichment analysis and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway analysis for the overlapping DEGs. GO 
enrichment analysis focused on describing biological processes (BP), cellular components (CC) and 
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molecular functions (MF) associated with DEGs. KEGG pathway analysis revealed biological 
pathways associated with DEGs. 

2.4. Prognostic modeling 

In the TCGA database, clinical data and clinical related information were downloaded, and 
samples with Over Survival (OS) data were used for further survival analysis. To get survival and 
immune-related genes (IRGs), univariate Cox regression analysis of DEGs was performed by the 
“survivff” function in the survival package of R software (P < 0.05). The least absolute shrinkage and 
selection operator (LASSO) regression was used for dimensionality reduction analysis of survival-
associated genes, and survival and glmnet packages in LASSO were used to select prognostic genes 
by imposing a penalty proportional to the contraction of the regression coefficients. Then, multivariate 
Cox regression analysis was performed using the R software survminer package to screen candidate 
prognostic IRGs. Finally, the regression coefficients obtained from COX regression multivariate 
analysis were multiplied by the expression level of each marker gene to construct the optimal 
prognostic model. 

2.5. Validation of the prognostic model 

Patients with metastatic melanoma in the training cohort and the GSE65904 test cohort were 
divided into high-risk and low-risk groups based on the median value of the TCGA-SKCM training 
cohort risk score. Kaplan-Meier curves and log-rank tests were applied to compare the survival 
differences between the different risk groups. The receiver operating characteristic (ROC) curves were 
constructed via the R software survivalROC package and used to assess the predictive power of the 
risk score model. Forest plots were constructed via the R software ggplot2 package and used to show 
hazard ratios for selected prognostic genes. 

2.6. Construction and evaluation of nomogram 

To verify whether the prediction of the risk score model was independent of the traditional clinical 
characteristics of patients with metastatic melanoma, we performed univariate and multivariate Cox 
regression analyses on risk score, TNM, age, sex and stage. A nomogram integrating the prognostic 
signatures was constructed by the R software rms package for predicting OS at 1, 3 and 5 years in 
patients with metastatic melanoma, and calibration curves were plotted to validate the accuracy of the 
prediction model. 

2.7. Gene set enrichment analysis (GSEA) 

To explore the biological pathways involved between the high-risk and low-risk groups of patients, 
the “KEGG” and “GO” gene sets were acquired from Molecular Signatures Database (MSigDB), which 
were analyzed by GSEA via the GSEA software (Version: 4.0.3). Gene expression profile files were used 
as input phenotypic data. Genomic alignments were analyzed 1000 times [19]. P-values < 0.05 were set as 
statistical significance. 
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2.8. Exploration of the immune microenvironment based on the IRGs signature 

We used the CIBERSORT method, a generalized deconvolution algorithm based on a gene 
expression matrix to quantify large tissue cell fractions, to estimate the proportions of 22 immune cell 
phenotypes in high- and low-risk cohorts [20]. Xcell is a method for inferring the proportion of 64 
immune and stromal cell types in samples using gene expression signatures and determines the 
enrichment score of each cell type by ssGSEA [21]. In addition, ssGSEA is a method that performs 
ordinal normalization based on the gene expression values of samples and then calculates an 
enrichment score using an empirical cumulative distribution function to assess the level of immune 
infiltration of the sample [22]. Wilcoxon rank-sum test was used to compare the differential abundance 
of immune cells in high- and low-risk cohorts. To ensure the accuracy of the algorithm, the threshold 
was set as P value < 0.05. 

2.9. Immune checkpoint analysis based on the IRGs signature 

To investigate the expression of immune checkpoint inhibitors between high-risk and low-
risk score groups, we analyzed the differences between high-risk and low-risk groups based on 
gene expression data of PDCD1, CTLA4, TIGIT, CD274, HAVR2 and LAG3 in the TCGA-SKCM 
cohort. Wilcoxon rank-sum test was used to determine the significance of the difference of results 
and P < 0.05 was considered to be significant. Box plot was plotted by the boxplot package of R 
software to indicate the differential expression of immune checkpoint inhibitors between high-risk 
and low-risk groups. 

2.10. Construction of weighted gene co-expression network analysis (WGCNA) 

The TCGA-SKCM cohort included 189 metastatic melanoma samples with detailed overall 
survival information, which was suitable for the construction of WGCNA. Thus, the module signature 
genes and the survival data of the samples can be connected together. WGCNA analysis was performed 
on the top 25% of genes with the highest variance in the tumor samples by using the WGCNA package 
of R software. The sample hierarchical clustering method was used to detect and exclude anomalous 
samples before selecting the appropriate soft threshold power to implement a standard scale-free 
network. In the next stage, the gene dendrogram and module identification were completed with 
dynamic tree cutting by the construction of adjacency and topological overlap matrices (TOM) and the 
calculation of the corresponding phase dissimilarity, and the minimum module size was 40. Then the 
clustering of the module characteristic genes realized the merging of highly similar modules. Thus, the 
correlation between the module characteristic genes and the clinical phenotype of the sample can be 
calculated. The module with the highest correlation with risk scores was selected for further analysis. 

2.11. Statistical analysis 

The FPKM data of the TCGA-SKCM cohort was transformed into transcripts per kilobase million 
(TPM) values. The batch effect between different data sets was eliminated by the “sva” R package. 
The Log-Rank test and Kaplan-Meier method were used for survival analysis. The distributions in two 
sets of any continuous variable were compared using the Wilcoxon rank-sum test. Univariate and 
multivariate Cox regression analyses were performed using the “survival” R package. The ROC curves 
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were generated using the “survivalROC” R package and the corresponding area under the curve was 
obtained. Differences were considered statistically significant at P < 0.05. All statistical analyses were 
performed by using R software (Version 3.6.3). 

3. Results 

3.1. Survival analysis of stromal, immune and estimate scores 

 

Figure 1. Analysis of stromal, immune and estimate scores with the survival of samples in 
the TCGA-SKCM and GSE65904 cohorts. (A-C) Survival curves of immune, stromal and 
estimate score in the TCGA-SKCM cohort. (D-F) Survival curves of immune, stromal and 
estimate score in the GSE65904 cohort. 

According to the ESTIMATE algorithm, for the TCGA-SKCM cohort, the stromal score ranged 
between -1836.9 and 1854.648, the immune score between -1002.3 and 3833.031 and the estimate 
score between -2696.16 and 5144.515, and for the GSE65904 cohort, the stromal score ranged between 
-1111.36 and 2282.686, the immune score between -570.15 and 3381.81 and estimate score between -
1343.02 and 4989.343. To identify potential correlations between overall survival and immune, stromal 
and estimate scores, patients with metastatic melanoma based on the median score were divided into 
high and low score groups in the TCGA-SKCM and GSE65904 cohorts. Kaplan-Meier survival curve 
showed that the overall survival of the high immune, stromal and estimate score group was longer than 
that in the low score group (immune score, p = 0.001; stromal score, p = 0.014; estimate score, p = 0.003) 
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in the TCGA-SKCM cohort, which was statistically significant (Figure 1A–C). Similarly, in the 
GSE65904 cohort, the overall survival of the high immune score group was also longer than that of the 
low score group (p = 0.012), while there was no significant difference in OS between patients with high 
and low stromal and estimate scores (stromal score, p = 0.973; estimate score, p = 0.202) (Figure 1D–F). 
The above results indicated that the good prognosis of patients with metastatic melanoma may be 
related to the remodeling of immune components.  

3.2. Identification and analysis of DEGs 

 

Figure 2. Differential and functional enrichment analysis of gene expression matrix in TCGA-
SKCM and GSE65904 cohorts. (A) Volcano Plot of differential genes in the GSE65904 cohort. 
(B) Volcano Plot of differential genes in the TCGA-SKCM cohort. (C) Venn diagram of 
overlapping differential genes in the TCGA-SKCM and GSE65904 cohorts. (D-E) GO and 
KEGG analysis of overlapping differential genes. 

To reveal the relationship between patients with metastatic melanoma and the tumor 
microenvironment, we performed the differential analysis of gene expression profiles of samples from 
the TCGA-SKCM and GSE65904 cohorts based on the immune scores. In the TCGA-SKCM cohort, 
3716 differentially expressed genes were identified using the DESeq2 package in R software, of 
which 744 genes were down-regulated and 2942 genes were up-regulated (Figure 2A). In the 
GSE65904 cohort, 347 differentially expressed genes were identified by the limma package, of 
which 9 genes were down-regulated and 338 genes were up-regulated (Figure 2B). Venn analysis of 
the differential genes identified in the TCGA-SKCM and GSE65904 cohorts revealed 272 
overlapping genes (Figure 2C), of which one gene was down-regulated and 271 genes were up-
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regulated. We performed functional enrichment analysis, including GO: BP, CC, MF and KEGG 
pathway analysis on the obtained 272 overlapping genes. GO function was mainly enriched in 
response to T cell activation, leukocyte cell-cell adhesion, leukocyte proliferation, and regulation of 
lymphocyte activation (Figure 2D), while the KEGG pathway was mainly enriched in several 
signaling pathways in immune diseases, such as Hematopoietic cell lineage, Allograft rejection, 
Graft-versus-host disease, and Type I diabetes mellitus (Figure 2E).  

3.3. Prognostic modeling 

A univariate Cox proportional hazard regression model was used to analyze 272 overlapping 
differential genes and 177 genes related to survival were identified. In addition, to prevent overfitting 
of the model, we obtained a gene signature for 17 prognostic genes by employing the least absolute 
shrinkage selection operator (LASSO) regression method (Figure 3A,B). We further used multivariate 
COX regression analysis to establish a prognostic risk regression model containing nine genes 
ALOX5AP, ARHGAP15, CCL8, FCER1G, GBP4, HCK, MMP9, RARRES2 and TRIM22(Figure 3C). 
Risk scores for each sample were calculated based on the regression coefficients and expression levels 
of the nine genes. Risk score = –(0.00069*expression level of ALOX5AP) – (0.00056*expression level 
of ARHGAP15) – (0.00096*expression level of CCL8) – (0.00039*expression level of FCER1G) – 
(0.00077* expression level of GBP4) + (0.007688*expression level of HCK) – (0.00033*expression 
level of MMP9) – (0.00057*expression level of RARRES2) – (0.00178 * expression level of TRIM22). 
Patients were divided into high-risk and low-risk groups according to the median risk score. We then 
generated risk curves and scatter plots of risk scores and survival status for each sample in the TCGA-
SKCM cohort and found that as risk scores increased, the number of deaths also increased (Figure 3D–E). 
Kaplan-Meier analysis showed that patients in the high-risk group had lower OS than those in the low-
risk group (P < 0.05) (Figure 3F). Additionally, the area under the curve (AUC) at 1, 3 and 5 years OS 
was 0.712, 0.813 and 0.814, respectively (Figure 3G). Our results suggested that the nine-IRGs 
prognostic model for survival prediction had acceptable sensitivity and specificity. 
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Figure 3. Establishment of the nine-IRGs prognostic model in the TCGA-SKCM cohort. 
(A and B) LASSO regression identified 17 IRGs most associated with OS. (C) Hazard ratio 
forest plots showed the predictive value of IRGs. (D and E) Distribution of risk scores and 
survival status of patients in high-risk and low-risk groups. (F) Kaplan-Meier analysis of 
OS in low-risk and high-risk groups. (G) ROC curves of the nine-IRGs prognostic model 
for 1, 3 and 5 years. 

3.4. Validation of the prognostic model in the GEO melanoma cohort 

To determine the stability of the prognostic model, the performance of the nine-IRGs prognostic 
model was evaluated in the GSE65904 cohort. Based on the nine-IRGs prognostic model, the risk 
score and survival status of each sample in the GSE65904 validation cohort were shown in the figure 
(Figure 4A,B). The receiver operating characteristic (ROC) curves were used to predict survival rates 
at 1, 3 and 5 years and the area under the curve was 0.586, 0.640 and 0.590, respectively (Figure 4C). 
Kaplan-Meier survival curves showed that the survival rate of high-risk patients is significantly shorter 
than that of low-risk patients (Figure 4D). Consistent with the results of the training cohort, in the 
GSE65904 validation cohort, patients with metastatic melanoma who were assigned to the high-risk 
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group according to the prognostic model had significantly worse overall survival (OS) than those 
assigned to the low-risk group. 

 

Figure 4. Validation of the nine-IRGs prognostic model in the GSE65904 cohort. (A and 
B) Distribution of risk scores and survival status in the high-risk and low-risk groups in 
the GSE65904 cohort. (C) Kaplan-Meier analysis of OS in the low-risk and high-risk 
groups in the GSE65904 cohort. (D) ROC curves of the nine-IRGs prognostic model at 1, 3 
and 5 years in the GSE65904 cohort. 

3.5. Independent predictive capability of prognostic models 

To further explore the independent predictive ability of the prognostic model, traditional clinical 
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variables such as age, gender, tumor stage, TNM stage, and risk score were again analyzed by 
univariate and multivariate Cox regression analysis to evaluate the independent predictive ability of 
the model (T0 refers to no evidence of primary tumor; T1 refers to tumor thickness ≤0.75 mm; T2 
refers to tumor thickness >0.75 mm, <1.5 mm; T3 refers to tumor thickness >0.15 mm, <4 mm; T4 
refers to tumor thickness >4 mm. N0 refers to no local lymph node metastasis; N1 refers to local lymph 
node metastasis, whose largest lymph node ≤3 cm; N2 refers to local lymph node metastasis, whose 
largest lymph node. M0 refers to no distant metastasis; M1 refers to distant metastasis）. In the TCGA-
SKCM cohort, age, TN stage, and risk score models were statistically significant in the univariate 
analysis (Figure 5A). Multivariate analysis further showed that T N stage and risk score were 
independent parameters associated with survival (Figure 5B).In addition, to extend the availability of 
the nine-IRGs prognostic model and clinical applications, a nomogram was made for clinical variables 
and risk scores that could be used to visually predict the 1-year, 2-year and 3-year survival times of 
patients (Figure 5C), and calibration curves were plotted to validate the accuracy of the prediction 
model (Figure 5D–F). The predicted values matched well with the actual values, indicating that our 
model could be used to predict the prognosis of patients with metastatic melanoma. Notably, the 
findings suggested that the risk score remained independent in predictive ability and could be used as 
an independent factor in the prognosis of patients with metastatic melanoma. 

 

Figure 5. The risk score combined with other clinical factors predicted the prognosis of 
patients with metastatic melanoma in the TCGA-SKCM cohort. (A) Univariate Cox 
regression analysis of clinical characteristics in the TCGA-SKCM cohort. (B) Multivariate 
Cox regression analysis of clinical characteristics in the TCGA-SKCM cohort. (C) A 
nomogram for predicting the survival rate of patients with metastatic melanoma in 1, 2, 
and 3 years. (D) Nomogram calibration curve for predicting 1-year OS. (E) Nomogram 
calibration curve for predicting 2-year OS. (F) Nomogram calibration curve for predicting 
3-year OS. 
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3.6. Gene set enrichment analysis 

To identify potential signaling pathways and biological processes associated with the nine-IRGs 
prognostic model, gene set enrichment analysis (GSEA) was used between high-low and low-risk 
groups in the TCGA-SKCM cohort. The GO results showed that the low-risk group was mainly enriched 
in immune receptor activity (NES = 2.229, FDR <0.002), cytokine receptor activity (NES = 2.202, FDR 
<0.002), regulation of lymphocyte-mediated immunity (NES = 2.196, FDR <0.002) and   regulation of 
leukocyte-mediated immunity (NES = 2.186, FDR <0.002) (Figure 6A). KEGG results showed that the 
low-risk group was mainly enriched in cytokine-cytokine receptor interaction (NES = 2.184, FDR <0.001), 
natural killer cell-mediated cytotoxicity (NES = 2.034, FDR <0.002), antigen processing and presentation 
(NES = 2.01, FDR <0.002) and chemokine signaling pathway (NES = 1.960, FDR <0.004) (Figure 6B). 
These results indicated that the nine-IRGs prognostic model could be potentially valuable for inferring 
tumor microenvironment in patients with metastatic melanoma. 

 

Figure 6. GSEA analysis of the high-risk and low-risk groups of the TCGA-SKCM cohort 
according to the nine-IRGs prognostic model. (A) Four typical GO enrichments in the low-
risk group. (B) Four typical KEGG pathways in the low-risk group. 

3.7. Immune infiltration analysis of high-risk and low-risk groups 

To further elucidate the relationship between the prognostic model and tumor-infiltrating immune 
cells, we performed a series of analyses of cell types on the tumor microenvironment in the TCGA-
SKCM cohort. First, 189 patients were divided into high-risk and low-risk groups based on the median 
risk score. The CIBERSORT algorithm was used to quantify the proportion of immune cells, and the 
difference of 22 immune cell types in the high-risk and low-risk groups was studied. The violin plot 
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showed that plasma cells, CD8+ T cells, memory-activated CD4 T cells and M1 macrophages had 
higher infiltration levels in the low-risk group (Figure 7A). In addition, to verify the accuracy of the 
results, we quantified the level of tumor immune infiltration from patients with metastatic melanoma 
by Xcell. Visual analysis revealed that the infiltration level of plasma cells, CD8+ T cells, memory-
activated CD4+ T cells and M1 macrophages in the low-risk group were significantly higher than that 
in the high-risk group (Figure 7B). Therefore, we concluded that metastatic melanoma patients with 
different risk score subtypes significantly affected the tumor microenvironment. 

 

Figure 7. Immune infiltration of tumors between high-risk and low-risk groups. (A) 
CIBERSORT calculated immune infiltration between high-risk and low-risk groups. (B) 
Xcell calculated immune infiltration between high-risk and low-risk groups. 

3.8. Analysis of immune checkpoints in high-risk and low-risk groups 

Since immune checkpoint inhibitors (ICIs) were used to treat malignant melanoma in clinical 
practice, we studied whether the risk model was related to ICIs-related biomarkers based on the TCGA 
and GSE65904 datasets and found that the high-risk score group was negatively correlated with the 
high expression of CTLA4 (p <0.001), HAVR2 (p <0.001), LAG3 (p <0.001), TIGIT (p <0.001), 
CD274 (p <0.001) and PDCD1 (p <0.001) (Figure 8). Therefore, patients in the low-risk group could 
have a better response to treatment with ICIs. 
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Figure 8. Correlation between high-risk and low-risk groups and immune checkpoints 
CTLA4, HAVR2, LAG3, TIGIT, CD274 and PDCD1 in the TCGA and GSE65904 datasets. 

3.9. Construction of weighted gene co-expression network and identification of key modules, especially 
the yellow-green module that is highly correlated with risk scores 

  WGCNA is a systems biology method for analyzing the expression patterns of multiple genes in 
different samples, which can form clusters or modules containing genes with the same expression 
pattern [23]. If certain genes are located in one module, they may have the same biological function 
and the association between the module and the sample characteristics (such as clinical characteristics) 
can be studied. Three outlier samples were excluded from the TCGA-SKCM cohort so that a total of 
186 samples with survival data were included in the WGCNA (Figure 9A). In this study, we chose the 
power of β = 5 (scale-free R2 = 0.9) as a soft threshold to implement the scale-free network. As a result, 
six gene co-expression modules were identified after excluding gray modules using merged dynamic 
tree cut (Figure 9B). The heat map plotted the TOM of the 4709 selected genes in the analysis, which 
indicated that each module was validated independently of the other. Subsequently, we found that the 
yellow-green module, containing ALOX5AP, FCER1G, GBP4, HCK, MMP9, RARRES2 and 
TRIM22 in the nine-IRGs prognostic model, had the highest correlation with risk scores. (R2 = -0.3, 
P = 3e-05) (Figure 9C). We plotted the scatter plot of GS vs MM and risk scores in the yellow-green 
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module (Cor = 0.44, P = 1.8e-37), elucidating that ALOX5AP(GS = 0.33, MM = 0.72), FCER1G(GS 
= 0.23, MM = 0.24）GBP4(GS = 0.30, MM = 0.64), HCK(GS = 0.07, MM = 0.89), MMP9(GS = 0.17, 
MM = 0.22), RARRES2(GS = 0.28, MM = 0.39) and TRIM22(GS = 0.34, MM = 0.80) seven genes 
were the central genes in the yellow-green module (Figure D). 

 

Figure 9. Construction of weighted gene co-expression networks and identification of key 
modules with high correlation to risk scores. (A) Hierarchical clustering dendrogram of 
TCGA-SKCM samples. Clinical features of survival status, survival time, age, sex, stage, 
TNM classification and risk score were shown at the bottom. (B)  Hierarchical clustering 
dendrogram of different similarity genes based on topological overlap. Modules were 
branches of the clustering tree. (C) Correlation of module feature genes with clinical traits. 
The rows correspond to the characteristic genes of the module and the columns represented 
the clinical characteristics. Each cell contained correlations and p-values. (D) Scatter plot 
of yellow-green module genes. 

3.10. Analysis of biological functions and immune status of yellow-green module genes 

In gene networks that conform to a scale-free distribution, genes with similar expression patterns 
can be co-regulated, functionally related, or pathway sharing. To further explore the potential 
biological functions of ALOX5AP, FCER1G, GBP4, HCK, MMP9, RARRES2 and TRIM22 in 
metastatic melanoma, we performed GO and KEGG pathway analysis of genes associated with the 
yellow-green module using the “GO” and “KEGG” packages of R software. GO analysis showed that 
genes were mainly enriched in response to interferon-gamma, antigen processing and presentation, 
cellular response to interferon-gamma and adaptive immune response based on somatic recombination 
of immune receptors built from immunoglobulin superfamily domains (Figure 10A). KEGG pathway 
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analysis was mainly associated with immunological diseases such as allograft rejection, autoimmune 
thyroid disease and viral myocarditis (Figure 10 B). 

 

Figure 10. Analysis of the biological function of the yellow-green module genes. (A) GO 
function enrichment analysis of yellow-green modular genes. (B) Analysis of KEGG 
pathway of yellow-green modular genes. 

3.11. Expression differences of the nine-IRGs in normal samples and metastatic melanoma 

To explore the expression characteristics of the nine-IRGs between normal samples and metastatic 
melanoma, the Wilcoxon rank-sum test was used to analyze the expression differences of the nine-
IRGs between normal samples and metastatic melanoma. The results showed that ALOX5AP (p 
<0.001), ARHGAP15 (p <0.001), CCL8 (p <0.001), FCER1G (p <0.001), GBP4 (p <0.001), HCK (p 
<0.001) and MMP9 (p <0.001) were highly expressed in metastatic melanoma while RARRES2 (p = 
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0.001) and TRIM22 (p < 0.001) were highly expressed in normal samples, and all were differentially 
significant (Figure 11). 

 

Figure 11. Expression characteristics of ALOX5AP, ARHGAP15, CCL8, FCER1G, GBP4, 
HCK, MMP9, RARRES2 and TRIM22 in normal samples and metastatic melanoma. 

4. Discussion 

Melanoma is a highly malignant tumor with grant tendency of invasive metastasis and poor 
prognosis. Besides as a highly immunogenic tumor, immunotherapy has outstanding advantages in 
improving the efficacy of melanoma [24]. Surgical resection is valuable for certain patients with stage 
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III and IV melanoma, but immunotherapy will expand the role of surgery in stage III and IV cancers 
to include removal of residual tumor and molecular detection of refractory metastatic cancer cells after 
exposure to systemic therapy [25]. In recent years, more and more evidence has shown that biomarkers 
based on tumor immunity can be used for the diagnosis, prognosis and treatment of tumor patients [26]. 
Therefore, it is meaningful and necessary to identify accurate biomarkers to construct prognostic 
characteristics to better predict patients with refractory diseases and poor survival (Figure 12).  

 

Figure 12. Workflow of this study. 

To establish a suitable and simple protocol to observe the immune status of patients with 
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metastatic melanoma and to suggest clinical outcomes, we used the ESTIMATE algorithm to calculate 
the stromal, immune and estimate scores of samples in the TCGA-SKCM and GSE65904 cohorts. 
Survival analysis showed that the survival time of patients in the low immune score group in the 
TCGA-SKCM cohort and GSE65904 cohort was significantly shorter than that in the high immune 
score group. Therefore, we suggest that the good prognosis of patients with metastatic melanoma may 
be related to remodeling of the immune component. The samples were divided into high and low 
scoring groups according to the median immune score for differential analysis, and 3716 and 347 
differential genes were screened in the TCGA-SKCM and the GSE65904 cohorts, respectively. Venn 
diagram showed that there were 272 overlapping differential genes in the TCGA-SKCM and the 
GSE65904 cohorts. GO and KEGG analysis identified 247 overlapping differential genes were 
significantly associated with immune responses (such as T cell activation, Leukocyte adhesion and 
leukocyte proliferation). We constructed a nine-IRGs prognostic model (ALOX5AP, ARHGAP15, 
CCL8, FCER1G, GBP4, HCK, MMP9, RARRES2 and TRIM22) by univariate COX regression, 
LASSO and multivariate COX regression for 272 differential genes in the TCGA-SKCM cohort and 
demonstrated its validity in the GSE65904 cohort. Based on a nine-IRGs prognostic model, 189 
patients were divided into high-risk and low-risk groups based on the median value of the risk score 
and we found that patients with high-risk group values had a poor prognosis and shorter survival time 
with increasing high-risk risk values. In addition, univariate COX and multivariate COX regression 
analyses of risk scores and other clinical factors found that risk scores could be used as independent 
prognostic factors. A nomograph consisting of risk scores and other clinical factors was used to predict 
survival. Our study suggested that the nine-IRGs can be used as prognostic markers and indicators for 
patients with metastatic melanoma. 

To explore the relationship between high and low-risk groups and tumor-infiltrating immune cells, 
we used two common used methods, CIBERSORT and Xcell, to assess the difference in immune 
infiltration between high and low-risk groups. Due to the complexity and shortcomings of these 
algorithms, they are rarely compared with each other. CIBERSORT results indicated that plasma cells, 
T cells CD8, T cells CD4 memory activated and macrophages M1 had higher infiltration levels in the 
low-risk group. Xcell analysis showed the same results. Therefore, the longer survival time in the low-
risk group may be related to the different immune infiltration characteristics of the patients  

Interestingly, we found that the risk score correlated not only with immune cell infiltration, but 
also with immune checkpoint inhibitors. Immune checkpoint inhibitors (ICIs) have become an 
important therapeutic option for many patients with malignant melanoma over the past few years, 
aiming to restore and promote the function of effector T cells to specifically recognize and kill tumor 
cells and systemically enhance the systemic anti-tumor immune response [27]. It is a better treatment 
option for patients with high risk of recurrence after surgical resection or for those with advanced 
disease (unresectable or with metastases) [28]. Although immune checkpoint inhibitors (ICIs) have 
been written into the clinical application guidelines for various recurrent malignant tumors and 
advanced cancers, they are only effective for a long time in a part of the population, and drug resistance 
or immune-related adverse events (irAEs) may occur in another part of the population [3]. Currently, 
there are two main classes of immune checkpoint inhibitors: antibodies targeting cytotoxic T-
lymphocyte antigen-4 (CTLA-4) and antibodies targeting programmed cell death protein-1 (PD-1) and 
its ligand programmed death receptor ligand-1 (PD-L1) [29]. Ipilimumab, the first ICIs approved for 
marketing by the FDA, is an antibody targeting CTLA-4 and is primarily used for the treatment of 
melanoma [30]. The high expression of PD-L1 protein in tumor cells or tumor immune 
microenvironment is considered to be a biomarker for predicting the treatment of melanoma by PD-1 
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inhibitors, and has been approved by the FDA as a predictive indicator for selecting patients with 
potential for ICI therapy [31,32]. Our study found the expression of CTLA4, HAVR2, LAG3, TIGIT, 
CD274 and PDCD1 is higher in the low-risk group, so it is possible that the low-risk group had a better 
response to immune checkpoint inhibitor therapy, which is consistent with the poor prognosis of 
patients in the high-risk group.  

To further understand the relationship between prognostic models and genes, the top 25% of the 
genes with variance ranking were selected for WGCNA analysis. The results showed that the yellow-
green module had the highest correlation with the risk score model and had a positive correlation with 
survival time, so the genes in the yellow-green module may be good prognostic genes. We also found 
that ALOX5AP, FCER1G, GBP4, HCK, MMP9, RARRES2 and TRIM22 of the nine-IRGs prognostic 
model were located in the yellow-green module. Next, we further analyzed the differences in the 
expression of genes used to construct the risk model in normal samples and metastatic melanoma and 
found that ALOX5AP, ARHGAP15, CCL8, FCER1G, GBP4, HCK, and MMP9 are highly expressed 
in metastatic melanoma, while RARRES2 and TRIM22 highly expressed in normal tissues. GO and 
KEGG analysis revealed that the genes of the yellow-green module were mainly enriched in immune-
related functions and pathways such as response to interferon-gamma, antigen processing and 
presentation, cellular response to interferon-gamma and adaptive immune response based on somatic 
recombination of immune receptors built from immunoglobulin superfamily domains. Therefore, the 
high expression of the genes (ALOX5AP, ARHGAP15, CCL8, FCER1G, GBP4, HCK, and MMP9) 
used to construct the model in tumors may be due to the fact that the body activated the expression of 
these genes to resist the tumor after tumorigenesis,  thus enhancing the local anti-tumor immune 
response through the expression of these genes, resulting in a good prognosis for patients with high 
expression of these genes.  

Despite the remarkable results of this study, there were still shortcomings. Although our study 
provided new insights into the immune microenvironment of metastatic melanoma and related 
therapeutic targets, it had its limitations because it was retrospective. Therefore, further prospective 
studies were needed to confirm our findings. 

5. Conclusions 

A nine-IRGs prognostic model was identified based on the tumor microenvironment, which can 
effectively predict survival outcomes in patients with metastatic melanoma, and the model was validated 
in both internal and external datasets. This model could also predict the infiltration of immune cells in 
metastatic melanoma. In conclusion, our research provided a potential model and biomarker for further 
immune-related work and personalized medicine for the treatment of metastatic melanoma. 
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