
Citation: Baltazar D. Aguda, Ricardo C.H. del Rosario, Michael W.Y. Chan. Oncogene-tumor suppressor gene feedback interactions and their control[J]. Mathematical Biosciences and Engineering, 2015, 12(6): 1277-1288. doi: 10.3934/mbe.2015.12.1277
[1] | Shikai Wang, Kangjian Sun, Wanying Zhang, Heming Jia . Multilevel thresholding using a modified ant lion optimizer with opposition-based learning for color image segmentation. Mathematical Biosciences and Engineering, 2021, 18(4): 3092-3143. doi: 10.3934/mbe.2021155 |
[2] | Shikai Wang, Heming Jia, Xiaoxu Peng . Modified salp swarm algorithm based multilevel thresholding for color image segmentation. Mathematical Biosciences and Engineering, 2020, 17(1): 700-724. doi: 10.3934/mbe.2020036 |
[3] | Wenqi Ji, Xiaoguang He . Kapur's entropy for multilevel thresholding image segmentation based on moth-flame optimization. Mathematical Biosciences and Engineering, 2021, 18(6): 7110-7142. doi: 10.3934/mbe.2021353 |
[4] | Nilkanth Mukund Deshpande, Shilpa Gite, Biswajeet Pradhan, Ketan Kotecha, Abdullah Alamri . Improved Otsu and Kapur approach for white blood cells segmentation based on LebTLBO optimization for the detection of Leukemia. Mathematical Biosciences and Engineering, 2022, 19(2): 1970-2001. doi: 10.3934/mbe.2022093 |
[5] | Shenghan Li, Linlin Ye . Multi-level thresholding image segmentation for rubber tree secant using improved Otsu's method and snake optimizer. Mathematical Biosciences and Engineering, 2023, 20(6): 9645-9669. doi: 10.3934/mbe.2023423 |
[6] | Hong Qi, Guanglei Zhang, Heming Jia, Zhikai Xing . A hybrid equilibrium optimizer algorithm for multi-level image segmentation. Mathematical Biosciences and Engineering, 2021, 18(4): 4648-4678. doi: 10.3934/mbe.2021236 |
[7] | Akansha Singh, Krishna Kant Singh, Michal Greguš, Ivan Izonin . CNGOD-An improved convolution neural network with grasshopper optimization for detection of COVID-19. Mathematical Biosciences and Engineering, 2022, 19(12): 12518-12531. doi: 10.3934/mbe.2022584 |
[8] | Xiaoye Zhao, Yinlan Gong, Lihua Xu, Ling Xia, Jucheng Zhang, Dingchang Zheng, Zongbi Yao, Xinjie Zhang, Haicheng Wei, Jun Jiang, Haipeng Liu, Jiandong Mao . Entropy-based reliable non-invasive detection of coronary microvascular dysfunction using machine learning algorithm. Mathematical Biosciences and Engineering, 2023, 20(7): 13061-13085. doi: 10.3934/mbe.2023582 |
[9] | Xueyuan Li, MiaoYu, Xiaoling Zhou, Yi Li, Hong Chen, Liping Wang, Jianghui Dong . A method of ultrasound diagnosis for unilateral peripheral entrapment neuropathy based on multilevel side-to-side image contrast. Mathematical Biosciences and Engineering, 2019, 16(4): 2250-2265. doi: 10.3934/mbe.2019111 |
[10] | Mengya Zhang, Qing Wu, Zezhou Xu . Tuning extreme learning machine by an improved electromagnetism-like mechanism algorithm for classification problem. Mathematical Biosciences and Engineering, 2019, 16(5): 4692-4707. doi: 10.3934/mbe.2019235 |
Image segmentation is a fundamental preprocessing stage in computer vision, and the main goal of which is to partition a given image into several meaningful regions with respect to position, texture, gray level value, etc [1,2]. In the recent decades, many scholars and researchers have done a great deal of work in this field and a number of segmentation techniques have been proposed. Basically, the currently used segmentation techniques can be summarized as three main categories: edge - based method, region-based method, and threshold-based method [3,4,5,6]. Among the available segmentation methods, thresholding technique holds the prime position and becomes popular due to the strong robustness, fast computation speed and high accuracy.
The thresholding method can be broadly classified into bi-level and multilevel depending on the number of thresholds required to be determined. Bi-level thresholding method splits the image into two classes: foreground and background, while the multilevel thresholding method can partition the image into several similar parts based on intensity. Over the years, the multilevel thresholding technique has been used extensively and much work has been done on it. Among the various multilevel thresholding techniques, Kapur's entropy, Minimum cross entropy (MCE), and Otsu method (between-class variance) are the most popular ones, which perform much better than other existing methods [7,8,9]. Kapur's entropy method maximizes the histogram entropy of segmented classes to obtain the optimal threshold values. MCE method minimizes the cross entropy between the original classes and the segmented classes. Otsu method maximizes the between class variance of segmented classes and it has been widely used to solve image segmentation problems. When the number of thresholds is small, the performance of these segmentation techniques is satisfied. However, when the number of thresholds increases, the computational complexity will result in exponential growth since they search the solution space exhaustively to obtain the optimal thresholds.
Therefore, to avoid above weakness, a number of swarm intelligence (SI) techniques have been used extensively and combined with various thresholding methods, such as particle swarm optimization (PSO), genetic algorithm (GA), harmony search optimization (HSO), bat algorithm (BA), ant colony optimization (ACO), etc [10]. For example, Abdul et al. proposed a technique based on grey wolf optimization (GWO) and its combination with Kapur's entropy and Otsu method for image segmentation [11]. Also, Cuevas et al developed and evaluated a multilevel image thresholding method based on DE in 2010 [12]. Genyun Sun et al. utilized a novel hybrid algorithm of gravitational search algorithm (GSA) with GA for multi-level thresholding [13]. The experimental results indicate that GSA-GA has superior or comparative segmentation performance. In favor of satellite image segmentation, Bhandari et al. presented two multi-level thresholding techniques based on cuckoo search (CS) algorithm and wind driven optimization (WDO) using Kapur's entropy [14]. Moreover, Madhubanti and Amitava proposed a bacterial foraging optimization (BFO) based multilevel thresholding technique for magnetic resonance brain image segmentation [15]. They employed BFO to maximize the Kapur's function values. Furthermore, there are many other swarm intelligence algorithms and their modified algorithms, that were utilized for multilevel thresholding including: social spiders optimization (SSO) [16], hybrid differential evolution algorithm [17], modified bacterial foraging (MBF) [18], Patch-Levy-based bees algorithm (PLBA) [19], teaching-learning-based optimization (TLBO) [20], krill herd optimization (KHO) [21] and Lévy flight guided firefly algorithm (LFA) [22]. However, most of these techniques may get stuck in local optimal and the stability of them becomes poor when the number of thresholds is high due to several factors [23]. For instance, generating an inappropriate initial population will affect the convergence performance of proposed algorithm. Besides, the accuracy of solution may be influenced by the transformation of exploration and exploration phases.
In order to overcome the drawbacks above and obtain an efficient method for color image segmentation, MDA based color image segmentation using Kapur's entropy, MCE method and Otsu method is proposed in this paper. The initial and the updating phases of standard DA have been improved through the techniques as follows [24]. In the initial phase of standard DA, the chaotic maps and the EOBL strategy are adopted to enhance the randomness of initial population. Moreover, a hybrid algorithm of dragonfly algorithm and differential evolution is utilized to balance the exploration and exploitation of algorithm for updating phase. In this paper, the performance of the proposed method is validated on ten test color images and the experimental results indicate the appropriate performance of MDA based method over other multilevel thresholding methods. Additionally, several performance evaluation measures such as arithmetic mean (AM), standard deviation (STD), peak signal to noise ratio (PSNR), structural similarity index (SSIM) and feature similarity index (FSIM) are included for quantitative analysis. Besides, a non-parametric Wilcoxon's rank sum test has also been conducted in the paper for statistical analysis [25].
Detailed discussion in regard to the theory and realization of the MDA based method is given in the following sections. In Section 2, the general description of multilevel thresholding methods is introduced. The standard dragonfly algorithm is reviewed in Section 3. In Section 4, the proposed MDA based multilevel thresholding method is introduced in details. The environmental experiment of the proposed method is described in Section 5 and a comprehensive set of experimental results and comparison of other existing methods are provided in Section 6. Finally, the relevant conclusions and the future research directions are drawn in Section 7.
The image threshold method can be summarized as two categories: bi-level thresholding method and multilevel thresholding method. Bi-level thresholding method involves one threshold value which partitions the image into two classes: foreground and background, however if the image is quite complex and contains various objects, the bi-level thresholding method is not very effective [11]. Therefore, multilevel thresholding method is used extensively for image segmentation [26,27,28,29,30,31]. A brief formulation of three techniques is given in the following subsections. In addition, the RGB images has three basic color components of red, green and blue, so these thresholding techniques are executed three times to determine the optimal threshold values of each color component [32].
Kapur's method is also an unsupervised automatic thresholding technique, which selects the optimum thresholds based on the entropy of segmented classes [8]. Assuming that $ \left[{t{h_1}, t{h_2}, ..., t{h_n}} \right] $ represents the threshold values which divided the image into various classes. Then the object function of Kapur's method can be defined as:
$ H\left( {t{h_1}, t{h_2}, ..., t{h_n}} \right) = {H_0} + {H_1} + ... + {H_n} $ | (1) |
Where
$ {H_0} = - \sum\limits_{j = 0}^{t{h_1} - 1} {\frac{{{p_j}}}{{{\omega _0}}}\ln } \frac{{{p_j}}}{{{\omega _0}}} , {\omega _0} = \sum\limits_{j = 0}^{t{h_1} - 1} {{p_j}} $ | (2) |
$ {H_1} = - \sum\limits_{j = t{h_1}}^{th{}_2{\rm{ - }}1} {\frac{{{p_j}}}{{{\omega _1}}}\ln } \frac{{{p_j}}}{{{\omega _1}}} , {\omega _1} = \sum\limits_{j = t{h_1}}^{t{h_2} - 1} {{p_j}} $ | (3) |
$ {H_n} = - \sum\limits_{j = t{h_n}}^{L - 1} {\frac{{{p_j}}}{{{\omega _n}}}\ln } \frac{{{p_j}}}{{{\omega _n}}} , {\omega _n} = \sum\limits_{j = t{h_n}}^{L - 1} {{p_j}} $ | (4) |
$ {H_0} $, $ {H_1} $, …, $ {H_n} $ denote the entropies of distinct classes. $ {\omega _0} $, $ {\omega _1} $, …, $ {\omega _n} $ are the probability of each class. In order to obtain the optimal threshold values, the fitness function in Eq. (1) is maximized.
${f_{Kapur}}\left( {t{h_1}, t{h_2}, ..., t{h_n}} \right) = \arg \max \left\{ {H\left( {t{h_1}, t{h_2}, ..., t{h_n}} \right)} \right\} $ | (5) |
Minimum cross entropy (MCE) method finds the optimal threshold values based on minimizing the cross entropy between the original image and the segmented image [9]. MCE method can be defined as minimizing the following objective function:
$ M\left( {t{h_1}, t{h_2}, ..., t{h_n}} \right) = {M_G} + {M_0} + {M_1} + ... + {M_n} $ | (6) |
where
$ {M_G} = \sum\limits_{j = 0}^{L - 1} {j{p_j}\log } \left( j \right) $ | (7) |
$ {M_0} = - \sum\limits_{j = 0}^{t{h_1} - 1} {j{p_j}\log } \left( {{\mu _0}} \right) , {\mu _0} = \sum\limits_{j = 0}^{t{h_1} - 1} {\frac{{j{p_j}}}{{{\omega _0}}}} , {\omega _0} = \sum\limits_{j = 0}^{t{h_1} - 1} {{p_j}} $ | (8) |
$ {M_1} = - \sum\limits_{j = t{h_1}}^{t{h_2}{\rm{ - }}1} {j{p_j}\log } \left( {{\mu _1}} \right) , {\mu _1} = \sum\limits_{j = t{h_1}}^{t{h_2}{\rm{ - }}1} {\frac{{j{p_j}}}{{{\omega _1}}}} , {\omega _1} = \sum\limits_{j = t{h_1}}^{t{h_2} - 1} {{p_j}} $ | (9) |
$ {M_n} = - \sum\limits_{j = t{h_n}}^{L - 1} {j{p_j}\log } \left( {{\mu _n}} \right) , {\mu _n} = \sum\limits_{j = t{h_n}}^{L - 1} {\frac{{j{p_j}}}{{{\omega _n}}}} , {\omega _n} = \sum\limits_{j = t{h_n}}^{L - 1} {{p_j}} $ | (10) |
$ {M_0} $, $ {M_1} $, …, $ {M_n} $ represent the cross entropies of distinct classes. $ {\omega _0} $, $ {\omega _1} $, …, $ {\omega _n} $ are the probability of each class. $ {M_G} $ is a constant. Thus, the objective function in Eq. (6) can be rewritten as:
$ \eta \left( {t{h_1}, t{h_2}, ..., t{h_n}} \right) = {M_0} + {M_1} + ... + {M_n} $ | (11) |
$ η(th1,th2,...,thn)=−th1−1∑j=0jpjlog(∑th1−1j=0jpj∑th1−1j=0pj)−th2−1∑j=th1jpjlog(∑th2−1j=th1jpj∑th2−1j=th1pj)−...−L−1∑j=thnjpjlog(∑L−1j=thnjpj∑L−1j=thnpj) $
|
(12) |
Let $ {m^0} = \sum\nolimits_{j = a}^{b - 1} {{p_j}} $ and $ {m^1} = \sum\nolimits_{j = a}^{b - 1} {j{p_j}} $, then
$ η(th1,th2,...,thn)=−m1(0,th1−1)log(m1(0,th1−1)m0(0,th1−1))−m1(th1,th2−1)log(m1(th1,th2−1)m0(th1,th2−1))−...−m1(thn,L−1)log(m1(thn,L−1)m0(thn,L−1)) $
|
(13) |
The MCE method search the optimal threshold values by minimizing the objective function in Eq. (13).
$ {f_{MCE}}\left( {t{h_1}, t{h_2}, ..., t{h_n}} \right) = \arg \min \left\{ {\eta \left( {t{h_1}, t{h_2}, ..., t{h_n}} \right)} \right\} $ | (14) |
Otsu method (between-class variance) is a non-parametric thresholding technique, which selects the optimum thresholds based on the between-class variance of segmented classes [7]. Let $ L $ represents the number of gray levels in a given image and $ \left[{t{h_1}, t{h_2}, ..., t{h_n}} \right] $ denotes the threshold values which are selected to partition the image into various classes. Then the objective function of Otsu method can be defined as:
$ \sigma _B^2\left( {t{h_1}, t{h_2}, ..., t{h_n}} \right) = \sigma _0^2 + \sigma _1^2 + ... + \sigma _n^2 $ | (15) |
Where
$ \sigma _0^2 = {\omega _0}{\left( {{\mu _0} - {\mu _T}} \right)^2} , {\omega _0} = \sum\limits_{j = 0}^{t{h_1} - 1} {{p_j}} , {\mu _0} = \sum\limits_{j = 0}^{t{h_1} - 1} {\frac{{j{p_j}}}{{{\omega _0}}}} $ | (16) |
$ \sigma _1^2 = {\omega _1}{\left( {{\mu _1} - {\mu _T}} \right)^2} , {\omega _1} = \sum\limits_{j = t{h_1}}^{t{h_2} - 1} {{p_j}} , {\mu _1} = \sum\limits_{j = t{h_1}}^{t{h_2}{\rm{ - }}1} {\frac{{j{p_j}}}{{{\omega _1}}}} $ | (17) |
$ \sigma _n^2 = {\omega _n}{\left( {{\mu _n} - {\mu _T}} \right)^2} , {\omega _n} = \sum\limits_{j = t{h_n}}^{L - 1} {{p_j}} , {\mu _n} = \sum\limits_{j = t{h_n}}^{L - 1} {\frac{{j{p_j}}}{{{\omega _n}}}} $ | (18) |
$ {\mu _T} $ denotes the mean intensity for whole image, $ {\mu _T} = \sum\limits_{j = 0}^{L - 1} {j{p_j}} = {\omega _0}{\mu _0} + {\omega _1}{\mu _1} +... + {\omega _n}{\mu _n} $
And Eq. (15) is maximized to obtain the optimal threshold values.
$ {f_{otsu}}\left( {t{h_1}, t{h_2}, ..., t{h_n}} \right) = \arg \max \left\{ {\sigma _B^2\left( {t{h_1}, t{h_2}, ..., t{h_n}} \right)} \right\} $ | (19) |
As we know, the computational complexity of these three thresholding techniques above will result in exponential growth as the number of thresholds increase. Under such circumstance, Kapur's entropy, MCE and Otsu method are not very effective for multilevel thresholding. Therefore, MDA is proposed to improve the accuracy and computation speed of thresholding techniques. The ultimate goal of proposed method is to determine the optimal threshold values by optimizing (either maximizing or minimizing) the objective function given in Eq. (1), Eq. (13), and Eq. (15).
Dragonfly algorithm is inspired by the static and dynamic behaviors of dragonflies in nature. It is firstly proposed by Mirjalili to solve the problem of submarine propeller optimization [24]. In the static swarm, dragonflies create sub-swarms and fly over small areas to hunt the preys. This static behavior represents the exploitation phase of optimization. In the dynamic swarm, however, a mass of dragonflies make the group for migrating in one direction, which represents the exploration phase of optimization. Moreover, five factors are designed to simulate the behaviors of dragonflies, namely separation (S), alignment (A), cohesion (C), attraction towards food (F), and distraction outwards enemy (E). The mathematical model of these factors is given as follows:
The separation of $ i{\rm{th }} $ dragonfly individual denoted by $ {S_i} $ is given by:
$ S{}_i = - \sum\limits_{j = 1}^{nd} {{x_i} - {x_j}} $ | (20) |
where $ nd $ denotes the number of neighbors. $ {x_i} $ and $ {x_j} $ represent the position of current dragonfly and its neighbor respectively. It's worth noting that if the distance between $ {x_i} $ and $ {x_j} $ is less than the preset value, then $ {x_j} $ is a neighbor of $ {x_i} $. And the preset value will increase with the number of iterations.
The alignment of $ i{\rm{th }} $ dragonfly individual denoted by $ {S_i} $ is determined as follows:
$ A{}_i = \frac{{\sum\limits_{j = 1}^{nd} {{v_j}} }}{{nd}} $ | (21) |
where $ {v_j} $ is the $ j{\rm{th }} $ neighboring dragonfly's velocity. $ A{}_i $ shows the velocity consistency of the swarm.
The cohesion of $ i{\rm{th }} $ dragonfly individual denoted by $ {C_i} $ is computed by:
$ C{}_i = \frac{{\sum\limits_{j = 1}^{nd} {{x_j}} }}{{nd}} - {x_i} $ | (22) |
where $ {x_i} $ is the position of $ i{\rm{th }} $ dragonfly individual. $ {x_j} $ is the $ j{\rm{th }} $ neighboring dragonfly individual's position. $ nd $ denotes the number of neighbors.
The food source provides an attraction for $ i{\rm{th }} $ dragonfly individual denoted by $ {F_i} $ and it can be defined as follows:
$ {F_i} = {x_{food}} - {x_i} $ | (23) |
where $ {x_i} $ shows the position of $ i{\rm{th }} $ dragonfly individual. $ {x_{food}} $ represents the position of food source.
The distraction outwards an enemy of $ i{\rm{th }} $ dragonfly individual denoted by $ {E_i} $ is evaluated by:
$ {E_i} = {x_{enemy}} + {x_i} $ | (24) |
where $ {x_i} $ is the position of $ i{\rm{th }} $ dragonfly individual. $ {x_{enemy}} $ shows the position of the enemy. It is worth mentioning that the $ {x_{food}} $ and $ {x_{enemy}} $ represent the best and worst position respectively which the swarm of dragonflies has searched for so far.
The position vector of $ i{\rm{th}} $ dragonfly individual during the interval $ \left[{t, t + 1} \right] $ can be calculated as follows:
$ x_i^{t + 1} = x_i^t + \Delta x_i^{t + 1} $ | (25) |
where
$ \Delta x_i^{t + 1} = \left( {s{S_i} + a{A_i} + c{C_i} + f{F_i} + e{E_i}} \right) + \omega \Delta x_i^t $ | (26) |
$ \Delta x $ indicates the direction of the movement of dragonfly individual. $ s $, $ a $, $ c $, $ f $, and $ e $ denote the weight for five factors namely separation, alignment, cohesion, food, and enemy respectively. $ \omega $ represents the inertia weight. $ t $ shows the iteration counter.
It is worthy of noting that if there is no neighbor individual, the current dragonfly will fly around the search space using a random walk (Levy's flight) to improve the performance of algorithm. Under such circumstance, the position of $ i{\rm{th}} $ dragonfly individual is updated by the equation as follows:
$ x_i^{t + 1} = x_i^t + {\rm{Levy}} \times x_i^t $ | (27) |
Where
$ {\rm{Levy}} = 0.01 \times \frac{{{r_1} \times \sigma }}{{{{\left| {{r_2}} \right|}^{1/\beta }}}} $ | (28) |
$ \sigma = {\left( {\frac{{\Gamma \left( {1 + \beta } \right) \times {\rm{sin}}\left( {\frac{{\pi \beta }}{2}} \right)}}{{\Gamma \left( {\frac{{1 + \beta }}{2}} \right) \times \beta \times {2^{\left( {\frac{{\beta - 1}}{2}} \right)}}}}} \right)^{1/\beta }} $ | (29) |
$ \Gamma \left( x \right) = \left( {x - 1} \right)\;! $ | (30) |
$ {r_1} $ and $ {r_2} $ are two random numbers in the range of $ \left[{0, 1} \right] $. $ \beta $ is a constant. Pseudo code of dragonfly algorithm based multilevel thresholding has been given in Figure 1.
In this section, we give a detailed introduction of the MDA based method that will be used to obtain the optimal threshold values for image segmentation. The chaotic maps and the elite opposition-based learning (EOBL) strategy are utilized to improve the randomness of initial population. Then, a hybrid algorithm of DA and DE is used to balance the two essential phases of optimization, namely exploration and exploitation [33,34,35,36,37]. Besides, the flowchart of MDA for finding the optimal threshold values is shown in Figure 2.
In this phase, the initial population is generated by an efficient method that combines the chaotic maps and the EOBL strategy [23]. A brief explanation of these two techniques is given in the subsections below.
In the standard DA, the initialization of dragonflies is generated randomly. The chaotic maps can explore the search space more efficient than the existing random generators based on probabilities, on account of their special properties including ergodicity, unpredictability, and non-repetition. Therefore, the logistic map is adopted to generate the initial population in this paper with the purpose of improving the diversity of dragonflies. Mathematical definition of the logistic map is as follows:
$ {x_{n + 1}} = \mu \times {x_n}\left( {1 - {x_n}} \right) $ | (31) |
where $ \mu $ is the growth rate parameter, $ \mu \in \left[{0, 4} \right] $. $ {x_n} $ represents the value obtained at $ n{\rm{th}} $ step, $ {x_n} \in \left[{0, 1} \right] $.
For a feasible solution, calculate the current solution and evaluate its opposite solution at the same time, then select the better solution as the next generation individual [34]. It is quite clear that this greedy selection method can guarantee the prominent acceleration in convergence as well as reducing the possibility of trapping into local optimal. The EOBL strategy can be summarized as follows:
$ x_j^ * = k \cdot (d{a_j} + db{}_j) - {x_j} , j = 1, 2, ..., Dim $ | (32) |
$ d a_{j} = min \left(x_{j}\right), d b_{j} = max \left(x_{j}\right) $ | (33) |
where $ Dim $ is the number of dimensions. $ x_{j} \in\left(a_{j}, b_{j}\right), a_{j} $ and $ b_{j} $ denote the lower bound and the upper bound of the given search space respectively. k is a generalized coefficient uniformly distributed in the interval of [0, 1]. $ d a_{j} $ and $ d b_{j} $ are the dynamic lower bound and the dynamic upper bound of the jth dimension search space, and are calculated according to Eq. (33). By replacing the fixed bound with the dynamic bound, the opposite solution $ x_{j}^{*} $ can be located in the gradually reduced search space, which promotes faster convergence of the algorithm.
For a problem to be maximized, the opposite solution will be selected if $ f\left({x_j^ * } \right) > f\left({{x_j}} \right) $; otherwise, continue with $ {x_j} $ for further generation [38,39].
In this phase, the solution is updated through a novel technique that combines the dragonfly algorithm and differential evolution algorithm. More details of the hybrid algorithm will be discussed in the subsection below.
Differential evolution (DE) algorithm is a population-based stochastic optimization algorithm for solving optimization problems, which is introduced by Price and Storn [33,40]. Basically, the DE algorithm contains two significant parameters, namely mutation scaling factor denoted by $ SF $ and crossover probability denoted by $ CR $. Same as the other meta-heuristic algorithms, several operators have been included in the DE algorithm such as mutation, crossover, and selection operators [40,41,42].
The mutation operation of DE algorithm is defined as follows:
$ m_i^{g + 1} = x_{r1}^g + SF * \left( {x_{r2}^g - x_{r3}^g} \right) $ | (34) |
where $ m_i^{g + 1} $ represents the mutant individual in the $ \left({g + 1} \right){\rm{th}} $ generation. $ x_{r1}^g $, $ x_{r2}^g $, and $ x_{r3}^g $ are different individuals from the population. In other words, $ {r_1} $, $ {r_2} $, and $ {r_3} $ cannot be equal. $ SF $ is a constant that indicates the mutation scaling factor.
In the process of crossover, the trial individual $ c_i^{g + 1} $ is selected from the current individual $ x_i^g $ or the mutant individual $ m_i^{g + 1} $ on account of enhancing the diversity of population[43,44]. The crossover operation of DE algorithm is described as:
$ c_i^{g + 1} = \left\{ mg+1iifrand⩽CRxgiifrand>CR \right. $
|
(35) |
where $ rand $ represents a random value which is in the range $ \left[{0, 1} \right] $. $ CR $ is a constant that shows the crossover probability.
After the process of selection, the individual of next generation $ x_i^{g + 1} $ is selected according to the comparison of fitness value between the trail individual $ c_i^{g + 1} $ and the target individual $ x_i^g $. For a problem to be minimized, the selection operation of DE algorithm can be summarized as follows:
$ x_i^{g + 1} = \left\{ cg+1iiff(cg+1i)<f(xgi)xgiotherwise \right. $
|
(36) |
where $ f $ denotes the fitness function value of a given problem.
In order to improve the exploration and exploitation performance of the proposed algorithm, the hybrid algorithm between the DA and the DE is utilized. On the one hand, the DA algorithm has a satisfied capability of avoiding convergence to the local optimum, thus it is served as global search technique. On the other hand, the DE algorithm is adopted as local search technique, which can increase the precision of solutions.
As we know, the fitness value of current solution indicates its quality. Therefore, we calculate the average fitness value of population in the iterative process to evaluate each particle. All fitness values are presented as absolute values to accommodate Kapur's entropy, MCE and Otsu, threshold techniques. If $ \left| {{f_i}} \right| > \left| {\bar f} \right| $, the DE algorithm will be used to update the solution $ x_i^g $ using Eq. (34) to Eq. (36). However, if $ \left| {{f_i}} \right| \leqslant \left| {\bar f} \right| $, then the current solution will be updated using Eq. (25) or Eq. (27).
In order to verify the performance of proposed algorithm, ten color images from Berkley segmentation data set are used. The test images namely Bridge, Building, Cactus, Cow, Deer, Diver, Elephant, Horse, Kangaroo, Lake and their corresponding histograms for each of the color channels (Red, Green, and Blue) are shown in Figure 3. All test images aresize. Moreover, all the experimental series are carried out through simulations in MATLAB R2017a on a computer with the following configuration: Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz and 8GB RAM with Microsoft Windows 10 system (64bit).
Performance of the proposed algorithm is compared with nine other swarm algorithms that are used extensively. These algorithms are:
1. Dragonfly Algorithm (DA): simulates the static and dynamic behaviors of dragonflies to find an optimal solution [24].
2. Salp Swarm Algorithm (SSA): mimics the original behavior of salp chain for finding food. And this algorithm is easy to implement because of the only parameter [45].
3. Sine Cosine Algorithm (SCA): the algorithm converges to the optimal solution depending on the oscillatory properties of sine and cosine functions [46,47].
4. Ant Lion Optimization (ALO): emulates the hunting mechanism of antlions which can be divided into five main steps such as the random walk of ants, building traps, entrapment of ants in traps, catching preys, and re - building traps [48,49].
5. Harmony Search Optimization (HSO): simulates the behavior of musicians for adjusting the tune of each instrument with their own memory and reaches a state of harmony eventually [50].
6. Bat Algorithm (BA): Idealizes the characteristics of echolocation process of bats. Each bat adjusts the distance of movement by changing the pulse rate and the volume of sound [51,52].
7. Particle Swarm Optimization (PSO): an intelligent algorithm inspired by the migration of birds. Each bird represents a potential solution to the given problem [53,54].
8. Beta Differential Evolution (BDE): A new beta probability distribution has been used for altering of F and CR parameters that are represented as beta differential evolution [55].
9. Elite Opposition-Flower Pollination Algorithm (EOFPA): Using a greedy strategy, individual with the best fitness value in the population is viewed as the elite individual Basic Flower Pollination Algorithm use Lévy flight in global search process. The probability of obtaining better solution in global search is improved and the search space is expanded [56].
The parametric settings of each algorithm are presented in Table 1.
Algorithm | Parameters | Values |
MDA | Number of dragonflies | 30 |
No. of iterations | 500 | |
Mutation scaling factor $ SF $ | 0.5 | |
Crossover probability $ CR $ | 0.9 | |
Maximum velocity | 25.5 | |
DA | Number of dragonflies | 30 |
No. of iterations | 500 | |
Maximum velocity | 25.5 | |
controlling parameter $ {c_1} $ | [0, 2] | |
SSA | Number of salps | 30 |
No. of iterations | 500 | |
controlling parameter $ {r_1} $ | [0, 2] | |
SCA | Population size | 30 |
No. of iterations | 500 | |
ALO | Number of antlions | 30 |
No. of iterations | 500 | |
Pitch Adjustment Rate | 0.3 | |
HSO | Harmony Memory Considering Rate | 0.95 |
Tuning bandwidth $ BW $ | 25.5 | |
Harmony memory size | 30 | |
No. of iterations | 500 | |
Loudness | 0.25 | |
BA | Pulse emission rate | 0.5 |
Maximum frequency | 2 | |
Minimum frequency | 0 | |
Factor updating loudness $ \alpha $ | 0.95 | |
Factor updating pulse emission rate $ \gamma $ | 0.05 | |
Scaling factor | 4 | |
Number of bats | 30 | |
No. of iterations | 500 | |
Maximum particle velocity | 25.5 | |
PSO | Maximum inertia weight | 0.9 |
Minimum inertia weight | 0.4 | |
Learning factors $ {c_1} $ and $ {c_2} $ | 2 | |
Number of particles | 30 | |
No. of iterations | 500 | |
BED | The array of scaling factor F | [0, 1] |
The crossover rate CR | [0, 1] | |
No. of iterations | 500 | |
Population size | 30 | |
EOFPA | No. of iterations | 500 |
The flowers/pollen gametes | 30 | |
Switch probability | [0, 1] |
The performance of each algorithm is assessed by the following measures, some of them are used to evaluate the fitness values, and the others are evaluated the quality of segmented images. For the former part, two indices namely arithmetic mean and standard deviation are used and their definitions are as follows:
Arithmetic mean (AM): indicates the center value of sample data and it is defined as:
$ AM = \frac{{\rm{1}}}{{nr}}\sum\limits_{i = 1}^{nr} {{f_i}} $ | (37) |
Standard deviation (STD): a value indicates the dispersion of sample data and it is mathematically represented as:
$ STD = \sqrt {\frac{{\rm{1}}}{{nr - 1}}\sum\limits_{i = 1}^{nr} {{{\left( {{f_i} - AM} \right)}^2}} } $ | (38) |
where $ nr $ represents the total number of runs $ {f_i} $ represents the fitness value at the $ i{\rm{th}} $ run
For the latter part, three indices namely PSNR, SSIM, and FSIM are used and their definitions are as follows:
Peak signal to noise ratio (PSNR): an index which is used to evaluate the similarity of the processed image against the original image and it is defined as:
$ PSNR = 10{\rm{lo}}{{\rm{g}}_{10}}\left( {\frac{{{{255}^2}}}{{MSE}}} \right) $ | (39) |
$ MSE $ represents the mean squared error and is calculated as:
$ MSE = \frac{1}{{MN}}{\sum\limits_{i = 1}^M {\sum\limits_{j = 1}^N {\left[ {I\left( {i, j} \right) - K\left( {i, j} \right)} \right]} } ^2} $ | (40) |
where $ I\left({i, j} \right) $ and $ K\left({i, j} \right) $ denote the gray level of the original image and the segmented image in the $ i{\rm{th}} $ row and $ j{\rm{th}} $ column respectively. $ M $ and $ N $ denote the number of rows and columns in the image matrix respectively
Structural similarity index (SSIM): a measure of the similarity between the original image and the segmented image, which takes various factors such as brightness, contrast, and structural similarity into account and it is defined as [57]:
Structural similarity index (SSIM): a measure of the similarity between the original image and the segmented image, which takes various factors such as brightness, contrast, and structural similarity into account and it is defined as [57]:
$ SSIM\left( {x, y} \right) = \frac{{\left( {2{\mu _x}{\mu _y} + {c_1}} \right)\;\left( {2{\sigma _{xy}} + {c_2}} \right)}}{{\left( {\mu _x^2 + \mu _y^2 + {c_1}} \right)\;\left( {\sigma _x^2 + \sigma _y^2 + {c_2}} \right)}} $ | (41) |
where $ {\mu _x} $ and $ {\mu _y} $ denote the mean intensities of the original image and the segmented image respectively. $ \sigma _x^2 $ and $ \sigma _y^2 $ are the standard deviation of the original image and the segmented image respectively. $ {\sigma _{xy}} $ denotes the covariance between the original image and the segmented image $ {c_1} $ and $ {c_2} $ are constants.
Feature similarity index (FSIM): another measure of the image quality through evaluating the feature similarity between the original image and the segmented image and it is defined as [58,59]:
$ FSIM = \frac{{\sum\nolimits_{x \in \Omega } {{S_L}\left( x \right) \times P{C_m}\left( x \right)} }}{{\sum\nolimits_{x \in \Omega } {P{C_m}\left( x \right)} }} $ | (42) |
Where, $ \Omega $ represents the whole image pixel domain, $ {S_L}\left(x \right) $ is a similarity score, $ P{C_m}\left(x \right) $ denotes the phase consistency measure which is defined as:
$ P{C_m}\left( x \right) = \max \left( {P{C_1}\left( x \right), P{C_2}\left( x \right)} \right) $ | (43) |
where $ P{C_1}\left(x \right) $ and $ P{C_2}\left(x \right) $ represent the phase consistency of two blocks respectively.
$ {S_L}\left( x \right) = {\left[ {{S_{PC}}\left( x \right)} \right]^\alpha } \cdot {\left[ {{S_G}\left( x \right)} \right]^\beta } $ | (44) |
Where
$ {S_{PC}}\left( x \right) = \frac{{2P{C_1}\left( x \right) \times P{C_2}\left( x \right) + {T_1}}}{{PC_1^2\left( x \right) \times PC_2^2\left( x \right) + {T_1}}} $ | (45) |
$ {S_G}\left( x \right) = \frac{{2{G_1}\left( x \right) \times {G_2}\left( x \right) + {T_2}}}{{G_1^2\left( x \right) \times G_2^2\left( x \right) + {T_2}}} $ | (46) |
$ {S_{PC}}\left(x \right) $ denotes the similarity measure of phase consistency, $ {S_G}\left(x \right) $ denotes the gradient magnitude of two regions $ {G_1}\left(x \right) $ and $ {G_2}\left(x \right) $, $ \alpha $, $ \beta $, $ {T_1} $ an $ {T_2} $ are all constants.
Moreover, a higher value of the three indices proposed above indicates a better quality of the segmented image. The values of SSIM and FSIM index are in the range.
This section presents the experimental results of MDA based method and the analysis in terms of accuracy and stability. In order to verity the superiority of proposed MDA method over the other bio-inspired methods, a statistical analysis is also conducted.
The segmented images obtained by all the algorithms using Otsu method, Kapur's entropy, and MCE are presented in Figure 4, Figure 5, and Figure 6 respectively. From the segmented results it is found that visual quality improves as the number of threshold levels is increased and the MDA based method gives higher segmentation performance for most of the considered test images.
There is no guarantee that all methods converge to the same solution each time due to the stochastic nature of meta-heuristic algorithms. Therefore, two indices namely AM and STD are evaluated to analyze the accuracy and stability of all methods. A lower value of STD shows higher stability of the method. Whereas, higher values of AM indicate higher accuracy of the thresholding results. Each algorithm (using Otsu method, Kapur's entropy, and MCE) is run over 100 times to study the effectiveness of MDA. The AM values of fitness functions are given in Tables 2-4. It can be easily seen from these tables that MDA based method obtains higher AM value of fitness function against other methods. Therefore, the proposed technique performs better in terms of segmentation accuracy. The STD values of fitness functions are given in Tables 5-7. It can be observed from these tables that MDA based method obtains lower STD value of the fitness function as compared to other methods in general. This proves that the proposed MDA based method offers better stability and consistency, which is suitable for multilevel segmentation of images. For visual analysis, the convergence curves for fitness function using Otsu method, Kapur's entropy, and MCE are shown in Figures 7-9 (for Levels = 12) for ten test images. It can be seen that MDA based method performs better convergence property than other methods.
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 4386.0155 | 4386.0155 | 4386.0155 | 4383.2562 | 4386.0155 | 4385.6741 | 4385.6859 | 4386.0155 | 4275.6231 | 4305.6849 |
6 | 4456.6941 | 4456.6745 | 4456.6812 | 4444.5333 | 4456.6812 | 4454.8023 | 4455.0995 | 4456.6896 | 4389.0323 | 4433.0295 | |
8 | 4484.1180 | 4483.9262 | 4481.7449 | 4459.9789 | 4484.1093 | 4481.4416 | 4466.3154 | 4484.1162 | 4382.9916 | 4433.2254 | |
10 | 4498.2080 | 4497.9168 | 4497.7713 | 4482.3727 | 4498.2009 | 4494.7658 | 4471.7015 | 4497.7081 | 4459.3658 | 4433.7415 | |
12 | 4506.5451 | 4504.8726 | 4504.8661 | 4488.6786 | 4506.5326 | 4501.1585 | 4475.5967 | 4502.7801 | 4341.1585 | 4332.5967 | |
Building | 4 | 3666.7889 | 3666.7889 | 3666.7889 | 3661.2005 | 3666.7889 | 3666.4479 | 3666.5619 | 3666.7889 | 3535.4479 | 3598.5619 |
6 | 3736.1408 | 3736.1359 | 3736.1408 | 3701.9165 | 3736.1289 | 3734.3517 | 3715.7878 | 3736.1157 | 3689.3517 | 3687.7878 | |
8 | 3765.4064 | 3763.7146 | 3761.8726 | 3732.2340 | 3765.3964 | 3776.4662 | 3754.6370 | 3765.2956 | 3722.6370 | 3733.2956 | |
10 | 3780.2478 | 3780.0474 | 3775.2198 | 3761.4603 | 3780.2365 | 3780.1030 | 3764.3500 | 3779.2472 | 3759.7500 | 3733.9872 | |
12 | 3788.7772 | 3785.0051 | 3784.1982 | 3764.2379 | 3785.6140 | 3784.0790 | 3767.8448 | 3787.9557 | 3698.8448 | 3780.9557 | |
Cactus | 4 | 2126.2412 | 2126.2412 | 2126.2412 | 2122.4910 | 2126.2412 | 2124.6012 | 2125.8760 | 2126.2412 | 2120.6012 | 2122.8650 |
6 | 2188.8128 | 2188.7833 | 2188.8074 | 2170.4086 | 2188.7851 | 2187.7032 | 2173.0367 | 2188.7902 | 2174.7042 | 2169.0577 | |
8 | 2213.2398 | 2211.6703 | 2209.8554 | 2185.0069 | 2213.1713 | 2210.4804 | 2200.8495 | 2212.9784 | 2199.4804 | 2198.8485 | |
10 | 2225.0856 | 2223.9729 | 2224.1614 | 2206.6749 | 2224.7509 | 2222.4256 | 2212.5880 | 2224.8807 | 2216.4286 | 2216.5640 | |
12 | 2231.9191 | 2227.8378 | 2230.5400 | 2214.0593 | 2230.9317 | 2227.4470 | 2213.0484 | 2230.2080 | 2217.4470 | 2218.0484 | |
Cow | 4 | 3953.7954 | 3953.7954 | 3953.7954 | 3947.6284 | 3953.7937 | 3953.6631 | 3953.3749 | 3953.7954 | 3947.6651 | 3949.3589 |
6 | 4018.8130 | 4018.5006 | 4018.8067 | 3997.9203 | 4018.7855 | 4016.5598 | 4006.7333 | 4018.8091 | 4004.5578 | 4010.7833 | |
8 | 4048.9214 | 4047.7684 | 4048.9027 | 4025.8279 | 4048.9098 | 4046.5501 | 4030.1545 | 4048.7097 | 4030.5471 | 4047.1755 | |
10 | 4063.2203 | 4062.2329 | 4062.3868 | 4046.0778 | 4060.1107 | 4058.5699 | 4051.8095 | 4062.5712 | 4048.5669 | 4049.8045 | |
12 | 4071.2438 | 4070.4191 | 4069.9258 | 4050.7113 | 4071.1365 | 4063.9022 | 4053.6927 | 4070.1930 | 4069.9062 | 4058.6927 | |
Deer | 4 | 1122.5798 | 1122.5798 | 1122.5798 | 1121.1187 | 1122.5798 | 1122.2487 | 1122.5083 | 1110.4477 | 1117.2487 | 1120.9083 |
6 | 1161.5839 | 1161.5775 | 1161.5775 | 1142.9409 | 1161.5705 | 1154.9956 | 1147.5510 | 1152.1515 | 1097.9556 | 1148.5540 | |
8 | 1178.1038 | 1178.0725 | 1178.1023 | 1157.6053 | 1175.7847 | 1169.9586 | 1173.4041 | 1175.1126 | 1158.966 | 1168.4061 | |
10 | 1186.5170 | 1186.2849 | 1180.0212 | 1166.4972 | 1185.4142 | 1178.7451 | 1172.1178 | 1183.8460 | 1168.7851 | 1169.1168 | |
12 | 1191.1450 | 1189.9832 | 1187.3761 | 1177.2843 | 1187.0185 | 1183.5727 | 1172.5974 | 1187.5187 | 1178.547 | 1177.5944 | |
Diver | 4 | 1522.2967 | 1522.2967 | 1522.2967 | 1520.5664 | 1522.2967 | 1519.8700 | 1521.7928 | 1522.2640 | 1507.8700 | 1519.7928 |
6 | 1551.5394 | 1551.4815 | 1551.5394 | 1548.3600 | 1551.5337 | 1549.0623 | 1549.0902 | 1551.4279 | 1539.0863 | 1538.0702 | |
8 | 1562.9129 | 1562.7854 | 1561.9790 | 1556.4619 | 1561.9507 | 1559.9760 | 1558.8788 | 1562.4085 | 1559.9760 | 1558.8788 | |
10 | 1569.5513 | 1568.2960 | 1568.0981 | 1560.6939 | 1569.4202 | 1565.9504 | 1557.2689 | 1564.9109 | 1548.9904 | 1553.2009 | |
12 | 1572.8927 | 1572.8457 | 1570.6416 | 1565.8103 | 1571.7146 | 1570.6842 | 1561.5625 | 1570.6104 | 1568.8042 | 1551.5355 | |
Elephant | 4 | 1922.2912 | 1922.2912 | 1922.2912 | 1918.9804 | 1922.2912 | 1921.8603 | 1922.0942 | 1922.2682 | 1919.8643 | 1920.0542 |
6 | 1965.3704 | 1965.3704 | 1965.2581 | 1938.3278 | 1965.3693 | 1964.1737 | 1962.4793 | 1965.1725 | 1963.1757 | 1952.4453 | |
8 | 1984.7096 | 1982.4376 | 1981.5554 | 1964.4215 | 1984.6837 | 1979.0474 | 1977.1272 | 1979.8723 | 1975.0444 | 1976.1242 | |
10 | 1994.7387 | 1993.2369 | 1989.9457 | 1978.0828 | 1992.1249 | 1987.8605 | 1984.2041 | 1987.1609 | 1985.8365 | 1983.2043 | |
12 | 2000.4189 | 1998.6301 | 1996.5621 | 1986.4930 | 1997.8161 | 1994.4913 | 1978.0329 | 1994.6057 | 1992.4333 | 1979.0459 | |
Horse | 4 | 2310.6909 | 2310.6909 | 2310.6909 | 2305.7078 | 2310.6909 | 2309.9326 | 2310.3382 | 2310.6598 | 2299.9456 | 2307.3332 |
6 | 2378.2916 | 2378.2825 | 2378.2916 | 2370.1264 | 2378.2680 | 2375.9490 | 2369.4067 | 2370.9811 | 2369.9230 | 2370.4567 | |
8 | 2406.3611 | 2406.3126 | 2406.3320 | 2383.0984 | 2406.2989 | 2401.2306 | 2382.1623 | 2405.4886 | 2399.2546 | 2375.1633 | |
10 | 2420.4694 | 2418.4885 | 2418.1694 | 2399.4467 | 2416.1505 | 2411.9233 | 2399.8047 | 2418.6889 | 2401.9343 | 2397.8467 | |
12 | 2428.4816 | 2427.6154 | 2427.5850 | 2408.8655 | 2426.3828 | 2422.8833 | 2403.5197 | 2423.5853 | 2400.8223 | 2403.5332 | |
Kangaroo | 4 | 1114.7964 | 1114.7964 | 1114.7964 | 1110.2121 | 1114.7903 | 1114.3295 | 1114.6277 | 1114.7889 | 1107.3295 | 1105.4477 |
6 | 1164.7521 | 1164.7327 | 1164.7463 | 1146.3046 | 1164.7463 | 1163.3312 | 1154.3339 | 1158.7069 | 1154.3212 | 1149.3459 | |
8 | 1187.4052 | 1187.0806 | 1186.6851 | 1165.7543 | 1187.3525 | 1183.0318 | 1167.0394 | 1186.8491 | 1179.0338 | 1170.0344 | |
10 | 1199.0953 | 1196.3070 | 1196.2935 | 1183.8805 | 1198.8494 | 1194.1221 | 1180.9305 | 1195.4164 | 1189.1561 | 1179.9455 | |
12 | 1205.6955 | 1200.5395 | 1200.9629 | 1189.7715 | 1204.7195 | 1201.8035 | 1186.1872 | 1201.2637 | 1200.8465 | 1176.1342 | |
Lake | 4 | 3602.5126 | 3602.5126 | 3602.5126 | 3595.0459 | 3602.5126 | 3602.0153 | 3602.1261 | 3602.4966 | 3599.0442 | 3600.1445 |
6 | 3676.1680 | 3675.8735 | 3676.1650 | 3654.2173 | 3668.5190 | 3675.3194 | 3671.9734 | 3676.0909 | 3659.3174 | 3669.9564 | |
8 | 3705.3747 | 3699.8939 | 3705.3197 | 3667.8620 | 3705.3361 | 3701.3738 | 3688.8008 | 3697.8809 | 3686.3458 | 3677.8358 | |
10 | 3719.6677 | 3719.4646 | 3719.6472 | 3691.5485 | 3719.5805 | 3712.8384 | 3706.5417 | 3716.1525 | 3710.8335 | 3705.5865 | |
12 | 3727.6944 | 3726.4808 | 3725.0242 | 3698.3776 | 3724.0969 | 3721.2794 | 3710.6391 | 3724.5939 | 3690.7961 | 3684.5679 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 18.1907 | 18.1907 | 18.1906 | 18.1526 | 18.1445 | 18.1873 | 18.1827 | 18.1907 | 18.1663 | 18.1597 |
6 | 23.5682 | 23.5675 | 23.5679 | 23.3085 | 23.5678 | 23.5383 | 23.5023 | 23.5680 | 23.5597 | 23.5483 | |
8 | 28.3015 | 28.2786 | 28.2814 | 27.6408 | 28.3002 | 28.2265 | 27.6685 | 28.2965 | 28.2197 | 27.6589 | |
10 | 32.6202 | 32.6118 | 32.6137 | 30.9182 | 32.6175 | 32.5149 | 30.9871 | 32.5589 | 32.5078 | 30.9861 | |
12 | 36.5456 | 36.3356 | 36.4038 | 34.5257 | 35.8899 | 36.1310 | 34.6846 | 36.3876 | 36.1290 | 34.6754 | |
Building | 4 | 18.8295 | 18.8295 | 18.8295 | 18.8158 | 18.8295 | 18.8226 | 18.8278 | 18.8295 | 18.8117 | 18.8256 |
6 | 24.1205 | 24.1102 | 24.1201 | 23.8745 | 24.0527 | 24.0527 | 23.9953 | 24.0966 | 24.0156 | 23.9643 | |
8 | 28.9969 | 28.9867 | 28.9965 | 27.8900 | 28.9943 | 28.9057 | 28.3981 | 28.9857 | 28.8521 | 28.2457 | |
10 | 33.4091 | 33.3553 | 33.3952 | 31.4147 | 31.4153 | 33.0362 | 31.9753 | 33.3670 | 32.9653 | 31.8533 | |
12 | 37.4610 | 37.3651 | 37.1874 | 34.8359 | 37.3891 | 37.1524 | 35.6430 | 37.3001 | 37.0854 | 35.3576 | |
Cactus | 4 | 18.5843 | 18.5843 | 18.5843 | 18.5632 | 18.5843 | 18.5761 | 18.5818 | 18.5843 | 18.4797 | 18.5748 |
6 | 23.8420 | 23.8418 | 23.8420 | 23.4790 | 23.8417 | 23.7550 | 23.8085 | 23.8412 | 23.6854 | 23.7422 | |
8 | 28.5198 | 28.5051 | 28.4490 | 27.8225 | 28.5094 | 28.3850 | 27.7631 | 28.4991 | 28.3742 | 27.6854 | |
10 | 32.8542 | 32.8325 | 32.8457 | 31.3685 | 32.8479 | 32.6682 | 32.0858 | 32.7519 | 32.5853 | 32.0753 | |
12 | 36.8707 | 36.7269 | 36.7470 | 34.5881 | 36.7313 | 36.6221 | 34.7641 | 36.6960 | 36.5586 | 34.4763 | |
Cow | 4 | 18.5002 | 18.4994 | 18.5002 | 18.4624 | 18.5002 | 18.4902 | 18.4983 | 18.5002 | 18.4774 | 18.4333 |
6 | 23.9812 | 23.9795 | 23.9811 | 23.7240 | 23.8746 | 23.9496 | 23.8805 | 23.9796 | 23.5974 | 23.8365 | |
8 | 28.8794 | 28.8320 | 28.8785 | 28.1316 | 28.7981 | 28.7163 | 28.4547 | 28.7927 | 28.6873 | 28.3766 | |
10 | 33.3769 | 33.2290 | 33.2647 | 32.0085 | 33.3423 | 33.1886 | 31.9696 | 33.2887 | 33.0674 | 31.6773 | |
12 | 37.5478 | 37.3152 | 37.4710 | 35.6447 | 37.4301 | 37.1716 | 34.9981 | 37.2740 | 37.1643 | 34.4351 | |
Deer | 4 | 17.7349 | 17.7349 | 17.7349 | 17.6786 | 17.7349 | 17.7135 | 17.7281 | 17.7349 | 17.4555 | 17.2441 |
6 | 22.8322 | 22.8321 | 22.8319 | 22.5782 | 22.8321 | 22.7880 | 22.7745 | 22.8309 | 22.6470 | 22.6845 | |
8 | 27.2958 | 27.2929 | 27.2812 | 26.2300 | 27.2806 | 27.2006 | 26.2772 | 27.2733 | 27.1996 | 26.2692 | |
10 | 31.3387 | 31.3160 | 31.3360 | 29.2343 | 30.6775 | 30.9565 | 29.5594 | 31.2597 | 30.85645 | 29.5474 | |
12 | 35.0702 | 34.4227 | 34.3552 | 31.7673 | 34.4560 | 34.5034 | 32.6665 | 34.4692 | 34.4694 | 32.5765 | |
Diver | 4 | 18.3361 | 18.3358 | 18.3350 | 18.2989 | 18.3364 | 18.3263 | 18.3232 | 18.3364 | 18.2883 | 18.1972 |
6 | 23.6781 | 23.6780 | 23.6775 | 23.4056 | 23.6385 | 23.6085 | 23.6370 | 23.6772 | 23.4785 | 23.5850 | |
8 | 28.3676 | 28.3511 | 28.3668 | 27.4894 | 28.3655 | 28.3069 | 27.8034 | 28.3593 | 28.2788 | 27.6444 | |
10 | 32.6130 | 32.5412 | 32.5953 | 31.5176 | 31.9590 | 32.4207 | 30.5849 | 32.5548 | 32.2977 | 30.6059 | |
12 | 36.5313 | 35.7728 | 35.9128 | 33.6363 | 35.8612 | 36.0536 | 33.4780 | 35.7932 | 36.0156 | 33.4620 | |
Elephant | 4 | 18.1761 | 18.1759 | 18.1761 | 18.1295 | 18.1761 | 18.1649 | 18.1713 | 18.1761 | 18.1086 | 18.1478 |
6 | 23.3175 | 23.3173 | 23.3173 | 23.0015 | 23.3151 | 23.2798 | 23.2584 | 23.3080 | 23.1976 | 23.1658 | |
8 | 27.9489 | 27.8447 | 27.9453 | 26.9483 | 27.8597 | 27.8217 | 27.7337 | 27.9263 | 27.7937 | 26.9867 | |
10 | 32.1636 | 32.0784 | 32.1632 | 30.4741 | 32.1142 | 31.9377 | 30.3712 | 32.0997 | 31.7812 | 30.3647 | |
12 | 36.0009 | 35.7483 | 35.7545 | 32.9324 | 35.8113 | 35.5656 | 33.4534 | 35.7970 | 34.8626 | 32.8634 | |
Horse | 4 | 18.6122 | 18.6122 | 18.6122 | 18.5974 | 18.6121 | 18.6081 | 18.6089 | 18.6121 | 18.0771 | 18.2979 |
6 | 23.7909 | 23.7897 | 23.7908 | 23.5302 | 23.7903 | 23.7650 | 23.7601 | 23.7906 | 23.6997 | 22.9791 | |
8 | 28.4407 | 28.4312 | 28.4404 | 27.8054 | 28.4385 | 28.3584 | 28.1669 | 28.4277 | 27.3234 | 26.1239 | |
10 | 32.6907 | 32.5229 | 32.6719 | 31.2299 | 32.6865 | 32.2931 | 31.9769 | 32.6336 | 32.1891 | 31.3566 | |
12 | 36.5861 | 36.4546 | 36.4579 | 34.1298 | 36.5790 | 35.9428 | 33.9804 | 36.4842 | 35.6435 | 33.6689 | |
Kangaroo | 4 | 18.9363 | 18.9362 | 18.9360 | 18.8904 | 18.9215 | 18.9352 | 18.9227 | 18.9363 | 18.7633 | 18.8644 |
6 | 24.4756 | 24.4707 | 24.4650 | 24.2231 | 24.4742 | 24.4465 | 24.3311 | 24.4713 | 24.0535 | 24.1431 | |
8 | 29.4235 | 29.4222 | 29.4202 | 28.8466 | 29.4191 | 29.3775 | 29.2686 | 29.4158 | 29.2777 | 29.1576 | |
10 | 33.8985 | 33.8650 | 33.8894 | 32.4266 | 33.8981 | 33.6472 | 31.7512 | 33.8709 | 33.5347 | 31.2442 | |
12 | 38.0564 | 37.9305 | 37.9644 | 36.4710 | 37.9993 | 37.7302 | 36.7833 | 37.9278 | 37.6432 | 36.6453 | |
Lake | 4 | 17.7485 | 17.7485 | 17.7485 | 17.7140 | 17.7347 | 17.7431 | 17.7477 | 17.7485 | 17.3476791 | 17.5897 |
6 | 22.7151 | 22.7148 | 22.7150 | 22.5244 | 22.7149 | 22.6387 | 22.6811 | 22.7146 | 22.5467 | 22.3551 | |
8 | 27.2343 | 27.2271 | 27.2291 | 26.4737 | 27.2342 | 27.0464 | 26.8541 | 27.2195 | 26.5671 | 27.2305 | |
10 | 31.3868 | 31.3760 | 31.3488 | 29.4879 | 31.3622 | 31.1878 | 30.4835 | 31.3469 | 30.3657 | 31.2569 | |
12 | 35.2977 | 34.9685 | 35.1190 | 33.2548 | 34.6736 | 34.7786 | 33.0519 | 34.5806 | 32.0652 | 33.5967 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | -620.2763 | -620.2763 | -620.2763 | -620.2542 | -620.2763 | -620.2648 | -620.2578 | -620.2763 | -609.0790 | -609.3784 |
6 | -620.6749 | -620.6743 | -620.6749 | -620.6221 | -620.6748 | -620.6437 | -620.6128 | -620.6748 | -609.6698 | -609.7163 | |
8 | -620.8419 | -620.8385 | -620.8414 | -620.7237 | -620.8097 | -620.7891 | -620.6825 | -620.8393 | -609.8519 | -609.8320 | |
10 | -620.9233 | -620.9178 | -620.9058 | -620.8120 | -620.9068 | -620.8768 | -620.8129 | -620.9175 | -609.9459 | -610.0020 | |
12 | -620.9702 | -620.9608 | -620.9477 | -620.8790 | -620.9668 | -620.9398 | -620.8730 | -620.9541 | -609.9813 | -610.0675 | |
Building | 4 | -660.4584 | -660.4584 | -660.4584 | -660.4452 | -660.4584 | -660.4560 | -660.4562 | -660.4584 | -658.6000 | -658.7712 |
6 | -660.8619 | -660.8616 | -660.8619 | -660.8236 | -660.8014 | -660.8492 | -660.8435 | -660.8619 | -659.0710 | -659.1223 | |
8 | -661.0323 | -661.0316 | -661.0312 | -660.8618 | -661.0320 | -660.9857 | -660.7957 | -661.0070 | -659.3262 | -659.3747 | |
10 | -661.1222 | -661.1219 | -661.0910 | -661.0239 | -661.1093 | -661.0670 | -661.0161 | -661.0894 | -659.3922 | -659.4202 | |
12 | -661.1753 | -661.1616 | -661.1249 | -661.0725 | -661.1443 | -661.1479 | -661.0530 | -661.1650 | -659.5068 | -659.5193 | |
Cactus | 4 | -375.3032 | -375.3032 | -375.3032 | -375.2890 | -375.3032 | -375.2894 | -375.2985 | -375.3032 | -372.5073 | -371.6678 |
6 | -375.6282 | -375.6275 | -375.6281 | -375.5085 | -375.5830 | -375.6132 | -375.5937 | -375.6275 | -372.9594 | -373.0201 | |
8 | -375.7553 | -375.7483 | -375.7532 | -375.6164 | -375.7541 | -375.7250 | -375.5836 | -375.7529 | -375.1600 | -370.2542 | |
10 | -375.8189 | -375.8003 | -375.8125 | -375.7240 | -375.8078 | -375.7907 | -375.7469 | -375.8125 | -372.1932 | -372.3085 | |
12 | -375.8552 | -375.8445 | -375.8338 | -375.7616 | -375.8434 | -375.8263 | -375.7679 | -375.8484 | -370.3258 | -374.3484 | |
Cow | 4 | -700.7303 | -700.7303 | -700.7303 | -700.7303 | -700.7134 | -700.7303 | -700.7263 | -700.6034 | -698.8509 | -698.9133 |
6 | -701.0632 | -701.0632 | -701.0632 | -700.9918 | -701.0281 | -701.0334 | -701.0425 | -701.0631 | -699.1213 | -699.1382 | |
8 | -701.1934 | -701.1928 | -701.1932 | -701.0718 | -701.1763 | -701.1654 | -701.1646 | -701.1924 | -699.3032 | -699.2943 | |
10 | -701.2660 | -701.2620 | -701.2453 | -701.1829 | -701.2657 | -701.2356 | -701.1861 | -701.2536 | -699.3819 | -699.4248 | |
12 | -701.3083 | -701.2998 | -701.2872 | -701.2130 | -701.2949 | -701.2783 | -701.2162 | -701.2998 | -699.4799 | -699.4939 | |
Deer | 4 | -394.8162 | -394.8162 | -394.8162 | -394.7204 | -394.8162 | -394.8098 | -394.8158 | -394.7272 | -377.5073 | -377.6678 |
6 | -395.0601 | -395.0601 | -395.0601 | -394.9579 | -395.0290 | -394.9943 | -394.9624 | -395.0593 | -377.9594 | -378.0201 | |
8 | -395.1690 | -395.1521 | -395.1171 | -395.1094 | -395.1303 | -395.1088 | -395.0924 | -395.1305 | -378.1600 | -378.2542 | |
10 | -395.2250 | -395.2132 | -395.1898 | -395.1037 | -395.1815 | -395.1494 | -395.1254 | -395.1797 | -378.1932 | -378.3085 | |
12 | -395.2572 | -395.2394 | -395.2311 | -395.1551 | -395.2271 | -395.2057 | -395.1679 | -395.2235 | -378.3258 | -378.3484 | |
Diver | 4 | -130.2537 | -130.2537 | -130.2537 | -130.2490 | -130.2537 | -130.1758 | -130.1763 | -130.2537 | -129.9030 | -129.1653 |
6 | -130.4961 | -130.4955 | -130.4816 | -130.4609 | -130.4587 | -130.4076 | -130.4042 | -130.4947 | -128.4047 | -126.3978 | |
8 | -130.6021 | -130.6007 | -130.5604 | -130.5324 | -130.5841 | -130.5097 | -130.4255 | -130.5598 | -127.5298 | -129.6061 | |
10 | -130.6536 | -130.6447 | -130.6170 | -130.5825 | -130.6424 | -130.5848 | -130.5879 | -130.6252 | -128.6593 | -129.7220 | |
12 | -130.6882 | -130.6721 | -130.6341 | -130.5951 | -130.6744 | -130.6113 | -130.5267 | -130.6643 | -129.7131 | -129.7822 | |
Elephant | 4 | -456.8572 | -456.8572 | -456.8572 | -456.8455 | -456.8552 | -456.8524 | -456.8540 | -456.8552 | -4552665 | -455.2189 |
6 | -457.1171 | -457.1171 | -457.1171 | -457.0303 | -457.0916 | -457.0805 | -457.0660 | -457.1167 | -455.4441 | -455.7034 | |
8 | -457.2138 | -457.2028 | -457.2017 | -457.1199 | -457.1564 | -457.1792 | -457.1036 | -457.1707 | -455.7360 | -455.7811 | |
10 | -457.2615 | -457.2584 | -457.2571 | -457.1509 | -457.2461 | -457.2384 | -457.2160 | -457.2471 | -455.8112 | -455.9329 | |
12 | -457.2974 | -457.2750 | -457.2645 | -457.1782 | -457.2761 | -457.2625 | -457.2034 | -457.2755 | -455.8923 | -4559428 | |
Horse | 4 | -650.9465 | -650.9465 | -650.9465 | -650.9346 | -650.9464 | -650.9453 | -650.8275 | -650.9464 | -638.8670 | -639.0225 |
6 | -651.2310 | -651.2305 | -651.2310 | -651.1613 | -651.2309 | -651.2223 | -651.2226 | -651.2308 | -639.0824 | -639.1809 | |
8 | -651.3496 | -651.3491 | -651.3492 | -651.2074 | -651.3354 | -651.3218 | -651.3145 | -651.3486 | -639.2078 | -639.2707 | |
10 | -651.4103 | -651.4075 | -651.3959 | -651.3230 | -651.4090 | -651.3884 | -651.3445 | -651.3985 | -639.3381 | -639.3124 | |
12 | -651.4451 | -651.4384 | -651.4396 | -651.3675 | -651.4213 | -651.4220 | -651.3387 | -651.4357 | -639.3136 | -639.3694 | |
Kangaroo | 4 | -441.3100 | -441.3100 | -441.3100 | -441.2870 | -441.3099 | -441.3033 | -441.3051 | -441.3100 | -440.3940 | -440.6180 |
6 | -441.6207 | -441.6151 | -441.6207 | -441.5240 | -441.6198 | -441.5944 | -441.5567 | -441.6204 | -440.8093 | -440.8583 | |
8 | -441.7491 | -441.7469 | -441.7401 | -441.6495 | -441.7466 | -441.7079 | -441.6409 | -441.7284 | -440.9658 | -440.0692 | |
10 | -441.8182 | -441.8136 | -441.7947 | -441.7388 | -441.7836 | -441.7767 | -441.6903 | -441.7961 | -440.1546 | -440.1106 | |
12 | -441.8579 | -441.8372 | -441.8412 | -441.7623 | -441.8426 | -441.8145 | -441.7252 | -441.8418 | -440.1620 | -440.2211 | |
Lake | 4 | -812.1139 | -812.1139 | -812.1139 | -812.0987 | -812.1139 | -812.1079 | -812.0152 | -812.1139 | -811.9079 | -810.5752 |
6 | -812.3819 | -812.3818 | -812.3819 | -812.2984 | -812.3818 | -812.3736 | -812.3574 | -812.3818 | -811.7736 | -810.3594 | |
8 | -812.4913 | -812.4849 | -812.4913 | -812.3919 | -812.4845 | -812.4776 | -812.4708 | -812.4777 | -810.6776 | -810.2308 | |
10 | -812.5476 | -812.5416 | -812.5465 | -812.4565 | -812.5374 | -812.5347 | -812.4901 | -812.5360 | -810.8347 | -811.4691 | |
12 | -812.5797 | -812.5663 | -812.5738 | -812.4903 | -812.5752 | -812.5588 | -812.5076 | -812.5747 | -811.9588 | -810.4976 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 0.0000e + 00 | 0.0000e + 00 | 0.0000e + 00 | 1.5052e + 00 | 6.9599e - 03 | 2.9240e - 01 | 1.0625e + 01 | 1.9536e - 02 | 1.2525e - 02 | 1.5216e - 02 |
6 | 4.1541e - 03 | 1.0091e - 01 | 5.6543e - 03 | 1.3679e + 01 | 4.6615e + 00 | 1.7517e + 00 | 1.4785e + 01 | 4.5974e + 00 | 1.3759e + 01 | 4.4865e + 00 | |
8 | 2.2692e - 03 | 7.3258e - 01 | 1.1033e + 00 | 3.3881e + 00 | 3.8795e + 00 | 9.8235e - 01 | 3.1223e + 00 | 1.5591e - 01 | 3.3871e + 00 | 1.9732e - 01 | |
10 | 5.3445e - 02 | 1.8133e + 00 | 8.9802e - 01 | 4.4712e + 00 | 2.2772e + 00 | 7.2268e - 01 | 8.1170e + 00 | 1.4814e + 00 | 9.5750e + 00 | 3.4353e + 00 | |
12 | 2.2612e - 01 | 8.7240e - 01 | 1.1039e + 00 | 2.5169e + 00 | 1.6665e + 00 | 1.2467e + 00 | 1.8633e + 00 | 1.1796e + 00 | 2.9986e + 00 | 2.8652e + 00 | |
Building | 4 | 0.0000e + 00 | 5.2206e - 03 | 0.0000e + 00 | 1.0556e + 00 | 0.0000e + 00 | 2.0873e - 01 | 1.9321e - 01 | 4.9614e - 03 | 3.2768e - 01 | 5.9787e - 03 |
6 | 2.7075e - 03 | 4.1034e - 01 | 1.4030e - 03 | 5.8629e + 00 | 3.7949e + 00 | 5.4196e - 01 | 4.5020e + 00 | 4.8013e + 00 | 5.9732e + 00 | 5.8364e + 00 | |
8 | 1.5158e - 02 | 7.8094e - 01 | 3.6351e + 00 | 4.4713e + 00 | 1.8527e + 00 | 1.0868e + 00 | 7.2455e + 00 | 1.8760e + 00 | 9.8648e + 00 | 7.8648e + 00 | |
10 | 2.5611e - 02 | 1.5275e + 00 | 2.2609e + 00 | 1.8080e + 00 | 1.8371e + 00 | 1.1496e + 00 | 2.8591e + 00 | 2.5056e + 00 | 6.8734e + 00 | 6.8642e + 00 | |
12 | 2.6689e - 01 | 6.5488e - 01 | 1.0901e + 00 | 1.5993e + 00 | 6.8305e - 01 | 1.0169e + 00 | 3.8292e + 00 | 9.4510e - 01 | 5.8743e + 00 | 9.9608e - 01 | |
Cactus | 4 | 0.0000e + 00 | 8.8624e - 03 | 0.0000e + 00 | 9.7805e - 01 | 1.9783e - 03 | 2.2157e - 01 | 9.0407e - 02 | 1.0212e + 01 | 8.8738e - 02 | 7.9492e + 01 |
6 | 0.0000e + 00 | 1.4716e - 01 | 1.0193e - 02 | 6.3001e + 00 | 2.8521e + 00 | 1.2033e + 00 | 5.9922e + 00 | 3.6189e + 00 | 6.8438e + 00 | 7.9332e + 00 | |
8 | 2.7104e - 03 | 9.2525e - 01 | 4.1563e - 01 | 5.5874e + 00 | 1.8328e + 00 | 1.4973e + 00 | 5.7798e + 00 | 1.6235e + 00 | 6.6432e + 00 | 4.4932e + 00 | |
10 | 7.5561e - 03 | 7.4369e - 01 | 2.9334e - 01 | 3.4511e + 00 | 1.7996e + 00 | 8.5357e - 01 | 5.9010e + 00 | 1.3657e + 00 | 6.9754e + 00 | 5.9733e + 00 | |
12 | 1.2812e - 01 | 1.4887e + 00 | 4.1829e - 01 | 1.7774e + 00 | 8.5019e - 01 | 7.4279e - 01 | 1.6913e + 00 | 6.4976e - 01 | 5.4883e + 00 | 7.4934e - 01 | |
Cow | 4 | 5.0842e - 13 | 9.4847e - 06 | 6.1882e - 07 | 1.3402e + 00 | 5.1671e - 03 | 3.2173e - 01 | 1.4038e - 01 | 9.3752e - 03 | 3.9754e - 01 | 9.7353e - 03 |
6 | 1.6545e - 01 | 1.9084e - 01 | 1.6323e - 01 | 5.9744e + 00 | 2.5197e + 00 | 1.3783e + 00 | 2.3592e + 00 | 1.6166e - 01 | 5.4873e + 00 | 2.9753e - 01 | |
8 | 2.4108e - 02 | 7.2264e - 01 | 9.2347e - 01 | 4.8122e + 00 | 2.4409e - 02 | 1.5244e + 00 | 6.3387e + 00 | 8.8607e - 01 | 7.8478e + 00 | 9.7743e - 01 | |
10 | 2.5064e - 01 | 3.3253e - 01 | 9.2932e - 01 | 3.1243e + 00 | 6.9114e - 01 | 7.6097e - 01 | 6.7771e + 00 | 1.2230e + 00 | 7.6436e + 00 | 8.9549e + 00 | |
12 | 1.0103e - 01 | 1.3010e + 00 | 1.0714e - 01 | 2.1099e + 00 | 4.9416e - 01 | 1.0799e + 00 | 5.4692e + 00 | 1.0640e + 00 | 6.7484e + 00 | 5.8622e + 00 | |
Deer | 4 | 0.0000e + 00 | 0.0000e + 00 | 5.4207e + 00 | 5.4024e + 00 | 7.4593e - 03 | 4.5577e - 01 | 6.2558e - 02 | 5.3883e + 00 | 7.6532e - 02 | 8.7353e + 00 |
6 | 0.0000e + 00 | 2.3296e + 00 | 2.5645e + 00 | 3.9302e + 00 | 2.2381e + 00 | 2.2796e + 00 | 6.8111e + 00 | 4.7647e + 00 | 7.3752e + 00 | 6.8352e + 00 | |
8 | 2.4978e - 02 | 3.0141e + 00 | 1.5768e + 00 | 2.9499e + 00 | 3.4235e + 00 | 3.2422e + 00 | 3.7797e + 00 | 2.0554e + 00 | 6.7534e + 00 | 5.7534e + 00 | |
10 | 4.0174e - 01 | 1.5329e + 00 | 1.5146e + 00 | 2.1600e + 00 | 1.9536e + 00 | 1.6882e + 00 | 8.6796e + 00 | 3.0491e + 00 | 7.9333e + 00 | 6.8457e + 00 | |
12 | 4.1945e - 01 | 1.3304e + 00 | 1.0805e + 00 | 3.8898e + 00 | 9.9896e - 01 | 7.9462e - 01 | 5.3120e + 00 | 1.7347e + 00 | 6.4378e + 00 | 4.8363e + 00 | |
Diver | 4 | 1.6462e - 03 | 1.3852e - 02 | 0.0000e + 00 | 4.2953e - 01 | 1.0325e - 02 | 4.3669e - 01 | 1.8932e - 01 | 2.0237e + 00 | 4.7522e - 01 | 5.4656e + 00 |
6 | 0.0000e + 00 | 4.5469e - 02 | 1.3710e - 03 | 2.1993e + 00 | 7.7053e - 01 | 1.6244e + 00 | 4.9161e + 00 | 3.5567e - 02 | 7.7453e + 00 | 6.8634e - 02 | |
8 | 3.0942e - 02 | 9.2514e - 01 | 4.5038e - 01 | 1.8318e + 00 | 4.4823e - 01 | 3.5167e - 01 | 2.0986e + 00 | 1.0432e + 00 | 3.7543e + 00 | 4.8652e + 00 | |
10 | 8.3825e - 03 | 7.0084e - 01 | 5.9167e - 01 | 1.9117e + 00 | 2.1269e - 01 | 9.7038e - 01 | 1.2839e + 00 | 7.0318e - 01 | 3.8658e + 00 | 8.7454e - 01 | |
12 | 1.3694e - 01 | 5.1430e - 01 | 4.0234e - 01 | 2.1263e + 00 | 2.6468e - 01 | 1.4983e - 01 | 1.9739e + 00 | 5.5533e - 01 | 5.4867e + 00 | 6.7543e - 01 | |
Elephant | 4 | 0.0000e + 00 | 6.4237e - 03 | 0.0000e + 00 | 6.0503e + 00 | 9.0498e - 04 | 1.6488e - 01 | 1.8436e - 01 | 7.2737e - 03 | 3.7523e - 01 | 8.7647e - 03 |
6 | 4.4492e - 02 | 1.9454e + 00 | 2.3242e + 00 | 6.2803e + 00 | 1.7561e + 00 | 1.3165e + 00 | 3.0963e + 00 | 4.7712e + 00 | 5.8437e + 00 | 6.8783e + 00 | |
8 | 5.5357e - 01 | 1.2826e + 00 | 1.5730e + 00 | 3.1859e + 00 | 1.5738e + 00 | 7.7418e - 01 | 4.9522e + 00 | 7.3335e - 01 | 6.8773e + 00 | 8.6534e - 01 | |
10 | 1.2384e + 00 | 2.1375e + 00 | 1.2931e + 00 | 5.7291e + 00 | 6.7686e + 01 | 1.6294e + 00 | 1.0518e + 01 | 2.0065e + 00 | 3.8856e + 01 | 4.7436e + 00 | |
12 | 4.3928e - 01 | 5.2442e - 01 | 1.0687e + 00 | 2.3214e + 00 | 1.7015e + 00 | 1.1204e + 00 | 2.8496e + 00 | 1.7069e + 00 | 4.8753e + 00 | 5.8475e + 00 | |
Horse | 4 | 0.0000e + 00 | 0.0000e + 00 | 0.0000e + 00 | 2.9545e + 00 | 1.0649e - 03 | 2.2981e - 01 | 1.4238e + 01 | 1.8426e - 02 | 4.7583e + 01 | 3.8964e - 02 |
6 | 7.9497e - 04 | 4.3199e - 02 | 4.3438e - 03 | 7.1120e + 00 | 1.2905e - 02 | 8.5581e - 01 | 6.9369e - 01 | 5.0399e + 00 | 7.7643e - 01 | 6.8353e + 00 | |
8 | 4.5720e - 02 | 2.3215e + 00 | 1.7100e + 00 | 6.0056e + 00 | 2.2284e + 00 | 6.7892e - 01 | 4.5581e + 00 | 2.1843e - 01 | 6.7654e + 00 | 5.8753e - 01 | |
10 | 1.7780e - 02 | 1.0456e + 00 | 1.0097e + 00 | 4.8101e + 00 | 2.8650e + 00 | 1.0801e + 00 | 7.7065e + 00 | 1.5548e + 00 | 8.8775e + 00 | 5.8753e + 00 | |
12 | 3.6262e - 02 | 9.1042e - 01 | 5.2105e - 01 | 2.7274e + 00 | 9.6076e - 01 | 1.3683e + 00 | 3.1956e + 00 | 1.2537e + 00 | 4.7535e + 00 | 4.7653e + 00 | |
Kangaroo | 4 | 0.0000e + 00 | 2.8080e - 03 | 0.0000e + 00 | 1.4197e + 00 | 0.0000e + 00 | 4.5233e - 01 | 1.5513e - 01 | 1.1710e - 02 | 2.8684e - 01 | 4.7833e - 02 |
6 | 7.0945e - 04 | 3.3564e - 02 | 3.1934e - 03 | 8.2077e + 00 | 1.2418e - 02 | 1.0105e + 00 | 4.8869e + 00 | 3.0115e + 00 | 5.7536e + 00 | 4.8753e + 00 | |
8 | 7.9087e - 03 | 5.6464e - 02 | 3.6501e - 01 | 6.1105e + 00 | 1.2628e + 00 | 1.2967e + 00 | 5.9183e + 00 | 2.3696e + 00 | 6.8733e + 00 | 5.8757e + 00 | |
10 | 2.5610e - 03 | 4.6108e - 01 | 1.1588e + 00 | 4.0363e + 00 | 5.7158e - 01 | 8.9576e - 01 | 6.7443e + 00 | 1.3835e + 00 | 7.9864e + 00 | 4.8875e + 00 | |
12 | 4.0049e - 02 | 8.7691e - 01 | 1.1766e + 00 | 2.5601e + 00 | 3.8831e - 01 | 6.2671e - 01 | 3.8655e + 00 | 1.3033e + 00 | 5.8754e + 00 | 4.8684e + 00 | |
Lake | 4 | 5.0842e - 13 | 8.5440e - 07 | 4.4517e - 03 | 1.0043e + 01 | 1.4746e - 04 | 1.5678e - 01 | 2.4311e + 01 | 1.2714e - 02 | 4.9854e + 01 | 3.9685e - 02 |
6 | 1.3355e - 03 | 1.0129e - 01 | 3.4139e + 00 | 6.2361e + 00 | 1.6624e - 02 | 1.4420e + 00 | 1.4072e + 01 | 3.6018e + 00 | 3.7987e + 01 | 4.8644e + 00 | |
8 | 1.8655e - 01 | 1.5349e + 00 | 1.5352e + 00 | 2.7270e + 00 | 1.5140e + 00 | 1.8072e + 00 | 7.3736e + 00 | 3.7370e + 00 | 9.3875e + 00 | 4.8743e + 00 | |
10 | 5.2140e - 03 | 1.3903e + 00 | 1.4982e + 00 | 3.8401e + 00 | 1.6502e + 00 | 1.7344e + 00 | 1.1550e + 01 | 2.2614e + 00 | 5.9486e + 01 | 3.7844e + 00 | |
12 | 1.3347e - 01 | 8.2871e - 01 | 6.0813e - 01 | 9.4868e - 01 | 1.0480e + 00 | 1.1963e + 00 | 7.1376e + 00 | 1.8657e + 00 | 8.7543e + 00 | 5.9883e + 00 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 0.0000e + 00 | 1.1889e - 03 | 4.5792e - 05 | 1.2654e - 02 | 2.5227e - 02 | 2.6238e - 03 | 2.3338e - 02 | 4.5792e - 05 | 3.8752e - 03 | 4.8758e - 02 |
6 | 1.0803e - 04 | 1.1619e - 04 | 1.2647e - 04 | 7.0324e - 02 | 3.1088e - 04 | 1.7798e - 02 | 4.0157e - 02 | 1.3631e - 04 | 4.8775e - 02 | 6.8753e - 02 | |
8 | 1.9295e - 04 | 8.4380e - 03 | 1.3024e - 02 | 2.3574e - 01 | 2.5639e - 02 | 4.3985e - 02 | 1.3272e - 01 | 1.4655e - 02 | 5.8753e - 02 | 4.7533e - 01 | |
10 | 6.3220e - 03 | 5.5282e - 02 | 5.7422e - 02 | 2.0425e - 01 | 1.9574e - 02 | 4.6981e - 02 | 5.8561e - 01 | 3.1833e - 02 | 6.8735e - 02 | 7.8743e - 01 | |
12 | 1.6956e - 02 | 9.7999e - 02 | 4.5541e - 02 | 3.0201e - 01 | 3.6739e - 01 | 1.2307e - 01 | 6.4889e - 01 | 2.4119e - 02 | 3.9864e - 01 | 7.8743e - 01 | |
Building | 4 | 0.0000e + 00 | 0.0000e + 00 | 0.0000e + 00 | 7.0614e - 03 | 3.2018e - 05 | 1.2271e - 03 | 9.2528e - 04 | 0.0000e + 00 | 4.9863e - 03 | 9.8743e - 04 |
6 | 8.8020e - 03 | 1.5824e - 02 | 4.2359e - 02 | 6.1177e - 02 | 9.7401e - 03 | 3.0400e - 02 | 1.7481e - 01 | 1.1671e - 02 | 4.8733e - 02 | 4.3734e - 01 | |
8 | 2.8468e - 03 | 3.2699e - 02 | 3.0477e - 03 | 1.7964e - 01 | 4.6111e - 02 | 3.0846e - 02 | 2.1943e - 01 | 3.3616e - 02 | 4.8753e - 02 | 5.9843e - 01 | |
10 | 2.0785e - 02 | 2.3636e - 02 | 2.1609e - 02 | 2.5603e - 01 | 8.2992e - 02 | 3.5160e - 02 | 5.6484e - 01 | 2.2881e - 02 | 4.8753e - 02 | 6.9886e - 01 | |
12 | 5.2186e - 02 | 9.7696e - 02 | 1.5118e - 01 | 5.0506e - 01 | 9.8895e - 02 | 1.6661e - 01 | 6.3697e - 01 | 1.7954e - 01 | 5.9864e - 01 | 7.4875e - 01 | |
Cactus | 4 | 2.6599e - 05 | 2.5477e - 03 | 8.5579e - 05 | 4.3927e - 03 | 5.8348e - 05 | 3.1864e - 03 | 2.1741e - 03 | 2.6752e - 05 | 5.3634e - 03 | 3.8767e - 03 |
6 | 1.4541e - 04 | 9.5823e - 04 | 1.6053e - 04 | 7.4453e - 02 | 2.9505e - 04 | 1.9699e - 02 | 5.3930e - 02 | 4.3274e - 04 | 4.9863e - 02 | 6.8244e - 02 | |
8 | 9.5675e - 04 | 8.8883e - 03 | 2.7352e - 02 | 1.3299e - 01 | 3.2443e - 02 | 3.3815e - 02 | 1.8186e - 01 | 7.3041e - 03 | 5.8743e - 02 | 4.7863e - 01 | |
10 | 4.3610e - 03 | 3.9010e - 02 | 5.3608e - 03 | 2.6713e - 01 | 4.9142e - 02 | 3.2420e - 02 | 1.5062e - 01 | 3.3415e - 02 | 5.8674e - 02 | 4.9836e - 01 | |
12 | 2.7111e - 03 | 7.4828e - 02 | 3.2452e - 02 | 2.3010e - 01 | 1.8277e - 02 | 5.0186e - 02 | 6.4139e - 01 | 7.3479e - 03 | 6.8765e - 02 | 7.8754e - 01 | |
Cow | 4 | 4.3875e - 04 | 4.5348e - 04 | 4.5512e - 03 | 1.9697e - 02 | 2.1813e - 02 | 3.4052e - 02 | 7.4689e - 03 | 4.3942e - 04 | 4.6733e - 02 | 8.8735e - 03 |
6 | 2.8795e - 05 | 8.4886e - 02 | 3.9295e - 02 | 5.9538e - 02 | 6.2887e - 02 | 1.5797e - 02 | 2.9128e - 01 | 4.9848e - 04 | 2.7535e - 02 | 3.8965e - 01 | |
8 | 3.6982e - 02 | 1.2156e - 01 | 4.4534e - 02 | 1.1567e - 01 | 7.5803e - 02 | 4.3787e - 02 | 4.7450e - 01 | 6.0485e - 02 | 5.8767e - 02 | 5.9886e - 01 | |
10 | 4.3049e - 02 | 1.2759e - 01 | 7.2200e - 02 | 2.1993e - 01 | 5.6487e - 02 | 4.4582e - 02 | 4.3961e - 01 | 5.2046e - 02 | 6.7854e - 02 | 5.9846e - 01 | |
12 | 3.2045e - 02 | 2.6235e - 01 | 7.0662e - 02 | 3.1597e - 01 | 1.1705e - 01 | 5.1689e - 02 | 5.3110e - 01 | 7.5080e - 02 | 7.8775e - 02 | 8.7654e - 01 | |
Deer | 4 | 0.0000e + 00 | 5.8974e - 03 | 5.9135e - 03 | 4.0585e - 03 | 7.2305e - 03 | 1.9331e - 02 | 6.9060e - 03 | 7.2004e - 03 | 6.7864e - 02 | 7.7435e - 03 |
6 | 2.2839e - 04 | 1.4763e - 03 | 3.3548e - 04 | 8.1484e - 02 | 6.2308e - 04 | 1.9429e - 02 | 1.1446e - 02 | 8.4301e - 04 | 2.8863e - 02 | 3.9753e - 02 | |
8 | 2.9669e - 03 | 6.7418e - 03 | 3.2304e - 03 | 1.3820e - 01 | 2.3685e - 02 | 7.5112e - 02 | 3.6370e - 01 | 5.8357e - 03 | 9.8754e - 02 | 4.8963e - 01 | |
10 | 4.9822e - 03 | 2.8841e - 01 | 2.7250e - 01 | 6.5556e - 01 | 2.6518e - 01 | 1.9191e - 01 | 6.4420e - 01 | 2.8244e - 01 | 2.0793e - 01 | 7.8735e - 01 | |
12 | 6.1415e - 02 | 4.7209e - 01 | 2.0164e - 01 | 3.5708e - 01 | 4.9867e - 01 | 1.1798e - 01 | 4.9348e - 01 | 2.4177e - 01 | 2.9753e - 01 | 5.4383e - 01 | |
Diver | 4 | 4.5390e - 04 | 9.5888e - 04 | 7.7273e - 04 | 1.8401e - 02 | 6.0705e - 04 | 4.7672e - 03 | 1.4489e - 03 | 4.5784e - 04 | 5.8986e - 03 | 2.8633e - 03 |
6 | 0.0000e + 00 | 2.0699e - 02 | 2.1247e - 02 | 2.0500e - 02 | 1.6986e - 02 | 2.0526e - 02 | 5.9176e - 02 | 2.1127e - 02 | 3.8646e - 02 | 6.9743e - 02 | |
8 | 4.9174e - 04 | 2.1986e - 02 | 2.7020e - 02 | 2.9803e - 01 | 2.7249e - 02 | 3.1078e - 02 | 8.7167e - 02 | 3.3923e - 01 | 5.8946e - 02 | 9.8763e - 02 | |
10 | 5.5672e - 03 | 2.1660e - 02 | 4.5160e - 02 | 2.5325e - 01 | 2.7837e - 01 | 9.0056e - 02 | 5.5104e - 01 | 2.7969e - 01 | 9.8534e - 02 | 6.8754e - 01 | |
12 | 2.1843e - 02 | 3.0838e - 01 | 2.8180e - 02 | 1.3301e - 01 | 4.2689e - 01 | 8.5895e - 02 | 5.6435e - 01 | 3.2203e - 01 | 9.8757e - 02 | 6.7654e - 01 | |
Elephant | 4 | 0.0000e + 00 | 1.9632e - 02 | 0.0000e + 00 | 1.6930e - 02 | 1.9460e - 02 | 3.0622e - 03 | 4.9727e - 03 | 1.5939e - 02 | 5.8754e - 03 | 5.8754e - 03 |
6 | 8.9460e - 04 | 4.7949e - 03 | 7.4900e - 03 | 2.7495e - 02 | 3.9956e - 03 | 3.5767e - 02 | 1.0488e - 02 | 3.3018e - 03 | 4.8753e - 02 | 2.8785e - 02 | |
8 | 1.2782e - 02 | 1.4891e - 02 | 5.2655e - 02 | 3.0559e - 01 | 1.1137e - 01 | 7.2515e - 02 | 2.7681e - 01 | 1.8693e - 02 | 8.4875e - 02 | 3.8754e - 01 | |
10 | 1.0683e - 02 | 2.2650e - 02 | 7.8857e - 02 | 3.4112e - 01 | 3.1072e - 02 | 1.4351e - 01 | 8.6519e - 01 | 6.9635e - 02 | 2.8645e - 01 | 9.7643e - 01 | |
12 | 3.2082e - 02 | 1.5757e - 01 | 7.0852e - 02 | 4.7685e - 01 | 9.6941e - 02 | 1.2052e - 01 | 6.8057e - 01 | 3.7980e - 02 | 3.9865e - 01 | 7.9863e - 01 | |
Horse | 4 | 0.0000e + 00 | 4.3697e - 05 | 0.0000e + 00 | 5.7362e - 03 | 3.0031e - 05 | 1.1992e - 03 | 9.0646e - 04 | 0.0000e + 00 | 2.9864e - 03 | 9.7845e - 04 |
6 | 3.9001e - 05 | 6.8235e - 04 | 6.4030e - 05 | 2.7168e - 02 | 1.8898e - 02 | 2.4707e - 02 | 3.9755e - 01 | 1.6253e - 04 | 3.8496e - 02 | 4.0379e - 01 | |
8 | 1.0658e - 03 | 1.5830e - 02 | 1.5773e - 02 | 1.7886e - 01 | 3.2528e - 01 | 2.0050e - 02 | 5.1045e - 02 | 1.8431e - 02 | 3.8564e - 02 | 6.8734e - 02 | |
10 | 1.1899e - 03 | 2.6765e - 02 | 1.0699e - 02 | 4.4824e - 01 | 2.0086e - 03 | 9.0610e - 02 | 1.0780e + 00 | 1.9035e - 02 | 9.9363e - 02 | 2.9747e + 00 | |
12 | 1.0195e - 02 | 9.3998e - 02 | 1.0905e - 02 | 1.4685e - 01 | 2.7702e - 01 | 1.3892e - 01 | 1.1139e + 00 | 1.6405e - 02 | 2.9875e - 01 | 3.9785e + 00 | |
Kangaroo | 4 | 0.0000e + 00 | 1.8494e - 03 | 0.0000e + 00 | 1.3075e - 02 | 7.9334e - 03 | 2.8633e - 03 | 3.8586e - 03 | 5.7127e - 05 | 3.4079e - 03 | 4.9445e - 03 |
6 | 2.9074e - 03 | 3.7403e - 03 | 2.9915e - 03 | 7.1561e - 02 | 3.3148e - 03 | 5.2471e - 03 | 3.8709e - 02 | 3.0783e - 03 | 6.9856e - 03 | 4.9865e - 02 | |
8 | 5.6649e - 04 | 1.1019e - 02 | 5.4813e - 03 | 8.2995e - 02 | 5.6226e - 03 | 7.0540e - 03 | 3.1840e - 01 | 4.0150e - 03 | 8.4835e - 03 | 4.9864e - 01 | |
10 | 3.7801e - 03 | 1.1827e - 02 | 1.8489e - 02 | 3.4071e - 01 | 6.9291e - 03 | 3.8810e - 02 | 5.2978e - 01 | 8.3780e - 03 | 5.9836e - 02 | 6.9886e - 01 | |
12 | 8.7743e - 03 | 4.7216e - 02 | 1.6021e - 02 | 4.4485e - 01 | 2.2123e - 02 | 6.8302e - 02 | 8.7635e - 01 | 3.7581e - 02 | 7.9867e - 02 | 9.7643e - 01 | |
Lake | 4 | 0.0000e + 00 | 0.0000e + 00 | 0.0000e + 00 | 9.7684e - 03 | 6.1440e - 03 | 4.9956e - 03 | 2.4380e - 04 | 9.6789e - 05 | 5.6536e - 03 | 3.8464e - 04 |
6 | 1.1065e - 04 | 3.8191e - 03 | 1.1223e - 04 | 5.6110e - 02 | 3.2872e - 04 | 2.1645e - 02 | 1.6446e - 02 | 2.1150e - 04 | 3.9865e - 02 | 2.4783e - 02 | |
8 | 1.2889e - 03 | 7.5427e - 03 | 2.1513e - 02 | 9.1336e - 02 | 2.0880e - 02 | 4.3782e - 02 | 5.4877e - 01 | 5.1575e - 03 | 5.4765e - 02 | 6.6584e - 01 | |
10 | 6.1286e - 03 | 4.2495e - 02 | 2.5681e - 02 | 3.4080e - 01 | 1.3618e - 02 | 1.2310e - 01 | 8.1195e - 01 | 1.3520e - 02 | 2.9864e - 01 | 9.8346e - 01 | |
12 | 1.0719e - 02 | 6.5413e - 02 | 2.2308e - 01 | 2.9771e - 01 | 6.4892e - 02 | 5.0581e - 02 | 6.3487e - 01 | 3.5103e - 02 | 6.5794e - 02 | 7.3875e - 01 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 0.0000e + 00 | 4.3555e - 05 | 0.0000e + 00 | 4.9764e - 03 | 1.9393e - 05 | 8.8101e - 04 | 1.0221e - 02 | 1.9393e - 05 | 3.0201e - 01 | 6.3697e - 01 |
6 | 1.6098e - 05 | 2.2962e - 03 | 4.1531e - 05 | 2.2771e - 02 | 1.8929e - 02 | 8.7123e - 03 | 5.3511e - 02 | 3.2681e - 04 | 1.7954e - 01 | 2.2881e - 02 | |
8 | 4.1976e - 05 | 2.6942e - 03 | 1.6424e - 02 | 1.6160e - 02 | 9.5683e - 03 | 1.2381e - 02 | 5.2152e - 02 | 1.3810e - 02 | 7.4453e - 02 | 5.3608e - 03 | |
10 | 4.5375e - 05 | 5.3553e - 03 | 2.9144e - 02 | 1.7617e - 02 | 6.8743e - 03 | 1.0299e - 02 | 4.5361e - 02 | 6.4860e - 03 | 1.9697e - 02 | 2.1813e - 02 | |
12 | 1.3560e - 03 | 5.3794e - 03 | 1.3202e - 02 | 1.9366e - 02 | 1.4206e - 02 | 5.8245e - 03 | 2.5064e - 02 | 8.4871e - 03 | 2.9128e - 01 | 1.1567e - 01 | |
Building | 4 | 0.0000e + 00 | 0.0000e + 00 | 0.0000e + 00 | 8.4222e - 03 | 8.2640e - 02 | 1.8660e - 03 | 4.0474e - 03 | 3.7078e - 05 | 1.5062e - 01 | 5.9538e - 02 |
6 | 5.7722e - 06 | 2.2725e - 02 | 1.8815e - 05 | 2.1296e - 02 | 1.3243e - 04 | 1.4934e - 02 | 6.4824e - 02 | 4.4130e - 05 | 6.4139e - 01 | 1.1567e - 01 | |
8 | 8.1194e - 05 | 4.6351e - 03 | 1.0580e - 02 | 2.0644e - 02 | 1.8725e - 02 | 9.6663e - 03 | 3.7373e - 02 | 8.9031e - 03 | 5.9538e - 02 | 2.4707e - 02 | |
10 | 4.3296e - 03 | 4.5957e - 03 | 1.4784e - 02 | 2.9631e - 02 | 1.4996e - 02 | 7.8380e - 03 | 4.1964e - 02 | 1.3119e - 02 | 1.1567e - 01 | 2.2050e - 02 | |
12 | 2.9477e - 03 | 4.7520e - 03 | 1.0995e - 02 | 1.4305e - 02 | 9.2023e - 03 | 3.3979e - 03 | 3.3865e - 02 | 3.3371e - 03 | 5.9538e - 02 | 9.0610e - 02 | |
Cactus | 4 | 0.0000e + 00 | 1.7572e - 06 | 0.0000e + 00 | 5.5546e - 03 | 1.4347e - 06 | 1.9111e - 03 | 1.9601e - 03 | 0.0000e + 00 | 1.1567e - 01 | 1.3892e - 01 |
6 | 0.0000e + 00 | 2.2275e - 04 | 3.3031e - 05 | 2.0208e - 02 | 1.6240e - 02 | 7.5591e - 03 | 3.3427e - 03 | 1.8360e - 04 | 3.1104e - 03 | 1.3820e - 01 | |
8 | 5.7902e - 05 | 7.8170e - 03 | 1.6810e - 03 | 3.3547e - 02 | 7.3692e - 03 | 4.4322e - 03 | 6.7041e - 02 | 2.6121e - 03 | 2.7250e - 01 | 6.5556e - 01 | |
10 | 1.3753e - 04 | 7.0512e - 03 | 5.4453e - 03 | 5.7462e - 03 | 7.6790e - 03 | 7.0182e - 03 | 4.6264e - 02 | 1.3599e - 03 | 2.3624e - 01 | 3.468e - 01 | |
12 | 1.7572e - 06 | 1.9572e - 06 | 6.2473e - 05 | 5.5546e - 03 | 1.9347e - 06 | 1.9111e - 03 | 1.9601e - 03 | 3.9851e - 04 | 7.7243e - 03 | 1.8401e - 02 | |
Cow | 4 | 0.0000e + 00 | 3.5553e - 06 | 0.0000e + 00 | 4.3800e - 03 | 7.0152e - 06 | 1.4766e - 03 | 5.5669e - 02 | 2.1702e - 05 | 2.730e - 01 | 6.5556e - 01 |
6 | 8.3327e - 06 | 3.3821e - 04 | 2.9309e - 05 | 2.9149e - 02 | 1.5862e - 02 | 1.1595e - 02 | 2.3744e - 02 | 5.9844e - 05 | 2.0164e - 01 | 3.5708e - 01 | |
8 | 1.0541e - 05 | 7.6901e - 03 | 8.9780e - 03 | 1.2516e - 02 | 7.2417e - 03 | 5.5736e - 03 | 3.6431e - 02 | 1.4694e - 02 | 7.7273e - 02 | 1.8401e - 02 | |
10 | 4.4374e - 04 | 7.8347e - 03 | 6.0441e - 03 | 2.7480e - 02 | 8.2380e - 03 | 6.4775e - 03 | 8.9388e - 03 | 7.9328e - 03 | 2.1247e - 02 | 2.0322e - 02 | |
12 | 6.9515e - 04 | 7.2237e - 03 | 4.2157e - 03 | 1.2538e - 02 | 5.5394e - 03 | 5.9790e - 03 | 2.4809e - 02 | 3.0575e - 03 | 2.7010e - 02 | 2.673e - 01 | |
Deer | 4 | 0.0000e + 00 | 2.8320e - 05 | 4.2927e - 02 | 3.5671e - 02 | 5.1525e - 02 | 6.7133e - 03 | 5.1398e - 02 | 3.0850e - 05 | 7.6374e - 03 | 7.6974e - 03 |
6 | 2.6894e - 05 | 3.4557e - 05 | 2.5596e - 02 | 3.2448e - 02 | 1.6901e - 02 | 1.9843e - 02 | 5.0846e - 02 | 1.6964e - 02 | 3.8839e - 04 | 1.9763e - 03 | |
8 | 2.8452e - 05 | 1.2801e - 02 | 3.2649e - 02 | 2.4045e - 02 | 2.0842e - 02 | 9.6566e - 03 | 2.4055e - 02 | 1.7755e - 02 | 4.6669e - 03 | 2.7418e - 03 | |
10 | 1.7530e - 04 | 2.9018e - 02 | 1.2639e - 02 | 1.9853e - 02 | 1.1923e - 02 | 1.6688e - 02 | 5.3703e - 02 | 5.5481e - 03 | 5.6722e - 03 | 3.4841e - 01 | |
12 | 2.1929e - 03 | 1.2338e - 02 | 8.8961e - 03 | 9.8628e - 03 | 6.5436e - 03 | 6.7611e - 03 | 1.7855e - 02 | 1.0242e - 02 | 6.5415e - 02 | 6.5209e - 01 | |
Diver | 4 | 0.0000e + 00 | 0.0000e + 00 | 0.0000e + 00 | 4.1200e - 03 | 2.9214e - 02 | 2.5662e - 02 | 4.3891e - 02 | 3.1663e - 05 | 8.5668e - 04 | 6.3673e - 04 |
6 | 2.4028e - 07 | 2.7901e - 04 | 2.3344e - 02 | 1.4257e - 02 | 1.0952e - 02 | 1.3559e - 02 | 7.2014e - 02 | 1.1899e - 02 | 3.0089e - 02 | 8.7357e - 02 | |
8 | 7.2607e - 05 | 7.7633e - 03 | 1.4945e - 02 | 1.9285e - 02 | 1.3145e - 02 | 1.6465e - 02 | 4.3331e - 02 | 9.7951e - 03 | 3.9863e - 02 | 4.6700e - 02 | |
10 | 6.6864e - 04 | 2.8358e - 03 | 1.1158e - 02 | 1.8721e - 02 | 1.1055e - 02 | 6.6527e - 03 | 3.3078e - 02 | 9.4649e - 03 | 5.9793e - 02 | 5.7864e - 02 | |
12 | 3.0549e - 03 | 7.9756e - 03 | 8.9144e - 03 | 7.0841e - 03 | 1.2907e - 02 | 1.3726e - 02 | 4.1452e - 02 | 1.1751e - 02 | 5.4598e - 01 | 3.7680e - 02 | |
Elephant | 4 | 0.0000e + 00 | 9.0077e - 04 | 9.0267e - 04 | 4.1081e - 02 | 1.1055e - 03 | 4.1184e - 04 | 4.9507e - 02 | 9.2036e - 04 | 2.7340e - 02 | 6.4674e - 02 |
6 | 1.4221e - 06 | 8.0570e - 04 | 1.3606e - 02 | 2.4760e - 02 | 1.1116e - 02 | 1.4617e - 02 | 4.5924e - 02 | 3.0920e - 02 | 3.9863e - 02 | 4.5632e - 03 | |
8 | 7.9685e - 04 | 1.0640e - 02 | 1.2130e - 02 | 2.6000e - 02 | 1.0469e - 02 | 7.8799e - 03 | 2.8428e - 02 | 1.1566e - 02 | 9.8876e - 01 | 3.9450e - 01 | |
10 | 2.3569e - 03 | 2.6128e - 03 | 3.0860e - 03 | 1.8732e - 02 | 8.0987e - 03 | 8.4090e - 03 | 2.4145e - 02 | 6.6496e - 03 | 6.9973e - 01 | 4.0876e - 02 | |
12 | 1.0095e - 03 | 8.1323e - 03 | 5.5866e - 03 | 2.3722e - 02 | 1.2886e - 02 | 3.3161e - 03 | 3.9390e - 02 | 5.4535e - 03 | 5.6643e - 01 | 3.0267e - 02 | |
Horse | 4 | 0.0000e + 00 | 7.6146e - 06 | 0.0000e + 00 | 3.9869e - 02 | 0.0000e + 00 | 1.2334e - 03 | 3.3564e - 04 | 0.0000e + 00 | 8.6683e - 03 | 4.9931e - 05 |
6 | 6.9579e - 06 | 2.9511e - 04 | 1.4611e - 05 | 3.9917e - 02 | 1.3604e - 02 | 1.9567e - 03 | 3.8756e - 02 | 1.0109e - 04 | 3.9825e - 02 | 1.9603e - 02 | |
8 | 3.2793e - 05 | 3.6051e - 03 | 5.9145e - 04 | 1.9079e - 02 | 3.1548e - 04 | 1.3885e - 02 | 3.6609e - 02 | 6.0967e - 03 | 2.1978e - 01 | 4.9930e - 01 | |
10 | 2.6460e - 05 | 2.5018e - 03 | 2.0397e - 03 | 1.4575e - 02 | 8.7068e - 03 | 6.2620e - 03 | 2.7941e - 02 | 4.9061e - 03 | 4.5722e - 01 | 4.9928e - 03 | |
12 | 4.5934e - 04 | 5.9886e - 03 | 5.6341e - 03 | 2.3385e - 02 | 5.5206e - 03 | 6.2517e - 03 | 1.9090e - 02 | 3.7609e - 03 | 2.7638e - 01 | 3.0145e - 01 | |
Kangaroo | 4 | 0.0000e + 00 | 6.9161e - 05 | 0.0000e + 00 | 4.5684e - 03 | 1.3734e - 05 | 3.7605e - 03 | 5.9342e - 02 | 7.9425e - 06 | 3.0024e - 02 | 1.5722e - 03 |
6 | 1.8491e - 06 | 3.5289e - 06 | 7.4256e - 04 | 2.8424e - 02 | 5.6422e - 03 | 4.7666e - 03 | 6.5992e - 02 | 6.9616e - 05 | 5.7732e - 02 | 4.9731e - 03 | |
8 | 4.1239e - 05 | 1.3851e - 03 | 5.3166e - 03 | 2.3963e - 02 | 9.8772e - 03 | 4.3838e - 03 | 3.9993e - 02 | 7.9770e - 03 | 9.0244e - 02 | 6.0721e - 03 | |
10 | 2.7729e - 04 | 2.3215e - 03 | 6.1821e - 03 | 1.5739e - 02 | 8.2379e - 03 | 6.0833e - 03 | 2.9610e - 02 | 8.2685e - 03 | 3.5673e - 01 | 7.0421e - 03 | |
12 | 3.2988e - 04 | 6.1240e - 03 | 8.4453e - 03 | 9.4158e - 03 | 1.0962e - 02 | 5.6801e - 03 | 2.7494e - 02 | 3.0349e - 03 | 5.9722e - 01 | 6.8722e - 02 | |
Lake | 4 | 0.0000e + 00 | 2.0336e - 06 | 0.0000e + 00 | 8.3246e - 03 | 9.5161e - 06 | 4.1782e - 04 | 2.1471e - 03 | 2.0336e - 06 | 8.6322e - 03 | 6.2880e - 03 |
6 | 5.4704e - 06 | 5.7846e - 04 | 1.3840e - 02 | 4.1747e - 02 | 1.8414e - 02 | 1.6083e - 03 | 4.1550e - 02 | 6.8613e - 05 | 8.9630e - 02 | 7.8652e - 04 | |
8 | 2.5563e - 05 | 6.9062e - 03 | 5.9416e - 03 | 2.7668e - 02 | 1.9965e - 02 | 4.8122e - 03 | 2.8436e - 02 | 1.1764e - 02 | 9.7383e - 02 | 5.8235e - 02 | |
10 | 7.3581e - 05 | 3.9563e - 03 | 3.9417e - 03 | 8.5210e - 03 | 1.1233e - 02 | 4.2182e - 03 | 2.3901e - 02 | 3.8337e - 03 | 4.8252e - 01 | 2.8433e - 02 | |
12 | 9.4260e - 04 | 6.5949e - 03 | 2.0884e - 03 | 1.2109e - 02 | 9.0033e - 03 | 5.1305e - 03 | 3.5508e - 02 | 2.7738e - 03 | 3.0211e - 01 | 5.9363e - 02 |
In order to study the performance of MDA based method quantitatively, three indices namely PSNR, SSIM, and FSIM are used for all segmented images. Higher values of these indices, better visual similarity between the original image and the segmented image. The optimal PSNR values obtained by all existing methods based on Otsu, Kapur, and MCE are given in Table 8, Table 9, and Table 10 respectively. From the tables it is found that MDA based method gives higher values than other methods in general. For example, the PSNR values in case of Cactus image (for Levels = 12) using MCE are 31.8637, 26.1599, 25.7562, 26.2726, 28.2229, 28.9389, 29.0718, and 26.3566, 23.9993, 23.2377 for MDA, DA, SSA, SCA, ALO, HSO, BA, PSO, BDE, and EOFPA respectively. On comparing the SSIM and FSIM values, which are given in Tables 11-13 and Tables 14-16, the proposed MDA based method has again outperformed the other methods due its precise search ability. It is also seen from the tables above that, the values of these indices increase as the number of threshold levels increase. This indicates the segmentation accuracy improves as the number of threshold levels is increased. For visual analysis, the quantitative results of three indices above through Otsu, Kapur, and MCE method are statistically shown in Figures 10-12, Figures 13-15, and Figures 16-18. It can be seen that the proposed MDA method and other methods have given the similar results with a small number of threshold levels (such as Levels = 4). Whereas, the values obtained by MDA based method are higher than the other existing methods, which indicates the appropriate performance of proposed method.
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 18.9590 | 18.9590 | 18.9590 | 18.8034 | 18.9590 | 18.8983 | 18.8959 | 18.9590 | 17.3764 | 17.316 |
6 | 21.0920 | 21.0911 | 21.0912 | 20.5635 | 21.0920 | 20.9637 | 20.6669 | 21.0909 | 19.1881 | 18.6372 | |
8 | 22.5471 | 22.3377 | 22.4018 | 22.3838 | 22.5463 | 22.4298 | 21.9278 | 22.4010 | 22.0039 | 21.0101 | |
10 | 23.4904 | 23.3166 | 23.9987 | 23.0423 | 23.4885 | 24.0388 | 23.1488 | 23.5456 | 23.1010 | 22.3231 | |
12 | 27.7081 | 24.5108 | 27.6512 | 23.5212 | 24.8332 | 27.6248 | 27.6485 | 24.7378 | 24.0274 | 24.7898 | |
Building | 4 | 17.4155 | 17.4155 | 17.4155 | 16.9523 | 17.4155 | 17.4062 | 17.4155 | 17.4155 | 16.9011 | 16.9837 |
6 | 19.8902 | 19.8187 | 19.8827 | 19.2310 | 19.8816 | 19.5492 | 19.0128 | 19.8782 | 18.9328 | 18.9880 | |
8 | 22.6625 | 22.5599 | 22.5680 | 19.5148 | 22.3500 | 22.6063 | 22.0638 | 22.4596 | 21.8258 | 22.4735 | |
10 | 27.1866 | 24.2853 | 24.1301 | 22.4138 | 23.9861 | 24.8874 | 23.0124 | 24.2530 | 22.9203 | 23.4174 | |
12 | 27.1983 | 26.3422 | 24.7812 | 24.3360 | 25.2812 | 25.9322 | 24.9121 | 25.0993 | 23.8136 | 25.8439 | |
Cactus | 4 | 20.3428 | 20.3428 | 20.3428 | 20.3309 | 20.3428 | 19.8275 | 20.3239 | 20.3428 | 18.5723 | 18.7159 |
6 | 22.6678 | 22.6661 | 22.6656 | 22.6482 | 22.6643 | 22.6390 | 22.5184 | 22.6668 | 19.2167 | 19.3623 | |
8 | 23.9827 | 23.7898 | 23.9062 | 23.9712 | 23.9422 | 23.5290 | 23.2659 | 23.9202 | 21.3695 | 21.8403 | |
10 | 24.8346 | 24.4556 | 24.6361 | 24.4523 | 24.7911 | 24.5695 | 24.7745 | 24.8199 | 22.4557 | 23.5664 | |
12 | 25.3709 | 24.8899 | 25.0184 | 24.5561 | 25.2555 | 24.8233 | 25.2156 | 25.2255 | 22.8350 | 22.6485 | |
Cow | 4 | 19.7023 | 19.7023 | 19.7023 | 19.0298 | 19.6970 | 19.7023 | 19.6131 | 19.7023 | 16.7087 | 17.7800 |
6 | 21.8735 | 21.8689 | 21.6575 | 21.2382 | 21.6519 | 21.5546 | 21.7785 | 21.6414 | 18.8470 | 19.6007 | |
8 | 23.6239 | 23.2169 | 23.4659 | 23.0928 | 23.5503 | 23.4506 | 22.9317 | 23.5084 | 21.8301 | 21.2347 | |
10 | 24.4648 | 24.4371 | 24.4203 | 24.3740 | 24.3462 | 23.7822 | 23.2376 | 24.2446 | 21.5213 | 23.1898 | |
12 | 25.0056 | 24.5718 | 24.8910 | 24.5712 | 24.5871 | 24.6769 | 23.8856 | 24.9461 | 23.2105 | 24.1131 | |
Deer | 4 | 17.2462 | 17.2462 | 17.2462 | 17.1630 | 17.2462 | 17.1945 | 17.2462 | 16.8531 | 17.2167 | 17.2285 |
6 | 22.3158 | 21.1255 | 21.1255 | 21.2796 | 21.0306 | 20.9120 | 21.0078 | 21.0168 | 19.9878 | 22.3087 | |
8 | 26.4239 | 23.5746 | 23.5002 | 24.0895 | 24.6123 | 26.3803 | 25.5392 | 23.9308 | 20.6895 | 22.7359 | |
10 | 27.1472 | 26.4163 | 26.8848 | 27.1317 | 27.1133 | 26.5453 | 26.8428 | 26.8889 | 22.3587 | 24.5996 | |
12 | 27.9602 | 27.1372 | 27.5484 | 27.8531 | 26.8076 | 26.9325 | 27.5315 | 27.3095 | 24.1497 | 26.6583 | |
Diver | 4 | 24.4620 | 24.4620 | 24.4620 | 24.1907 | 24.4620 | 24.3989 | 24.3677 | 24.3073 | 22.1893 | 22.9514 |
6 | 26.9548 | 26.9170 | 26.9448 | 26.7044 | 26.9499 | 26.6182 | 26.8265 | 26.9420 | 23.9825 | 24.7704 | |
8 | 29.5492 | 29.0513 | 28.6783 | 29.0786 | 28.7387 | 28.3422 | 29.2312 | 28.3347 | 25.0701 | 25.4638 | |
10 | 29.8856 | 29.4112 | 29.3481 | 29.1587 | 29.8131 | 29.2198 | 29.7836 | 29.8342 | 25.1395 | 27.5492 | |
12 | 31.1721 | 30.5343 | 29.7237 | 31.0997 | 31.0803 | 30.9819 | 30.5211 | 30.6319 | 26.5864 | 27.9708 | |
Elephant | 4 | 18.4590 | 18.4590 | 18.4590 | 18.0512 | 18.4590 | 18.4539 | 18.3943 | 18.4092 | 17.9796 | 18.4096 |
6 | 20.9780 | 20.5021 | 20.7348 | 20.9025 | 20.4230 | 20.9187 | 19.9182 | 20.5901 | 19.6514 | 20.2232 | |
8 | 24.6549 | 23.6814 | 23.3417 | 23.1786 | 22.8950 | 24.5622 | 23.5645 | 24.3392 | 21.5350 | 24.2511 | |
10 | 25.7650 | 25.4617 | 25.5042 | 25.0738 | 25.6656 | 25.1711 | 25.4416 | 25.6173 | 22.8253 | 23.9163 | |
12 | 28.5499 | 26.3839 | 27.1607 | 27.3927 | 26.9031 | 28.4144 | 28.2370 | 26.5514 | 23.4172 | 25.3764 | |
Horse | 4 | 18.5055 | 18.5055 | 18.5055 | 18.1434 | 18.5055 | 18.4145 | 18.3600 | 18.4552 | 17.2096 | 17.1942 |
6 | 22.6464 | 21.6461 | 21.6464 | 21.7744 | 21.6383 | 21.6707 | 21.8331 | 21.4744 | 20.7108 | 21.6493 | |
8 | 27.1218 | 23.7877 | 23.7854 | 25.8693 | 24.0577 | 25.3926 | 24.7503 | 23.8225 | 22.3332 | 22.7768 | |
10 | 28.6567 | 24.9734 | 26.1591 | 28.5737 | 28.3542 | 28.0356 | 26.0373 | 26.8562 | 23.3827 | 22.5028 | |
12 | 30.1088 | 25.9198 | 28.5245 | 28.8863 | 29.9344 | 29.6778 | 29.5050 | 28.9135 | 25.1314 | 24.9332 | |
Kangaroo | 4 | 19.3419 | 19.3419 | 19.3419 | 18.9806 | 19.3351 | 19.2601 | 19.2313 | 19.3312 | 18.5756 | 19.2651 |
6 | 25.2386 | 24.3138 | 24.3100 | 22.7301 | 24.3100 | 24.6060 | 24.8281 | 24.7980 | 21.1692 | 22.5045 | |
8 | 30.1938 | 28.9547 | 29.4461 | 26.8673 | 28.4724 | 30.1943 | 26.9309 | 28.0531 | 21.6472 | 22.6528 | |
10 | 33.3271 | 32.0741 | 32.5754 | 31.3008 | 31.8186 | 31.2343 | 30.6409 | 31.7392 | 23.6473 | 25.961 | |
12 | 34.2483 | 33.3702 | 33.5729 | 28.8392 | 33.8080 | 34.2136 | 31.7286 | 33.0561 | 24.8493 | 25.4618 | |
Lake | 4 | 17.8079 | 17.8079 | 17.8079 | 17.8948 | 17.8079 | 17.8154 | 17.8994 | 17.7555 | 15.13304217 | 16.62476501 |
6 | 23.7148 | 20.0906 | 20.2511 | 23.6525 | 22.1280 | 20.5707 | 20.5545 | 20.1912 | 16.80790196 | 16.45672222 | |
8 | 25.1894 | 23.7439 | 22.1234 | 24.4846 | 22.2729 | 23.2811 | 23.1193 | 24.2111 | 21.46744331 | 18.86515735 | |
10 | 27.3522 | 24.2819 | 23.3769 | 25.8174 | 23.2683 | 26.8299 | 26.3802 | 25.8904 | 22.20327956 | 21.45476838 | |
12 | 29.8302 | 25.2634 | 29.3626 | 29.1830 | 29.6264 | 29.0032 | 27.3752 | 26.0006 | 23.99130606 | 23.80486517 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 20.3166 | 20.3166 | 20.2807 | 20.1875 | 18.3087 | 20.0478 | 20.0579 | 20.3166 | 18.0357 | 18.6645 |
6 | 24.3943 | 23.2706 | 23.2631 | 23.9862 | 23.3301 | 24.0850 | 22.8633 | 23.3948 | 19.5943 | 20.5940 | |
8 | 25.9201 | 25.3943 | 25.5275 | 25.7371 | 25.5862 | 25.4035 | 25.6526 | 25.6077 | 21.1853 | 22.0672 | |
10 | 28.8445 | 27.5984 | 27.0704 | 28.3361 | 27.2035 | 27.9440 | 27.2823 | 27.4710 | 22.4667 | 23.2884 | |
12 | 32.1186 | 27.8596 | 30.0963 | 31.4096 | 30.0612 | 31.8332 | 28.2530 | 30.9551 | 23.3027 | 24.6414 | |
Building | 4 | 17.4224 | 17.4155 | 17.415 | 17.0523 | 17.4155 | 17.4142 | 17.4155 | 17.4155 | 17.4116 | 17.4155 |
6 | 19.9023 | 19.8637 | 19.8907 | 19.2310 | 19.8816 | 19.5492 | 19.7828 | 19.8072 | 19.7734 | 19.7631 | |
8 | 22.9857 | 22.5599 | 22.5680 | 21.3148 | 22.3500 | 22.6063 | 22.0638 | 22.6296 | 20.1984 | 20.5919 | |
10 | 27.2576 | 26.8043 | 24.1301 | 22.3738 | 23.9861 | 24.8874 | 23.0124 | 24.4590 | 22.2514 | 22.0813 | |
12 | 28.4124 | 27.3672 | 26.2312 | 24.8230 | 25.67 12 | 25.8392 | 24.9071 | 25.0989 | 24.2399 | 24.4493 | |
Cactus | 4 | 17.2477 | 17.2477 | 17.2477 | 17.2083 | 17.2477 | 17.1240 | 17.2076 | 17.2477 | 16.4696 | 16.7799 |
6 | 25.9105 | 24.0561 | 23.9672 | 21.5683 | 21.5404 | 24.9770 | 22.9863 | 22.2332 | 18.0968 | 19.4701 | |
8 | 28.7324 | 28.6092 | 28.5111 | 25.5115 | 28.6082 | 28.5553 | 27.6544 | 28.4325 | 19.1565 | 20.9022 | |
10 | 30.6897 | 30.4082 | 30.4321 | 28.3328 | 30.6687 | 30.4376 | 27.8268 | 30.5039 | 20.9462 | 22.4891 | |
12 | 32.4563 | 31.8106 | 32.0824 | 29.9900 | 32.1917 | 32.2054 | 29.6553 | 31.6696 | 22.3502 | 21.3577 | |
Cow | 4 | 19.3706 | 19.3456 | 19.3706 | 19.1520 | 19.3706 | 19.2890 | 19.3563 | 19.3706 | 16.3414 | 18.2875 |
6 | 24.6314 | 23.7690 | 23.9292 | 23.9305 | 22.0374 | 24.1317 | 23.3235 | 23.8404 | 18.4244 | 21.1759 | |
8 | 27.9669 | 26.7169 | 26.5471 | 27.1888 | 26.0817 | 27.2073 | 27.0670 | 25.9695 | 21.8036 | 21.3845 | |
10 | 30.8466 | 28.8963 | 28.4620 | 28.5871 | 29.1743 | 28.6751 | 27.6186 | 29.6997 | 23.6779 | 23.4505 | |
12 | 32.6043 | 32.2767 | 32.4801 | 28.9822 | 32.1704 | 32.5000 | 30.2576 | 31.5353 | 21.9672 | 23.9536 | |
Deer | 4 | 21.9086 | 21.9086 | 21.9086 | 21.8579 | 21.9086 | 21.8656 | 21.8624 | 21.9086 | 15.8959 | 18.8904 |
6 | 25.8662 | 25.7468 | 25.7976 | 25.2465 | 25.7708 | 25.7644 | 25.8643 | 25.8127 | 21.3477 | 20.6717 | |
8 | 29.1490 | 28.3340 | 28.0174 | 28.3990 | 28.1621 | 28.5526 | 28.3437 | 28.4946 | 22.1424 | 22.4715 | |
10 | 30.9920 | 30.4913 | 30.9573 | 28.9004 | 30.0481 | 30.8749 | 28.8843 | 30.1549 | 23.4554 | 23.8936 | |
12 | 32.9202 | 32.0876 | 30.9895 | 29.7392 | 32.7632 | 31.7944 | 29.8111 | 32.4031 | 25.5468 | 25.6665 | |
Diver | 4 | 21.6563 | 20.9671 | 21.4636 | 21.3132 | 20.9636 | 20.9593 | 21.4310 | 20.9636 | 20.3982 | 21.2676 |
6 | 23.8743 | 22.3082 | 22.3113 | 22.9759 | 22.3083 | 22.3378 | 22.1613 | 22.3090 | 23.0791 | 21.7095 | |
8 | 27.2237 | 24.4619 | 24.4493 | 24.4387 | 24.4538 | 24.6248 | 25.8560 | 24.4246 | 22.6522 | 25.1251 | |
10 | 29.4785 | 26.0826 | 26.3010 | 26.3667 | 26.4421 | 26.5201 | 28.3006 | 26.7262 | 25.0380 | 26.7153 | |
12 | 29.5071 | 27.2349 | 27.1253 | 26.9334 | 26.8751 | 26.6722 | 28.5156 | 27.0078 | 24.8993 | 24.2954 | |
Elephant | 4 | 18.6558 | 18.6551 | 18.6558 | 18.6533 | 18.6558 | 18.5722 | 18.4352 | 18.6558 | 17.9303 | 18.2680 |
6 | 23.4967 | 20.8588 | 20.8588 | 22.2481 | 21.3148 | 20.8610 | 20.2596 | 21.7136 | 18.8900 | 20.7315 | |
8 | 26.2198 | 23.1849 | 23.4237 | 23.4877 | 24.1624 | 24.5724 | 23.1158 | 23.3720 | 20.5137 | 21.8626 | |
10 | 28.9322 | 27.6131 | 25.2279 | 27.0446 | 27.7051 | 25.3211 | 25.1289 | 25.3938 | 20.8363 | 23.6299 | |
12 | 29.8636 | 29.4535 | 26.7054 | 28.6767 | 29.4309 | 26.3023 | 29.2218 | 29.8395 | 24.1360 | 22.5109 | |
Horse | 4 | 19.5685 | 19.5685 | 19.5685 | 19.5569 | 19.5616 | 19.5208 | 19.2442 | 19.5037 | 17.6152 | 18.1643 |
6 | 24.0011 | 23.0457 | 22.9153 | 23.1092 | 22.9575 | 23.1314 | 22.7394 | 23.0037 | 20.2580 | 21.0483 | |
8 | 27.3558 | 26.6826 | 26.9406 | 26.3270 | 27.1482 | 27.2741 | 26.7321 | 26.9479 | 22.8904 | 21.8187 | |
10 | 29.3890 | 28.0878 | 28.9131 | 28.8581 | 29.3174 | 29.3410 | 27.3223 | 29.1691 | 23.5858 | 21.4618 | |
12 | 31.6166 | 29.1202 | 30.4900 | 29.8254 | 30.7306 | 30.7994 | 30.0701 | 30.8250 | 24.5833 | 23.3923 | |
Kangaroo | 4 | 19.3602 | 19.3419 | 19.3419 | 18.9906 | 19.3351 | 19.2890 | 19.2313 | 19.3451 | 17.6221 | 19.2606 |
6 | 25.3116 | 24.3138 | 24.3120 | 22.8730 | 24.9068 | 24.6890 | 24.8608 | 24.3312 | 21.5133 | 21.5163 | |
8 | 30.2043 | 28.8512 | 29.4451 | 26.8932 | 28.8920 | 30.1893 | 26.9309 | 28.0531 | 21.7764 | 21.4465 | |
10 | 33.3301 | 32.1521 | 32.5122 | 31.4008 | 31.9123 | 31.2653 | 30.5950 | 31.7392 | 23.0558 | 21.7999 | |
12 | 34.2579 | 33.5667 | 33.5679 | 28.8232 | 33.9012 | 34.2716 | 31.7886 | 33.8661 | 24.1207 | 23.6892 | |
Lake | 4 | 18.2514 | 18.2514 | 18.2514 | 18.1857 | 18.0607 | 18.2348 | 18.2435 | 18.2514 | 16.4759 | 15.0601 |
6 | 23.6183 | 22.9541 | 22.7654 | 22.8559 | 23.0808 | 23.0525 | 22.6119 | 22.9201 | 17.8063 | 18.2172 | |
8 | 27.4202 | 26.1891 | 26.0786 | 27.2324 | 26.0580 | 25.9331 | 25.6984 | 25.8055 | 20.0112 | 19.3166 | |
10 | 31.8548 | 29.0040 | 29.1402 | 28.3226 | 28.8951 | 28.6493 | 28.0904 | 28.9814 | 22.3835 | 22.3242 | |
12 | 33.5569 | 30.7909 | 30.4219 | 29.9866 | 31.1864 | 32.9733 | 28.4370 | 30.7989 | 23.3754 | 22.4949 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 19.2861 | 19.2861 | 19.2861 | 19.2055 | 19.2861 | 19.2229 | 19.2480 | 19.2861 | 16.9146 | 17.8353 |
6 | 22.1149 | 21.6223 | 21.6743 | 21.8527 | 21.6255 | 21.6285 | 21.5617 | 21.6775 | 20.6040 | 19.7740 | |
8 | 27.0817 | 23.1912 | 23.2581 | 23.7577 | 23.3021 | 23.7125 | 23.7922 | 23.0945 | 21.9409 | 21.0794 | |
10 | 28.0991 | 24.4551 | 24.6218 | 25.4063 | 26.6986 | 24.3297 | 24.5463 | 24.3360 | 23.2507 | 21.9060 | |
12 | 29.8725 | 25.1136 | 29.8542 | 27.2696 | 26.9861 | 25.5679 | 24.7926 | 29.3463 | 23.9524 | 24.4563 | |
Building | 4 | 17.4155 | 17.4155 | 17.4155 | 17.3512 | 17.4155 | 17.2362 | 17.4155 | 17.4155 | 17.4155 | 17.4155 |
6 | 19.9001 | 19.8187 | 19.8827 | 19.0280 | 19.8816 | 19.5492 | 19.0638 | 19. 4596 | 19.8014 | 19.5000 | |
8 | 22.7921 | 22.5599 | 22.6780 | 19.5148 | 22.3500 | 22.6063 | 22.0128 | 22.4512 | 21.8680 | 22.1245 | |
10 | 27.2061 | 24.2853 | 24.1301 | 22.2338 | 23.8961 | 24.9474 | 23.3224 | 24.6730 | 22.5496 | 23.0076 | |
12 | 27.4723 | 27.0421 | 25.0232 | 24.8906 | 25.6701 | 25.8344 | 24.9589 | 25.1773 | 24.5120 | 24.9875 | |
Cactus | 4 | 21.0442 | 21.0442 | 21.0442 | 21.0422 | 21.0126 | 21.0118 | 21.0333 | 21.0442 | 18.2742 | 19.3560 |
6 | 24.9529 | 23.3510 | 23.3674 | 23.3678 | 24.0485 | 23.5364 | 23.4052 | 23.3895 | 20.2090 | 20.6766 | |
8 | 28.5911 | 24.5707 | 24.5779 | 24.5286 | 24.5989 | 24.5600 | 26.5850 | 24.6217 | 21.9887 | 22.1574 | |
10 | 29.9778 | 25.3832 | 25.3712 | 25.4471 | 27.9011 | 25.6677 | 27.6291 | 25.6254 | 22.0914 | 23.7324 | |
12 | 31.8637 | 26.1599 | 25.7562 | 26.2726 | 28.2229 | 28.9389 | 29.0718 | 26.3566 | 23.9993 | 23.2377 | |
Cow | 4 | 19.7030 | 19.7030 | 19.6961 | 19.7030 | 19.6629 | 19.7030 | 19.6343 | 19.2385 | 18.4964 | 17.9766 |
6 | 24.1672 | 21.9280 | 21.9130 | 21.3218 | 21.9130 | 21.8494 | 21.7807 | 21.9032 | 20.3522 | 19.2911 | |
8 | 27.3862 | 24.0409 | 24.0290 | 22.8483 | 24.0287 | 23.9099 | 23.6381 | 23.9633 | 20.2832 | 22.2579 | |
10 | 28.9123 | 25.1526 | 25.0983 | 24.6953 | 25.1431 | 26.3286 | 25.5584 | 28.8959 | 20.6888 | 21.3226 | |
12 | 30.6430 | 30.5606 | 29.4939 | 27.4681 | 26.0056 | 27.0059 | 29.7306 | 29.9207 | 24.3489 | 23.7499 | |
Deer | 4 | 15.6122 | 15.6122 | 15.6122 | 15.0935 | 15.6122 | 15.5409 | 15.3976 | 15.6084 | 15.6122 | 15.6122 |
6 | 24.6247 | 19.1380 | 19.1380 | 17.9988 | 22.2128 | 23.7311 | 19.1380 | 19.4118 | 21.0277 | 22.7668 | |
8 | 28.0177 | 23.9777 | 23.6379 | 21.3379 | 24.2505 | 25.7888 | 22.3424 | 25.0594 | 21.7233 | 23.8596 | |
10 | 30.4749 | 27.9028 | 24.8091 | 23.3179 | 28.4935 | 30.3411 | 28.8443 | 27.0434 | 24.3608 | 25.5655 | |
12 | 32.3489 | 31.2369 | 25.0884 | 26.1129 | 29.9859 | 31.2170 | 31.0402 | 30.0412 | 26.2164 | 26.8012 | |
Diver | 4 | 22.2354 | 22.2354 | 22.2354 | 22.2239 | 22.2354 | 22.2020 | 22.1763 | 22.2124 | 22.1863 | 22.2354 |
6 | 27.8765 | 25.6318 | 26.8252 | 25.4321 | 27.6780 | 26.0988 | 26.4248 | 26.3044 | 24.2075 | 24.2863 | |
8 | 29.7961 | 27.7268 | 27.6574 | 27.5539 | 28.5651 | 29.6757 | 26.8094 | 27.5598 | 26.0722 | 24.1376 | |
10 | 31.3786 | 29.0860 | 28.7092 | 28.1075 | 28.5887 | 30.6830 | 30.3389 | 31.3065 | 25.7920 | 27.7836 | |
12 | 31.8544 | 30.3199 | 30.1751 | 29.0378 | 30.8514 | 31.1978 | 31.4286 | 31.3641 | 27.3253 | 27.4796 | |
Elephant | 4 | 18.3463 | 18.3336 | 18.3463 | 18.1708 | 17.4852 | 17.3805 | 17.5702 | 17.4852 | 18.3463 | 18.2466 |
6 | 22.1628 | 20.4135 | 20.4535 | 21.9961 | 21.7783 | 20.4135 | 20.6891 | 20.3317 | 20.1564 | 21.0282 | |
8 | 24.7220 | 23.3686 | 23.7688 | 20.9605 | 24.5748 | 22.0756 | 22.7301 | 24.5871 | 23.1261 | 21.9422 | |
10 | 26.9608 | 25.5516 | 25.8022 | 22.5515 | 25.4095 | 25.9089 | 24.3794 | 26.5956 | 23.0379 | 23.8127 | |
12 | 29.3330 | 27.9280 | 28.9816 | 24.8952 | 27.1191 | 28.2273 | 25.7960 | 28.3370 | 23.8743 | 23.5579 | |
Horse | 4 | 20.1345 | 19.6709 | 19.6709 | 19.6709 | 19.6763 | 19.7642 | 20.0307 | 19.6716 | 18.1976 | 19.3682 |
6 | 24.6958 | 23.0096 | 23.1941 | 23.2140 | 23.1452 | 23.2670 | 22.9247 | 23.1408 | 20.7912 | 21.0884 | |
8 | 27.2155 | 25.6084 | 25.4453 | 25.5795 | 25.4993 | 25.5279 | 24.7919 | 25.7945 | 21.5042 | 22.3496 | |
10 | 28.8068 | 26.7811 | 27.7569 | 27.8577 | 27.2524 | 27.9344 | 27.2989 | 28.1843 | 24.2632 | 23.8468 | |
12 | 31.2694 | 28.2212 | 28.6299 | 29.7647 | 31.1706 | 29.1077 | 30.2376 | 29.5208 | 24.7799 | 25.3405 | |
Kangaroo | 4 | 18.3519 | 17.4067 | 17.4067 | 17.4067 | 17.4103 | 17.0564 | 17.5407 | 17.4078 | 18.2768 | 18.3300 |
6 | 23.1569 | 21.4058 | 20.6824 | 21.1593 | 21.0394 | 20.6824 | 22.5463 | 20.6663 | 20.7331 | 21.1320 | |
8 | 30.0907 | 26.0815 | 26.7610 | 25.4635 | 26.1473 | 24.6898 | 23.6899 | 26.0395 | 22.3714 | 23.3637 | |
10 | 32.6099 | 30.3705 | 27.9116 | 26.5561 | 30.5514 | 32.0864 | 29.5856 | 30.0876 | 25.4257 | 25.1888 | |
12 | 34.1968 | 34.1044 | 31.2554 | 27.3589 | 32.5094 | 33.6201 | 31.1735 | 33.9460 | 25.4637 | 27.0112 | |
Lake | 4 | 20.0431 | 18.9654 | 18.9611 | 18.5261 | 18.9611 | 18.5723 | 18.9711 | 18.9611 | 15.2170 | 17.5212 |
6 | 23.1596 | 21.9103 | 21.8344 | 21.9101 | 21.8345 | 21.7848 | 21.6807 | 21.9074 | 19.9245 | 19.0321 | |
8 | 26.8396 | 22.9554 | 23.4779 | 23.4811 | 24.2708 | 24.7097 | 22.7091 | 23.7849 | 19.4923 | 21.2751 | |
10 | 28.9053 | 25.3040 | 25.3547 | 25.6594 | 26.8900 | 26.4456 | 24.8679 | 24.7697 | 21.2984 | 23.3053 | |
12 | 30.8523 | 25.6771 | 28.9978 | 27.3762 | 29.6128 | 28.9323 | 28.0416 | 27.6008 | 23.7859 | 23.7204 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 0.7113 | 0.7113 | 0.7113 | 0.7043 | 0.7113 | 0.7110 | 0.7090 | 0.7113 | 0.6573 | 0.7026 |
6 | 0.8056 | 0.8056 | 0.8055 | 0.8003 | 0.8055 | 0.7992 | 0.7921 | 0.8056 | 0.8047 | 0.7817 | |
8 | 0.8567 | 0.8522 | 0.8544 | 0.8441 | 0.8566 | 0.8461 | 0.8505 | 0.8543 | 0.8567 | 0.8424 | |
10 | 0.8835 | 0.8792 | 0.8717 | 0.8715 | 0.8826 | 0.8756 | 0.8777 | 0.8824 | 0.8762 | 0.8763 | |
12 | 0.9028 | 0.8903 | 0.9003 | 0.8828 | 0.8944 | 0.8980 | 0.8969 | 0.8935 | 0.8888 | 0.9020 | |
Building | 4 | 0.7372 | 0.7372 | 0.7372 | 0.7313 | 0.7372 | 0.7372 | 0.7365 | 0.7372 | 0.6592 | 0.6868 |
6 | 0.8052 | 0.8043 | 0.8030 | 0.8052 | 0.8031 | 0.8031 | 0.8002 | 0.8024 | 0.7017 | 0.7455 | |
8 | 0.8389 | 0.8382 | 0.8384 | 0.8353 | 0.8382 | 0.8346 | 0.8303 | 0.8387 | 0.7955 | 0.8048 | |
10 | 0.8737 | 0.8637 | 0.8635 | 0.8558 | 0.8639 | 0.8545 | 0.8531 | 0.8633 | 0.8005 | 0.8252 | |
12 | 0.8831 | 0.8813 | 0.8826 | 0.8751 | 0.8824 | 0.8823 | 0.8826 | 0.8824 | 0.8461 | 0.8729 | |
Cactus | 4 | 0.5798 | 0.5798 | 0.5798 | 0.5785 | 0.5798 | 0.5599 | 0.5798 | 0.5798 | 0.5737 | 0.5700 |
6 | 0.6815 | 0.6812 | 0.6813 | 0.6790 | 0.6815 | 0.6815 | 0.6705 | 0.6813 | 0.6729 | 0.6498 | |
8 | 0.7351 | 0.7275 | 0.7320 | 0.7287 | 0.7349 | 0.7151 | 0.7087 | 0.7344 | 0.7325 | 0.7321 | |
10 | 0.7690 | 0.7541 | 0.7611 | 0.7678 | 0.7654 | 0.7551 | 0.7681 | 0.7689 | 0.7650 | 0.7628 | |
12 | 0.7888 | 0.7668 | 0.7747 | 0.7767 | 0.7823 | 0.7693 | 0.7724 | 0.7828 | 0.7851 | 0.7677 | |
Cow | 4 | 0.7231 | 0.7231 | 0.7231 | 0.7081 | 0.7229 | 0.7225 | 0.7219 | 0.7231 | 0.7038 | 0.7067 |
6 | 0.8050 | 0.7960 | 0.8045 | 0.7888 | 0.8044 | 0.7897 | 0.7975 | 0.8057 | 0.7858 | 0.7798 | |
8 | 0.8455 | 0.8403 | 0.8446 | 0.8430 | 0.8447 | 0.8436 | 0.8362 | 0.8448 | 0.8170 | 0.8453 | |
10 | 0.8739 | 0.8688 | 0.8730 | 0.8651 | 0.8723 | 0.8706 | 0.8675 | 0.8706 | 0.8031 | 0.8469 | |
12 | 0.8887 | 0.8751 | 0.8818 | 0.8835 | 0.8842 | 0.8768 | 0.8778 | 0.8841 | 0.8701 | 0.8823 | |
Deer | 4 | 0.6480 | 0.6480 | 0.6480 | 0.6434 | 0.6480 | 0.6432 | 0.6480 | 0.6326 | 0.6397 | 0.6463 |
6 | 0.8121 | 0.7898 | 0.7898 | 0.8034 | 0.7901 | 0.7874 | 0.7656 | 0.7923 | 0.7591 | 0.8120 | |
8 | 0.8749 | 0.8566 | 0.8554 | 0.8606 | 0.8595 | 0.8667 | 0.8642 | 0.8653 | 0.7847 | 0.8208 | |
10 | 0.9043 | 0.8987 | 0.8931 | 0.8869 | 0.8971 | 0.9015 | 0.9016 | 0.9042 | 0.8587 | 0.8950 | |
12 | 0.9291 | 0.9203 | 0.9190 | 0.9248 | 0.9171 | 0.9161 | 0.9087 | 0.9281 | 0.8958 | 0.9057 | |
Diver | 4 | 0.3451 | 0.3451 | 0.3451 | 0.3404 | 0.3451 | 0.3437 | 0.3436 | 0.3450 | 0.3446 | 0.3411 |
6 | 0.4352 | 0.4349 | 0.4352 | 0.4132 | 0.4352 | 0.4053 | 0.4352 | 0.4314 | 0.4327 | 0.4324 | |
8 | 0.5743 | 0.5517 | 0.4710 | 0.4917 | 0.4702 | 0.4425 | 0.5405 | 0.4771 | 0.5675 | 0.5233 | |
10 | 0.6073 | 0.5922 | 0.4985 | 0.6026 | 0.6024 | 0.4838 | 0.6380 | 0.5744 | 0.4822 | 0.6048 | |
12 | 0.6730 | 0.6262 | 0.5055 | 0.6130 | 0.6159 | 0.6107 | 0.6456 | 0.5841 | 0.6068 | 0.6632 | |
Elephant | 4 | 0.6080 | 0.6080 | 0.6080 | 0.5992 | 0.6080 | 0.6073 | 0.6041 | 0.6080 | 0.6065 | 0.6042 |
6 | 0.7149 | 0.7073 | 0.6950 | 0.7079 | 0.7084 | 0.6944 | 0.6911 | 0.6945 | 0.6990 | 0.7145 | |
8 | 0.7957 | 0.7560 | 0.7446 | 0.7685 | 0.7692 | 0.7543 | 0.7834 | 0.7588 | 0.7497 | 0.7838 | |
10 | 0.8447 | 0.8029 | 0.7844 | 0.8421 | 0.8229 | 0.7777 | 0.8314 | 0.8229 | 0.8102 | 0.8029 | |
12 | 0.8776 | 0.8164 | 0.8458 | 0.8775 | 0.8257 | 0.8376 | 0.8431 | 0.8309 | 0.8776 | 0.8657 | |
Horse | 4 | 0.7462 | 0.7462 | 0.7462 | 0.7304 | 0.7462 | 0.7370 | 0.7428 | 0.7450 | 0.6384 | 0.6560 |
6 | 0.8736 | 0.8433 | 0.8436 | 0.8582 | 0.8436 | 0.8573 | 0.8427 | 0.8350 | 0.7952 | 0.8313 | |
8 | 0.9207 | 0.8900 | 0.8900 | 0.9195 | 0.8928 | 0.9059 | 0.8915 | 0.8913 | 0.8388 | 0.8528 | |
10 | 0.9475 | 0.9069 | 0.9332 | 0.9399 | 0.9426 | 0.9334 | 0.9128 | 0.9283 | 0.8639 | 0.8476 | |
12 | 0.9552 | 0.9232 | 0.9479 | 0.9457 | 0.9503 | 0.9458 | 0.9424 | 0.9447 | 0.9002 | 0.8971 | |
Kangaroo | 4 | 0.7130 | 0.7130 | 0.7130 | 0.7042 | 0.7126 | 0.7116 | 0.7086 | 0.7129 | 0.6375 | 0.6732 |
6 | 0.8414 | 0.8413 | 0.8414 | 0.8207 | 0.8414 | 0.8363 | 0.8220 | 0.8338 | 0.7698 | 0.8036 | |
8 | 0.9101 | 0.9014 | 0.9015 | 0.8687 | 0.9007 | 0.8978 | 0.8672 | 0.8976 | 0.7547 | 0.8233 | |
10 | 0.9352 | 0.9266 | 0.9286 | 0.9069 | 0.9333 | 0.9211 | 0.9014 | 0.9256 | 0.8290 | 0.8893 | |
12 | 0.9494 | 0.9378 | 0.9394 | 0.9219 | 0.9492 | 0.9454 | 0.9192 | 0.9436 | 0.8724 | 0.8834 | |
Lake | 4 | 0.6677 | 0.6676 | 0.6676 | 0.6624 | 0.6676 | 0.6672 | 0.6677 | 0.6662 | 0.6199 | 0.6635 |
6 | 0.7982 | 0.7646 | 0.7673 | 0.7979 | 0.7853 | 0.7719 | 0.7699 | 0.7663 | 0.6870 | 0.7027 | |
8 | 0.8781 | 0.8408 | 0.8277 | 0.8589 | 0.8290 | 0.8388 | 0.8212 | 0.8698 | 0.8205 | 0.7837 | |
10 | 0.8929 | 0.8620 | 0.8630 | 0.8812 | 0.8618 | 0.8846 | 0.8778 | 0.8804 | 0.8681 | 0.8331 | |
12 | 0.9186 | 0.8836 | 0.9057 | 0.8897 | 0.9070 | 0.9044 | 0.8912 | 0.8888 | 0.8515 | 0.8652 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDA | EOFPA |
Bridge | 4 | 0.6942 | 0.6942 | 0.6930 | 0.6352 | 0.6889 | 0.6941 | 0.6851 | 0.6942 | 0.6645 | 0.6772 |
6 | 0.8170 | 0.7948 | 0.7945 | 0.8051 | 0.7958 | 0.8073 | 0.7890 | 0.7969 | 0.7594 | 0.8127 | |
8 | 0.8558 | 0.8437 | 0.8490 | 0.8370 | 0.8509 | 0.8425 | 0.8443 | 0.8509 | 0.8557 | 0.8551 | |
10 | 0.8984 | 0.8837 | 0.8770 | 0.8780 | 0.8798 | 0.8880 | 0.8859 | 0.8803 | 0.8841 | 0.8857 | |
12 | 0.9379 | 0.8904 | 0.9126 | 0.9359 | 0.9135 | 0.9236 | 0.8982 | 0.9221 | 0.9241 | 0.9100 | |
Building | 4 | 0.7384 | 0.7384 | 0.7384 | 0.7370 | 0.7384 | 0.7321 | 0.7379 | 0.7384 | 0.7100 | 0.6493 |
6 | 0.8268 | 0.8242 | 0.8214 | 0.8194 | 0.8061 | 0.8216 | 0.8199 | 0.8160 | 0.7319 | 0.7376 | |
8 | 0.8690 | 0.8660 | 0.8666 | 0.8503 | 0.8671 | 0.8685 | 0.8462 | 0.8656 | 0.7095 | 0.7367 | |
10 | 0.8960 | 0.8930 | 0.8915 | 0.8649 | 0.8943 | 0.8907 | 0.8694 | 0.8924 | 0.8010 | 0.8069 | |
12 | 0.9167 | 0.9124 | 0.9134 | 0.8945 | 0.9137 | 0.9147 | 0.8866 | 0.9089 | 0.8416 | 0.8599 | |
Cactus | 4 | 0.6220 | 0.6220 | 0.6220 | 0.6211 | 0.6207 | 0.6198 | 0.6201 | 0.6220 | 0.4588 | 0.4650 |
6 | 0.8041 | 0.7119 | 0.7130 | 0.7132 | 0.7546 | 0.7120 | 0.7118 | 0.7138 | 0.5973 | 0.6548 | |
8 | 0.8772 | 0.7557 | 0.7570 | 0.7589 | 0.7612 | 0.7453 | 0.8131 | 0.7586 | 0.6363 | 0.7261 | |
10 | 0.9072 | 0.7797 | 0.7837 | 0.7903 | 0.8430 | 0.7859 | 0.8569 | 0.7907 | 0.7089 | 0.7736 | |
12 | 0.9187 | 0.8078 | 0.7949 | 0.8164 | 0.8462 | 0.8472 | 0.8668 | 0.8164 | 0.7656 | 0.7188 | |
Cow | 4 | 0.6847 | 0.6827 | 0.6847 | 0.6837 | 0.6847 | 0.6833 | 0.6838 | 0.6847 | 0.6793 | 0.6830 |
6 | 0.8151 | 0.7801 | 0.7823 | 0.7823 | 0.7913 | 0.7838 | 0.7701 | 0.7804 | 0.7421 | 0.8128 | |
8 | 0.8684 | 0.8558 | 0.8543 | 0.8584 | 0.8404 | 0.8499 | 0.8451 | 0.8386 | 0.8317 | 0.8199 | |
10 | 0.9059 | 0.8786 | 0.8922 | 0.8798 | 0.9045 | 0.8955 | 0.8481 | 0.8948 | 0.8544 | 0.8746 | |
12 | 0.9252 | 0.9176 | 0.9218 | 0.9106 | 0.9209 | 0.9234 | 0.8943 | 0.9140 | 0.8741 | 0.8815 | |
Deer | 4 | 0.6468 | 0.6468 | 0.6468 | 0.6385 | 0.6468 | 0.6467 | 0.6424 | 0.6468 | 0.4978 | 0.6468 |
6 | 0.7928 | 0.7918 | 0.7907 | 0.7868 | 0.7923 | 0.7846 | 0.7902 | 0.7928 | 0.7919 | 0.7580 | |
8 | 0.8663 | 0.8649 | 0.8542 | 0.8222 | 0.8581 | 0.8598 | 0.8544 | 0.8650 | 0.7811 | 0.8139 | |
10 | 0.9069 | 0.9031 | 0.9063 | 0.8389 | 0.8937 | 0.8933 | 0.8675 | 0.8977 | 0.8291 | 0.8549 | |
12 | 0.9338 | 0.9251 | 0.9138 | 0.8882 | 0.9322 | 0.9164 | 0.8742 | 0.9272 | 0.8947 | 0.8984 | |
Diver | 4 | 0.4393 | 0.4393 | 0.4393 | 0.4298 | 0.4393 | 0.4095 | 0.4202 | 0.4393 | 0.4383 | 0.4321 |
6 | 0.6108 | 0.6060 | 0.5739 | 0.5831 | 0.5682 | 0.4672 | 0.5918 | 0.5862 | 0.6001 | 0.5501 | |
8 | 0.8221 | 0.6708 | 0.6074 | 0.6724 | 0.6627 | 0.6000 | 0.7211 | 0.6304 | 0.7962 | 0.8003 | |
10 | 0.9111 | 0.6921 | 0.6520 | 0.7011 | 0.6873 | 0.6278 | 0.7519 | 0.6820 | 0.8130 | 0.8131 | |
12 | 0.9183 | 0.7537 | 0.6933 | 0.7615 | 0.7566 | 0.6303 | 0.7791 | 0.7146 | 0.8281 | 0.8814 | |
Elephant | 4 | 0.5266 | 0.5258 | 0.5266 | 0.5253 | 0.5266 | 0.5212 | 0.5212 | 0.5266 | 0.5266 | 0.5195 |
6 | 0.6878 | 0.6103 | 0.6103 | 0.6105 | 0.6192 | 0.6520 | 0.5864 | 0.6332 | 0.6492 | 0.6845 | |
8 | 0.8032 | 0.6783 | 0.6942 | 0.6976 | 0.7281 | 0.7224 | 0.7094 | 0.6978 | 0.7229 | 0.7631 | |
10 | 0.8242 | 0.8025 | 0.7513 | 0.7701 | 0.7996 | 0.7534 | 0.7247 | 0.7594 | 0.7079 | 0.8019 | |
12 | 0.8759 | 0.8403 | 0.7942 | 0.7859 | 0.8411 | 0.8463 | 0.8182 | 0.8505 | 0.8187 | 0.7491 | |
Horse | 4 | 0.7496 | 0.7496 | 0.7496 | 0.7483 | 0.7492 | 0.7476 | 0.7425 | 0.7482 | 0.6587 | 0.6769 |
6 | 0.8645 | 0.8532 | 0.8503 | 0.8535 | 0.8507 | 0.8557 | 0.8493 | 0.8526 | 0.7706 | 0.7907 | |
8 | 0.9231 | 0.9168 | 0.9198 | 0.9082 | 0.9218 | 0.9203 | 0.9186 | 0.9199 | 0.8587 | 0.8251 | |
10 | 0.9455 | 0.9306 | 0.9434 | 0.9357 | 0.9452 | 0.9387 | 0.9252 | 0.9445 | 0.8553 | 0.7948 | |
12 | 0.9602 | 0.9453 | 0.9562 | 0.9434 | 0.9581 | 0.9579 | 0.9409 | 0.9586 | 0.8730 | 0.8409 | |
Kangaroo | 4 | 0.6355 | 0.6345 | 0.6347 | 0.6264 | 0.5800 | 0.6354 | 0.6266 | 0.6355 | 0.6344 | 0.6335 |
6 | 0.7745 | 0.7558 | 0.7647 | 0.7499 | 0.7700 | 0.7661 | 0.7377 | 0.7698 | 0.7686 | 0.7738 | |
8 | 0.8555 | 0.8487 | 0.8514 | 0.8133 | 0.8493 | 0.8333 | 0.8335 | 0.8468 | 0.7650 | 0.7709 | |
10 | 0.8983 | 0.8874 | 0.8851 | 0.8398 | 0.8927 | 0.8880 | 0.8412 | 0.8963 | 0.8167 | 0.7521 | |
12 | 0.9235 | 0.9170 | 0.9193 | 0.8954 | 0.9143 | 0.9114 | 0.8838 | 0.9208 | 0.8294 | 0.8155 | |
Lake | 4 | 0.6625 | 0.6625 | 0.6625 | 0.6610 | 0.6599 | 0.6615 | 0.6613 | 0.6625 | 0.6609 | 0.6377 |
6 | 0.7980 | 0.7970 | 0.7900 | 0.7864 | 0.7975 | 0.7964 | 0.7871 | 0.7923 | 0.7442 | 0.7460 | |
8 | 0.8682 | 0.8641 | 0.8630 | 0.8551 | 0.8649 | 0.8635 | 0.8531 | 0.8610 | 0.8138 | 0.7938 | |
10 | 0.9156 | 0.9018 | 0.9065 | 0.8733 | 0.9016 | 0.9025 | 0.8876 | 0.8998 | 0.8369 | 0.8575 | |
12 | 0.9390 | 0.9275 | 0.9258 | 0.9034 | 0.9287 | 0.9323 | 0.8979 | 0.9220 | 0.8718 | 0.8648 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 0.7366 | 0.7366 | 0.7366 | 0.7355 | 0.7366 | 0.7348 | 0.7356 | 0.7366 | 0.6931 | 0.6918 |
6 | 0.8266 | 0.8214 | 0.8224 | 0.8199 | 0.8212 | 0.8226 | 0.8202 | 0.8221 | 0.7918 | 0.7982 | |
8 | 0.8829 | 0.8694 | 0.8703 | 0.8635 | 0.8710 | 0.8679 | 0.8739 | 0.8672 | 0.8516 | 0.8550 | |
10 | 0.9071 | 0.8966 | 0.9070 | 0.8893 | 0.9052 | 0.9002 | 0.8795 | 0.8957 | 0.8976 | 0.8873 | |
12 | 0.9345 | 0.9101 | 0.9180 | 0.9195 | 0.9204 | 0.9212 | 0.8978 | 0.9238 | 0.9022 | 0.9265 | |
Building | 4 | 0.7553 | 0.7553 | 0.7553 | 0.7537 | 0.7553 | 0.7549 | 0.7551 | 0.7553 | 0.6365 | 0.6991 |
6 | 0.8221 | 0.8185 | 0.8176 | 0.8131 | 0.8181 | 0.8185 | 0.8172 | 0.8175 | 0.7506 | 0.7318 | |
8 | 0.8521 | 0.8468 | 0.8466 | 0.8239 | 0.8491 | 0.8511 | 0.8390 | 0.8476 | 0.8003 | 0.8024 | |
10 | 0.8820 | 0.8639 | 0.8645 | 0.8540 | 0.8726 | 0.8724 | 0.8571 | 0.8735 | 0.8023 | 0.8297 | |
12 | 0.9048 | 0.8922 | 0.8802 | 0.8765 | 0.8966 | 0.8811 | 0.8957 | 0.8786 | 0.8527 | 0.8656 | |
Cactus | 4 | 0.4681 | 0.4681 | 0.4681 | 0.4671 | 0.4681 | 0.4637 | 0.4673 | 0.4681 | 0.4657 | 0.4629 |
6 | 0.6581 | 0.5566 | 0.5548 | 0.5573 | 0.5546 | 0.5960 | 0.5702 | 0.5560 | 0.6454 | 0.6295 | |
8 | 0.7983 | 0.7213 | 0.7949 | 0.7707 | 0.6305 | 0.6478 | 0.7329 | 0.6397 | 0.7855 | 0.7888 | |
10 | 0.8446 | 0.7609 | 0.8330 | 0.7738 | 0.7436 | 0.8322 | 0.7820 | 0.7121 | 0.8344 | 0.8363 | |
12 | 0.8672 | 0.7861 | 0.8619 | 0.8372 | 0.7952 | 0.8634 | 0.8492 | 0.8624 | 0.8513 | 0.8209 | |
Cow | 4 | 0.7327 | 0.7327 | 0.7320 | 0.7327 | 0.7285 | 0.7327 | 0.7319 | 0.7140 | 0.7252 | 0.7327 |
6 | 0.8227 | 0.8206 | 0.8206 | 0.8137 | 0.8133 | 0.8149 | 0.8217 | 0.8199 | 0.7943 | 0.8213 | |
8 | 0.8712 | 0.8604 | 0.8603 | 0.8610 | 0.8568 | 0.8455 | 0.8677 | 0.8583 | 0.8489 | 0.8318 | |
10 | 0.8921 | 0.8895 | 0.8848 | 0.8830 | 0.8912 | 0.8865 | 0.8896 | 0.8889 | 0.8156 | 0.8744 | |
12 | 0.9139 | 0.9108 | 0.9043 | 0.9131 | 0.9119 | 0.9075 | 0.8956 | 0.9097 | 0.8822 | 0.8922 | |
Deer | 4 | 0.6399 | 0.6399 | 0.6399 | 0.6170 | 0.6399 | 0.6304 | 0.6345 | 0.6323 | 0.6381 | 0.6330 |
6 | 0.8098 | 0.7790 | 0.7790 | 0.7627 | 0.7956 | 0.7790 | 0.8026 | 0.7845 | 0.7389 | 0.7832 | |
8 | 0.8807 | 0.8621 | 0.8671 | 0.8443 | 0.8553 | 0.8544 | 0.8305 | 0.8628 | 0.7842 | 0.8523 | |
10 | 0.9130 | 0.9108 | 0.8948 | 0.8491 | 0.9035 | 0.8997 | 0.8915 | 0.8886 | 0.8737 | 0.8860 | |
12 | 0.9362 | 0.9336 | 0.9174 | 0.8651 | 0.9227 | 0.9218 | 0.9191 | 0.9235 | 0.8922 | 0.9079 | |
Diver | 4 | 0.1592 | 0.1351 | 0.1579 | 0.1516 | 0.1351 | 0.1570 | 0.1337 | 0.1351 | 0.1448 | 0.1413 |
6 | 0.2508 | 0.1743 | 0.1743 | 0.2117 | 0.1743 | 0.1736 | 0.1667 | 0.1743 | 0.2476 | 0.2455 | |
8 | 0.5062 | 0.2698 | 0.2715 | 0.2716 | 0.2717 | 0.2864 | 0.3493 | 0.2697 | 0.4995 | 0.4941 | |
10 | 0.6209 | 0.3446 | 0.3557 | 0.5907 | 0.3566 | 0.3814 | 0.3595 | 0.3819 | 0.6119 | 0.6123 | |
12 | 0.6299 | 0.5336 | 0.3968 | 0.6005 | 0.3868 | 0.3936 | 0.5492 | 0.3971 | 0.6141 | 0.6193 | |
Elephant | 4 | 0.5256 | 0.5208 | 0.5256 | 0.5253 | 0.5036 | 0.5212 | 0.5092 | 0.5191 | 0.5189 | 0.5169 |
6 | 0.6787 | 0.6093 | 0.6001 | 0.6605 | 0.6192 | 0.6760 | 0.5864 | 0.6332 | 0.6716 | 0.6679 | |
8 | 0.7902 | 0.6983 | 0.6984 | 0.6876 | 0.7281 | 0.7204 | 0.7254 | 0.6868 | 0.7902 | 0.7803 | |
10 | 0.8189 | 0.8015 | 0.7845 | 0.7861 | 0.7866 | 0.7214 | 0.7357 | 0.7414 | 0.8141 | 0.8042 | |
12 | 0.8670 | 0.8303 | 0.7712 | 0.7989 | 0.8311 | 0.8543 | 0.8212 | 0.8435 | 0.8125 | 0.8098 | |
Horse | 4 | 0.7878 | 0.7769 | 0.7769 | 0.7769 | 0.7791 | 0.7783 | 0.7855 | 0.7689 | 0.6849 | 0.7398 |
6 | 0.8841 | 0.8679 | 0.8700 | 0.8700 | 0.8687 | 0.8673 | 0.8647 | 0.8691 | 0.7936 | 0.8095 | |
8 | 0.9249 | 0.9118 | 0.9106 | 0.9139 | 0.9117 | 0.9069 | 0.9032 | 0.9144 | 0.8239 | 0.8532 | |
10 | 0.9413 | 0.9313 | 0.9354 | 0.9320 | 0.9336 | 0.9339 | 0.9389 | 0.9398 | 0.8851 | 0.8743 | |
12 | 0.9601 | 0.9451 | 0.9459 | 0.9537 | 0.9596 | 0.9529 | 0.9504 | 0.9536 | 0.8939 | 0.9144 | |
Kangaroo | 4 | 0.7084 | 0.6978 | 0.6978 | 0.6958 | 0.6985 | 0.6881 | 0.6919 | 0.6980 | 0.6295 | 0.7071 |
6 | 0.8353 | 0.8252 | 0.8211 | 0.8024 | 0.8256 | 0.8211 | 0.8106 | 0.8203 | 0.7677 | 0.7520 | |
8 | 0.8978 | 0.8934 | 0.8936 | 0.8646 | 0.8916 | 0.8878 | 0.8445 | 0.8867 | 0.7731 | 0.8215 | |
10 | 0.9297 | 0.9289 | 0.9222 | 0.8966 | 0.9190 | 0.9228 | 0.8905 | 0.9224 | 0.8699 | 0.8722 | |
12 | 0.9479 | 0.9457 | 0.9471 | 0.9050 | 0.9434 | 0.9398 | 0.9086 | 0.9471 | 0.8763 | 0.9062 | |
Lake | 4 | 0.6875 | 0.6871 | 0.6875 | 0.6807 | 0.6875 | 0.6783 | 0.6788 | 0.6875 | 0.6346 | 0.6589 |
6 | 0.7906 | 0.7904 | 0.7892 | 0.7882 | 0.7895 | 0.7856 | 0.7800 | 0.7902 | 0.7906 | 0.7692 | |
8 | 0.8579 | 0.8360 | 0.8441 | 0.8470 | 0.8487 | 0.8473 | 0.8280 | 0.8432 | 0.7952 | 0.8246 | |
10 | 0.8919 | 0.8798 | 0.8813 | 0.8785 | 0.8835 | 0.8833 | 0.8612 | 0.8740 | 0.8399 | 0.8827 | |
12 | 0.9200 | 0.8950 | 0.9176 | 0.9049 | 0.9090 | 0.9093 | 0.8971 | 0.9092 | 0.8726 | 0.8929 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 0.7972 | 0.7972 | 0.7972 | 0.7925 | 0.7972 | 0.7972 | 0.7972 | 0.7972 | 0.7684 | 0.7886 |
6 | 0.8669 | 0.8667 | 0.8669 | 0.8525 | 0.8669 | 0.8642 | 0.8576 | 0.8669 | 0.8669 | 0.8365 | |
8 | 0.8995 | 0.8988 | 0.8993 | 0.8795 | 0.8995 | 0.8973 | 0.8916 | 0.8989 | 0.8826 | 0.8775 | |
10 | 0.9183 | 0.9177 | 0.9164 | 0.9099 | 0.9175 | 0.9126 | 0.9086 | 0.9181 | 0.9039 | 0.8923 | |
12 | 0.9383 | 0.9274 | 0.9378 | 0.9103 | 0.9289 | 0.9318 | 0.9292 | 0.9288 | 0.9120 | 0.9240 | |
Building | 4 | 0.7762 | 0.7762 | 0.7762 | 0.7722 | 0.7762 | 0.7762 | 0.7762 | 0.7762 | 0.7234 | 0.7362 |
6 | 0.8413 | 0.8413 | 0.8409 | 0.8370 | 0.8408 | 0.8413 | 0.8387 | 0.8403 | 0.7659 | 0.7850 | |
8 | 0.8752 | 0.8749 | 0.8747 | 0.8575 | 0.8739 | 0.8731 | 0.8660 | 0.8744 | 0.8161 | 0.8417 | |
10 | 0.9075 | 0.8981 | 0.8975 | 0.8827 | 0.8968 | 0.8923 | 0.8857 | 0.8979 | 0.8348 | 0.8574 | |
12 | 0.9161 | 0.9156 | 0.9021 | 0.9036 | 0.9130 | 0.9130 | 0.9049 | 0.9122 | 0.8883 | 0.8905 | |
Cactus | 4 | 0.7771 | 0.7771 | 0.7771 | 0.7747 | 0.7771 | 0.7740 | 0.7764 | 0.7771 | 0.7770 | 0.7771 |
6 | 0.8458 | 0.8456 | 0.8458 | 0.8371 | 0.8456 | 0.8444 | 0.8402 | 0.8458 | 0.8454 | 0.8464 | |
8 | 0.8812 | 0.8760 | 0.8794 | 0.8805 | 0.8812 | 0.8746 | 0.8650 | 0.8810 | 0.8804 | 0.8733 | |
10 | 0.9012 | 0.8957 | 0.8993 | 0.9011 | 0.9001 | 0.8971 | 0.8790 | 0.9009 | 0.8968 | 0.9012 | |
12 | 0.9133 | 0.9064 | 0.9101 | 0.9078 | 0.9129 | 0.9044 | 0.9099 | 0.9113 | 0.9013 | 0.9053 | |
Cow | 4 | 0.7983 | 0.7983 | 0.7983 | 0.7909 | 0.7983 | 0.7982 | 0.7975 | 0.7983 | 0.7813 | 0.7834 |
6 | 0.8698 | 0.8657 | 0.8695 | 0.8455 | 0.8694 | 0.8612 | 0.8607 | 0.8690 | 0.8434 | 0.8397 | |
8 | 0.9022 | 0.8990 | 0.9017 | 0.8830 | 0.9015 | 0.9008 | 0.8961 | 0.9015 | 0.8810 | 0.8885 | |
10 | 0.9212 | 0.9207 | 0.9214 | 0.9086 | 0.9103 | 0.9190 | 0.9129 | 0.9196 | 0.8495 | 0.8888 | |
12 | 0.9329 | 0.9307 | 0.9313 | 0.9178 | 0.9136 | 0.9203 | 0.9186 | 0.9312 | 0.9076 | 0.9279 | |
Deer | 4 | 0.7449 | 0.7449 | 0.7449 | 0.7422 | 0.7449 | 0.7434 | 0.7439 | 0.7410 | 0.7158 | 0.7332 |
6 | 0.8517 | 0.8423 | 0.8423 | 0.8367 | 0.8420 | 0.8466 | 0.8307 | 0.8507 | 0.7969 | 0.8551 | |
8 | 0.9086 | 0.8875 | 0.8861 | 0.8840 | 0.8921 | 0.9033 | 0.9022 | 0.8940 | 0.8153 | 0.8513 | |
10 | 0.9346 | 0.9203 | 0.9233 | 0.9097 | 0.9212 | 0.9322 | 0.9223 | 0.9292 | 0.8827 | 0.9027 | |
12 | 0.9481 | 0.9349 | 0.9416 | 0.9466 | 0.9363 | 0.9382 | 0.9323 | 0.9445 | 0.9009 | 0.9307 | |
Diver | 4 | 0.7798 | 0.7798 | 0.7798 | 0.7776 | 0.7798 | 0.7739 | 0.7754 | 0.7783 | 0.7798 | 0.7798 |
6 | 0.8331 | 0.8329 | 0.8331 | 0.8303 | 0.8332 | 0.8212 | 0.8327 | 0.8331 | 0.8324 | 0.8301 | |
8 | 0.8648 | 0.8599 | 0.8627 | 0.8631 | 0.8617 | 0.8471 | 0.8498 | 0.8641 | 0.8614 | 0.8614 | |
10 | 0.8877 | 0.8819 | 0.8798 | 0.8870 | 0.8853 | 0.8717 | 0.8562 | 0.8643 | 0.8804 | 0.8739 | |
12 | 0.9114 | 0.9021 | 0.8913 | 0.8982 | 0.8979 | 0.8879 | 0.8746 | 0.8910 | 0.9114 | 0.9114 | |
Elephant | 4 | 0.7582 | 0.7582 | 0.7582 | 0.7516 | 0.7582 | 0.7564 | 0.7568 | 0.7582 | 0.7924 | 0.7582 |
6 | 0.8248 | 0.8217 | 0.8139 | 0.8245 | 0.8216 | 0.8130 | 0.8150 | 0.8136 | 0.8228 | 0.8209 | |
8 | 0.8582 | 0.8514 | 0.8477 | 0.8533 | 0.8552 | 0.8515 | 0.8574 | 0.8539 | 0.8463 | 0.8582 | |
10 | 0.8855 | 0.8775 | 0.8723 | 0.8854 | 0.8848 | 0.8683 | 0.8849 | 0.8828 | 0.8738 | 0.8778 | |
12 | 0.9051 | 0.8915 | 0.9023 | 0.9036 | 0.8947 | 0.8943 | 0.8851 | 0.8866 | 0.8802 | 0.9008 | |
Horse | 4 | 0.8207 | 0.8207 | 0.8207 | 0.8194 | 0.8207 | 0.8206 | 0.8181 | 0.8200 | 0.7313 | 0.7576 |
6 | 0.8887 | 0.8786 | 0.8787 | 0.8881 | 0.8783 | 0.8867 | 0.8760 | 0.8736 | 0.8576 | 0.8862 | |
8 | 0.9303 | 0.9079 | 0.9078 | 0.9298 | 0.9102 | 0.9215 | 0.9069 | 0.9070 | 0.8814 | 0.8808 | |
10 | 0.9489 | 0.9252 | 0.9363 | 0.9466 | 0.9393 | 0.9386 | 0.9169 | 0.9370 | 0.9081 | 0.8875 | |
12 | 0.9568 | 0.9349 | 0.9392 | 0.9479 | 0.9559 | 0.9559 | 0.9501 | 0.9466 | 0.9103 | 0.9323 | |
Kangaroo | 4 | 0.7456 | 0.7456 | 0.7456 | 0.7387 | 0.7455 | 0.7448 | 0.7425 | 0.7452 | 0.7207 | 0.7456 |
6 | 0.8534 | 0.8529 | 0.8529 | 0.8250 | 0.8529 | 0.8515 | 0.8468 | 0.8498 | 0.8340 | 0.8528 | |
8 | 0.9214 | 0.9148 | 0.9186 | 0.8776 | 0.9117 | 0.9213 | 0.8827 | 0.9086 | 0.8286 | 0.8690 | |
10 | 0.9522 | 0.9457 | 0.9471 | 0.9279 | 0.9453 | 0.9375 | 0.9224 | 0.9434 | 0.9075 | 0.9026 | |
12 | 0.9685 | 0.9557 | 0.9567 | 0.9392 | 0.9607 | 0.9628 | 0.9356 | 0.9554 | 0.9239 | 0.9292 | |
Lake | 4 | 0.7694 | 0.7694 | 0.7694 | 0.7684 | 0.7654 | 0.7677 | 0.7682 | 0.7689 | 0.7399 | 0.7694 |
6 | 0.8582 | 0.8370 | 0.8376 | 0.8560 | 0.8478 | 0.8401 | 0.8389 | 0.8369 | 0.7859 | 0.7923 | |
8 | 0.9063 | 0.8804 | 0.8730 | 0.8902 | 0.8738 | 0.8790 | 0.8666 | 0.8936 | 0.8610 | 0.8461 | |
10 | 0.9137 | 0.8929 | 0.8936 | 0.9132 | 0.8933 | 0.9120 | 0.9074 | 0.9103 | 0.8870 | 0.8808 | |
12 | 0.9399 | 0.9054 | 0.9357 | 0.9210 | 0.9384 | 0.9317 | 0.9166 | 0.9189 | 0.8835 | 0.8849 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 0.7954 | 0.7954 | 0.7947 | 0.7941 | 0.7856 | 0.7943 | 0.7915 | 0.7954 | 0.7262 | 0.7361 |
6 | 0.8787 | 0.8701 | 0.8695 | 0.8651 | 0.8700 | 0.8749 | 0.8641 | 0.8705 | 0.7359 | 0.8764 | |
8 | 0.9081 | 0.9008 | 0.9043 | 0.8956 | 0.9052 | 0.9004 | 0.8941 | 0.9051 | 0.8783 | 0.8948 | |
10 | 0.9274 | 0.9240 | 0.9220 | 0.9095 | 0.9227 | 0.9244 | 0.9225 | 0.9221 | 0.8928 | 0.9056 | |
12 | 0.9549 | 0.9308 | 0.9409 | 0.9471 | 0.9434 | 0.9505 | 0.9276 | 0.9451 | 0.9054 | 0.9201 | |
Building | 4 | 0.7776 | 0.7776 | 0.7776 | 0.7771 | 0.7776 | 0.7757 | 0.7769 | 0.7776 | 0.7401 | 0.7354 |
6 | 0.8574 | 0.8564 | 0.8547 | 0.8472 | 0.8428 | 0.8547 | 0.8502 | 0.8507 | 0.8022 | 0.7879 | |
8 | 0.9017 | 0.9009 | 0.9000 | 0.8703 | 0.9004 | 0.9001 | 0.8757 | 0.8987 | 0.8136 | 0.7887 | |
10 | 0.9283 | 0.9257 | 0.9258 | 0.8887 | 0.9274 | 0.9228 | 0.8992 | 0.9260 | 0.8481 | 0.8528 | |
12 | 0.9444 | 0.9423 | 0.9440 | 0.9193 | 0.9439 | 0.9440 | 0.9149 | 0.9394 | 0.8840 | 0.8803 | |
Cactus | 4 | 0.7766 | 0.7766 | 0.7766 | 0.7756 | 0.7761 | 0.7762 | 0.7762 | 0.7766 | 0.7304 | 0.7284 |
6 | 0.8489 | 0.8488 | 0.8482 | 0.8470 | 0.8464 | 0.8483 | 0.8448 | 0.8484 | 0.8011 | 0.8056 | |
8 | 0.8981 | 0.8840 | 0.8847 | 0.8834 | 0.8835 | 0.8827 | 0.8728 | 0.8846 | 0.8344 | 0.8758 | |
10 | 0.9266 | 0.9045 | 0.9070 | 0.9181 | 0.9054 | 0.9049 | 0.8886 | 0.9066 | 0.8683 | 0.8960 | |
12 | 0.9390 | 0.9196 | 0.9165 | 0.9187 | 0.9271 | 0.9262 | 0.9203 | 0.9161 | 0.8800 | 0.8806 | |
Cow | 4 | 0.7726 | 0.7708 | 0.7726 | 0.7722 | 0.7726 | 0.7709 | 0.7717 | 0.7726 | 0.7703 | 0.7703 |
6 | 0.8635 | 0.8522 | 0.8538 | 0.8442 | 0.8635 | 0.8548 | 0.8418 | 0.8524 | 0.8304 | 0.8547 | |
8 | 0.9024 | 0.8964 | 0.9014 | 0.8891 | 0.8984 | 0.8959 | 0.8834 | 0.8973 | 0.8765 | 0.8779 | |
10 | 0.9311 | 0.9223 | 0.9256 | 0.9038 | 0.9201 | 0.9298 | 0.8881 | 0.9251 | 0.8951 | 0.9120 | |
12 | 0.9473 | 0.9428 | 0.9453 | 0.9282 | 0.9453 | 0.9471 | 0.9114 | 0.9412 | 0.9017 | 0.9080 | |
Deer | 4 | 0.7496 | 0.7496 | 0.7496 | 0.7470 | 0.7496 | 0.7355 | 0.7456 | 0.7496 | 0.6511 | 0.7429 |
6 | 0.8617 | 0.8607 | 0.8600 | 0.8511 | 0.8613 | 0.8559 | 0.8580 | 0.8612 | 0.8397 | 0.8291 | |
8 | 0.9122 | 0.9114 | 0.9061 | 0.8735 | 0.9078 | 0.9083 | 0.8997 | 0.9118 | 0.8417 | 0.8613 | |
10 | 0.9393 | 0.9352 | 0.9387 | 0.8841 | 0.9323 | 0.9337 | 0.9115 | 0.9322 | 0.8806 | 0.9047 | |
12 | 0.9573 | 0.9509 | 0.9440 | 0.9275 | 0.9568 | 0.9468 | 0.9145 | 0.9531 | 0.9168 | 0.9195 | |
Diver | 4 | 0.7295 | 0.7093 | 0.7275 | 0.7159 | 0.7092 | 0.7268 | 0.7066 | 0.7092 | 0.7037 | 0.7242 |
6 | 0.7528 | 0.7528 | 0.7528 | 0.7527 | 0.7526 | 0.7511 | 0.7387 | 0.7528 | 0.7446 | 0.7525 | |
8 | 0.8116 | 0.7948 | 0.7945 | 0.8045 | 0.7949 | 0.7982 | 0.7944 | 0.7925 | 0.8115 | 0.8116 | |
10 | 0.8470 | 0.8129 | 0.8234 | 0.8263 | 0.8251 | 0.8399 | 0.8329 | 0.8461 | 0.8464 | 0.8456 | |
12 | 0.8776 | 0.8625 | 0.8548 | 0.8551 | 0.8512 | 0.8410 | 0.8359 | 0.8547 | 0.8679 | 0.8685 | |
Elephant | 4 | 0.7151 | 0.7148 | 0.7151 | 0.7149 | 0.7151 | 0.7117 | 0.7115 | 0.7151 | 0.7115 | 0.7120 |
6 | 0.8016 | 0.7707 | 0.7707 | 0.7708 | 0.7711 | 0.7921 | 0.7577 | 0.7799 | 0.8007 | 0.8008 | |
8 | 0.8543 | 0.8104 | 0.8221 | 0.8246 | 0.8426 | 0.8313 | 0.8093 | 0.8240 | 0.8244 | 0.8451 | |
10 | 0.8813 | 0.8782 | 0.8601 | 0.8423 | 0.8738 | 0.8616 | 0.8153 | 0.8640 | 0.8425 | 0.8786 | |
12 | 0.9057 | 0.8965 | 0.8835 | 0.9036 | 0.9007 | 0.8978 | 0.8531 | 0.8806 | 0.8882 | 0.8725 | |
Horse | 4 | 0.8264 | 0.8264 | 0.8264 | 0.8243 | 0.8262 | 0.8254 | 0.8231 | 0.8264 | 0.7714 | 0.7843 |
6 | 0.8900 | 0.8897 | 0.8883 | 0.8890 | 0.8891 | 0.8891 | 0.8847 | 0.8892 | 0.8358 | 0.8393 | |
8 | 0.9355 | 0.9316 | 0.9324 | 0.9197 | 0.9339 | 0.9341 | 0.9316 | 0.9326 | 0.8989 | 0.8731 | |
10 | 0.9558 | 0.9457 | 0.9518 | 0.9495 | 0.9531 | 0.9541 | 0.9390 | 0.9520 | 0.9011 | 0.8674 | |
12 | 0.9707 | 0.9536 | 0.9632 | 0.9565 | 0.9647 | 0.9655 | 0.9538 | 0.9638 | 0.9147 | 0.9060 | |
Kangaroo | 4 | 0.7364 | 0.7362 | 0.7355 | 0.7275 | 0.6934 | 0.7359 | 0.7347 | 0.7364 | 0.7349 | 0.7364 |
6 | 0.8485 | 0.8388 | 0.8427 | 0.8298 | 0.8470 | 0.8450 | 0.8203 | 0.8468 | 0.8388 | 0.8445 | |
8 | 0.9153 | 0.9116 | 0.9113 | 0.8906 | 0.9113 | 0.9058 | 0.9020 | 0.9110 | 0.8460 | 0.8402 | |
10 | 0.9450 | 0.9403 | 0.9393 | 0.8920 | 0.9421 | 0.9386 | 0.9072 | 0.9431 | 0.8831 | 0.8697 | |
12 | 0.9612 | 0.9576 | 0.9589 | 0.9295 | 0.9575 | 0.9545 | 0.9288 | 0.9587 | 0.8962 | 0.9052 | |
Lake | 4 | 0.7464 | 0.7464 | 0.7464 | 0.7430 | 0.7408 | 0.7452 | 0.7449 | 0.7464 | 0.7430 | 0.7381 |
6 | 0.8443 | 0.8371 | 0.8366 | 0.8276 | 0.8387 | 0.8371 | 0.8312 | 0.8370 | 0.7971 | 0.8113 | |
8 | 0.8988 | 0.8948 | 0.8936 | 0.8888 | 0.8920 | 0.8912 | 0.8827 | 0.8894 | 0.8458 | 0.8448 | |
10 | 0.9441 | 0.9268 | 0.9297 | 0.9017 | 0.9258 | 0.9259 | 0.9165 | 0.9263 | 0.8775 | 0.8727 | |
12 | 0.9620 | 0.9465 | 0.9441 | 0.9274 | 0.9477 | 0.9582 | 0.9249 | 0.9436 | 0.8995 | 0.8989 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 0.7948 | 0.7948 | 0.7948 | 0.7940 | 0.7948 | 0.7945 | 0.7938 | 0.7948 | 0.7881 | 0.7891 |
6 | 0.8652 | 0.8573 | 0.8570 | 0.8453 | 0.8556 | 0.8554 | 0.8517 | 0.8570 | 0.86520 | 0.8600 | |
8 | 0.9101 | 0.8985 | 0.8963 | 0.8728 | 0.8951 | 0.9015 | 0.8927 | 0.8921 | 0.8914 | 0.8619 | |
10 | 0.9293 | 0.9182 | 0.9176 | 0.8977 | 0.9235 | 0.9266 | 0.8966 | 0.9138 | 0.9065 | 0.8803 | |
12 | 0.9501 | 0.9314 | 0.9302 | 0.9335 | 0.9348 | 0.9422 | 0.9128 | 0.9406 | 0.9101 | 0.9289 | |
Building | 4 | 0.7772 | 0.7772 | 0.7772 | 0.7754 | 0.7772 | 0.7762 | 0.7770 | 0.7772 | 0.7277 | 0.7619 |
6 | 0.8460 | 0.8425 | 0.8419 | 0.8348 | 0.8451 | 0.8420 | 0.8408 | 0.8418 | 0.8029 | 0.7832 | |
8 | 0.8811 | 0.8726 | 0.8731 | 0.8416 | 0.8740 | 0.8731 | 0.8637 | 0.8783 | 0.8221 | 0.8537 | |
10 | 0.9105 | 0.8907 | 0.8904 | 0.8741 | 0.8984 | 0.9025 | 0.8800 | 0.9016 | 0.8490 | 0.8660 | |
12 | 0.9328 | 0.9205 | 0.9060 | 0.8996 | 0.9244 | 0.9063 | 0.9173 | 0.9042 | 0.8928 | 0.8911 | |
Cactus | 4 | 0.7340 | 0.7340 | 0.7340 | 0.7335 | 0.7340 | 0.7312 | 0.7331 | 0.7340 | 0.7244 | 0.7325 |
6 | 0.8110 | 0.7972 | 0.7966 | 0.8018 | 0.7965 | 0.7976 | 0.8020 | 0.7975 | 0.7917 | 0.7965 | |
8 | 0.8765 | 0.8619 | 0.8742 | 0.8745 | 0.8400 | 0.8475 | 0.8658 | 0.8430 | 0.8577 | 0.8673 | |
10 | 0.9094 | 0.8887 | 0.9039 | 0.8903 | 0.8934 | 0.9035 | 0.8925 | 0.8775 | 0.8754 | 0.8922 | |
12 | 0.9270 | 0.9015 | 0.9246 | 0.8909 | 0.9257 | 0.9078 | 0.9009 | 0.9241 | 0.9117 | 0.9067 | |
Cow | 4 | 0.7975 | 0.7975 | 0.7973 | 0.7975 | 0.7949 | 0.7975 | 0.7968 | 0.7774 | 0.7974 | 0.7935 |
6 | 0.8715 | 0.8713 | 0.8712 | 0.8594 | 0.8669 | 0.8688 | 0.8675 | 0.8712 | 0.8690 | 0.8675 | |
8 | 0.9066 | 0.9062 | 0.9063 | 0.8869 | 0.9035 | 0.8981 | 0.9029 | 0.9052 | 0.8815 | 0.8796 | |
10 | 0.9263 | 0.9253 | 0.9225 | 0.9161 | 0.9258 | 0.9207 | 0.9156 | 0.9261 | 0.8709 | 0.9013 | |
12 | 0.9424 | 0.9395 | 0.9338 | 0.9311 | 0.9395 | 0.9373 | 0.9187 | 0.9379 | 0.9107 | 0.9175 | |
Deer | 4 | 0.7485 | 0.7485 | 0.7485 | 0.7480 | 0.7485 | 0.7455 | 0.7466 | 0.7476 | 0.7156 | 0.7482 |
6 | 0.8607 | 0.8601 | 0.8590 | 0.8531 | 0.8593 | 0.8579 | 0.8581 | 0.8602 | 0.7937 | 0.8604 | |
8 | 0.9119 | 0.9109 | 0.9034 | 0.8856 | 0.9098 | 0.9103 | 0.9097 | 0.9068 | 0.8382 | 0.8882 | |
10 | 0.9376 | 0.9312 | 0.9307 | 0.8956 | 0.9311 | 0.9354 | 0.9178 | 0.9302 | 0.8935 | 0.9048 | |
12 | 0.9478 | 0.9419 | 0.9422 | 0.9301 | 0.9437 | 0.9429 | 0.9181 | 0.9428 | 0.9151 | 0.9192 | |
Diver | 4 | 0.8083 | 0.8083 | 0.8083 | 0.8073 | 0.8083 | 0.8008 | 0.7961 | 0.8082 | 0.7115 | 0.7290 |
6 | 0.8422 | 0.8399 | 0.8393 | 0.8396 | 0.8325 | 0.8352 | 0.8321 | 0.8403 | 0.7426 | 0.7332 | |
8 | 0.8815 | 0.8813 | 0.8620 | 0.8664 | 0.8776 | 0.8525 | 0.8497 | 0.8646 | 0.8036 | 0.7981 | |
10 | 0.9033 | 0.8998 | 0.8890 | 0.8826 | 0.8987 | 0.8729 | 0.8690 | 0.8925 | 0.8219 | 0.8381 | |
12 | 0.9100 | 0.9096 | 0.9007 | 0.8908 | 0.9040 | 0.8870 | 0.8756 | 0.9070 | 0.8686 | 0.8585 | |
Elephant | 4 | 0.7657 | 0.7653 | 0.7657 | 0.7609 | 0.7640 | 0.7651 | 0.7648 | 0.7650 | 0.6993 | 0.7016 |
6 | 0.8294 | 0.8279 | 0.8278 | 0.8219 | 0.8293 | 0.8279 | 0.8178 | 0.8278 | 0.7987 | 0.8000 | |
8 | 0.8733 | 0.8585 | 0.8582 | 0.8586 | 0.8586 | 0.8569 | 0.8431 | 0.8536 | 0.8355 | 0.8476 | |
10 | 0.8816 | 0.8808 | 0.8803 | 0.8758 | 0.8811 | 0.8757 | 0.8638 | 0.8816 | 0.8678 | 0.8794 | |
12 | 0.9084 | 0.8932 | 0.9069 | 0.8901 | 0.8964 | 0.8952 | 0.8953 | 0.8969 | 0.8796 | 0.8808 | |
Horse | 4 | 0.8266 | 0.8266 | 0.8266 | 0.8257 | 0.8266 | 0.8264 | 0.8202 | 0.8266 | 0.7711 | 0.8128 |
6 | 0.8953 | 0.8862 | 0.8871 | 0.8875 | 0.8871 | 0.8910 | 0.8842 | 0.8866 | 0.8491 | 0.8596 | |
8 | 0.9317 | 0.9201 | 0.9186 | 0.9081 | 0.9186 | 0.9165 | 0.9070 | 0.9214 | 0.8657 | 0.8913 | |
10 | 0.9498 | 0.9342 | 0.9368 | 0.9373 | 0.9374 | 0.9432 | 0.9451 | 0.9399 | 0.9153 | 0.9017 | |
12 | 0.9654 | 0.9472 | 0.9500 | 0.9520 | 0.9653 | 0.9516 | 0.9555 | 0.9545 | 0.9279 | 0.9324 | |
Kangaroo | 4 | 0.7364 | 0.7229 | 0.7229 | 0.7229 | 0.7232 | 0.7146 | 0.7214 | 0.7229 | 0.7259 | 0.7212 |
6 | 0.8423 | 0.8269 | 0.8184 | 0.8057 | 0.8239 | 0.8184 | 0.8222 | 0.8180 | 0.8174 | 0.7918 | |
8 | 0.9212 | 0.8954 | 0.8977 | 0.8613 | 0.8958 | 0.8841 | 0.8489 | 0.8879 | 0.8367 | 0.8795 | |
10 | 0.9469 | 0.9361 | 0.9204 | 0.8916 | 0.9283 | 0.9452 | 0.9122 | 0.9247 | 0.9001 | 0.8817 | |
12 | 0.9623 | 0.9486 | 0.9606 | 0.9088 | 0.9502 | 0.9582 | 0.9217 | 0.9615 | 0.9056 | 0.9228 | |
Lake | 4 | 0.7765 | 0.7764 | 0.7765 | 0.7727 | 0.7765 | 0.7731 | 0.7758 | 0.7765 | 0.7306 | 0.7314 |
6 | 0.8451 | 0.8450 | 0.8443 | 0.8448 | 0.8445 | 0.8422 | 0.8372 | 0.8449 | 0.8418 | 0.8311 | |
8 | 0.8945 | 0.8768 | 0.8812 | 0.8885 | 0.8849 | 0.8831 | 0.8704 | 0.8810 | 0.8474 | 0.8564 | |
10 | 0.9134 | 0.9047 | 0.9051 | 0.9115 | 0.9064 | 0.9079 | 0.8901 | 0.8994 | 0.8758 | 0.9036 | |
12 | 0.9370 | 0.9158 | 0.9347 | 0.9337 | 0.9248 | 0.9314 | 0.9226 | 0.9257 | 0.8956 | 0.9162 |
In order to add further analysis to the results given above, a non-parametric Wilcoxon's rank sum test for 30 cases of experiment (10 images through 3 different thresholding approaches) has been conducted, which is performed at significance level 5%. The fitness function values of MDA based method are compared with other existing methods. The null hypothesis considered as there is no significant difference between the two compared methods. $ h = 1 $ means the null hypothesis can be rejected at 5% significance level. On the other hand, $ h = 0 $ means the null hypothesis cannot be rejected. $ p $ is statistical probability. If a value of $ p < 0.05 $, it means that there is strong evidence against the null hypothesis. Table 17 gives the $ p $ and $ h $ values of all cases at 12 threshold levels. From the table it is found that MDA based method gives the satisfied values in general. For example, in the experiment using Otsu method, MDA based method produces better results in 89 out of 90 cases (10 images and 9 compared algorithms) when compared with other existing methods. Besides, in the experiment using Kapur method, MDA based method gives satisfied results in 88 out of 90 cases when compared with other existing methods. Additionally, in the experiment using MCE method, MDA based method gives satisfied results in 88 out of 90 cases when compared with other existing methods. From the experimental results above it is evident that MDA based method not only obtains higher quality segmented images, but also verifies its superior performance in a statistically meaningful way.
Threshold Methods | Images | MDA vs DA | MDA vs SSA | MDA vs SCA | MDA vs ALO | MDA vs HSO | MDA vs BA | MDA vs PSO | MDA vs BDE | MDA vs EOFPA | |||||||||
p | h | p | h | p | h | p | h | p | h | p | h | p | h | p | h | p | h | ||
Otsu | Bridge | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 |
Building | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Cactus | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Cow | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Deer | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Diver | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Elephant | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Horse | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Kangaroo | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Lake | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | 0.0540 | 0 | < 0.05 | 1 | < 0.05 | 1 | |
Kapur | Bridge | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 |
Building | < 0.05 | 1 | 0.1496 | 0 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Cactus | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Cow | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | 0.0740 | 0 | < 0.05 | 1 | < 0.05 | 1 | |
Deer | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Diver | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Elephant | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Horse | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Kangaroo | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Lake | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
MCE | Bridge | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 |
Building | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Cactus | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Cow | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Deer | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Diver | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Elephant | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Horse | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Kangaroo | < 0.05 | 1 | 0.0731 | 0 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Lake | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | 0.2401 | 0 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 |
In order to verify the performance of MDA based method using various thresholding techniques, we made a comparison between the Otsu's method, Kapur's entropy, and MCE using MDA algorithm. The optimal PSNR, SSIM, and FSIM values obtained by the three MDA based methods are given in Table 18. It can be found that PSNR values obtained by MDA based method using Otsu produces better result in 2 out of 50 cases (5 thresholds and 10 test images), the Kapur's entropy based method gives better result in 38 out of 50 cases, and the MCE based method gives better result in 10 out of 50 cases. On comparing the SSIM values, these three thresholding techniques give better results in 14 out of 50 cases, 21 out of 50 cases, and 15 out of 50 cases respectively. Additionally, it can be evidently seen that Otsu based method produces better result in 12 out of 50 cases, Kapur's entropy based method gives better result in 23 out of 50 cases, and MCE based method gives better result in 15 out of 50 cases. To sum up, the frequency of getting better results through these three thresholding methods are 28 out of 150 cases, 82 out of 150 cases, and 40 out of 150 cases respectively, which consider all performance measures above. From the analysis above, we can find that MDA based method using Kapur's entropy has comprehensively outperformed the MDA based method using Otsu and MCE in terms of PSNR, SSIM, and FSIM values. Just like the no free lunch (NFL) theorem states, the proposed method may obtain better results than other multilevel thresholding techniques on several segmentation problems which have not been solved yet [24,60]. Therefore, the application of MDA based method for various color image segmentation is potential and meaningful.
Images | Levels | PSNR | SSIM | FSIM | |||||||
Otsu | Kapur | MCE | Otsu | Kapur | MCE | Otsu | Kapur | MCE | |||
Bridge | 4 | 18.9590 | 20.3166 | 19.2861 | 0.7113 | 0.6942 | 0.7366 | 0.7972 | 0.7954 | 0.7948 | |
6 | 21.0920 | 24.3943 | 22.1149 | 0.8056 | 0.8170 | 0.8266 | 0.8669 | 0.8787 | 0.8652 | ||
8 | 22.5471 | 25.9201 | 27.0817 | 0.8567 | 0.8558 | 0.8829 | 0.8995 | 0.9081 | 0.9101 | ||
10 | 23.4904 | 28.8445 | 28.0991 | 0.8835 | 0.8984 | 0.9071 | 0.9183 | 0.9274 | 0.9293 | ||
12 | 27.7081 | 32.1186 | 29.8725 | 0.9028 | 0.9379 | 0.9345 | 0.9378 | 0.9549 | 0.9501 | ||
Building | 4 | 17.4155 | 17.4224 | 17.4155 | 0.7372 | 0.7384 | 0.7553 | 0.7762 | 0.7776 | 0.7772 | |
6 | 19.8902 | 19.9023 | 19.9001 | 0.8052 | 0.8268 | 0.8221 | 0.8413 | 0.8574 | 0.8460 | ||
8 | 22.6625 | 22.9857 | 22.7921 | 0.8389 | 0.8690 | 0.8521 | 0.8752 | 0.9017 | 0.8811 | ||
10 | 27.1866 | 27.2576 | 27.2061 | 0.8737 | 0.8960 | 0.8820 | 0.9075 | 0.9283 | 0.9105 | ||
12 | 27.1983 | 28.4124 | 27.4723 | 0.8826 | 0.9167 | 0.9048 | 0.9161 | 0.9444 | 0.9328 | ||
Cactus | 4 | 20.3428 | 17.2477 | 21.0442 | 0.5798 | 0.6220 | 0.4681 | 0.7771 | 0.7766 | 0.7340 | |
6 | 22.6678 | 25.9105 | 24.9529 | 0.6815 | 0.8041 | 0.6581 | 0.8458 | 0.8489 | 0.8110 | ||
8 | 23.9827 | 28.7324 | 28.5911 | 0.7351 | 0.8772 | 0.7983 | 0.8812 | 0.8981 | 0.8765 | ||
10 | 24.8346 | 30.6897 | 29.9778 | 0.7690 | 0.9072 | 0.8446 | 0.9012 | 0.9266 | 0.9094 | ||
12 | 25.3709 | 32.4563 | 31.8637 | 0.7888 | 0.9187 | 0.8672 | 0.9133 | 0.9390 | 0.9270 | ||
Cow | 4 | 19.7023 | 19.3706 | 19.7030 | 0.7231 | 0.6847 | 0.7327 | 0.7983 | 0.7726 | 0.7975 | |
6 | 21.8735 | 24.6314 | 24.1672 | 0.8050 | 0.8151 | 0.8227 | 0.8698 | 0.8635 | 0.8715 | ||
8 | 23.6239 | 27.9669 | 27.3862 | 0.8455 | 0.8684 | 0.8712 | 0.9022 | 0.9024 | 0.9066 | ||
10 | 24.4648 | 30.8466 | 28.9123 | 0.8739 | 0.9059 | 0.8921 | 0.9212 | 0.9311 | 0.9263 | ||
12 | 25.0056 | 32.6043 | 30.6430 | 0.8887 | 0.9252 | 0.9139 | 0.9329 | 0.9473 | 0.9424 | ||
Deer | 4 | 17.2462 | 21.9086 | 15.6122 | 0.6480 | 0.6468 | 0.6399 | 0.7449 | 0.7496 | 0.7485 | |
6 | 22.3158 | 25.8662 | 24.6247 | 0.8121 | 0.7928 | 0.8098 | 0.8517 | 0.8617 | 0.8607 | ||
8 | 26.4239 | 29.1490 | 28.0177 | 0.8749 | 0.8663 | 0.8807 | 0.9086 | 0.9122 | 0.9119 | ||
10 | 27.1472 | 30.9920 | 30.4749 | 0.9043 | 0.9069 | 0.9130 | 0.9346 | 0.9393 | 0.9376 | ||
12 | 27.9602 | 32.9202 | 32.3489 | 0.9291 | 0.9338 | 0.9362 | 0.9481 | 0.9573 | 0.9478 | ||
Diver | 4 | 24.4620 | 21.6563 | 22.2354 | 0.3451 | 0.4393 | 0.1592 | 0.7798 | 0.7295 | 0.8083 | |
6 | 26.9548 | 23.8743 | 27.8765 | 0.4352 | 0.6108 | 0.2508 | 0.8331 | 0.7528 | 0.8422 | ||
8 | 29.4786 | 27.2237 | 29.7961 | 0.5743 | 0.8221 | 0.5062 | 0.8648 | 0.8116 | 0.8815 | ||
10 | 29.8856 | 29.4785 | 31.3786 | 0.6073 | 0.9111 | 0.6209 | 0.8877 | 0.8470 | 0.9033 | ||
12 | 31.1721 | 29.5071 | 31.8544 | 0.6730 | 0.9183 | 0.6299 | 0.9114 | 0.8776 | 0.9100 | ||
Elephant | 4 | 18.4590 | 18.6558 | 18.3463 | 0.6080 | 0.5266 | 0.5256 | 0.7582 | 0.7151 | 0.7657 | |
6 | 20.9780 | 23.4967 | 22.1628 | 0.7149 | 0.6878 | 0.6787 | 0.8248 | 0.8016 | 0.8294 | ||
8 | 24.6549 | 26.2198 | 24.7220 | 0.7957 | 0.8032 | 0.7902 | 0.8582 | 0.8543 | 0.8733 | ||
10 | 25.7650 | 28.9322 | 26.9608 | 0.8447 | 0.8242 | 0.8189 | 0.8855 | 0.8813 | 0.8816 | ||
12 | 28.5499 | 29.8636 | 29.3330 | 0.8776 | 0.8759 | 0.8670 | 0.9051 | 0.9057 | 0.9084 | ||
Horse | 4 | 18.5055 | 19.5685 | 20.1345 | 0.7462 | 0.7496 | 0.7878 | 0.8207 | 0.8264 | 0.8266 | |
6 | 22.6464 | 24.0011 | 24.6958 | 0.8736 | 0.8645 | 0.8841 | 0.8887 | 0.8900 | 0.8953 | ||
8 | 25.8693 | 27.3558 | 27.2155 | 0.9207 | 0.9231 | 0.9249 | 0.9303 | 0.9355 | 0.9317 | ||
10 | 28.6567 | 29.3890 | 28.8068 | 0.9475 | 0.9455 | 0.9413 | 0.9489 | 0.9558 | 0.9498 | ||
12 | 30.1088 | 31.6166 | 31.2694 | 0.9552 | 0.9602 | 0.9601 | 0.9568 | 0.9707 | 0.9654 | ||
Kangaroo | 4 | 19.3419 | 19.3602 | 18.3519 | 0.7130 | 0.6355 | 0.7084 | 0.7456 | 0.7364 | 0.7364 | |
6 | 25.2386 | 25.3116 | 23.1569 | 0.8414 | 0.7745 | 0.8353 | 0.8534 | 0.8485 | 0.8423 | ||
8 | 30.1938 | 30.2043 | 30.0907 | 0.9101 | 0.8555 | 0.8978 | 0.9214 | 0.9153 | 0.9212 | ||
10 | 33.3271 | 33.3301 | 32.6099 | 0.9352 | 0.8983 | 0.9297 | 0.9522 | 0.9450 | 0.9469 | ||
12 | 34.2483 | 34.2579 | 34.1968 | 0.9494 | 0.9235 | 0.9479 | 0.9685 | 0.9612 | 0.9623 | ||
Lake | 4 | 17.8079 | 18.2514 | 20.0431 | 0.6677 | 0.6625 | 0.6875 | 0.7694 | 0.7464 | 0.7765 | |
6 | 23.7148 | 23.6183 | 23.1596 | 0.7982 | 0.7980 | 0.7906 | 0.8582 | 0.8443 | 0.8451 | ||
8 | 25.1894 | 27.4202 | 26.8396 | 0.8781 | 0.8682 | 0.8579 | 0.9063 | 0.8988 | 0.8945 | ||
10 | 27.3522 | 31.8548 | 28.9053 | 0.8929 | 0.9156 | 0.8919 | 0.9137 | 0.9441 | 0.9134 | ||
12 | 29.8302 | 33.5569 | 30.8523 | 0.9186 | 0.9390 | 0.9200 | 0.9399 | 0.9620 | 0.9370 |
In this paper, MDA based multilevel thresholding method has been presented to determine the optimal thresholds values for color image segmentation. The proposed method is tested on the various color images from Berkley segmentation data set. The performance of proposed method is then compared with other nine algorithms.
The main contributions of this paper are: (1) the improvement of standard DA through the techniques such as chaotic maps, EOBL strategy and DE algorithm. (2) the application of three MDA based multilevel thresholding techniques for color image segmentation, namely Kapur's entropy, MCE method and Otsu method. In order to verify the effectiveness of proposed method, a comprehensive set of experimental series have been performed through several measures such as, AM, STD, PSNR, SSIM, and FSIM. Meanwhile, a non-parametric Wilcoxon's rank sum test has also been conducted in the paper for statistical analysis. From the experimental results we can find that MDA based method performs better than the compared methods in general. Thus, these promising results motivate the utilization of MDA based entropy method to solve various image segmentation problems. In the future, the MDA based method will be investigated for plant canopy image segmentation using other multilevel thresholding techniques such as Tsallis entropy, fuzzy entropy, and Renyi's entropy.
This research was supported by the Fundamental Research Funds for the Central Universities (No. 2572019BF04), the National Nature Science Foundation of China (No. 31470714), the Northeast Forestry University Horizontal Project (No. 43217002, No. 43217005, No. 43219002).
The authors would like to thank the anonymous reviewers for their constructive comments and suggestions.
The authors declare no conflict of interest.
[1] | Curr Drug Discov Technol., 10 (2013), 125-138. |
[2] | in Molecular Diagnostics and Therapy of Pancreatic Cancer (ed. A. Azmi), Elsevier Academic Press, (2014), 281-296. |
[3] | PLoS Comput Biol., 3 (2007), 1674-1678. |
[4] | Biophys J., 101 (2011), 2082-2091. |
[5] | Proc Natl Acad Sci USA, 105 (2008), 19678-19683. |
[6] | Nat Rev Cancer, 9 (2009), 415-428. |
[7] | Nature, 494 (2013), p506. |
[8] | Nature, 511 (2014), 543-550. |
[9] | J Thorac Dis., 5 (2013), S479-S490. |
[10] | J Clin Invest., 122 (2012), 1519-1528. |
[11] | ACM Trans Math Softw (TOMS), 29 (2003), 141-164. |
[12] | Cell, 139 (2009), 654-656. |
[13] | Nat Rev Cancer, 4 (2004), 177-183. |
[14] | Oral Oncol, 45 (2009), 335-339. |
[15] | http://cancer.sanger.ac.uk/cancergenome/projects/census/" target="_blank">http://cancer.sanger.ac.uk/cancergenome/projects/census/ |
[16] | (network of cancer genes). |
[17] | Nature, 502 (2013), 333-339. |
[18] | Clin Chest Med., 32 (2011), 703-740. |
[19] | Cold Spring Harb Perpect Biol., 2 (2010), a003236. |
[20] | PLoS One, 6 (2011), e26302. |
[21] | Cell Death Dis., 5 (2014), e1032. |
[22] | Cancer Cell, 5 (2004), 311-316. |
[23] | PLoS Genet., 7 (2011), e1002135. |
[24] | Nucleic Acids Res., 34 (2006), 1745-1754. |
[25] | J Clin Pathol., 59 (2006), 445-4453. |
[26] | Gut., 60 (2011), 116-129. |
[27] | Nat Rev Cancer, 10 (2010), 59-64. |
[28] | Oncogene, 34 (2015), 314-322. |
[29] | Apoptosis, 16 (2011), 950-958. |
[30] | Sci Rep., 3 (2013), p2650. |
[31] | Best Pract Res Clin Gastroenterol, 20 (2006), 651-674. |
1. | Jianjun Ni, Xiaotian Wang, Min Tang, Weidong Cao, Pengfei Shi, Simon X. Yang, An Improved Real-Time Path Planning Method Based on Dragonfly Algorithm for Heterogeneous Multi-Robot System, 2020, 8, 2169-3536, 140558, 10.1109/ACCESS.2020.3012886 | |
2. | Wei Li, Wenyin Gong, Differential evolution with quasi-reflection-based mutation, 2021, 18, 1551-0018, 2425, 10.3934/mbe.2021123 | |
3. | Yassine Meraihi, Amar Ramdane-Cherif, Dalila Acheli, Mohammed Mahseur, Dragonfly algorithm: a comprehensive review and applications, 2020, 32, 0941-0643, 16625, 10.1007/s00521-020-04866-y | |
4. | S. Jothi, A. Chandrasekar, An Efficient Modified Dragonfly Optimization Based MIMO-OFDM for Enhancing QoS in Wireless Multimedia Communication, 2022, 122, 0929-6212, 1043, 10.1007/s11277-021-08938-7 | |
5. | Lei Liu, Dong Zhao, Fanhua Yu, Ali Asghar Heidari, Jintao Ru, Huiling Chen, Majdi Mafarja, Hamza Turabieh, Zhifang Pan, Performance optimization of differential evolution with slime mould algorithm for multilevel breast cancer image segmentation, 2021, 138, 00104825, 104910, 10.1016/j.compbiomed.2021.104910 | |
6. | Xiaowei Chen, Hui Huang, Ali Asghar Heidari, Chuanyin Sun, Yinqiu Lv, Wenyong Gui, Guoxi Liang, Zhiyang Gu, Huiling Chen, Chengye Li, Peirong Chen, An efficient multilevel thresholding image segmentation method based on the slime mould algorithm with bee foraging mechanism: A real case with lupus nephritis images, 2022, 142, 00104825, 105179, 10.1016/j.compbiomed.2021.105179 | |
7. | Bibi Aamirah Shafaa Emambocus, Muhammed Basheer Jasser, Aida Mustapha, Angela Amphawan, Dragonfly Algorithm and Its Hybrids: A Survey on Performance, Objectives and Applications, 2021, 21, 1424-8220, 7542, 10.3390/s21227542 | |
8. | Hui Guo, Haiyang Chen, Tianlun Wu, MSDP-Net: A YOLOv5-Based Safflower Corolla Object Detection and Spatial Positioning Network, 2025, 15, 2077-0472, 855, 10.3390/agriculture15080855 |
Algorithm | Parameters | Values |
MDA | Number of dragonflies | 30 |
No. of iterations | 500 | |
Mutation scaling factor $ SF $ | 0.5 | |
Crossover probability $ CR $ | 0.9 | |
Maximum velocity | 25.5 | |
DA | Number of dragonflies | 30 |
No. of iterations | 500 | |
Maximum velocity | 25.5 | |
controlling parameter $ {c_1} $ | [0, 2] | |
SSA | Number of salps | 30 |
No. of iterations | 500 | |
controlling parameter $ {r_1} $ | [0, 2] | |
SCA | Population size | 30 |
No. of iterations | 500 | |
ALO | Number of antlions | 30 |
No. of iterations | 500 | |
Pitch Adjustment Rate | 0.3 | |
HSO | Harmony Memory Considering Rate | 0.95 |
Tuning bandwidth $ BW $ | 25.5 | |
Harmony memory size | 30 | |
No. of iterations | 500 | |
Loudness | 0.25 | |
BA | Pulse emission rate | 0.5 |
Maximum frequency | 2 | |
Minimum frequency | 0 | |
Factor updating loudness $ \alpha $ | 0.95 | |
Factor updating pulse emission rate $ \gamma $ | 0.05 | |
Scaling factor | 4 | |
Number of bats | 30 | |
No. of iterations | 500 | |
Maximum particle velocity | 25.5 | |
PSO | Maximum inertia weight | 0.9 |
Minimum inertia weight | 0.4 | |
Learning factors $ {c_1} $ and $ {c_2} $ | 2 | |
Number of particles | 30 | |
No. of iterations | 500 | |
BED | The array of scaling factor F | [0, 1] |
The crossover rate CR | [0, 1] | |
No. of iterations | 500 | |
Population size | 30 | |
EOFPA | No. of iterations | 500 |
The flowers/pollen gametes | 30 | |
Switch probability | [0, 1] |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 4386.0155 | 4386.0155 | 4386.0155 | 4383.2562 | 4386.0155 | 4385.6741 | 4385.6859 | 4386.0155 | 4275.6231 | 4305.6849 |
6 | 4456.6941 | 4456.6745 | 4456.6812 | 4444.5333 | 4456.6812 | 4454.8023 | 4455.0995 | 4456.6896 | 4389.0323 | 4433.0295 | |
8 | 4484.1180 | 4483.9262 | 4481.7449 | 4459.9789 | 4484.1093 | 4481.4416 | 4466.3154 | 4484.1162 | 4382.9916 | 4433.2254 | |
10 | 4498.2080 | 4497.9168 | 4497.7713 | 4482.3727 | 4498.2009 | 4494.7658 | 4471.7015 | 4497.7081 | 4459.3658 | 4433.7415 | |
12 | 4506.5451 | 4504.8726 | 4504.8661 | 4488.6786 | 4506.5326 | 4501.1585 | 4475.5967 | 4502.7801 | 4341.1585 | 4332.5967 | |
Building | 4 | 3666.7889 | 3666.7889 | 3666.7889 | 3661.2005 | 3666.7889 | 3666.4479 | 3666.5619 | 3666.7889 | 3535.4479 | 3598.5619 |
6 | 3736.1408 | 3736.1359 | 3736.1408 | 3701.9165 | 3736.1289 | 3734.3517 | 3715.7878 | 3736.1157 | 3689.3517 | 3687.7878 | |
8 | 3765.4064 | 3763.7146 | 3761.8726 | 3732.2340 | 3765.3964 | 3776.4662 | 3754.6370 | 3765.2956 | 3722.6370 | 3733.2956 | |
10 | 3780.2478 | 3780.0474 | 3775.2198 | 3761.4603 | 3780.2365 | 3780.1030 | 3764.3500 | 3779.2472 | 3759.7500 | 3733.9872 | |
12 | 3788.7772 | 3785.0051 | 3784.1982 | 3764.2379 | 3785.6140 | 3784.0790 | 3767.8448 | 3787.9557 | 3698.8448 | 3780.9557 | |
Cactus | 4 | 2126.2412 | 2126.2412 | 2126.2412 | 2122.4910 | 2126.2412 | 2124.6012 | 2125.8760 | 2126.2412 | 2120.6012 | 2122.8650 |
6 | 2188.8128 | 2188.7833 | 2188.8074 | 2170.4086 | 2188.7851 | 2187.7032 | 2173.0367 | 2188.7902 | 2174.7042 | 2169.0577 | |
8 | 2213.2398 | 2211.6703 | 2209.8554 | 2185.0069 | 2213.1713 | 2210.4804 | 2200.8495 | 2212.9784 | 2199.4804 | 2198.8485 | |
10 | 2225.0856 | 2223.9729 | 2224.1614 | 2206.6749 | 2224.7509 | 2222.4256 | 2212.5880 | 2224.8807 | 2216.4286 | 2216.5640 | |
12 | 2231.9191 | 2227.8378 | 2230.5400 | 2214.0593 | 2230.9317 | 2227.4470 | 2213.0484 | 2230.2080 | 2217.4470 | 2218.0484 | |
Cow | 4 | 3953.7954 | 3953.7954 | 3953.7954 | 3947.6284 | 3953.7937 | 3953.6631 | 3953.3749 | 3953.7954 | 3947.6651 | 3949.3589 |
6 | 4018.8130 | 4018.5006 | 4018.8067 | 3997.9203 | 4018.7855 | 4016.5598 | 4006.7333 | 4018.8091 | 4004.5578 | 4010.7833 | |
8 | 4048.9214 | 4047.7684 | 4048.9027 | 4025.8279 | 4048.9098 | 4046.5501 | 4030.1545 | 4048.7097 | 4030.5471 | 4047.1755 | |
10 | 4063.2203 | 4062.2329 | 4062.3868 | 4046.0778 | 4060.1107 | 4058.5699 | 4051.8095 | 4062.5712 | 4048.5669 | 4049.8045 | |
12 | 4071.2438 | 4070.4191 | 4069.9258 | 4050.7113 | 4071.1365 | 4063.9022 | 4053.6927 | 4070.1930 | 4069.9062 | 4058.6927 | |
Deer | 4 | 1122.5798 | 1122.5798 | 1122.5798 | 1121.1187 | 1122.5798 | 1122.2487 | 1122.5083 | 1110.4477 | 1117.2487 | 1120.9083 |
6 | 1161.5839 | 1161.5775 | 1161.5775 | 1142.9409 | 1161.5705 | 1154.9956 | 1147.5510 | 1152.1515 | 1097.9556 | 1148.5540 | |
8 | 1178.1038 | 1178.0725 | 1178.1023 | 1157.6053 | 1175.7847 | 1169.9586 | 1173.4041 | 1175.1126 | 1158.966 | 1168.4061 | |
10 | 1186.5170 | 1186.2849 | 1180.0212 | 1166.4972 | 1185.4142 | 1178.7451 | 1172.1178 | 1183.8460 | 1168.7851 | 1169.1168 | |
12 | 1191.1450 | 1189.9832 | 1187.3761 | 1177.2843 | 1187.0185 | 1183.5727 | 1172.5974 | 1187.5187 | 1178.547 | 1177.5944 | |
Diver | 4 | 1522.2967 | 1522.2967 | 1522.2967 | 1520.5664 | 1522.2967 | 1519.8700 | 1521.7928 | 1522.2640 | 1507.8700 | 1519.7928 |
6 | 1551.5394 | 1551.4815 | 1551.5394 | 1548.3600 | 1551.5337 | 1549.0623 | 1549.0902 | 1551.4279 | 1539.0863 | 1538.0702 | |
8 | 1562.9129 | 1562.7854 | 1561.9790 | 1556.4619 | 1561.9507 | 1559.9760 | 1558.8788 | 1562.4085 | 1559.9760 | 1558.8788 | |
10 | 1569.5513 | 1568.2960 | 1568.0981 | 1560.6939 | 1569.4202 | 1565.9504 | 1557.2689 | 1564.9109 | 1548.9904 | 1553.2009 | |
12 | 1572.8927 | 1572.8457 | 1570.6416 | 1565.8103 | 1571.7146 | 1570.6842 | 1561.5625 | 1570.6104 | 1568.8042 | 1551.5355 | |
Elephant | 4 | 1922.2912 | 1922.2912 | 1922.2912 | 1918.9804 | 1922.2912 | 1921.8603 | 1922.0942 | 1922.2682 | 1919.8643 | 1920.0542 |
6 | 1965.3704 | 1965.3704 | 1965.2581 | 1938.3278 | 1965.3693 | 1964.1737 | 1962.4793 | 1965.1725 | 1963.1757 | 1952.4453 | |
8 | 1984.7096 | 1982.4376 | 1981.5554 | 1964.4215 | 1984.6837 | 1979.0474 | 1977.1272 | 1979.8723 | 1975.0444 | 1976.1242 | |
10 | 1994.7387 | 1993.2369 | 1989.9457 | 1978.0828 | 1992.1249 | 1987.8605 | 1984.2041 | 1987.1609 | 1985.8365 | 1983.2043 | |
12 | 2000.4189 | 1998.6301 | 1996.5621 | 1986.4930 | 1997.8161 | 1994.4913 | 1978.0329 | 1994.6057 | 1992.4333 | 1979.0459 | |
Horse | 4 | 2310.6909 | 2310.6909 | 2310.6909 | 2305.7078 | 2310.6909 | 2309.9326 | 2310.3382 | 2310.6598 | 2299.9456 | 2307.3332 |
6 | 2378.2916 | 2378.2825 | 2378.2916 | 2370.1264 | 2378.2680 | 2375.9490 | 2369.4067 | 2370.9811 | 2369.9230 | 2370.4567 | |
8 | 2406.3611 | 2406.3126 | 2406.3320 | 2383.0984 | 2406.2989 | 2401.2306 | 2382.1623 | 2405.4886 | 2399.2546 | 2375.1633 | |
10 | 2420.4694 | 2418.4885 | 2418.1694 | 2399.4467 | 2416.1505 | 2411.9233 | 2399.8047 | 2418.6889 | 2401.9343 | 2397.8467 | |
12 | 2428.4816 | 2427.6154 | 2427.5850 | 2408.8655 | 2426.3828 | 2422.8833 | 2403.5197 | 2423.5853 | 2400.8223 | 2403.5332 | |
Kangaroo | 4 | 1114.7964 | 1114.7964 | 1114.7964 | 1110.2121 | 1114.7903 | 1114.3295 | 1114.6277 | 1114.7889 | 1107.3295 | 1105.4477 |
6 | 1164.7521 | 1164.7327 | 1164.7463 | 1146.3046 | 1164.7463 | 1163.3312 | 1154.3339 | 1158.7069 | 1154.3212 | 1149.3459 | |
8 | 1187.4052 | 1187.0806 | 1186.6851 | 1165.7543 | 1187.3525 | 1183.0318 | 1167.0394 | 1186.8491 | 1179.0338 | 1170.0344 | |
10 | 1199.0953 | 1196.3070 | 1196.2935 | 1183.8805 | 1198.8494 | 1194.1221 | 1180.9305 | 1195.4164 | 1189.1561 | 1179.9455 | |
12 | 1205.6955 | 1200.5395 | 1200.9629 | 1189.7715 | 1204.7195 | 1201.8035 | 1186.1872 | 1201.2637 | 1200.8465 | 1176.1342 | |
Lake | 4 | 3602.5126 | 3602.5126 | 3602.5126 | 3595.0459 | 3602.5126 | 3602.0153 | 3602.1261 | 3602.4966 | 3599.0442 | 3600.1445 |
6 | 3676.1680 | 3675.8735 | 3676.1650 | 3654.2173 | 3668.5190 | 3675.3194 | 3671.9734 | 3676.0909 | 3659.3174 | 3669.9564 | |
8 | 3705.3747 | 3699.8939 | 3705.3197 | 3667.8620 | 3705.3361 | 3701.3738 | 3688.8008 | 3697.8809 | 3686.3458 | 3677.8358 | |
10 | 3719.6677 | 3719.4646 | 3719.6472 | 3691.5485 | 3719.5805 | 3712.8384 | 3706.5417 | 3716.1525 | 3710.8335 | 3705.5865 | |
12 | 3727.6944 | 3726.4808 | 3725.0242 | 3698.3776 | 3724.0969 | 3721.2794 | 3710.6391 | 3724.5939 | 3690.7961 | 3684.5679 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 18.1907 | 18.1907 | 18.1906 | 18.1526 | 18.1445 | 18.1873 | 18.1827 | 18.1907 | 18.1663 | 18.1597 |
6 | 23.5682 | 23.5675 | 23.5679 | 23.3085 | 23.5678 | 23.5383 | 23.5023 | 23.5680 | 23.5597 | 23.5483 | |
8 | 28.3015 | 28.2786 | 28.2814 | 27.6408 | 28.3002 | 28.2265 | 27.6685 | 28.2965 | 28.2197 | 27.6589 | |
10 | 32.6202 | 32.6118 | 32.6137 | 30.9182 | 32.6175 | 32.5149 | 30.9871 | 32.5589 | 32.5078 | 30.9861 | |
12 | 36.5456 | 36.3356 | 36.4038 | 34.5257 | 35.8899 | 36.1310 | 34.6846 | 36.3876 | 36.1290 | 34.6754 | |
Building | 4 | 18.8295 | 18.8295 | 18.8295 | 18.8158 | 18.8295 | 18.8226 | 18.8278 | 18.8295 | 18.8117 | 18.8256 |
6 | 24.1205 | 24.1102 | 24.1201 | 23.8745 | 24.0527 | 24.0527 | 23.9953 | 24.0966 | 24.0156 | 23.9643 | |
8 | 28.9969 | 28.9867 | 28.9965 | 27.8900 | 28.9943 | 28.9057 | 28.3981 | 28.9857 | 28.8521 | 28.2457 | |
10 | 33.4091 | 33.3553 | 33.3952 | 31.4147 | 31.4153 | 33.0362 | 31.9753 | 33.3670 | 32.9653 | 31.8533 | |
12 | 37.4610 | 37.3651 | 37.1874 | 34.8359 | 37.3891 | 37.1524 | 35.6430 | 37.3001 | 37.0854 | 35.3576 | |
Cactus | 4 | 18.5843 | 18.5843 | 18.5843 | 18.5632 | 18.5843 | 18.5761 | 18.5818 | 18.5843 | 18.4797 | 18.5748 |
6 | 23.8420 | 23.8418 | 23.8420 | 23.4790 | 23.8417 | 23.7550 | 23.8085 | 23.8412 | 23.6854 | 23.7422 | |
8 | 28.5198 | 28.5051 | 28.4490 | 27.8225 | 28.5094 | 28.3850 | 27.7631 | 28.4991 | 28.3742 | 27.6854 | |
10 | 32.8542 | 32.8325 | 32.8457 | 31.3685 | 32.8479 | 32.6682 | 32.0858 | 32.7519 | 32.5853 | 32.0753 | |
12 | 36.8707 | 36.7269 | 36.7470 | 34.5881 | 36.7313 | 36.6221 | 34.7641 | 36.6960 | 36.5586 | 34.4763 | |
Cow | 4 | 18.5002 | 18.4994 | 18.5002 | 18.4624 | 18.5002 | 18.4902 | 18.4983 | 18.5002 | 18.4774 | 18.4333 |
6 | 23.9812 | 23.9795 | 23.9811 | 23.7240 | 23.8746 | 23.9496 | 23.8805 | 23.9796 | 23.5974 | 23.8365 | |
8 | 28.8794 | 28.8320 | 28.8785 | 28.1316 | 28.7981 | 28.7163 | 28.4547 | 28.7927 | 28.6873 | 28.3766 | |
10 | 33.3769 | 33.2290 | 33.2647 | 32.0085 | 33.3423 | 33.1886 | 31.9696 | 33.2887 | 33.0674 | 31.6773 | |
12 | 37.5478 | 37.3152 | 37.4710 | 35.6447 | 37.4301 | 37.1716 | 34.9981 | 37.2740 | 37.1643 | 34.4351 | |
Deer | 4 | 17.7349 | 17.7349 | 17.7349 | 17.6786 | 17.7349 | 17.7135 | 17.7281 | 17.7349 | 17.4555 | 17.2441 |
6 | 22.8322 | 22.8321 | 22.8319 | 22.5782 | 22.8321 | 22.7880 | 22.7745 | 22.8309 | 22.6470 | 22.6845 | |
8 | 27.2958 | 27.2929 | 27.2812 | 26.2300 | 27.2806 | 27.2006 | 26.2772 | 27.2733 | 27.1996 | 26.2692 | |
10 | 31.3387 | 31.3160 | 31.3360 | 29.2343 | 30.6775 | 30.9565 | 29.5594 | 31.2597 | 30.85645 | 29.5474 | |
12 | 35.0702 | 34.4227 | 34.3552 | 31.7673 | 34.4560 | 34.5034 | 32.6665 | 34.4692 | 34.4694 | 32.5765 | |
Diver | 4 | 18.3361 | 18.3358 | 18.3350 | 18.2989 | 18.3364 | 18.3263 | 18.3232 | 18.3364 | 18.2883 | 18.1972 |
6 | 23.6781 | 23.6780 | 23.6775 | 23.4056 | 23.6385 | 23.6085 | 23.6370 | 23.6772 | 23.4785 | 23.5850 | |
8 | 28.3676 | 28.3511 | 28.3668 | 27.4894 | 28.3655 | 28.3069 | 27.8034 | 28.3593 | 28.2788 | 27.6444 | |
10 | 32.6130 | 32.5412 | 32.5953 | 31.5176 | 31.9590 | 32.4207 | 30.5849 | 32.5548 | 32.2977 | 30.6059 | |
12 | 36.5313 | 35.7728 | 35.9128 | 33.6363 | 35.8612 | 36.0536 | 33.4780 | 35.7932 | 36.0156 | 33.4620 | |
Elephant | 4 | 18.1761 | 18.1759 | 18.1761 | 18.1295 | 18.1761 | 18.1649 | 18.1713 | 18.1761 | 18.1086 | 18.1478 |
6 | 23.3175 | 23.3173 | 23.3173 | 23.0015 | 23.3151 | 23.2798 | 23.2584 | 23.3080 | 23.1976 | 23.1658 | |
8 | 27.9489 | 27.8447 | 27.9453 | 26.9483 | 27.8597 | 27.8217 | 27.7337 | 27.9263 | 27.7937 | 26.9867 | |
10 | 32.1636 | 32.0784 | 32.1632 | 30.4741 | 32.1142 | 31.9377 | 30.3712 | 32.0997 | 31.7812 | 30.3647 | |
12 | 36.0009 | 35.7483 | 35.7545 | 32.9324 | 35.8113 | 35.5656 | 33.4534 | 35.7970 | 34.8626 | 32.8634 | |
Horse | 4 | 18.6122 | 18.6122 | 18.6122 | 18.5974 | 18.6121 | 18.6081 | 18.6089 | 18.6121 | 18.0771 | 18.2979 |
6 | 23.7909 | 23.7897 | 23.7908 | 23.5302 | 23.7903 | 23.7650 | 23.7601 | 23.7906 | 23.6997 | 22.9791 | |
8 | 28.4407 | 28.4312 | 28.4404 | 27.8054 | 28.4385 | 28.3584 | 28.1669 | 28.4277 | 27.3234 | 26.1239 | |
10 | 32.6907 | 32.5229 | 32.6719 | 31.2299 | 32.6865 | 32.2931 | 31.9769 | 32.6336 | 32.1891 | 31.3566 | |
12 | 36.5861 | 36.4546 | 36.4579 | 34.1298 | 36.5790 | 35.9428 | 33.9804 | 36.4842 | 35.6435 | 33.6689 | |
Kangaroo | 4 | 18.9363 | 18.9362 | 18.9360 | 18.8904 | 18.9215 | 18.9352 | 18.9227 | 18.9363 | 18.7633 | 18.8644 |
6 | 24.4756 | 24.4707 | 24.4650 | 24.2231 | 24.4742 | 24.4465 | 24.3311 | 24.4713 | 24.0535 | 24.1431 | |
8 | 29.4235 | 29.4222 | 29.4202 | 28.8466 | 29.4191 | 29.3775 | 29.2686 | 29.4158 | 29.2777 | 29.1576 | |
10 | 33.8985 | 33.8650 | 33.8894 | 32.4266 | 33.8981 | 33.6472 | 31.7512 | 33.8709 | 33.5347 | 31.2442 | |
12 | 38.0564 | 37.9305 | 37.9644 | 36.4710 | 37.9993 | 37.7302 | 36.7833 | 37.9278 | 37.6432 | 36.6453 | |
Lake | 4 | 17.7485 | 17.7485 | 17.7485 | 17.7140 | 17.7347 | 17.7431 | 17.7477 | 17.7485 | 17.3476791 | 17.5897 |
6 | 22.7151 | 22.7148 | 22.7150 | 22.5244 | 22.7149 | 22.6387 | 22.6811 | 22.7146 | 22.5467 | 22.3551 | |
8 | 27.2343 | 27.2271 | 27.2291 | 26.4737 | 27.2342 | 27.0464 | 26.8541 | 27.2195 | 26.5671 | 27.2305 | |
10 | 31.3868 | 31.3760 | 31.3488 | 29.4879 | 31.3622 | 31.1878 | 30.4835 | 31.3469 | 30.3657 | 31.2569 | |
12 | 35.2977 | 34.9685 | 35.1190 | 33.2548 | 34.6736 | 34.7786 | 33.0519 | 34.5806 | 32.0652 | 33.5967 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | -620.2763 | -620.2763 | -620.2763 | -620.2542 | -620.2763 | -620.2648 | -620.2578 | -620.2763 | -609.0790 | -609.3784 |
6 | -620.6749 | -620.6743 | -620.6749 | -620.6221 | -620.6748 | -620.6437 | -620.6128 | -620.6748 | -609.6698 | -609.7163 | |
8 | -620.8419 | -620.8385 | -620.8414 | -620.7237 | -620.8097 | -620.7891 | -620.6825 | -620.8393 | -609.8519 | -609.8320 | |
10 | -620.9233 | -620.9178 | -620.9058 | -620.8120 | -620.9068 | -620.8768 | -620.8129 | -620.9175 | -609.9459 | -610.0020 | |
12 | -620.9702 | -620.9608 | -620.9477 | -620.8790 | -620.9668 | -620.9398 | -620.8730 | -620.9541 | -609.9813 | -610.0675 | |
Building | 4 | -660.4584 | -660.4584 | -660.4584 | -660.4452 | -660.4584 | -660.4560 | -660.4562 | -660.4584 | -658.6000 | -658.7712 |
6 | -660.8619 | -660.8616 | -660.8619 | -660.8236 | -660.8014 | -660.8492 | -660.8435 | -660.8619 | -659.0710 | -659.1223 | |
8 | -661.0323 | -661.0316 | -661.0312 | -660.8618 | -661.0320 | -660.9857 | -660.7957 | -661.0070 | -659.3262 | -659.3747 | |
10 | -661.1222 | -661.1219 | -661.0910 | -661.0239 | -661.1093 | -661.0670 | -661.0161 | -661.0894 | -659.3922 | -659.4202 | |
12 | -661.1753 | -661.1616 | -661.1249 | -661.0725 | -661.1443 | -661.1479 | -661.0530 | -661.1650 | -659.5068 | -659.5193 | |
Cactus | 4 | -375.3032 | -375.3032 | -375.3032 | -375.2890 | -375.3032 | -375.2894 | -375.2985 | -375.3032 | -372.5073 | -371.6678 |
6 | -375.6282 | -375.6275 | -375.6281 | -375.5085 | -375.5830 | -375.6132 | -375.5937 | -375.6275 | -372.9594 | -373.0201 | |
8 | -375.7553 | -375.7483 | -375.7532 | -375.6164 | -375.7541 | -375.7250 | -375.5836 | -375.7529 | -375.1600 | -370.2542 | |
10 | -375.8189 | -375.8003 | -375.8125 | -375.7240 | -375.8078 | -375.7907 | -375.7469 | -375.8125 | -372.1932 | -372.3085 | |
12 | -375.8552 | -375.8445 | -375.8338 | -375.7616 | -375.8434 | -375.8263 | -375.7679 | -375.8484 | -370.3258 | -374.3484 | |
Cow | 4 | -700.7303 | -700.7303 | -700.7303 | -700.7303 | -700.7134 | -700.7303 | -700.7263 | -700.6034 | -698.8509 | -698.9133 |
6 | -701.0632 | -701.0632 | -701.0632 | -700.9918 | -701.0281 | -701.0334 | -701.0425 | -701.0631 | -699.1213 | -699.1382 | |
8 | -701.1934 | -701.1928 | -701.1932 | -701.0718 | -701.1763 | -701.1654 | -701.1646 | -701.1924 | -699.3032 | -699.2943 | |
10 | -701.2660 | -701.2620 | -701.2453 | -701.1829 | -701.2657 | -701.2356 | -701.1861 | -701.2536 | -699.3819 | -699.4248 | |
12 | -701.3083 | -701.2998 | -701.2872 | -701.2130 | -701.2949 | -701.2783 | -701.2162 | -701.2998 | -699.4799 | -699.4939 | |
Deer | 4 | -394.8162 | -394.8162 | -394.8162 | -394.7204 | -394.8162 | -394.8098 | -394.8158 | -394.7272 | -377.5073 | -377.6678 |
6 | -395.0601 | -395.0601 | -395.0601 | -394.9579 | -395.0290 | -394.9943 | -394.9624 | -395.0593 | -377.9594 | -378.0201 | |
8 | -395.1690 | -395.1521 | -395.1171 | -395.1094 | -395.1303 | -395.1088 | -395.0924 | -395.1305 | -378.1600 | -378.2542 | |
10 | -395.2250 | -395.2132 | -395.1898 | -395.1037 | -395.1815 | -395.1494 | -395.1254 | -395.1797 | -378.1932 | -378.3085 | |
12 | -395.2572 | -395.2394 | -395.2311 | -395.1551 | -395.2271 | -395.2057 | -395.1679 | -395.2235 | -378.3258 | -378.3484 | |
Diver | 4 | -130.2537 | -130.2537 | -130.2537 | -130.2490 | -130.2537 | -130.1758 | -130.1763 | -130.2537 | -129.9030 | -129.1653 |
6 | -130.4961 | -130.4955 | -130.4816 | -130.4609 | -130.4587 | -130.4076 | -130.4042 | -130.4947 | -128.4047 | -126.3978 | |
8 | -130.6021 | -130.6007 | -130.5604 | -130.5324 | -130.5841 | -130.5097 | -130.4255 | -130.5598 | -127.5298 | -129.6061 | |
10 | -130.6536 | -130.6447 | -130.6170 | -130.5825 | -130.6424 | -130.5848 | -130.5879 | -130.6252 | -128.6593 | -129.7220 | |
12 | -130.6882 | -130.6721 | -130.6341 | -130.5951 | -130.6744 | -130.6113 | -130.5267 | -130.6643 | -129.7131 | -129.7822 | |
Elephant | 4 | -456.8572 | -456.8572 | -456.8572 | -456.8455 | -456.8552 | -456.8524 | -456.8540 | -456.8552 | -4552665 | -455.2189 |
6 | -457.1171 | -457.1171 | -457.1171 | -457.0303 | -457.0916 | -457.0805 | -457.0660 | -457.1167 | -455.4441 | -455.7034 | |
8 | -457.2138 | -457.2028 | -457.2017 | -457.1199 | -457.1564 | -457.1792 | -457.1036 | -457.1707 | -455.7360 | -455.7811 | |
10 | -457.2615 | -457.2584 | -457.2571 | -457.1509 | -457.2461 | -457.2384 | -457.2160 | -457.2471 | -455.8112 | -455.9329 | |
12 | -457.2974 | -457.2750 | -457.2645 | -457.1782 | -457.2761 | -457.2625 | -457.2034 | -457.2755 | -455.8923 | -4559428 | |
Horse | 4 | -650.9465 | -650.9465 | -650.9465 | -650.9346 | -650.9464 | -650.9453 | -650.8275 | -650.9464 | -638.8670 | -639.0225 |
6 | -651.2310 | -651.2305 | -651.2310 | -651.1613 | -651.2309 | -651.2223 | -651.2226 | -651.2308 | -639.0824 | -639.1809 | |
8 | -651.3496 | -651.3491 | -651.3492 | -651.2074 | -651.3354 | -651.3218 | -651.3145 | -651.3486 | -639.2078 | -639.2707 | |
10 | -651.4103 | -651.4075 | -651.3959 | -651.3230 | -651.4090 | -651.3884 | -651.3445 | -651.3985 | -639.3381 | -639.3124 | |
12 | -651.4451 | -651.4384 | -651.4396 | -651.3675 | -651.4213 | -651.4220 | -651.3387 | -651.4357 | -639.3136 | -639.3694 | |
Kangaroo | 4 | -441.3100 | -441.3100 | -441.3100 | -441.2870 | -441.3099 | -441.3033 | -441.3051 | -441.3100 | -440.3940 | -440.6180 |
6 | -441.6207 | -441.6151 | -441.6207 | -441.5240 | -441.6198 | -441.5944 | -441.5567 | -441.6204 | -440.8093 | -440.8583 | |
8 | -441.7491 | -441.7469 | -441.7401 | -441.6495 | -441.7466 | -441.7079 | -441.6409 | -441.7284 | -440.9658 | -440.0692 | |
10 | -441.8182 | -441.8136 | -441.7947 | -441.7388 | -441.7836 | -441.7767 | -441.6903 | -441.7961 | -440.1546 | -440.1106 | |
12 | -441.8579 | -441.8372 | -441.8412 | -441.7623 | -441.8426 | -441.8145 | -441.7252 | -441.8418 | -440.1620 | -440.2211 | |
Lake | 4 | -812.1139 | -812.1139 | -812.1139 | -812.0987 | -812.1139 | -812.1079 | -812.0152 | -812.1139 | -811.9079 | -810.5752 |
6 | -812.3819 | -812.3818 | -812.3819 | -812.2984 | -812.3818 | -812.3736 | -812.3574 | -812.3818 | -811.7736 | -810.3594 | |
8 | -812.4913 | -812.4849 | -812.4913 | -812.3919 | -812.4845 | -812.4776 | -812.4708 | -812.4777 | -810.6776 | -810.2308 | |
10 | -812.5476 | -812.5416 | -812.5465 | -812.4565 | -812.5374 | -812.5347 | -812.4901 | -812.5360 | -810.8347 | -811.4691 | |
12 | -812.5797 | -812.5663 | -812.5738 | -812.4903 | -812.5752 | -812.5588 | -812.5076 | -812.5747 | -811.9588 | -810.4976 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 0.0000e + 00 | 0.0000e + 00 | 0.0000e + 00 | 1.5052e + 00 | 6.9599e - 03 | 2.9240e - 01 | 1.0625e + 01 | 1.9536e - 02 | 1.2525e - 02 | 1.5216e - 02 |
6 | 4.1541e - 03 | 1.0091e - 01 | 5.6543e - 03 | 1.3679e + 01 | 4.6615e + 00 | 1.7517e + 00 | 1.4785e + 01 | 4.5974e + 00 | 1.3759e + 01 | 4.4865e + 00 | |
8 | 2.2692e - 03 | 7.3258e - 01 | 1.1033e + 00 | 3.3881e + 00 | 3.8795e + 00 | 9.8235e - 01 | 3.1223e + 00 | 1.5591e - 01 | 3.3871e + 00 | 1.9732e - 01 | |
10 | 5.3445e - 02 | 1.8133e + 00 | 8.9802e - 01 | 4.4712e + 00 | 2.2772e + 00 | 7.2268e - 01 | 8.1170e + 00 | 1.4814e + 00 | 9.5750e + 00 | 3.4353e + 00 | |
12 | 2.2612e - 01 | 8.7240e - 01 | 1.1039e + 00 | 2.5169e + 00 | 1.6665e + 00 | 1.2467e + 00 | 1.8633e + 00 | 1.1796e + 00 | 2.9986e + 00 | 2.8652e + 00 | |
Building | 4 | 0.0000e + 00 | 5.2206e - 03 | 0.0000e + 00 | 1.0556e + 00 | 0.0000e + 00 | 2.0873e - 01 | 1.9321e - 01 | 4.9614e - 03 | 3.2768e - 01 | 5.9787e - 03 |
6 | 2.7075e - 03 | 4.1034e - 01 | 1.4030e - 03 | 5.8629e + 00 | 3.7949e + 00 | 5.4196e - 01 | 4.5020e + 00 | 4.8013e + 00 | 5.9732e + 00 | 5.8364e + 00 | |
8 | 1.5158e - 02 | 7.8094e - 01 | 3.6351e + 00 | 4.4713e + 00 | 1.8527e + 00 | 1.0868e + 00 | 7.2455e + 00 | 1.8760e + 00 | 9.8648e + 00 | 7.8648e + 00 | |
10 | 2.5611e - 02 | 1.5275e + 00 | 2.2609e + 00 | 1.8080e + 00 | 1.8371e + 00 | 1.1496e + 00 | 2.8591e + 00 | 2.5056e + 00 | 6.8734e + 00 | 6.8642e + 00 | |
12 | 2.6689e - 01 | 6.5488e - 01 | 1.0901e + 00 | 1.5993e + 00 | 6.8305e - 01 | 1.0169e + 00 | 3.8292e + 00 | 9.4510e - 01 | 5.8743e + 00 | 9.9608e - 01 | |
Cactus | 4 | 0.0000e + 00 | 8.8624e - 03 | 0.0000e + 00 | 9.7805e - 01 | 1.9783e - 03 | 2.2157e - 01 | 9.0407e - 02 | 1.0212e + 01 | 8.8738e - 02 | 7.9492e + 01 |
6 | 0.0000e + 00 | 1.4716e - 01 | 1.0193e - 02 | 6.3001e + 00 | 2.8521e + 00 | 1.2033e + 00 | 5.9922e + 00 | 3.6189e + 00 | 6.8438e + 00 | 7.9332e + 00 | |
8 | 2.7104e - 03 | 9.2525e - 01 | 4.1563e - 01 | 5.5874e + 00 | 1.8328e + 00 | 1.4973e + 00 | 5.7798e + 00 | 1.6235e + 00 | 6.6432e + 00 | 4.4932e + 00 | |
10 | 7.5561e - 03 | 7.4369e - 01 | 2.9334e - 01 | 3.4511e + 00 | 1.7996e + 00 | 8.5357e - 01 | 5.9010e + 00 | 1.3657e + 00 | 6.9754e + 00 | 5.9733e + 00 | |
12 | 1.2812e - 01 | 1.4887e + 00 | 4.1829e - 01 | 1.7774e + 00 | 8.5019e - 01 | 7.4279e - 01 | 1.6913e + 00 | 6.4976e - 01 | 5.4883e + 00 | 7.4934e - 01 | |
Cow | 4 | 5.0842e - 13 | 9.4847e - 06 | 6.1882e - 07 | 1.3402e + 00 | 5.1671e - 03 | 3.2173e - 01 | 1.4038e - 01 | 9.3752e - 03 | 3.9754e - 01 | 9.7353e - 03 |
6 | 1.6545e - 01 | 1.9084e - 01 | 1.6323e - 01 | 5.9744e + 00 | 2.5197e + 00 | 1.3783e + 00 | 2.3592e + 00 | 1.6166e - 01 | 5.4873e + 00 | 2.9753e - 01 | |
8 | 2.4108e - 02 | 7.2264e - 01 | 9.2347e - 01 | 4.8122e + 00 | 2.4409e - 02 | 1.5244e + 00 | 6.3387e + 00 | 8.8607e - 01 | 7.8478e + 00 | 9.7743e - 01 | |
10 | 2.5064e - 01 | 3.3253e - 01 | 9.2932e - 01 | 3.1243e + 00 | 6.9114e - 01 | 7.6097e - 01 | 6.7771e + 00 | 1.2230e + 00 | 7.6436e + 00 | 8.9549e + 00 | |
12 | 1.0103e - 01 | 1.3010e + 00 | 1.0714e - 01 | 2.1099e + 00 | 4.9416e - 01 | 1.0799e + 00 | 5.4692e + 00 | 1.0640e + 00 | 6.7484e + 00 | 5.8622e + 00 | |
Deer | 4 | 0.0000e + 00 | 0.0000e + 00 | 5.4207e + 00 | 5.4024e + 00 | 7.4593e - 03 | 4.5577e - 01 | 6.2558e - 02 | 5.3883e + 00 | 7.6532e - 02 | 8.7353e + 00 |
6 | 0.0000e + 00 | 2.3296e + 00 | 2.5645e + 00 | 3.9302e + 00 | 2.2381e + 00 | 2.2796e + 00 | 6.8111e + 00 | 4.7647e + 00 | 7.3752e + 00 | 6.8352e + 00 | |
8 | 2.4978e - 02 | 3.0141e + 00 | 1.5768e + 00 | 2.9499e + 00 | 3.4235e + 00 | 3.2422e + 00 | 3.7797e + 00 | 2.0554e + 00 | 6.7534e + 00 | 5.7534e + 00 | |
10 | 4.0174e - 01 | 1.5329e + 00 | 1.5146e + 00 | 2.1600e + 00 | 1.9536e + 00 | 1.6882e + 00 | 8.6796e + 00 | 3.0491e + 00 | 7.9333e + 00 | 6.8457e + 00 | |
12 | 4.1945e - 01 | 1.3304e + 00 | 1.0805e + 00 | 3.8898e + 00 | 9.9896e - 01 | 7.9462e - 01 | 5.3120e + 00 | 1.7347e + 00 | 6.4378e + 00 | 4.8363e + 00 | |
Diver | 4 | 1.6462e - 03 | 1.3852e - 02 | 0.0000e + 00 | 4.2953e - 01 | 1.0325e - 02 | 4.3669e - 01 | 1.8932e - 01 | 2.0237e + 00 | 4.7522e - 01 | 5.4656e + 00 |
6 | 0.0000e + 00 | 4.5469e - 02 | 1.3710e - 03 | 2.1993e + 00 | 7.7053e - 01 | 1.6244e + 00 | 4.9161e + 00 | 3.5567e - 02 | 7.7453e + 00 | 6.8634e - 02 | |
8 | 3.0942e - 02 | 9.2514e - 01 | 4.5038e - 01 | 1.8318e + 00 | 4.4823e - 01 | 3.5167e - 01 | 2.0986e + 00 | 1.0432e + 00 | 3.7543e + 00 | 4.8652e + 00 | |
10 | 8.3825e - 03 | 7.0084e - 01 | 5.9167e - 01 | 1.9117e + 00 | 2.1269e - 01 | 9.7038e - 01 | 1.2839e + 00 | 7.0318e - 01 | 3.8658e + 00 | 8.7454e - 01 | |
12 | 1.3694e - 01 | 5.1430e - 01 | 4.0234e - 01 | 2.1263e + 00 | 2.6468e - 01 | 1.4983e - 01 | 1.9739e + 00 | 5.5533e - 01 | 5.4867e + 00 | 6.7543e - 01 | |
Elephant | 4 | 0.0000e + 00 | 6.4237e - 03 | 0.0000e + 00 | 6.0503e + 00 | 9.0498e - 04 | 1.6488e - 01 | 1.8436e - 01 | 7.2737e - 03 | 3.7523e - 01 | 8.7647e - 03 |
6 | 4.4492e - 02 | 1.9454e + 00 | 2.3242e + 00 | 6.2803e + 00 | 1.7561e + 00 | 1.3165e + 00 | 3.0963e + 00 | 4.7712e + 00 | 5.8437e + 00 | 6.8783e + 00 | |
8 | 5.5357e - 01 | 1.2826e + 00 | 1.5730e + 00 | 3.1859e + 00 | 1.5738e + 00 | 7.7418e - 01 | 4.9522e + 00 | 7.3335e - 01 | 6.8773e + 00 | 8.6534e - 01 | |
10 | 1.2384e + 00 | 2.1375e + 00 | 1.2931e + 00 | 5.7291e + 00 | 6.7686e + 01 | 1.6294e + 00 | 1.0518e + 01 | 2.0065e + 00 | 3.8856e + 01 | 4.7436e + 00 | |
12 | 4.3928e - 01 | 5.2442e - 01 | 1.0687e + 00 | 2.3214e + 00 | 1.7015e + 00 | 1.1204e + 00 | 2.8496e + 00 | 1.7069e + 00 | 4.8753e + 00 | 5.8475e + 00 | |
Horse | 4 | 0.0000e + 00 | 0.0000e + 00 | 0.0000e + 00 | 2.9545e + 00 | 1.0649e - 03 | 2.2981e - 01 | 1.4238e + 01 | 1.8426e - 02 | 4.7583e + 01 | 3.8964e - 02 |
6 | 7.9497e - 04 | 4.3199e - 02 | 4.3438e - 03 | 7.1120e + 00 | 1.2905e - 02 | 8.5581e - 01 | 6.9369e - 01 | 5.0399e + 00 | 7.7643e - 01 | 6.8353e + 00 | |
8 | 4.5720e - 02 | 2.3215e + 00 | 1.7100e + 00 | 6.0056e + 00 | 2.2284e + 00 | 6.7892e - 01 | 4.5581e + 00 | 2.1843e - 01 | 6.7654e + 00 | 5.8753e - 01 | |
10 | 1.7780e - 02 | 1.0456e + 00 | 1.0097e + 00 | 4.8101e + 00 | 2.8650e + 00 | 1.0801e + 00 | 7.7065e + 00 | 1.5548e + 00 | 8.8775e + 00 | 5.8753e + 00 | |
12 | 3.6262e - 02 | 9.1042e - 01 | 5.2105e - 01 | 2.7274e + 00 | 9.6076e - 01 | 1.3683e + 00 | 3.1956e + 00 | 1.2537e + 00 | 4.7535e + 00 | 4.7653e + 00 | |
Kangaroo | 4 | 0.0000e + 00 | 2.8080e - 03 | 0.0000e + 00 | 1.4197e + 00 | 0.0000e + 00 | 4.5233e - 01 | 1.5513e - 01 | 1.1710e - 02 | 2.8684e - 01 | 4.7833e - 02 |
6 | 7.0945e - 04 | 3.3564e - 02 | 3.1934e - 03 | 8.2077e + 00 | 1.2418e - 02 | 1.0105e + 00 | 4.8869e + 00 | 3.0115e + 00 | 5.7536e + 00 | 4.8753e + 00 | |
8 | 7.9087e - 03 | 5.6464e - 02 | 3.6501e - 01 | 6.1105e + 00 | 1.2628e + 00 | 1.2967e + 00 | 5.9183e + 00 | 2.3696e + 00 | 6.8733e + 00 | 5.8757e + 00 | |
10 | 2.5610e - 03 | 4.6108e - 01 | 1.1588e + 00 | 4.0363e + 00 | 5.7158e - 01 | 8.9576e - 01 | 6.7443e + 00 | 1.3835e + 00 | 7.9864e + 00 | 4.8875e + 00 | |
12 | 4.0049e - 02 | 8.7691e - 01 | 1.1766e + 00 | 2.5601e + 00 | 3.8831e - 01 | 6.2671e - 01 | 3.8655e + 00 | 1.3033e + 00 | 5.8754e + 00 | 4.8684e + 00 | |
Lake | 4 | 5.0842e - 13 | 8.5440e - 07 | 4.4517e - 03 | 1.0043e + 01 | 1.4746e - 04 | 1.5678e - 01 | 2.4311e + 01 | 1.2714e - 02 | 4.9854e + 01 | 3.9685e - 02 |
6 | 1.3355e - 03 | 1.0129e - 01 | 3.4139e + 00 | 6.2361e + 00 | 1.6624e - 02 | 1.4420e + 00 | 1.4072e + 01 | 3.6018e + 00 | 3.7987e + 01 | 4.8644e + 00 | |
8 | 1.8655e - 01 | 1.5349e + 00 | 1.5352e + 00 | 2.7270e + 00 | 1.5140e + 00 | 1.8072e + 00 | 7.3736e + 00 | 3.7370e + 00 | 9.3875e + 00 | 4.8743e + 00 | |
10 | 5.2140e - 03 | 1.3903e + 00 | 1.4982e + 00 | 3.8401e + 00 | 1.6502e + 00 | 1.7344e + 00 | 1.1550e + 01 | 2.2614e + 00 | 5.9486e + 01 | 3.7844e + 00 | |
12 | 1.3347e - 01 | 8.2871e - 01 | 6.0813e - 01 | 9.4868e - 01 | 1.0480e + 00 | 1.1963e + 00 | 7.1376e + 00 | 1.8657e + 00 | 8.7543e + 00 | 5.9883e + 00 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 0.0000e + 00 | 1.1889e - 03 | 4.5792e - 05 | 1.2654e - 02 | 2.5227e - 02 | 2.6238e - 03 | 2.3338e - 02 | 4.5792e - 05 | 3.8752e - 03 | 4.8758e - 02 |
6 | 1.0803e - 04 | 1.1619e - 04 | 1.2647e - 04 | 7.0324e - 02 | 3.1088e - 04 | 1.7798e - 02 | 4.0157e - 02 | 1.3631e - 04 | 4.8775e - 02 | 6.8753e - 02 | |
8 | 1.9295e - 04 | 8.4380e - 03 | 1.3024e - 02 | 2.3574e - 01 | 2.5639e - 02 | 4.3985e - 02 | 1.3272e - 01 | 1.4655e - 02 | 5.8753e - 02 | 4.7533e - 01 | |
10 | 6.3220e - 03 | 5.5282e - 02 | 5.7422e - 02 | 2.0425e - 01 | 1.9574e - 02 | 4.6981e - 02 | 5.8561e - 01 | 3.1833e - 02 | 6.8735e - 02 | 7.8743e - 01 | |
12 | 1.6956e - 02 | 9.7999e - 02 | 4.5541e - 02 | 3.0201e - 01 | 3.6739e - 01 | 1.2307e - 01 | 6.4889e - 01 | 2.4119e - 02 | 3.9864e - 01 | 7.8743e - 01 | |
Building | 4 | 0.0000e + 00 | 0.0000e + 00 | 0.0000e + 00 | 7.0614e - 03 | 3.2018e - 05 | 1.2271e - 03 | 9.2528e - 04 | 0.0000e + 00 | 4.9863e - 03 | 9.8743e - 04 |
6 | 8.8020e - 03 | 1.5824e - 02 | 4.2359e - 02 | 6.1177e - 02 | 9.7401e - 03 | 3.0400e - 02 | 1.7481e - 01 | 1.1671e - 02 | 4.8733e - 02 | 4.3734e - 01 | |
8 | 2.8468e - 03 | 3.2699e - 02 | 3.0477e - 03 | 1.7964e - 01 | 4.6111e - 02 | 3.0846e - 02 | 2.1943e - 01 | 3.3616e - 02 | 4.8753e - 02 | 5.9843e - 01 | |
10 | 2.0785e - 02 | 2.3636e - 02 | 2.1609e - 02 | 2.5603e - 01 | 8.2992e - 02 | 3.5160e - 02 | 5.6484e - 01 | 2.2881e - 02 | 4.8753e - 02 | 6.9886e - 01 | |
12 | 5.2186e - 02 | 9.7696e - 02 | 1.5118e - 01 | 5.0506e - 01 | 9.8895e - 02 | 1.6661e - 01 | 6.3697e - 01 | 1.7954e - 01 | 5.9864e - 01 | 7.4875e - 01 | |
Cactus | 4 | 2.6599e - 05 | 2.5477e - 03 | 8.5579e - 05 | 4.3927e - 03 | 5.8348e - 05 | 3.1864e - 03 | 2.1741e - 03 | 2.6752e - 05 | 5.3634e - 03 | 3.8767e - 03 |
6 | 1.4541e - 04 | 9.5823e - 04 | 1.6053e - 04 | 7.4453e - 02 | 2.9505e - 04 | 1.9699e - 02 | 5.3930e - 02 | 4.3274e - 04 | 4.9863e - 02 | 6.8244e - 02 | |
8 | 9.5675e - 04 | 8.8883e - 03 | 2.7352e - 02 | 1.3299e - 01 | 3.2443e - 02 | 3.3815e - 02 | 1.8186e - 01 | 7.3041e - 03 | 5.8743e - 02 | 4.7863e - 01 | |
10 | 4.3610e - 03 | 3.9010e - 02 | 5.3608e - 03 | 2.6713e - 01 | 4.9142e - 02 | 3.2420e - 02 | 1.5062e - 01 | 3.3415e - 02 | 5.8674e - 02 | 4.9836e - 01 | |
12 | 2.7111e - 03 | 7.4828e - 02 | 3.2452e - 02 | 2.3010e - 01 | 1.8277e - 02 | 5.0186e - 02 | 6.4139e - 01 | 7.3479e - 03 | 6.8765e - 02 | 7.8754e - 01 | |
Cow | 4 | 4.3875e - 04 | 4.5348e - 04 | 4.5512e - 03 | 1.9697e - 02 | 2.1813e - 02 | 3.4052e - 02 | 7.4689e - 03 | 4.3942e - 04 | 4.6733e - 02 | 8.8735e - 03 |
6 | 2.8795e - 05 | 8.4886e - 02 | 3.9295e - 02 | 5.9538e - 02 | 6.2887e - 02 | 1.5797e - 02 | 2.9128e - 01 | 4.9848e - 04 | 2.7535e - 02 | 3.8965e - 01 | |
8 | 3.6982e - 02 | 1.2156e - 01 | 4.4534e - 02 | 1.1567e - 01 | 7.5803e - 02 | 4.3787e - 02 | 4.7450e - 01 | 6.0485e - 02 | 5.8767e - 02 | 5.9886e - 01 | |
10 | 4.3049e - 02 | 1.2759e - 01 | 7.2200e - 02 | 2.1993e - 01 | 5.6487e - 02 | 4.4582e - 02 | 4.3961e - 01 | 5.2046e - 02 | 6.7854e - 02 | 5.9846e - 01 | |
12 | 3.2045e - 02 | 2.6235e - 01 | 7.0662e - 02 | 3.1597e - 01 | 1.1705e - 01 | 5.1689e - 02 | 5.3110e - 01 | 7.5080e - 02 | 7.8775e - 02 | 8.7654e - 01 | |
Deer | 4 | 0.0000e + 00 | 5.8974e - 03 | 5.9135e - 03 | 4.0585e - 03 | 7.2305e - 03 | 1.9331e - 02 | 6.9060e - 03 | 7.2004e - 03 | 6.7864e - 02 | 7.7435e - 03 |
6 | 2.2839e - 04 | 1.4763e - 03 | 3.3548e - 04 | 8.1484e - 02 | 6.2308e - 04 | 1.9429e - 02 | 1.1446e - 02 | 8.4301e - 04 | 2.8863e - 02 | 3.9753e - 02 | |
8 | 2.9669e - 03 | 6.7418e - 03 | 3.2304e - 03 | 1.3820e - 01 | 2.3685e - 02 | 7.5112e - 02 | 3.6370e - 01 | 5.8357e - 03 | 9.8754e - 02 | 4.8963e - 01 | |
10 | 4.9822e - 03 | 2.8841e - 01 | 2.7250e - 01 | 6.5556e - 01 | 2.6518e - 01 | 1.9191e - 01 | 6.4420e - 01 | 2.8244e - 01 | 2.0793e - 01 | 7.8735e - 01 | |
12 | 6.1415e - 02 | 4.7209e - 01 | 2.0164e - 01 | 3.5708e - 01 | 4.9867e - 01 | 1.1798e - 01 | 4.9348e - 01 | 2.4177e - 01 | 2.9753e - 01 | 5.4383e - 01 | |
Diver | 4 | 4.5390e - 04 | 9.5888e - 04 | 7.7273e - 04 | 1.8401e - 02 | 6.0705e - 04 | 4.7672e - 03 | 1.4489e - 03 | 4.5784e - 04 | 5.8986e - 03 | 2.8633e - 03 |
6 | 0.0000e + 00 | 2.0699e - 02 | 2.1247e - 02 | 2.0500e - 02 | 1.6986e - 02 | 2.0526e - 02 | 5.9176e - 02 | 2.1127e - 02 | 3.8646e - 02 | 6.9743e - 02 | |
8 | 4.9174e - 04 | 2.1986e - 02 | 2.7020e - 02 | 2.9803e - 01 | 2.7249e - 02 | 3.1078e - 02 | 8.7167e - 02 | 3.3923e - 01 | 5.8946e - 02 | 9.8763e - 02 | |
10 | 5.5672e - 03 | 2.1660e - 02 | 4.5160e - 02 | 2.5325e - 01 | 2.7837e - 01 | 9.0056e - 02 | 5.5104e - 01 | 2.7969e - 01 | 9.8534e - 02 | 6.8754e - 01 | |
12 | 2.1843e - 02 | 3.0838e - 01 | 2.8180e - 02 | 1.3301e - 01 | 4.2689e - 01 | 8.5895e - 02 | 5.6435e - 01 | 3.2203e - 01 | 9.8757e - 02 | 6.7654e - 01 | |
Elephant | 4 | 0.0000e + 00 | 1.9632e - 02 | 0.0000e + 00 | 1.6930e - 02 | 1.9460e - 02 | 3.0622e - 03 | 4.9727e - 03 | 1.5939e - 02 | 5.8754e - 03 | 5.8754e - 03 |
6 | 8.9460e - 04 | 4.7949e - 03 | 7.4900e - 03 | 2.7495e - 02 | 3.9956e - 03 | 3.5767e - 02 | 1.0488e - 02 | 3.3018e - 03 | 4.8753e - 02 | 2.8785e - 02 | |
8 | 1.2782e - 02 | 1.4891e - 02 | 5.2655e - 02 | 3.0559e - 01 | 1.1137e - 01 | 7.2515e - 02 | 2.7681e - 01 | 1.8693e - 02 | 8.4875e - 02 | 3.8754e - 01 | |
10 | 1.0683e - 02 | 2.2650e - 02 | 7.8857e - 02 | 3.4112e - 01 | 3.1072e - 02 | 1.4351e - 01 | 8.6519e - 01 | 6.9635e - 02 | 2.8645e - 01 | 9.7643e - 01 | |
12 | 3.2082e - 02 | 1.5757e - 01 | 7.0852e - 02 | 4.7685e - 01 | 9.6941e - 02 | 1.2052e - 01 | 6.8057e - 01 | 3.7980e - 02 | 3.9865e - 01 | 7.9863e - 01 | |
Horse | 4 | 0.0000e + 00 | 4.3697e - 05 | 0.0000e + 00 | 5.7362e - 03 | 3.0031e - 05 | 1.1992e - 03 | 9.0646e - 04 | 0.0000e + 00 | 2.9864e - 03 | 9.7845e - 04 |
6 | 3.9001e - 05 | 6.8235e - 04 | 6.4030e - 05 | 2.7168e - 02 | 1.8898e - 02 | 2.4707e - 02 | 3.9755e - 01 | 1.6253e - 04 | 3.8496e - 02 | 4.0379e - 01 | |
8 | 1.0658e - 03 | 1.5830e - 02 | 1.5773e - 02 | 1.7886e - 01 | 3.2528e - 01 | 2.0050e - 02 | 5.1045e - 02 | 1.8431e - 02 | 3.8564e - 02 | 6.8734e - 02 | |
10 | 1.1899e - 03 | 2.6765e - 02 | 1.0699e - 02 | 4.4824e - 01 | 2.0086e - 03 | 9.0610e - 02 | 1.0780e + 00 | 1.9035e - 02 | 9.9363e - 02 | 2.9747e + 00 | |
12 | 1.0195e - 02 | 9.3998e - 02 | 1.0905e - 02 | 1.4685e - 01 | 2.7702e - 01 | 1.3892e - 01 | 1.1139e + 00 | 1.6405e - 02 | 2.9875e - 01 | 3.9785e + 00 | |
Kangaroo | 4 | 0.0000e + 00 | 1.8494e - 03 | 0.0000e + 00 | 1.3075e - 02 | 7.9334e - 03 | 2.8633e - 03 | 3.8586e - 03 | 5.7127e - 05 | 3.4079e - 03 | 4.9445e - 03 |
6 | 2.9074e - 03 | 3.7403e - 03 | 2.9915e - 03 | 7.1561e - 02 | 3.3148e - 03 | 5.2471e - 03 | 3.8709e - 02 | 3.0783e - 03 | 6.9856e - 03 | 4.9865e - 02 | |
8 | 5.6649e - 04 | 1.1019e - 02 | 5.4813e - 03 | 8.2995e - 02 | 5.6226e - 03 | 7.0540e - 03 | 3.1840e - 01 | 4.0150e - 03 | 8.4835e - 03 | 4.9864e - 01 | |
10 | 3.7801e - 03 | 1.1827e - 02 | 1.8489e - 02 | 3.4071e - 01 | 6.9291e - 03 | 3.8810e - 02 | 5.2978e - 01 | 8.3780e - 03 | 5.9836e - 02 | 6.9886e - 01 | |
12 | 8.7743e - 03 | 4.7216e - 02 | 1.6021e - 02 | 4.4485e - 01 | 2.2123e - 02 | 6.8302e - 02 | 8.7635e - 01 | 3.7581e - 02 | 7.9867e - 02 | 9.7643e - 01 | |
Lake | 4 | 0.0000e + 00 | 0.0000e + 00 | 0.0000e + 00 | 9.7684e - 03 | 6.1440e - 03 | 4.9956e - 03 | 2.4380e - 04 | 9.6789e - 05 | 5.6536e - 03 | 3.8464e - 04 |
6 | 1.1065e - 04 | 3.8191e - 03 | 1.1223e - 04 | 5.6110e - 02 | 3.2872e - 04 | 2.1645e - 02 | 1.6446e - 02 | 2.1150e - 04 | 3.9865e - 02 | 2.4783e - 02 | |
8 | 1.2889e - 03 | 7.5427e - 03 | 2.1513e - 02 | 9.1336e - 02 | 2.0880e - 02 | 4.3782e - 02 | 5.4877e - 01 | 5.1575e - 03 | 5.4765e - 02 | 6.6584e - 01 | |
10 | 6.1286e - 03 | 4.2495e - 02 | 2.5681e - 02 | 3.4080e - 01 | 1.3618e - 02 | 1.2310e - 01 | 8.1195e - 01 | 1.3520e - 02 | 2.9864e - 01 | 9.8346e - 01 | |
12 | 1.0719e - 02 | 6.5413e - 02 | 2.2308e - 01 | 2.9771e - 01 | 6.4892e - 02 | 5.0581e - 02 | 6.3487e - 01 | 3.5103e - 02 | 6.5794e - 02 | 7.3875e - 01 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 0.0000e + 00 | 4.3555e - 05 | 0.0000e + 00 | 4.9764e - 03 | 1.9393e - 05 | 8.8101e - 04 | 1.0221e - 02 | 1.9393e - 05 | 3.0201e - 01 | 6.3697e - 01 |
6 | 1.6098e - 05 | 2.2962e - 03 | 4.1531e - 05 | 2.2771e - 02 | 1.8929e - 02 | 8.7123e - 03 | 5.3511e - 02 | 3.2681e - 04 | 1.7954e - 01 | 2.2881e - 02 | |
8 | 4.1976e - 05 | 2.6942e - 03 | 1.6424e - 02 | 1.6160e - 02 | 9.5683e - 03 | 1.2381e - 02 | 5.2152e - 02 | 1.3810e - 02 | 7.4453e - 02 | 5.3608e - 03 | |
10 | 4.5375e - 05 | 5.3553e - 03 | 2.9144e - 02 | 1.7617e - 02 | 6.8743e - 03 | 1.0299e - 02 | 4.5361e - 02 | 6.4860e - 03 | 1.9697e - 02 | 2.1813e - 02 | |
12 | 1.3560e - 03 | 5.3794e - 03 | 1.3202e - 02 | 1.9366e - 02 | 1.4206e - 02 | 5.8245e - 03 | 2.5064e - 02 | 8.4871e - 03 | 2.9128e - 01 | 1.1567e - 01 | |
Building | 4 | 0.0000e + 00 | 0.0000e + 00 | 0.0000e + 00 | 8.4222e - 03 | 8.2640e - 02 | 1.8660e - 03 | 4.0474e - 03 | 3.7078e - 05 | 1.5062e - 01 | 5.9538e - 02 |
6 | 5.7722e - 06 | 2.2725e - 02 | 1.8815e - 05 | 2.1296e - 02 | 1.3243e - 04 | 1.4934e - 02 | 6.4824e - 02 | 4.4130e - 05 | 6.4139e - 01 | 1.1567e - 01 | |
8 | 8.1194e - 05 | 4.6351e - 03 | 1.0580e - 02 | 2.0644e - 02 | 1.8725e - 02 | 9.6663e - 03 | 3.7373e - 02 | 8.9031e - 03 | 5.9538e - 02 | 2.4707e - 02 | |
10 | 4.3296e - 03 | 4.5957e - 03 | 1.4784e - 02 | 2.9631e - 02 | 1.4996e - 02 | 7.8380e - 03 | 4.1964e - 02 | 1.3119e - 02 | 1.1567e - 01 | 2.2050e - 02 | |
12 | 2.9477e - 03 | 4.7520e - 03 | 1.0995e - 02 | 1.4305e - 02 | 9.2023e - 03 | 3.3979e - 03 | 3.3865e - 02 | 3.3371e - 03 | 5.9538e - 02 | 9.0610e - 02 | |
Cactus | 4 | 0.0000e + 00 | 1.7572e - 06 | 0.0000e + 00 | 5.5546e - 03 | 1.4347e - 06 | 1.9111e - 03 | 1.9601e - 03 | 0.0000e + 00 | 1.1567e - 01 | 1.3892e - 01 |
6 | 0.0000e + 00 | 2.2275e - 04 | 3.3031e - 05 | 2.0208e - 02 | 1.6240e - 02 | 7.5591e - 03 | 3.3427e - 03 | 1.8360e - 04 | 3.1104e - 03 | 1.3820e - 01 | |
8 | 5.7902e - 05 | 7.8170e - 03 | 1.6810e - 03 | 3.3547e - 02 | 7.3692e - 03 | 4.4322e - 03 | 6.7041e - 02 | 2.6121e - 03 | 2.7250e - 01 | 6.5556e - 01 | |
10 | 1.3753e - 04 | 7.0512e - 03 | 5.4453e - 03 | 5.7462e - 03 | 7.6790e - 03 | 7.0182e - 03 | 4.6264e - 02 | 1.3599e - 03 | 2.3624e - 01 | 3.468e - 01 | |
12 | 1.7572e - 06 | 1.9572e - 06 | 6.2473e - 05 | 5.5546e - 03 | 1.9347e - 06 | 1.9111e - 03 | 1.9601e - 03 | 3.9851e - 04 | 7.7243e - 03 | 1.8401e - 02 | |
Cow | 4 | 0.0000e + 00 | 3.5553e - 06 | 0.0000e + 00 | 4.3800e - 03 | 7.0152e - 06 | 1.4766e - 03 | 5.5669e - 02 | 2.1702e - 05 | 2.730e - 01 | 6.5556e - 01 |
6 | 8.3327e - 06 | 3.3821e - 04 | 2.9309e - 05 | 2.9149e - 02 | 1.5862e - 02 | 1.1595e - 02 | 2.3744e - 02 | 5.9844e - 05 | 2.0164e - 01 | 3.5708e - 01 | |
8 | 1.0541e - 05 | 7.6901e - 03 | 8.9780e - 03 | 1.2516e - 02 | 7.2417e - 03 | 5.5736e - 03 | 3.6431e - 02 | 1.4694e - 02 | 7.7273e - 02 | 1.8401e - 02 | |
10 | 4.4374e - 04 | 7.8347e - 03 | 6.0441e - 03 | 2.7480e - 02 | 8.2380e - 03 | 6.4775e - 03 | 8.9388e - 03 | 7.9328e - 03 | 2.1247e - 02 | 2.0322e - 02 | |
12 | 6.9515e - 04 | 7.2237e - 03 | 4.2157e - 03 | 1.2538e - 02 | 5.5394e - 03 | 5.9790e - 03 | 2.4809e - 02 | 3.0575e - 03 | 2.7010e - 02 | 2.673e - 01 | |
Deer | 4 | 0.0000e + 00 | 2.8320e - 05 | 4.2927e - 02 | 3.5671e - 02 | 5.1525e - 02 | 6.7133e - 03 | 5.1398e - 02 | 3.0850e - 05 | 7.6374e - 03 | 7.6974e - 03 |
6 | 2.6894e - 05 | 3.4557e - 05 | 2.5596e - 02 | 3.2448e - 02 | 1.6901e - 02 | 1.9843e - 02 | 5.0846e - 02 | 1.6964e - 02 | 3.8839e - 04 | 1.9763e - 03 | |
8 | 2.8452e - 05 | 1.2801e - 02 | 3.2649e - 02 | 2.4045e - 02 | 2.0842e - 02 | 9.6566e - 03 | 2.4055e - 02 | 1.7755e - 02 | 4.6669e - 03 | 2.7418e - 03 | |
10 | 1.7530e - 04 | 2.9018e - 02 | 1.2639e - 02 | 1.9853e - 02 | 1.1923e - 02 | 1.6688e - 02 | 5.3703e - 02 | 5.5481e - 03 | 5.6722e - 03 | 3.4841e - 01 | |
12 | 2.1929e - 03 | 1.2338e - 02 | 8.8961e - 03 | 9.8628e - 03 | 6.5436e - 03 | 6.7611e - 03 | 1.7855e - 02 | 1.0242e - 02 | 6.5415e - 02 | 6.5209e - 01 | |
Diver | 4 | 0.0000e + 00 | 0.0000e + 00 | 0.0000e + 00 | 4.1200e - 03 | 2.9214e - 02 | 2.5662e - 02 | 4.3891e - 02 | 3.1663e - 05 | 8.5668e - 04 | 6.3673e - 04 |
6 | 2.4028e - 07 | 2.7901e - 04 | 2.3344e - 02 | 1.4257e - 02 | 1.0952e - 02 | 1.3559e - 02 | 7.2014e - 02 | 1.1899e - 02 | 3.0089e - 02 | 8.7357e - 02 | |
8 | 7.2607e - 05 | 7.7633e - 03 | 1.4945e - 02 | 1.9285e - 02 | 1.3145e - 02 | 1.6465e - 02 | 4.3331e - 02 | 9.7951e - 03 | 3.9863e - 02 | 4.6700e - 02 | |
10 | 6.6864e - 04 | 2.8358e - 03 | 1.1158e - 02 | 1.8721e - 02 | 1.1055e - 02 | 6.6527e - 03 | 3.3078e - 02 | 9.4649e - 03 | 5.9793e - 02 | 5.7864e - 02 | |
12 | 3.0549e - 03 | 7.9756e - 03 | 8.9144e - 03 | 7.0841e - 03 | 1.2907e - 02 | 1.3726e - 02 | 4.1452e - 02 | 1.1751e - 02 | 5.4598e - 01 | 3.7680e - 02 | |
Elephant | 4 | 0.0000e + 00 | 9.0077e - 04 | 9.0267e - 04 | 4.1081e - 02 | 1.1055e - 03 | 4.1184e - 04 | 4.9507e - 02 | 9.2036e - 04 | 2.7340e - 02 | 6.4674e - 02 |
6 | 1.4221e - 06 | 8.0570e - 04 | 1.3606e - 02 | 2.4760e - 02 | 1.1116e - 02 | 1.4617e - 02 | 4.5924e - 02 | 3.0920e - 02 | 3.9863e - 02 | 4.5632e - 03 | |
8 | 7.9685e - 04 | 1.0640e - 02 | 1.2130e - 02 | 2.6000e - 02 | 1.0469e - 02 | 7.8799e - 03 | 2.8428e - 02 | 1.1566e - 02 | 9.8876e - 01 | 3.9450e - 01 | |
10 | 2.3569e - 03 | 2.6128e - 03 | 3.0860e - 03 | 1.8732e - 02 | 8.0987e - 03 | 8.4090e - 03 | 2.4145e - 02 | 6.6496e - 03 | 6.9973e - 01 | 4.0876e - 02 | |
12 | 1.0095e - 03 | 8.1323e - 03 | 5.5866e - 03 | 2.3722e - 02 | 1.2886e - 02 | 3.3161e - 03 | 3.9390e - 02 | 5.4535e - 03 | 5.6643e - 01 | 3.0267e - 02 | |
Horse | 4 | 0.0000e + 00 | 7.6146e - 06 | 0.0000e + 00 | 3.9869e - 02 | 0.0000e + 00 | 1.2334e - 03 | 3.3564e - 04 | 0.0000e + 00 | 8.6683e - 03 | 4.9931e - 05 |
6 | 6.9579e - 06 | 2.9511e - 04 | 1.4611e - 05 | 3.9917e - 02 | 1.3604e - 02 | 1.9567e - 03 | 3.8756e - 02 | 1.0109e - 04 | 3.9825e - 02 | 1.9603e - 02 | |
8 | 3.2793e - 05 | 3.6051e - 03 | 5.9145e - 04 | 1.9079e - 02 | 3.1548e - 04 | 1.3885e - 02 | 3.6609e - 02 | 6.0967e - 03 | 2.1978e - 01 | 4.9930e - 01 | |
10 | 2.6460e - 05 | 2.5018e - 03 | 2.0397e - 03 | 1.4575e - 02 | 8.7068e - 03 | 6.2620e - 03 | 2.7941e - 02 | 4.9061e - 03 | 4.5722e - 01 | 4.9928e - 03 | |
12 | 4.5934e - 04 | 5.9886e - 03 | 5.6341e - 03 | 2.3385e - 02 | 5.5206e - 03 | 6.2517e - 03 | 1.9090e - 02 | 3.7609e - 03 | 2.7638e - 01 | 3.0145e - 01 | |
Kangaroo | 4 | 0.0000e + 00 | 6.9161e - 05 | 0.0000e + 00 | 4.5684e - 03 | 1.3734e - 05 | 3.7605e - 03 | 5.9342e - 02 | 7.9425e - 06 | 3.0024e - 02 | 1.5722e - 03 |
6 | 1.8491e - 06 | 3.5289e - 06 | 7.4256e - 04 | 2.8424e - 02 | 5.6422e - 03 | 4.7666e - 03 | 6.5992e - 02 | 6.9616e - 05 | 5.7732e - 02 | 4.9731e - 03 | |
8 | 4.1239e - 05 | 1.3851e - 03 | 5.3166e - 03 | 2.3963e - 02 | 9.8772e - 03 | 4.3838e - 03 | 3.9993e - 02 | 7.9770e - 03 | 9.0244e - 02 | 6.0721e - 03 | |
10 | 2.7729e - 04 | 2.3215e - 03 | 6.1821e - 03 | 1.5739e - 02 | 8.2379e - 03 | 6.0833e - 03 | 2.9610e - 02 | 8.2685e - 03 | 3.5673e - 01 | 7.0421e - 03 | |
12 | 3.2988e - 04 | 6.1240e - 03 | 8.4453e - 03 | 9.4158e - 03 | 1.0962e - 02 | 5.6801e - 03 | 2.7494e - 02 | 3.0349e - 03 | 5.9722e - 01 | 6.8722e - 02 | |
Lake | 4 | 0.0000e + 00 | 2.0336e - 06 | 0.0000e + 00 | 8.3246e - 03 | 9.5161e - 06 | 4.1782e - 04 | 2.1471e - 03 | 2.0336e - 06 | 8.6322e - 03 | 6.2880e - 03 |
6 | 5.4704e - 06 | 5.7846e - 04 | 1.3840e - 02 | 4.1747e - 02 | 1.8414e - 02 | 1.6083e - 03 | 4.1550e - 02 | 6.8613e - 05 | 8.9630e - 02 | 7.8652e - 04 | |
8 | 2.5563e - 05 | 6.9062e - 03 | 5.9416e - 03 | 2.7668e - 02 | 1.9965e - 02 | 4.8122e - 03 | 2.8436e - 02 | 1.1764e - 02 | 9.7383e - 02 | 5.8235e - 02 | |
10 | 7.3581e - 05 | 3.9563e - 03 | 3.9417e - 03 | 8.5210e - 03 | 1.1233e - 02 | 4.2182e - 03 | 2.3901e - 02 | 3.8337e - 03 | 4.8252e - 01 | 2.8433e - 02 | |
12 | 9.4260e - 04 | 6.5949e - 03 | 2.0884e - 03 | 1.2109e - 02 | 9.0033e - 03 | 5.1305e - 03 | 3.5508e - 02 | 2.7738e - 03 | 3.0211e - 01 | 5.9363e - 02 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 18.9590 | 18.9590 | 18.9590 | 18.8034 | 18.9590 | 18.8983 | 18.8959 | 18.9590 | 17.3764 | 17.316 |
6 | 21.0920 | 21.0911 | 21.0912 | 20.5635 | 21.0920 | 20.9637 | 20.6669 | 21.0909 | 19.1881 | 18.6372 | |
8 | 22.5471 | 22.3377 | 22.4018 | 22.3838 | 22.5463 | 22.4298 | 21.9278 | 22.4010 | 22.0039 | 21.0101 | |
10 | 23.4904 | 23.3166 | 23.9987 | 23.0423 | 23.4885 | 24.0388 | 23.1488 | 23.5456 | 23.1010 | 22.3231 | |
12 | 27.7081 | 24.5108 | 27.6512 | 23.5212 | 24.8332 | 27.6248 | 27.6485 | 24.7378 | 24.0274 | 24.7898 | |
Building | 4 | 17.4155 | 17.4155 | 17.4155 | 16.9523 | 17.4155 | 17.4062 | 17.4155 | 17.4155 | 16.9011 | 16.9837 |
6 | 19.8902 | 19.8187 | 19.8827 | 19.2310 | 19.8816 | 19.5492 | 19.0128 | 19.8782 | 18.9328 | 18.9880 | |
8 | 22.6625 | 22.5599 | 22.5680 | 19.5148 | 22.3500 | 22.6063 | 22.0638 | 22.4596 | 21.8258 | 22.4735 | |
10 | 27.1866 | 24.2853 | 24.1301 | 22.4138 | 23.9861 | 24.8874 | 23.0124 | 24.2530 | 22.9203 | 23.4174 | |
12 | 27.1983 | 26.3422 | 24.7812 | 24.3360 | 25.2812 | 25.9322 | 24.9121 | 25.0993 | 23.8136 | 25.8439 | |
Cactus | 4 | 20.3428 | 20.3428 | 20.3428 | 20.3309 | 20.3428 | 19.8275 | 20.3239 | 20.3428 | 18.5723 | 18.7159 |
6 | 22.6678 | 22.6661 | 22.6656 | 22.6482 | 22.6643 | 22.6390 | 22.5184 | 22.6668 | 19.2167 | 19.3623 | |
8 | 23.9827 | 23.7898 | 23.9062 | 23.9712 | 23.9422 | 23.5290 | 23.2659 | 23.9202 | 21.3695 | 21.8403 | |
10 | 24.8346 | 24.4556 | 24.6361 | 24.4523 | 24.7911 | 24.5695 | 24.7745 | 24.8199 | 22.4557 | 23.5664 | |
12 | 25.3709 | 24.8899 | 25.0184 | 24.5561 | 25.2555 | 24.8233 | 25.2156 | 25.2255 | 22.8350 | 22.6485 | |
Cow | 4 | 19.7023 | 19.7023 | 19.7023 | 19.0298 | 19.6970 | 19.7023 | 19.6131 | 19.7023 | 16.7087 | 17.7800 |
6 | 21.8735 | 21.8689 | 21.6575 | 21.2382 | 21.6519 | 21.5546 | 21.7785 | 21.6414 | 18.8470 | 19.6007 | |
8 | 23.6239 | 23.2169 | 23.4659 | 23.0928 | 23.5503 | 23.4506 | 22.9317 | 23.5084 | 21.8301 | 21.2347 | |
10 | 24.4648 | 24.4371 | 24.4203 | 24.3740 | 24.3462 | 23.7822 | 23.2376 | 24.2446 | 21.5213 | 23.1898 | |
12 | 25.0056 | 24.5718 | 24.8910 | 24.5712 | 24.5871 | 24.6769 | 23.8856 | 24.9461 | 23.2105 | 24.1131 | |
Deer | 4 | 17.2462 | 17.2462 | 17.2462 | 17.1630 | 17.2462 | 17.1945 | 17.2462 | 16.8531 | 17.2167 | 17.2285 |
6 | 22.3158 | 21.1255 | 21.1255 | 21.2796 | 21.0306 | 20.9120 | 21.0078 | 21.0168 | 19.9878 | 22.3087 | |
8 | 26.4239 | 23.5746 | 23.5002 | 24.0895 | 24.6123 | 26.3803 | 25.5392 | 23.9308 | 20.6895 | 22.7359 | |
10 | 27.1472 | 26.4163 | 26.8848 | 27.1317 | 27.1133 | 26.5453 | 26.8428 | 26.8889 | 22.3587 | 24.5996 | |
12 | 27.9602 | 27.1372 | 27.5484 | 27.8531 | 26.8076 | 26.9325 | 27.5315 | 27.3095 | 24.1497 | 26.6583 | |
Diver | 4 | 24.4620 | 24.4620 | 24.4620 | 24.1907 | 24.4620 | 24.3989 | 24.3677 | 24.3073 | 22.1893 | 22.9514 |
6 | 26.9548 | 26.9170 | 26.9448 | 26.7044 | 26.9499 | 26.6182 | 26.8265 | 26.9420 | 23.9825 | 24.7704 | |
8 | 29.5492 | 29.0513 | 28.6783 | 29.0786 | 28.7387 | 28.3422 | 29.2312 | 28.3347 | 25.0701 | 25.4638 | |
10 | 29.8856 | 29.4112 | 29.3481 | 29.1587 | 29.8131 | 29.2198 | 29.7836 | 29.8342 | 25.1395 | 27.5492 | |
12 | 31.1721 | 30.5343 | 29.7237 | 31.0997 | 31.0803 | 30.9819 | 30.5211 | 30.6319 | 26.5864 | 27.9708 | |
Elephant | 4 | 18.4590 | 18.4590 | 18.4590 | 18.0512 | 18.4590 | 18.4539 | 18.3943 | 18.4092 | 17.9796 | 18.4096 |
6 | 20.9780 | 20.5021 | 20.7348 | 20.9025 | 20.4230 | 20.9187 | 19.9182 | 20.5901 | 19.6514 | 20.2232 | |
8 | 24.6549 | 23.6814 | 23.3417 | 23.1786 | 22.8950 | 24.5622 | 23.5645 | 24.3392 | 21.5350 | 24.2511 | |
10 | 25.7650 | 25.4617 | 25.5042 | 25.0738 | 25.6656 | 25.1711 | 25.4416 | 25.6173 | 22.8253 | 23.9163 | |
12 | 28.5499 | 26.3839 | 27.1607 | 27.3927 | 26.9031 | 28.4144 | 28.2370 | 26.5514 | 23.4172 | 25.3764 | |
Horse | 4 | 18.5055 | 18.5055 | 18.5055 | 18.1434 | 18.5055 | 18.4145 | 18.3600 | 18.4552 | 17.2096 | 17.1942 |
6 | 22.6464 | 21.6461 | 21.6464 | 21.7744 | 21.6383 | 21.6707 | 21.8331 | 21.4744 | 20.7108 | 21.6493 | |
8 | 27.1218 | 23.7877 | 23.7854 | 25.8693 | 24.0577 | 25.3926 | 24.7503 | 23.8225 | 22.3332 | 22.7768 | |
10 | 28.6567 | 24.9734 | 26.1591 | 28.5737 | 28.3542 | 28.0356 | 26.0373 | 26.8562 | 23.3827 | 22.5028 | |
12 | 30.1088 | 25.9198 | 28.5245 | 28.8863 | 29.9344 | 29.6778 | 29.5050 | 28.9135 | 25.1314 | 24.9332 | |
Kangaroo | 4 | 19.3419 | 19.3419 | 19.3419 | 18.9806 | 19.3351 | 19.2601 | 19.2313 | 19.3312 | 18.5756 | 19.2651 |
6 | 25.2386 | 24.3138 | 24.3100 | 22.7301 | 24.3100 | 24.6060 | 24.8281 | 24.7980 | 21.1692 | 22.5045 | |
8 | 30.1938 | 28.9547 | 29.4461 | 26.8673 | 28.4724 | 30.1943 | 26.9309 | 28.0531 | 21.6472 | 22.6528 | |
10 | 33.3271 | 32.0741 | 32.5754 | 31.3008 | 31.8186 | 31.2343 | 30.6409 | 31.7392 | 23.6473 | 25.961 | |
12 | 34.2483 | 33.3702 | 33.5729 | 28.8392 | 33.8080 | 34.2136 | 31.7286 | 33.0561 | 24.8493 | 25.4618 | |
Lake | 4 | 17.8079 | 17.8079 | 17.8079 | 17.8948 | 17.8079 | 17.8154 | 17.8994 | 17.7555 | 15.13304217 | 16.62476501 |
6 | 23.7148 | 20.0906 | 20.2511 | 23.6525 | 22.1280 | 20.5707 | 20.5545 | 20.1912 | 16.80790196 | 16.45672222 | |
8 | 25.1894 | 23.7439 | 22.1234 | 24.4846 | 22.2729 | 23.2811 | 23.1193 | 24.2111 | 21.46744331 | 18.86515735 | |
10 | 27.3522 | 24.2819 | 23.3769 | 25.8174 | 23.2683 | 26.8299 | 26.3802 | 25.8904 | 22.20327956 | 21.45476838 | |
12 | 29.8302 | 25.2634 | 29.3626 | 29.1830 | 29.6264 | 29.0032 | 27.3752 | 26.0006 | 23.99130606 | 23.80486517 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 20.3166 | 20.3166 | 20.2807 | 20.1875 | 18.3087 | 20.0478 | 20.0579 | 20.3166 | 18.0357 | 18.6645 |
6 | 24.3943 | 23.2706 | 23.2631 | 23.9862 | 23.3301 | 24.0850 | 22.8633 | 23.3948 | 19.5943 | 20.5940 | |
8 | 25.9201 | 25.3943 | 25.5275 | 25.7371 | 25.5862 | 25.4035 | 25.6526 | 25.6077 | 21.1853 | 22.0672 | |
10 | 28.8445 | 27.5984 | 27.0704 | 28.3361 | 27.2035 | 27.9440 | 27.2823 | 27.4710 | 22.4667 | 23.2884 | |
12 | 32.1186 | 27.8596 | 30.0963 | 31.4096 | 30.0612 | 31.8332 | 28.2530 | 30.9551 | 23.3027 | 24.6414 | |
Building | 4 | 17.4224 | 17.4155 | 17.415 | 17.0523 | 17.4155 | 17.4142 | 17.4155 | 17.4155 | 17.4116 | 17.4155 |
6 | 19.9023 | 19.8637 | 19.8907 | 19.2310 | 19.8816 | 19.5492 | 19.7828 | 19.8072 | 19.7734 | 19.7631 | |
8 | 22.9857 | 22.5599 | 22.5680 | 21.3148 | 22.3500 | 22.6063 | 22.0638 | 22.6296 | 20.1984 | 20.5919 | |
10 | 27.2576 | 26.8043 | 24.1301 | 22.3738 | 23.9861 | 24.8874 | 23.0124 | 24.4590 | 22.2514 | 22.0813 | |
12 | 28.4124 | 27.3672 | 26.2312 | 24.8230 | 25.67 12 | 25.8392 | 24.9071 | 25.0989 | 24.2399 | 24.4493 | |
Cactus | 4 | 17.2477 | 17.2477 | 17.2477 | 17.2083 | 17.2477 | 17.1240 | 17.2076 | 17.2477 | 16.4696 | 16.7799 |
6 | 25.9105 | 24.0561 | 23.9672 | 21.5683 | 21.5404 | 24.9770 | 22.9863 | 22.2332 | 18.0968 | 19.4701 | |
8 | 28.7324 | 28.6092 | 28.5111 | 25.5115 | 28.6082 | 28.5553 | 27.6544 | 28.4325 | 19.1565 | 20.9022 | |
10 | 30.6897 | 30.4082 | 30.4321 | 28.3328 | 30.6687 | 30.4376 | 27.8268 | 30.5039 | 20.9462 | 22.4891 | |
12 | 32.4563 | 31.8106 | 32.0824 | 29.9900 | 32.1917 | 32.2054 | 29.6553 | 31.6696 | 22.3502 | 21.3577 | |
Cow | 4 | 19.3706 | 19.3456 | 19.3706 | 19.1520 | 19.3706 | 19.2890 | 19.3563 | 19.3706 | 16.3414 | 18.2875 |
6 | 24.6314 | 23.7690 | 23.9292 | 23.9305 | 22.0374 | 24.1317 | 23.3235 | 23.8404 | 18.4244 | 21.1759 | |
8 | 27.9669 | 26.7169 | 26.5471 | 27.1888 | 26.0817 | 27.2073 | 27.0670 | 25.9695 | 21.8036 | 21.3845 | |
10 | 30.8466 | 28.8963 | 28.4620 | 28.5871 | 29.1743 | 28.6751 | 27.6186 | 29.6997 | 23.6779 | 23.4505 | |
12 | 32.6043 | 32.2767 | 32.4801 | 28.9822 | 32.1704 | 32.5000 | 30.2576 | 31.5353 | 21.9672 | 23.9536 | |
Deer | 4 | 21.9086 | 21.9086 | 21.9086 | 21.8579 | 21.9086 | 21.8656 | 21.8624 | 21.9086 | 15.8959 | 18.8904 |
6 | 25.8662 | 25.7468 | 25.7976 | 25.2465 | 25.7708 | 25.7644 | 25.8643 | 25.8127 | 21.3477 | 20.6717 | |
8 | 29.1490 | 28.3340 | 28.0174 | 28.3990 | 28.1621 | 28.5526 | 28.3437 | 28.4946 | 22.1424 | 22.4715 | |
10 | 30.9920 | 30.4913 | 30.9573 | 28.9004 | 30.0481 | 30.8749 | 28.8843 | 30.1549 | 23.4554 | 23.8936 | |
12 | 32.9202 | 32.0876 | 30.9895 | 29.7392 | 32.7632 | 31.7944 | 29.8111 | 32.4031 | 25.5468 | 25.6665 | |
Diver | 4 | 21.6563 | 20.9671 | 21.4636 | 21.3132 | 20.9636 | 20.9593 | 21.4310 | 20.9636 | 20.3982 | 21.2676 |
6 | 23.8743 | 22.3082 | 22.3113 | 22.9759 | 22.3083 | 22.3378 | 22.1613 | 22.3090 | 23.0791 | 21.7095 | |
8 | 27.2237 | 24.4619 | 24.4493 | 24.4387 | 24.4538 | 24.6248 | 25.8560 | 24.4246 | 22.6522 | 25.1251 | |
10 | 29.4785 | 26.0826 | 26.3010 | 26.3667 | 26.4421 | 26.5201 | 28.3006 | 26.7262 | 25.0380 | 26.7153 | |
12 | 29.5071 | 27.2349 | 27.1253 | 26.9334 | 26.8751 | 26.6722 | 28.5156 | 27.0078 | 24.8993 | 24.2954 | |
Elephant | 4 | 18.6558 | 18.6551 | 18.6558 | 18.6533 | 18.6558 | 18.5722 | 18.4352 | 18.6558 | 17.9303 | 18.2680 |
6 | 23.4967 | 20.8588 | 20.8588 | 22.2481 | 21.3148 | 20.8610 | 20.2596 | 21.7136 | 18.8900 | 20.7315 | |
8 | 26.2198 | 23.1849 | 23.4237 | 23.4877 | 24.1624 | 24.5724 | 23.1158 | 23.3720 | 20.5137 | 21.8626 | |
10 | 28.9322 | 27.6131 | 25.2279 | 27.0446 | 27.7051 | 25.3211 | 25.1289 | 25.3938 | 20.8363 | 23.6299 | |
12 | 29.8636 | 29.4535 | 26.7054 | 28.6767 | 29.4309 | 26.3023 | 29.2218 | 29.8395 | 24.1360 | 22.5109 | |
Horse | 4 | 19.5685 | 19.5685 | 19.5685 | 19.5569 | 19.5616 | 19.5208 | 19.2442 | 19.5037 | 17.6152 | 18.1643 |
6 | 24.0011 | 23.0457 | 22.9153 | 23.1092 | 22.9575 | 23.1314 | 22.7394 | 23.0037 | 20.2580 | 21.0483 | |
8 | 27.3558 | 26.6826 | 26.9406 | 26.3270 | 27.1482 | 27.2741 | 26.7321 | 26.9479 | 22.8904 | 21.8187 | |
10 | 29.3890 | 28.0878 | 28.9131 | 28.8581 | 29.3174 | 29.3410 | 27.3223 | 29.1691 | 23.5858 | 21.4618 | |
12 | 31.6166 | 29.1202 | 30.4900 | 29.8254 | 30.7306 | 30.7994 | 30.0701 | 30.8250 | 24.5833 | 23.3923 | |
Kangaroo | 4 | 19.3602 | 19.3419 | 19.3419 | 18.9906 | 19.3351 | 19.2890 | 19.2313 | 19.3451 | 17.6221 | 19.2606 |
6 | 25.3116 | 24.3138 | 24.3120 | 22.8730 | 24.9068 | 24.6890 | 24.8608 | 24.3312 | 21.5133 | 21.5163 | |
8 | 30.2043 | 28.8512 | 29.4451 | 26.8932 | 28.8920 | 30.1893 | 26.9309 | 28.0531 | 21.7764 | 21.4465 | |
10 | 33.3301 | 32.1521 | 32.5122 | 31.4008 | 31.9123 | 31.2653 | 30.5950 | 31.7392 | 23.0558 | 21.7999 | |
12 | 34.2579 | 33.5667 | 33.5679 | 28.8232 | 33.9012 | 34.2716 | 31.7886 | 33.8661 | 24.1207 | 23.6892 | |
Lake | 4 | 18.2514 | 18.2514 | 18.2514 | 18.1857 | 18.0607 | 18.2348 | 18.2435 | 18.2514 | 16.4759 | 15.0601 |
6 | 23.6183 | 22.9541 | 22.7654 | 22.8559 | 23.0808 | 23.0525 | 22.6119 | 22.9201 | 17.8063 | 18.2172 | |
8 | 27.4202 | 26.1891 | 26.0786 | 27.2324 | 26.0580 | 25.9331 | 25.6984 | 25.8055 | 20.0112 | 19.3166 | |
10 | 31.8548 | 29.0040 | 29.1402 | 28.3226 | 28.8951 | 28.6493 | 28.0904 | 28.9814 | 22.3835 | 22.3242 | |
12 | 33.5569 | 30.7909 | 30.4219 | 29.9866 | 31.1864 | 32.9733 | 28.4370 | 30.7989 | 23.3754 | 22.4949 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 19.2861 | 19.2861 | 19.2861 | 19.2055 | 19.2861 | 19.2229 | 19.2480 | 19.2861 | 16.9146 | 17.8353 |
6 | 22.1149 | 21.6223 | 21.6743 | 21.8527 | 21.6255 | 21.6285 | 21.5617 | 21.6775 | 20.6040 | 19.7740 | |
8 | 27.0817 | 23.1912 | 23.2581 | 23.7577 | 23.3021 | 23.7125 | 23.7922 | 23.0945 | 21.9409 | 21.0794 | |
10 | 28.0991 | 24.4551 | 24.6218 | 25.4063 | 26.6986 | 24.3297 | 24.5463 | 24.3360 | 23.2507 | 21.9060 | |
12 | 29.8725 | 25.1136 | 29.8542 | 27.2696 | 26.9861 | 25.5679 | 24.7926 | 29.3463 | 23.9524 | 24.4563 | |
Building | 4 | 17.4155 | 17.4155 | 17.4155 | 17.3512 | 17.4155 | 17.2362 | 17.4155 | 17.4155 | 17.4155 | 17.4155 |
6 | 19.9001 | 19.8187 | 19.8827 | 19.0280 | 19.8816 | 19.5492 | 19.0638 | 19. 4596 | 19.8014 | 19.5000 | |
8 | 22.7921 | 22.5599 | 22.6780 | 19.5148 | 22.3500 | 22.6063 | 22.0128 | 22.4512 | 21.8680 | 22.1245 | |
10 | 27.2061 | 24.2853 | 24.1301 | 22.2338 | 23.8961 | 24.9474 | 23.3224 | 24.6730 | 22.5496 | 23.0076 | |
12 | 27.4723 | 27.0421 | 25.0232 | 24.8906 | 25.6701 | 25.8344 | 24.9589 | 25.1773 | 24.5120 | 24.9875 | |
Cactus | 4 | 21.0442 | 21.0442 | 21.0442 | 21.0422 | 21.0126 | 21.0118 | 21.0333 | 21.0442 | 18.2742 | 19.3560 |
6 | 24.9529 | 23.3510 | 23.3674 | 23.3678 | 24.0485 | 23.5364 | 23.4052 | 23.3895 | 20.2090 | 20.6766 | |
8 | 28.5911 | 24.5707 | 24.5779 | 24.5286 | 24.5989 | 24.5600 | 26.5850 | 24.6217 | 21.9887 | 22.1574 | |
10 | 29.9778 | 25.3832 | 25.3712 | 25.4471 | 27.9011 | 25.6677 | 27.6291 | 25.6254 | 22.0914 | 23.7324 | |
12 | 31.8637 | 26.1599 | 25.7562 | 26.2726 | 28.2229 | 28.9389 | 29.0718 | 26.3566 | 23.9993 | 23.2377 | |
Cow | 4 | 19.7030 | 19.7030 | 19.6961 | 19.7030 | 19.6629 | 19.7030 | 19.6343 | 19.2385 | 18.4964 | 17.9766 |
6 | 24.1672 | 21.9280 | 21.9130 | 21.3218 | 21.9130 | 21.8494 | 21.7807 | 21.9032 | 20.3522 | 19.2911 | |
8 | 27.3862 | 24.0409 | 24.0290 | 22.8483 | 24.0287 | 23.9099 | 23.6381 | 23.9633 | 20.2832 | 22.2579 | |
10 | 28.9123 | 25.1526 | 25.0983 | 24.6953 | 25.1431 | 26.3286 | 25.5584 | 28.8959 | 20.6888 | 21.3226 | |
12 | 30.6430 | 30.5606 | 29.4939 | 27.4681 | 26.0056 | 27.0059 | 29.7306 | 29.9207 | 24.3489 | 23.7499 | |
Deer | 4 | 15.6122 | 15.6122 | 15.6122 | 15.0935 | 15.6122 | 15.5409 | 15.3976 | 15.6084 | 15.6122 | 15.6122 |
6 | 24.6247 | 19.1380 | 19.1380 | 17.9988 | 22.2128 | 23.7311 | 19.1380 | 19.4118 | 21.0277 | 22.7668 | |
8 | 28.0177 | 23.9777 | 23.6379 | 21.3379 | 24.2505 | 25.7888 | 22.3424 | 25.0594 | 21.7233 | 23.8596 | |
10 | 30.4749 | 27.9028 | 24.8091 | 23.3179 | 28.4935 | 30.3411 | 28.8443 | 27.0434 | 24.3608 | 25.5655 | |
12 | 32.3489 | 31.2369 | 25.0884 | 26.1129 | 29.9859 | 31.2170 | 31.0402 | 30.0412 | 26.2164 | 26.8012 | |
Diver | 4 | 22.2354 | 22.2354 | 22.2354 | 22.2239 | 22.2354 | 22.2020 | 22.1763 | 22.2124 | 22.1863 | 22.2354 |
6 | 27.8765 | 25.6318 | 26.8252 | 25.4321 | 27.6780 | 26.0988 | 26.4248 | 26.3044 | 24.2075 | 24.2863 | |
8 | 29.7961 | 27.7268 | 27.6574 | 27.5539 | 28.5651 | 29.6757 | 26.8094 | 27.5598 | 26.0722 | 24.1376 | |
10 | 31.3786 | 29.0860 | 28.7092 | 28.1075 | 28.5887 | 30.6830 | 30.3389 | 31.3065 | 25.7920 | 27.7836 | |
12 | 31.8544 | 30.3199 | 30.1751 | 29.0378 | 30.8514 | 31.1978 | 31.4286 | 31.3641 | 27.3253 | 27.4796 | |
Elephant | 4 | 18.3463 | 18.3336 | 18.3463 | 18.1708 | 17.4852 | 17.3805 | 17.5702 | 17.4852 | 18.3463 | 18.2466 |
6 | 22.1628 | 20.4135 | 20.4535 | 21.9961 | 21.7783 | 20.4135 | 20.6891 | 20.3317 | 20.1564 | 21.0282 | |
8 | 24.7220 | 23.3686 | 23.7688 | 20.9605 | 24.5748 | 22.0756 | 22.7301 | 24.5871 | 23.1261 | 21.9422 | |
10 | 26.9608 | 25.5516 | 25.8022 | 22.5515 | 25.4095 | 25.9089 | 24.3794 | 26.5956 | 23.0379 | 23.8127 | |
12 | 29.3330 | 27.9280 | 28.9816 | 24.8952 | 27.1191 | 28.2273 | 25.7960 | 28.3370 | 23.8743 | 23.5579 | |
Horse | 4 | 20.1345 | 19.6709 | 19.6709 | 19.6709 | 19.6763 | 19.7642 | 20.0307 | 19.6716 | 18.1976 | 19.3682 |
6 | 24.6958 | 23.0096 | 23.1941 | 23.2140 | 23.1452 | 23.2670 | 22.9247 | 23.1408 | 20.7912 | 21.0884 | |
8 | 27.2155 | 25.6084 | 25.4453 | 25.5795 | 25.4993 | 25.5279 | 24.7919 | 25.7945 | 21.5042 | 22.3496 | |
10 | 28.8068 | 26.7811 | 27.7569 | 27.8577 | 27.2524 | 27.9344 | 27.2989 | 28.1843 | 24.2632 | 23.8468 | |
12 | 31.2694 | 28.2212 | 28.6299 | 29.7647 | 31.1706 | 29.1077 | 30.2376 | 29.5208 | 24.7799 | 25.3405 | |
Kangaroo | 4 | 18.3519 | 17.4067 | 17.4067 | 17.4067 | 17.4103 | 17.0564 | 17.5407 | 17.4078 | 18.2768 | 18.3300 |
6 | 23.1569 | 21.4058 | 20.6824 | 21.1593 | 21.0394 | 20.6824 | 22.5463 | 20.6663 | 20.7331 | 21.1320 | |
8 | 30.0907 | 26.0815 | 26.7610 | 25.4635 | 26.1473 | 24.6898 | 23.6899 | 26.0395 | 22.3714 | 23.3637 | |
10 | 32.6099 | 30.3705 | 27.9116 | 26.5561 | 30.5514 | 32.0864 | 29.5856 | 30.0876 | 25.4257 | 25.1888 | |
12 | 34.1968 | 34.1044 | 31.2554 | 27.3589 | 32.5094 | 33.6201 | 31.1735 | 33.9460 | 25.4637 | 27.0112 | |
Lake | 4 | 20.0431 | 18.9654 | 18.9611 | 18.5261 | 18.9611 | 18.5723 | 18.9711 | 18.9611 | 15.2170 | 17.5212 |
6 | 23.1596 | 21.9103 | 21.8344 | 21.9101 | 21.8345 | 21.7848 | 21.6807 | 21.9074 | 19.9245 | 19.0321 | |
8 | 26.8396 | 22.9554 | 23.4779 | 23.4811 | 24.2708 | 24.7097 | 22.7091 | 23.7849 | 19.4923 | 21.2751 | |
10 | 28.9053 | 25.3040 | 25.3547 | 25.6594 | 26.8900 | 26.4456 | 24.8679 | 24.7697 | 21.2984 | 23.3053 | |
12 | 30.8523 | 25.6771 | 28.9978 | 27.3762 | 29.6128 | 28.9323 | 28.0416 | 27.6008 | 23.7859 | 23.7204 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 0.7113 | 0.7113 | 0.7113 | 0.7043 | 0.7113 | 0.7110 | 0.7090 | 0.7113 | 0.6573 | 0.7026 |
6 | 0.8056 | 0.8056 | 0.8055 | 0.8003 | 0.8055 | 0.7992 | 0.7921 | 0.8056 | 0.8047 | 0.7817 | |
8 | 0.8567 | 0.8522 | 0.8544 | 0.8441 | 0.8566 | 0.8461 | 0.8505 | 0.8543 | 0.8567 | 0.8424 | |
10 | 0.8835 | 0.8792 | 0.8717 | 0.8715 | 0.8826 | 0.8756 | 0.8777 | 0.8824 | 0.8762 | 0.8763 | |
12 | 0.9028 | 0.8903 | 0.9003 | 0.8828 | 0.8944 | 0.8980 | 0.8969 | 0.8935 | 0.8888 | 0.9020 | |
Building | 4 | 0.7372 | 0.7372 | 0.7372 | 0.7313 | 0.7372 | 0.7372 | 0.7365 | 0.7372 | 0.6592 | 0.6868 |
6 | 0.8052 | 0.8043 | 0.8030 | 0.8052 | 0.8031 | 0.8031 | 0.8002 | 0.8024 | 0.7017 | 0.7455 | |
8 | 0.8389 | 0.8382 | 0.8384 | 0.8353 | 0.8382 | 0.8346 | 0.8303 | 0.8387 | 0.7955 | 0.8048 | |
10 | 0.8737 | 0.8637 | 0.8635 | 0.8558 | 0.8639 | 0.8545 | 0.8531 | 0.8633 | 0.8005 | 0.8252 | |
12 | 0.8831 | 0.8813 | 0.8826 | 0.8751 | 0.8824 | 0.8823 | 0.8826 | 0.8824 | 0.8461 | 0.8729 | |
Cactus | 4 | 0.5798 | 0.5798 | 0.5798 | 0.5785 | 0.5798 | 0.5599 | 0.5798 | 0.5798 | 0.5737 | 0.5700 |
6 | 0.6815 | 0.6812 | 0.6813 | 0.6790 | 0.6815 | 0.6815 | 0.6705 | 0.6813 | 0.6729 | 0.6498 | |
8 | 0.7351 | 0.7275 | 0.7320 | 0.7287 | 0.7349 | 0.7151 | 0.7087 | 0.7344 | 0.7325 | 0.7321 | |
10 | 0.7690 | 0.7541 | 0.7611 | 0.7678 | 0.7654 | 0.7551 | 0.7681 | 0.7689 | 0.7650 | 0.7628 | |
12 | 0.7888 | 0.7668 | 0.7747 | 0.7767 | 0.7823 | 0.7693 | 0.7724 | 0.7828 | 0.7851 | 0.7677 | |
Cow | 4 | 0.7231 | 0.7231 | 0.7231 | 0.7081 | 0.7229 | 0.7225 | 0.7219 | 0.7231 | 0.7038 | 0.7067 |
6 | 0.8050 | 0.7960 | 0.8045 | 0.7888 | 0.8044 | 0.7897 | 0.7975 | 0.8057 | 0.7858 | 0.7798 | |
8 | 0.8455 | 0.8403 | 0.8446 | 0.8430 | 0.8447 | 0.8436 | 0.8362 | 0.8448 | 0.8170 | 0.8453 | |
10 | 0.8739 | 0.8688 | 0.8730 | 0.8651 | 0.8723 | 0.8706 | 0.8675 | 0.8706 | 0.8031 | 0.8469 | |
12 | 0.8887 | 0.8751 | 0.8818 | 0.8835 | 0.8842 | 0.8768 | 0.8778 | 0.8841 | 0.8701 | 0.8823 | |
Deer | 4 | 0.6480 | 0.6480 | 0.6480 | 0.6434 | 0.6480 | 0.6432 | 0.6480 | 0.6326 | 0.6397 | 0.6463 |
6 | 0.8121 | 0.7898 | 0.7898 | 0.8034 | 0.7901 | 0.7874 | 0.7656 | 0.7923 | 0.7591 | 0.8120 | |
8 | 0.8749 | 0.8566 | 0.8554 | 0.8606 | 0.8595 | 0.8667 | 0.8642 | 0.8653 | 0.7847 | 0.8208 | |
10 | 0.9043 | 0.8987 | 0.8931 | 0.8869 | 0.8971 | 0.9015 | 0.9016 | 0.9042 | 0.8587 | 0.8950 | |
12 | 0.9291 | 0.9203 | 0.9190 | 0.9248 | 0.9171 | 0.9161 | 0.9087 | 0.9281 | 0.8958 | 0.9057 | |
Diver | 4 | 0.3451 | 0.3451 | 0.3451 | 0.3404 | 0.3451 | 0.3437 | 0.3436 | 0.3450 | 0.3446 | 0.3411 |
6 | 0.4352 | 0.4349 | 0.4352 | 0.4132 | 0.4352 | 0.4053 | 0.4352 | 0.4314 | 0.4327 | 0.4324 | |
8 | 0.5743 | 0.5517 | 0.4710 | 0.4917 | 0.4702 | 0.4425 | 0.5405 | 0.4771 | 0.5675 | 0.5233 | |
10 | 0.6073 | 0.5922 | 0.4985 | 0.6026 | 0.6024 | 0.4838 | 0.6380 | 0.5744 | 0.4822 | 0.6048 | |
12 | 0.6730 | 0.6262 | 0.5055 | 0.6130 | 0.6159 | 0.6107 | 0.6456 | 0.5841 | 0.6068 | 0.6632 | |
Elephant | 4 | 0.6080 | 0.6080 | 0.6080 | 0.5992 | 0.6080 | 0.6073 | 0.6041 | 0.6080 | 0.6065 | 0.6042 |
6 | 0.7149 | 0.7073 | 0.6950 | 0.7079 | 0.7084 | 0.6944 | 0.6911 | 0.6945 | 0.6990 | 0.7145 | |
8 | 0.7957 | 0.7560 | 0.7446 | 0.7685 | 0.7692 | 0.7543 | 0.7834 | 0.7588 | 0.7497 | 0.7838 | |
10 | 0.8447 | 0.8029 | 0.7844 | 0.8421 | 0.8229 | 0.7777 | 0.8314 | 0.8229 | 0.8102 | 0.8029 | |
12 | 0.8776 | 0.8164 | 0.8458 | 0.8775 | 0.8257 | 0.8376 | 0.8431 | 0.8309 | 0.8776 | 0.8657 | |
Horse | 4 | 0.7462 | 0.7462 | 0.7462 | 0.7304 | 0.7462 | 0.7370 | 0.7428 | 0.7450 | 0.6384 | 0.6560 |
6 | 0.8736 | 0.8433 | 0.8436 | 0.8582 | 0.8436 | 0.8573 | 0.8427 | 0.8350 | 0.7952 | 0.8313 | |
8 | 0.9207 | 0.8900 | 0.8900 | 0.9195 | 0.8928 | 0.9059 | 0.8915 | 0.8913 | 0.8388 | 0.8528 | |
10 | 0.9475 | 0.9069 | 0.9332 | 0.9399 | 0.9426 | 0.9334 | 0.9128 | 0.9283 | 0.8639 | 0.8476 | |
12 | 0.9552 | 0.9232 | 0.9479 | 0.9457 | 0.9503 | 0.9458 | 0.9424 | 0.9447 | 0.9002 | 0.8971 | |
Kangaroo | 4 | 0.7130 | 0.7130 | 0.7130 | 0.7042 | 0.7126 | 0.7116 | 0.7086 | 0.7129 | 0.6375 | 0.6732 |
6 | 0.8414 | 0.8413 | 0.8414 | 0.8207 | 0.8414 | 0.8363 | 0.8220 | 0.8338 | 0.7698 | 0.8036 | |
8 | 0.9101 | 0.9014 | 0.9015 | 0.8687 | 0.9007 | 0.8978 | 0.8672 | 0.8976 | 0.7547 | 0.8233 | |
10 | 0.9352 | 0.9266 | 0.9286 | 0.9069 | 0.9333 | 0.9211 | 0.9014 | 0.9256 | 0.8290 | 0.8893 | |
12 | 0.9494 | 0.9378 | 0.9394 | 0.9219 | 0.9492 | 0.9454 | 0.9192 | 0.9436 | 0.8724 | 0.8834 | |
Lake | 4 | 0.6677 | 0.6676 | 0.6676 | 0.6624 | 0.6676 | 0.6672 | 0.6677 | 0.6662 | 0.6199 | 0.6635 |
6 | 0.7982 | 0.7646 | 0.7673 | 0.7979 | 0.7853 | 0.7719 | 0.7699 | 0.7663 | 0.6870 | 0.7027 | |
8 | 0.8781 | 0.8408 | 0.8277 | 0.8589 | 0.8290 | 0.8388 | 0.8212 | 0.8698 | 0.8205 | 0.7837 | |
10 | 0.8929 | 0.8620 | 0.8630 | 0.8812 | 0.8618 | 0.8846 | 0.8778 | 0.8804 | 0.8681 | 0.8331 | |
12 | 0.9186 | 0.8836 | 0.9057 | 0.8897 | 0.9070 | 0.9044 | 0.8912 | 0.8888 | 0.8515 | 0.8652 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDA | EOFPA |
Bridge | 4 | 0.6942 | 0.6942 | 0.6930 | 0.6352 | 0.6889 | 0.6941 | 0.6851 | 0.6942 | 0.6645 | 0.6772 |
6 | 0.8170 | 0.7948 | 0.7945 | 0.8051 | 0.7958 | 0.8073 | 0.7890 | 0.7969 | 0.7594 | 0.8127 | |
8 | 0.8558 | 0.8437 | 0.8490 | 0.8370 | 0.8509 | 0.8425 | 0.8443 | 0.8509 | 0.8557 | 0.8551 | |
10 | 0.8984 | 0.8837 | 0.8770 | 0.8780 | 0.8798 | 0.8880 | 0.8859 | 0.8803 | 0.8841 | 0.8857 | |
12 | 0.9379 | 0.8904 | 0.9126 | 0.9359 | 0.9135 | 0.9236 | 0.8982 | 0.9221 | 0.9241 | 0.9100 | |
Building | 4 | 0.7384 | 0.7384 | 0.7384 | 0.7370 | 0.7384 | 0.7321 | 0.7379 | 0.7384 | 0.7100 | 0.6493 |
6 | 0.8268 | 0.8242 | 0.8214 | 0.8194 | 0.8061 | 0.8216 | 0.8199 | 0.8160 | 0.7319 | 0.7376 | |
8 | 0.8690 | 0.8660 | 0.8666 | 0.8503 | 0.8671 | 0.8685 | 0.8462 | 0.8656 | 0.7095 | 0.7367 | |
10 | 0.8960 | 0.8930 | 0.8915 | 0.8649 | 0.8943 | 0.8907 | 0.8694 | 0.8924 | 0.8010 | 0.8069 | |
12 | 0.9167 | 0.9124 | 0.9134 | 0.8945 | 0.9137 | 0.9147 | 0.8866 | 0.9089 | 0.8416 | 0.8599 | |
Cactus | 4 | 0.6220 | 0.6220 | 0.6220 | 0.6211 | 0.6207 | 0.6198 | 0.6201 | 0.6220 | 0.4588 | 0.4650 |
6 | 0.8041 | 0.7119 | 0.7130 | 0.7132 | 0.7546 | 0.7120 | 0.7118 | 0.7138 | 0.5973 | 0.6548 | |
8 | 0.8772 | 0.7557 | 0.7570 | 0.7589 | 0.7612 | 0.7453 | 0.8131 | 0.7586 | 0.6363 | 0.7261 | |
10 | 0.9072 | 0.7797 | 0.7837 | 0.7903 | 0.8430 | 0.7859 | 0.8569 | 0.7907 | 0.7089 | 0.7736 | |
12 | 0.9187 | 0.8078 | 0.7949 | 0.8164 | 0.8462 | 0.8472 | 0.8668 | 0.8164 | 0.7656 | 0.7188 | |
Cow | 4 | 0.6847 | 0.6827 | 0.6847 | 0.6837 | 0.6847 | 0.6833 | 0.6838 | 0.6847 | 0.6793 | 0.6830 |
6 | 0.8151 | 0.7801 | 0.7823 | 0.7823 | 0.7913 | 0.7838 | 0.7701 | 0.7804 | 0.7421 | 0.8128 | |
8 | 0.8684 | 0.8558 | 0.8543 | 0.8584 | 0.8404 | 0.8499 | 0.8451 | 0.8386 | 0.8317 | 0.8199 | |
10 | 0.9059 | 0.8786 | 0.8922 | 0.8798 | 0.9045 | 0.8955 | 0.8481 | 0.8948 | 0.8544 | 0.8746 | |
12 | 0.9252 | 0.9176 | 0.9218 | 0.9106 | 0.9209 | 0.9234 | 0.8943 | 0.9140 | 0.8741 | 0.8815 | |
Deer | 4 | 0.6468 | 0.6468 | 0.6468 | 0.6385 | 0.6468 | 0.6467 | 0.6424 | 0.6468 | 0.4978 | 0.6468 |
6 | 0.7928 | 0.7918 | 0.7907 | 0.7868 | 0.7923 | 0.7846 | 0.7902 | 0.7928 | 0.7919 | 0.7580 | |
8 | 0.8663 | 0.8649 | 0.8542 | 0.8222 | 0.8581 | 0.8598 | 0.8544 | 0.8650 | 0.7811 | 0.8139 | |
10 | 0.9069 | 0.9031 | 0.9063 | 0.8389 | 0.8937 | 0.8933 | 0.8675 | 0.8977 | 0.8291 | 0.8549 | |
12 | 0.9338 | 0.9251 | 0.9138 | 0.8882 | 0.9322 | 0.9164 | 0.8742 | 0.9272 | 0.8947 | 0.8984 | |
Diver | 4 | 0.4393 | 0.4393 | 0.4393 | 0.4298 | 0.4393 | 0.4095 | 0.4202 | 0.4393 | 0.4383 | 0.4321 |
6 | 0.6108 | 0.6060 | 0.5739 | 0.5831 | 0.5682 | 0.4672 | 0.5918 | 0.5862 | 0.6001 | 0.5501 | |
8 | 0.8221 | 0.6708 | 0.6074 | 0.6724 | 0.6627 | 0.6000 | 0.7211 | 0.6304 | 0.7962 | 0.8003 | |
10 | 0.9111 | 0.6921 | 0.6520 | 0.7011 | 0.6873 | 0.6278 | 0.7519 | 0.6820 | 0.8130 | 0.8131 | |
12 | 0.9183 | 0.7537 | 0.6933 | 0.7615 | 0.7566 | 0.6303 | 0.7791 | 0.7146 | 0.8281 | 0.8814 | |
Elephant | 4 | 0.5266 | 0.5258 | 0.5266 | 0.5253 | 0.5266 | 0.5212 | 0.5212 | 0.5266 | 0.5266 | 0.5195 |
6 | 0.6878 | 0.6103 | 0.6103 | 0.6105 | 0.6192 | 0.6520 | 0.5864 | 0.6332 | 0.6492 | 0.6845 | |
8 | 0.8032 | 0.6783 | 0.6942 | 0.6976 | 0.7281 | 0.7224 | 0.7094 | 0.6978 | 0.7229 | 0.7631 | |
10 | 0.8242 | 0.8025 | 0.7513 | 0.7701 | 0.7996 | 0.7534 | 0.7247 | 0.7594 | 0.7079 | 0.8019 | |
12 | 0.8759 | 0.8403 | 0.7942 | 0.7859 | 0.8411 | 0.8463 | 0.8182 | 0.8505 | 0.8187 | 0.7491 | |
Horse | 4 | 0.7496 | 0.7496 | 0.7496 | 0.7483 | 0.7492 | 0.7476 | 0.7425 | 0.7482 | 0.6587 | 0.6769 |
6 | 0.8645 | 0.8532 | 0.8503 | 0.8535 | 0.8507 | 0.8557 | 0.8493 | 0.8526 | 0.7706 | 0.7907 | |
8 | 0.9231 | 0.9168 | 0.9198 | 0.9082 | 0.9218 | 0.9203 | 0.9186 | 0.9199 | 0.8587 | 0.8251 | |
10 | 0.9455 | 0.9306 | 0.9434 | 0.9357 | 0.9452 | 0.9387 | 0.9252 | 0.9445 | 0.8553 | 0.7948 | |
12 | 0.9602 | 0.9453 | 0.9562 | 0.9434 | 0.9581 | 0.9579 | 0.9409 | 0.9586 | 0.8730 | 0.8409 | |
Kangaroo | 4 | 0.6355 | 0.6345 | 0.6347 | 0.6264 | 0.5800 | 0.6354 | 0.6266 | 0.6355 | 0.6344 | 0.6335 |
6 | 0.7745 | 0.7558 | 0.7647 | 0.7499 | 0.7700 | 0.7661 | 0.7377 | 0.7698 | 0.7686 | 0.7738 | |
8 | 0.8555 | 0.8487 | 0.8514 | 0.8133 | 0.8493 | 0.8333 | 0.8335 | 0.8468 | 0.7650 | 0.7709 | |
10 | 0.8983 | 0.8874 | 0.8851 | 0.8398 | 0.8927 | 0.8880 | 0.8412 | 0.8963 | 0.8167 | 0.7521 | |
12 | 0.9235 | 0.9170 | 0.9193 | 0.8954 | 0.9143 | 0.9114 | 0.8838 | 0.9208 | 0.8294 | 0.8155 | |
Lake | 4 | 0.6625 | 0.6625 | 0.6625 | 0.6610 | 0.6599 | 0.6615 | 0.6613 | 0.6625 | 0.6609 | 0.6377 |
6 | 0.7980 | 0.7970 | 0.7900 | 0.7864 | 0.7975 | 0.7964 | 0.7871 | 0.7923 | 0.7442 | 0.7460 | |
8 | 0.8682 | 0.8641 | 0.8630 | 0.8551 | 0.8649 | 0.8635 | 0.8531 | 0.8610 | 0.8138 | 0.7938 | |
10 | 0.9156 | 0.9018 | 0.9065 | 0.8733 | 0.9016 | 0.9025 | 0.8876 | 0.8998 | 0.8369 | 0.8575 | |
12 | 0.9390 | 0.9275 | 0.9258 | 0.9034 | 0.9287 | 0.9323 | 0.8979 | 0.9220 | 0.8718 | 0.8648 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 0.7366 | 0.7366 | 0.7366 | 0.7355 | 0.7366 | 0.7348 | 0.7356 | 0.7366 | 0.6931 | 0.6918 |
6 | 0.8266 | 0.8214 | 0.8224 | 0.8199 | 0.8212 | 0.8226 | 0.8202 | 0.8221 | 0.7918 | 0.7982 | |
8 | 0.8829 | 0.8694 | 0.8703 | 0.8635 | 0.8710 | 0.8679 | 0.8739 | 0.8672 | 0.8516 | 0.8550 | |
10 | 0.9071 | 0.8966 | 0.9070 | 0.8893 | 0.9052 | 0.9002 | 0.8795 | 0.8957 | 0.8976 | 0.8873 | |
12 | 0.9345 | 0.9101 | 0.9180 | 0.9195 | 0.9204 | 0.9212 | 0.8978 | 0.9238 | 0.9022 | 0.9265 | |
Building | 4 | 0.7553 | 0.7553 | 0.7553 | 0.7537 | 0.7553 | 0.7549 | 0.7551 | 0.7553 | 0.6365 | 0.6991 |
6 | 0.8221 | 0.8185 | 0.8176 | 0.8131 | 0.8181 | 0.8185 | 0.8172 | 0.8175 | 0.7506 | 0.7318 | |
8 | 0.8521 | 0.8468 | 0.8466 | 0.8239 | 0.8491 | 0.8511 | 0.8390 | 0.8476 | 0.8003 | 0.8024 | |
10 | 0.8820 | 0.8639 | 0.8645 | 0.8540 | 0.8726 | 0.8724 | 0.8571 | 0.8735 | 0.8023 | 0.8297 | |
12 | 0.9048 | 0.8922 | 0.8802 | 0.8765 | 0.8966 | 0.8811 | 0.8957 | 0.8786 | 0.8527 | 0.8656 | |
Cactus | 4 | 0.4681 | 0.4681 | 0.4681 | 0.4671 | 0.4681 | 0.4637 | 0.4673 | 0.4681 | 0.4657 | 0.4629 |
6 | 0.6581 | 0.5566 | 0.5548 | 0.5573 | 0.5546 | 0.5960 | 0.5702 | 0.5560 | 0.6454 | 0.6295 | |
8 | 0.7983 | 0.7213 | 0.7949 | 0.7707 | 0.6305 | 0.6478 | 0.7329 | 0.6397 | 0.7855 | 0.7888 | |
10 | 0.8446 | 0.7609 | 0.8330 | 0.7738 | 0.7436 | 0.8322 | 0.7820 | 0.7121 | 0.8344 | 0.8363 | |
12 | 0.8672 | 0.7861 | 0.8619 | 0.8372 | 0.7952 | 0.8634 | 0.8492 | 0.8624 | 0.8513 | 0.8209 | |
Cow | 4 | 0.7327 | 0.7327 | 0.7320 | 0.7327 | 0.7285 | 0.7327 | 0.7319 | 0.7140 | 0.7252 | 0.7327 |
6 | 0.8227 | 0.8206 | 0.8206 | 0.8137 | 0.8133 | 0.8149 | 0.8217 | 0.8199 | 0.7943 | 0.8213 | |
8 | 0.8712 | 0.8604 | 0.8603 | 0.8610 | 0.8568 | 0.8455 | 0.8677 | 0.8583 | 0.8489 | 0.8318 | |
10 | 0.8921 | 0.8895 | 0.8848 | 0.8830 | 0.8912 | 0.8865 | 0.8896 | 0.8889 | 0.8156 | 0.8744 | |
12 | 0.9139 | 0.9108 | 0.9043 | 0.9131 | 0.9119 | 0.9075 | 0.8956 | 0.9097 | 0.8822 | 0.8922 | |
Deer | 4 | 0.6399 | 0.6399 | 0.6399 | 0.6170 | 0.6399 | 0.6304 | 0.6345 | 0.6323 | 0.6381 | 0.6330 |
6 | 0.8098 | 0.7790 | 0.7790 | 0.7627 | 0.7956 | 0.7790 | 0.8026 | 0.7845 | 0.7389 | 0.7832 | |
8 | 0.8807 | 0.8621 | 0.8671 | 0.8443 | 0.8553 | 0.8544 | 0.8305 | 0.8628 | 0.7842 | 0.8523 | |
10 | 0.9130 | 0.9108 | 0.8948 | 0.8491 | 0.9035 | 0.8997 | 0.8915 | 0.8886 | 0.8737 | 0.8860 | |
12 | 0.9362 | 0.9336 | 0.9174 | 0.8651 | 0.9227 | 0.9218 | 0.9191 | 0.9235 | 0.8922 | 0.9079 | |
Diver | 4 | 0.1592 | 0.1351 | 0.1579 | 0.1516 | 0.1351 | 0.1570 | 0.1337 | 0.1351 | 0.1448 | 0.1413 |
6 | 0.2508 | 0.1743 | 0.1743 | 0.2117 | 0.1743 | 0.1736 | 0.1667 | 0.1743 | 0.2476 | 0.2455 | |
8 | 0.5062 | 0.2698 | 0.2715 | 0.2716 | 0.2717 | 0.2864 | 0.3493 | 0.2697 | 0.4995 | 0.4941 | |
10 | 0.6209 | 0.3446 | 0.3557 | 0.5907 | 0.3566 | 0.3814 | 0.3595 | 0.3819 | 0.6119 | 0.6123 | |
12 | 0.6299 | 0.5336 | 0.3968 | 0.6005 | 0.3868 | 0.3936 | 0.5492 | 0.3971 | 0.6141 | 0.6193 | |
Elephant | 4 | 0.5256 | 0.5208 | 0.5256 | 0.5253 | 0.5036 | 0.5212 | 0.5092 | 0.5191 | 0.5189 | 0.5169 |
6 | 0.6787 | 0.6093 | 0.6001 | 0.6605 | 0.6192 | 0.6760 | 0.5864 | 0.6332 | 0.6716 | 0.6679 | |
8 | 0.7902 | 0.6983 | 0.6984 | 0.6876 | 0.7281 | 0.7204 | 0.7254 | 0.6868 | 0.7902 | 0.7803 | |
10 | 0.8189 | 0.8015 | 0.7845 | 0.7861 | 0.7866 | 0.7214 | 0.7357 | 0.7414 | 0.8141 | 0.8042 | |
12 | 0.8670 | 0.8303 | 0.7712 | 0.7989 | 0.8311 | 0.8543 | 0.8212 | 0.8435 | 0.8125 | 0.8098 | |
Horse | 4 | 0.7878 | 0.7769 | 0.7769 | 0.7769 | 0.7791 | 0.7783 | 0.7855 | 0.7689 | 0.6849 | 0.7398 |
6 | 0.8841 | 0.8679 | 0.8700 | 0.8700 | 0.8687 | 0.8673 | 0.8647 | 0.8691 | 0.7936 | 0.8095 | |
8 | 0.9249 | 0.9118 | 0.9106 | 0.9139 | 0.9117 | 0.9069 | 0.9032 | 0.9144 | 0.8239 | 0.8532 | |
10 | 0.9413 | 0.9313 | 0.9354 | 0.9320 | 0.9336 | 0.9339 | 0.9389 | 0.9398 | 0.8851 | 0.8743 | |
12 | 0.9601 | 0.9451 | 0.9459 | 0.9537 | 0.9596 | 0.9529 | 0.9504 | 0.9536 | 0.8939 | 0.9144 | |
Kangaroo | 4 | 0.7084 | 0.6978 | 0.6978 | 0.6958 | 0.6985 | 0.6881 | 0.6919 | 0.6980 | 0.6295 | 0.7071 |
6 | 0.8353 | 0.8252 | 0.8211 | 0.8024 | 0.8256 | 0.8211 | 0.8106 | 0.8203 | 0.7677 | 0.7520 | |
8 | 0.8978 | 0.8934 | 0.8936 | 0.8646 | 0.8916 | 0.8878 | 0.8445 | 0.8867 | 0.7731 | 0.8215 | |
10 | 0.9297 | 0.9289 | 0.9222 | 0.8966 | 0.9190 | 0.9228 | 0.8905 | 0.9224 | 0.8699 | 0.8722 | |
12 | 0.9479 | 0.9457 | 0.9471 | 0.9050 | 0.9434 | 0.9398 | 0.9086 | 0.9471 | 0.8763 | 0.9062 | |
Lake | 4 | 0.6875 | 0.6871 | 0.6875 | 0.6807 | 0.6875 | 0.6783 | 0.6788 | 0.6875 | 0.6346 | 0.6589 |
6 | 0.7906 | 0.7904 | 0.7892 | 0.7882 | 0.7895 | 0.7856 | 0.7800 | 0.7902 | 0.7906 | 0.7692 | |
8 | 0.8579 | 0.8360 | 0.8441 | 0.8470 | 0.8487 | 0.8473 | 0.8280 | 0.8432 | 0.7952 | 0.8246 | |
10 | 0.8919 | 0.8798 | 0.8813 | 0.8785 | 0.8835 | 0.8833 | 0.8612 | 0.8740 | 0.8399 | 0.8827 | |
12 | 0.9200 | 0.8950 | 0.9176 | 0.9049 | 0.9090 | 0.9093 | 0.8971 | 0.9092 | 0.8726 | 0.8929 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 0.7972 | 0.7972 | 0.7972 | 0.7925 | 0.7972 | 0.7972 | 0.7972 | 0.7972 | 0.7684 | 0.7886 |
6 | 0.8669 | 0.8667 | 0.8669 | 0.8525 | 0.8669 | 0.8642 | 0.8576 | 0.8669 | 0.8669 | 0.8365 | |
8 | 0.8995 | 0.8988 | 0.8993 | 0.8795 | 0.8995 | 0.8973 | 0.8916 | 0.8989 | 0.8826 | 0.8775 | |
10 | 0.9183 | 0.9177 | 0.9164 | 0.9099 | 0.9175 | 0.9126 | 0.9086 | 0.9181 | 0.9039 | 0.8923 | |
12 | 0.9383 | 0.9274 | 0.9378 | 0.9103 | 0.9289 | 0.9318 | 0.9292 | 0.9288 | 0.9120 | 0.9240 | |
Building | 4 | 0.7762 | 0.7762 | 0.7762 | 0.7722 | 0.7762 | 0.7762 | 0.7762 | 0.7762 | 0.7234 | 0.7362 |
6 | 0.8413 | 0.8413 | 0.8409 | 0.8370 | 0.8408 | 0.8413 | 0.8387 | 0.8403 | 0.7659 | 0.7850 | |
8 | 0.8752 | 0.8749 | 0.8747 | 0.8575 | 0.8739 | 0.8731 | 0.8660 | 0.8744 | 0.8161 | 0.8417 | |
10 | 0.9075 | 0.8981 | 0.8975 | 0.8827 | 0.8968 | 0.8923 | 0.8857 | 0.8979 | 0.8348 | 0.8574 | |
12 | 0.9161 | 0.9156 | 0.9021 | 0.9036 | 0.9130 | 0.9130 | 0.9049 | 0.9122 | 0.8883 | 0.8905 | |
Cactus | 4 | 0.7771 | 0.7771 | 0.7771 | 0.7747 | 0.7771 | 0.7740 | 0.7764 | 0.7771 | 0.7770 | 0.7771 |
6 | 0.8458 | 0.8456 | 0.8458 | 0.8371 | 0.8456 | 0.8444 | 0.8402 | 0.8458 | 0.8454 | 0.8464 | |
8 | 0.8812 | 0.8760 | 0.8794 | 0.8805 | 0.8812 | 0.8746 | 0.8650 | 0.8810 | 0.8804 | 0.8733 | |
10 | 0.9012 | 0.8957 | 0.8993 | 0.9011 | 0.9001 | 0.8971 | 0.8790 | 0.9009 | 0.8968 | 0.9012 | |
12 | 0.9133 | 0.9064 | 0.9101 | 0.9078 | 0.9129 | 0.9044 | 0.9099 | 0.9113 | 0.9013 | 0.9053 | |
Cow | 4 | 0.7983 | 0.7983 | 0.7983 | 0.7909 | 0.7983 | 0.7982 | 0.7975 | 0.7983 | 0.7813 | 0.7834 |
6 | 0.8698 | 0.8657 | 0.8695 | 0.8455 | 0.8694 | 0.8612 | 0.8607 | 0.8690 | 0.8434 | 0.8397 | |
8 | 0.9022 | 0.8990 | 0.9017 | 0.8830 | 0.9015 | 0.9008 | 0.8961 | 0.9015 | 0.8810 | 0.8885 | |
10 | 0.9212 | 0.9207 | 0.9214 | 0.9086 | 0.9103 | 0.9190 | 0.9129 | 0.9196 | 0.8495 | 0.8888 | |
12 | 0.9329 | 0.9307 | 0.9313 | 0.9178 | 0.9136 | 0.9203 | 0.9186 | 0.9312 | 0.9076 | 0.9279 | |
Deer | 4 | 0.7449 | 0.7449 | 0.7449 | 0.7422 | 0.7449 | 0.7434 | 0.7439 | 0.7410 | 0.7158 | 0.7332 |
6 | 0.8517 | 0.8423 | 0.8423 | 0.8367 | 0.8420 | 0.8466 | 0.8307 | 0.8507 | 0.7969 | 0.8551 | |
8 | 0.9086 | 0.8875 | 0.8861 | 0.8840 | 0.8921 | 0.9033 | 0.9022 | 0.8940 | 0.8153 | 0.8513 | |
10 | 0.9346 | 0.9203 | 0.9233 | 0.9097 | 0.9212 | 0.9322 | 0.9223 | 0.9292 | 0.8827 | 0.9027 | |
12 | 0.9481 | 0.9349 | 0.9416 | 0.9466 | 0.9363 | 0.9382 | 0.9323 | 0.9445 | 0.9009 | 0.9307 | |
Diver | 4 | 0.7798 | 0.7798 | 0.7798 | 0.7776 | 0.7798 | 0.7739 | 0.7754 | 0.7783 | 0.7798 | 0.7798 |
6 | 0.8331 | 0.8329 | 0.8331 | 0.8303 | 0.8332 | 0.8212 | 0.8327 | 0.8331 | 0.8324 | 0.8301 | |
8 | 0.8648 | 0.8599 | 0.8627 | 0.8631 | 0.8617 | 0.8471 | 0.8498 | 0.8641 | 0.8614 | 0.8614 | |
10 | 0.8877 | 0.8819 | 0.8798 | 0.8870 | 0.8853 | 0.8717 | 0.8562 | 0.8643 | 0.8804 | 0.8739 | |
12 | 0.9114 | 0.9021 | 0.8913 | 0.8982 | 0.8979 | 0.8879 | 0.8746 | 0.8910 | 0.9114 | 0.9114 | |
Elephant | 4 | 0.7582 | 0.7582 | 0.7582 | 0.7516 | 0.7582 | 0.7564 | 0.7568 | 0.7582 | 0.7924 | 0.7582 |
6 | 0.8248 | 0.8217 | 0.8139 | 0.8245 | 0.8216 | 0.8130 | 0.8150 | 0.8136 | 0.8228 | 0.8209 | |
8 | 0.8582 | 0.8514 | 0.8477 | 0.8533 | 0.8552 | 0.8515 | 0.8574 | 0.8539 | 0.8463 | 0.8582 | |
10 | 0.8855 | 0.8775 | 0.8723 | 0.8854 | 0.8848 | 0.8683 | 0.8849 | 0.8828 | 0.8738 | 0.8778 | |
12 | 0.9051 | 0.8915 | 0.9023 | 0.9036 | 0.8947 | 0.8943 | 0.8851 | 0.8866 | 0.8802 | 0.9008 | |
Horse | 4 | 0.8207 | 0.8207 | 0.8207 | 0.8194 | 0.8207 | 0.8206 | 0.8181 | 0.8200 | 0.7313 | 0.7576 |
6 | 0.8887 | 0.8786 | 0.8787 | 0.8881 | 0.8783 | 0.8867 | 0.8760 | 0.8736 | 0.8576 | 0.8862 | |
8 | 0.9303 | 0.9079 | 0.9078 | 0.9298 | 0.9102 | 0.9215 | 0.9069 | 0.9070 | 0.8814 | 0.8808 | |
10 | 0.9489 | 0.9252 | 0.9363 | 0.9466 | 0.9393 | 0.9386 | 0.9169 | 0.9370 | 0.9081 | 0.8875 | |
12 | 0.9568 | 0.9349 | 0.9392 | 0.9479 | 0.9559 | 0.9559 | 0.9501 | 0.9466 | 0.9103 | 0.9323 | |
Kangaroo | 4 | 0.7456 | 0.7456 | 0.7456 | 0.7387 | 0.7455 | 0.7448 | 0.7425 | 0.7452 | 0.7207 | 0.7456 |
6 | 0.8534 | 0.8529 | 0.8529 | 0.8250 | 0.8529 | 0.8515 | 0.8468 | 0.8498 | 0.8340 | 0.8528 | |
8 | 0.9214 | 0.9148 | 0.9186 | 0.8776 | 0.9117 | 0.9213 | 0.8827 | 0.9086 | 0.8286 | 0.8690 | |
10 | 0.9522 | 0.9457 | 0.9471 | 0.9279 | 0.9453 | 0.9375 | 0.9224 | 0.9434 | 0.9075 | 0.9026 | |
12 | 0.9685 | 0.9557 | 0.9567 | 0.9392 | 0.9607 | 0.9628 | 0.9356 | 0.9554 | 0.9239 | 0.9292 | |
Lake | 4 | 0.7694 | 0.7694 | 0.7694 | 0.7684 | 0.7654 | 0.7677 | 0.7682 | 0.7689 | 0.7399 | 0.7694 |
6 | 0.8582 | 0.8370 | 0.8376 | 0.8560 | 0.8478 | 0.8401 | 0.8389 | 0.8369 | 0.7859 | 0.7923 | |
8 | 0.9063 | 0.8804 | 0.8730 | 0.8902 | 0.8738 | 0.8790 | 0.8666 | 0.8936 | 0.8610 | 0.8461 | |
10 | 0.9137 | 0.8929 | 0.8936 | 0.9132 | 0.8933 | 0.9120 | 0.9074 | 0.9103 | 0.8870 | 0.8808 | |
12 | 0.9399 | 0.9054 | 0.9357 | 0.9210 | 0.9384 | 0.9317 | 0.9166 | 0.9189 | 0.8835 | 0.8849 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 0.7954 | 0.7954 | 0.7947 | 0.7941 | 0.7856 | 0.7943 | 0.7915 | 0.7954 | 0.7262 | 0.7361 |
6 | 0.8787 | 0.8701 | 0.8695 | 0.8651 | 0.8700 | 0.8749 | 0.8641 | 0.8705 | 0.7359 | 0.8764 | |
8 | 0.9081 | 0.9008 | 0.9043 | 0.8956 | 0.9052 | 0.9004 | 0.8941 | 0.9051 | 0.8783 | 0.8948 | |
10 | 0.9274 | 0.9240 | 0.9220 | 0.9095 | 0.9227 | 0.9244 | 0.9225 | 0.9221 | 0.8928 | 0.9056 | |
12 | 0.9549 | 0.9308 | 0.9409 | 0.9471 | 0.9434 | 0.9505 | 0.9276 | 0.9451 | 0.9054 | 0.9201 | |
Building | 4 | 0.7776 | 0.7776 | 0.7776 | 0.7771 | 0.7776 | 0.7757 | 0.7769 | 0.7776 | 0.7401 | 0.7354 |
6 | 0.8574 | 0.8564 | 0.8547 | 0.8472 | 0.8428 | 0.8547 | 0.8502 | 0.8507 | 0.8022 | 0.7879 | |
8 | 0.9017 | 0.9009 | 0.9000 | 0.8703 | 0.9004 | 0.9001 | 0.8757 | 0.8987 | 0.8136 | 0.7887 | |
10 | 0.9283 | 0.9257 | 0.9258 | 0.8887 | 0.9274 | 0.9228 | 0.8992 | 0.9260 | 0.8481 | 0.8528 | |
12 | 0.9444 | 0.9423 | 0.9440 | 0.9193 | 0.9439 | 0.9440 | 0.9149 | 0.9394 | 0.8840 | 0.8803 | |
Cactus | 4 | 0.7766 | 0.7766 | 0.7766 | 0.7756 | 0.7761 | 0.7762 | 0.7762 | 0.7766 | 0.7304 | 0.7284 |
6 | 0.8489 | 0.8488 | 0.8482 | 0.8470 | 0.8464 | 0.8483 | 0.8448 | 0.8484 | 0.8011 | 0.8056 | |
8 | 0.8981 | 0.8840 | 0.8847 | 0.8834 | 0.8835 | 0.8827 | 0.8728 | 0.8846 | 0.8344 | 0.8758 | |
10 | 0.9266 | 0.9045 | 0.9070 | 0.9181 | 0.9054 | 0.9049 | 0.8886 | 0.9066 | 0.8683 | 0.8960 | |
12 | 0.9390 | 0.9196 | 0.9165 | 0.9187 | 0.9271 | 0.9262 | 0.9203 | 0.9161 | 0.8800 | 0.8806 | |
Cow | 4 | 0.7726 | 0.7708 | 0.7726 | 0.7722 | 0.7726 | 0.7709 | 0.7717 | 0.7726 | 0.7703 | 0.7703 |
6 | 0.8635 | 0.8522 | 0.8538 | 0.8442 | 0.8635 | 0.8548 | 0.8418 | 0.8524 | 0.8304 | 0.8547 | |
8 | 0.9024 | 0.8964 | 0.9014 | 0.8891 | 0.8984 | 0.8959 | 0.8834 | 0.8973 | 0.8765 | 0.8779 | |
10 | 0.9311 | 0.9223 | 0.9256 | 0.9038 | 0.9201 | 0.9298 | 0.8881 | 0.9251 | 0.8951 | 0.9120 | |
12 | 0.9473 | 0.9428 | 0.9453 | 0.9282 | 0.9453 | 0.9471 | 0.9114 | 0.9412 | 0.9017 | 0.9080 | |
Deer | 4 | 0.7496 | 0.7496 | 0.7496 | 0.7470 | 0.7496 | 0.7355 | 0.7456 | 0.7496 | 0.6511 | 0.7429 |
6 | 0.8617 | 0.8607 | 0.8600 | 0.8511 | 0.8613 | 0.8559 | 0.8580 | 0.8612 | 0.8397 | 0.8291 | |
8 | 0.9122 | 0.9114 | 0.9061 | 0.8735 | 0.9078 | 0.9083 | 0.8997 | 0.9118 | 0.8417 | 0.8613 | |
10 | 0.9393 | 0.9352 | 0.9387 | 0.8841 | 0.9323 | 0.9337 | 0.9115 | 0.9322 | 0.8806 | 0.9047 | |
12 | 0.9573 | 0.9509 | 0.9440 | 0.9275 | 0.9568 | 0.9468 | 0.9145 | 0.9531 | 0.9168 | 0.9195 | |
Diver | 4 | 0.7295 | 0.7093 | 0.7275 | 0.7159 | 0.7092 | 0.7268 | 0.7066 | 0.7092 | 0.7037 | 0.7242 |
6 | 0.7528 | 0.7528 | 0.7528 | 0.7527 | 0.7526 | 0.7511 | 0.7387 | 0.7528 | 0.7446 | 0.7525 | |
8 | 0.8116 | 0.7948 | 0.7945 | 0.8045 | 0.7949 | 0.7982 | 0.7944 | 0.7925 | 0.8115 | 0.8116 | |
10 | 0.8470 | 0.8129 | 0.8234 | 0.8263 | 0.8251 | 0.8399 | 0.8329 | 0.8461 | 0.8464 | 0.8456 | |
12 | 0.8776 | 0.8625 | 0.8548 | 0.8551 | 0.8512 | 0.8410 | 0.8359 | 0.8547 | 0.8679 | 0.8685 | |
Elephant | 4 | 0.7151 | 0.7148 | 0.7151 | 0.7149 | 0.7151 | 0.7117 | 0.7115 | 0.7151 | 0.7115 | 0.7120 |
6 | 0.8016 | 0.7707 | 0.7707 | 0.7708 | 0.7711 | 0.7921 | 0.7577 | 0.7799 | 0.8007 | 0.8008 | |
8 | 0.8543 | 0.8104 | 0.8221 | 0.8246 | 0.8426 | 0.8313 | 0.8093 | 0.8240 | 0.8244 | 0.8451 | |
10 | 0.8813 | 0.8782 | 0.8601 | 0.8423 | 0.8738 | 0.8616 | 0.8153 | 0.8640 | 0.8425 | 0.8786 | |
12 | 0.9057 | 0.8965 | 0.8835 | 0.9036 | 0.9007 | 0.8978 | 0.8531 | 0.8806 | 0.8882 | 0.8725 | |
Horse | 4 | 0.8264 | 0.8264 | 0.8264 | 0.8243 | 0.8262 | 0.8254 | 0.8231 | 0.8264 | 0.7714 | 0.7843 |
6 | 0.8900 | 0.8897 | 0.8883 | 0.8890 | 0.8891 | 0.8891 | 0.8847 | 0.8892 | 0.8358 | 0.8393 | |
8 | 0.9355 | 0.9316 | 0.9324 | 0.9197 | 0.9339 | 0.9341 | 0.9316 | 0.9326 | 0.8989 | 0.8731 | |
10 | 0.9558 | 0.9457 | 0.9518 | 0.9495 | 0.9531 | 0.9541 | 0.9390 | 0.9520 | 0.9011 | 0.8674 | |
12 | 0.9707 | 0.9536 | 0.9632 | 0.9565 | 0.9647 | 0.9655 | 0.9538 | 0.9638 | 0.9147 | 0.9060 | |
Kangaroo | 4 | 0.7364 | 0.7362 | 0.7355 | 0.7275 | 0.6934 | 0.7359 | 0.7347 | 0.7364 | 0.7349 | 0.7364 |
6 | 0.8485 | 0.8388 | 0.8427 | 0.8298 | 0.8470 | 0.8450 | 0.8203 | 0.8468 | 0.8388 | 0.8445 | |
8 | 0.9153 | 0.9116 | 0.9113 | 0.8906 | 0.9113 | 0.9058 | 0.9020 | 0.9110 | 0.8460 | 0.8402 | |
10 | 0.9450 | 0.9403 | 0.9393 | 0.8920 | 0.9421 | 0.9386 | 0.9072 | 0.9431 | 0.8831 | 0.8697 | |
12 | 0.9612 | 0.9576 | 0.9589 | 0.9295 | 0.9575 | 0.9545 | 0.9288 | 0.9587 | 0.8962 | 0.9052 | |
Lake | 4 | 0.7464 | 0.7464 | 0.7464 | 0.7430 | 0.7408 | 0.7452 | 0.7449 | 0.7464 | 0.7430 | 0.7381 |
6 | 0.8443 | 0.8371 | 0.8366 | 0.8276 | 0.8387 | 0.8371 | 0.8312 | 0.8370 | 0.7971 | 0.8113 | |
8 | 0.8988 | 0.8948 | 0.8936 | 0.8888 | 0.8920 | 0.8912 | 0.8827 | 0.8894 | 0.8458 | 0.8448 | |
10 | 0.9441 | 0.9268 | 0.9297 | 0.9017 | 0.9258 | 0.9259 | 0.9165 | 0.9263 | 0.8775 | 0.8727 | |
12 | 0.9620 | 0.9465 | 0.9441 | 0.9274 | 0.9477 | 0.9582 | 0.9249 | 0.9436 | 0.8995 | 0.8989 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 0.7948 | 0.7948 | 0.7948 | 0.7940 | 0.7948 | 0.7945 | 0.7938 | 0.7948 | 0.7881 | 0.7891 |
6 | 0.8652 | 0.8573 | 0.8570 | 0.8453 | 0.8556 | 0.8554 | 0.8517 | 0.8570 | 0.86520 | 0.8600 | |
8 | 0.9101 | 0.8985 | 0.8963 | 0.8728 | 0.8951 | 0.9015 | 0.8927 | 0.8921 | 0.8914 | 0.8619 | |
10 | 0.9293 | 0.9182 | 0.9176 | 0.8977 | 0.9235 | 0.9266 | 0.8966 | 0.9138 | 0.9065 | 0.8803 | |
12 | 0.9501 | 0.9314 | 0.9302 | 0.9335 | 0.9348 | 0.9422 | 0.9128 | 0.9406 | 0.9101 | 0.9289 | |
Building | 4 | 0.7772 | 0.7772 | 0.7772 | 0.7754 | 0.7772 | 0.7762 | 0.7770 | 0.7772 | 0.7277 | 0.7619 |
6 | 0.8460 | 0.8425 | 0.8419 | 0.8348 | 0.8451 | 0.8420 | 0.8408 | 0.8418 | 0.8029 | 0.7832 | |
8 | 0.8811 | 0.8726 | 0.8731 | 0.8416 | 0.8740 | 0.8731 | 0.8637 | 0.8783 | 0.8221 | 0.8537 | |
10 | 0.9105 | 0.8907 | 0.8904 | 0.8741 | 0.8984 | 0.9025 | 0.8800 | 0.9016 | 0.8490 | 0.8660 | |
12 | 0.9328 | 0.9205 | 0.9060 | 0.8996 | 0.9244 | 0.9063 | 0.9173 | 0.9042 | 0.8928 | 0.8911 | |
Cactus | 4 | 0.7340 | 0.7340 | 0.7340 | 0.7335 | 0.7340 | 0.7312 | 0.7331 | 0.7340 | 0.7244 | 0.7325 |
6 | 0.8110 | 0.7972 | 0.7966 | 0.8018 | 0.7965 | 0.7976 | 0.8020 | 0.7975 | 0.7917 | 0.7965 | |
8 | 0.8765 | 0.8619 | 0.8742 | 0.8745 | 0.8400 | 0.8475 | 0.8658 | 0.8430 | 0.8577 | 0.8673 | |
10 | 0.9094 | 0.8887 | 0.9039 | 0.8903 | 0.8934 | 0.9035 | 0.8925 | 0.8775 | 0.8754 | 0.8922 | |
12 | 0.9270 | 0.9015 | 0.9246 | 0.8909 | 0.9257 | 0.9078 | 0.9009 | 0.9241 | 0.9117 | 0.9067 | |
Cow | 4 | 0.7975 | 0.7975 | 0.7973 | 0.7975 | 0.7949 | 0.7975 | 0.7968 | 0.7774 | 0.7974 | 0.7935 |
6 | 0.8715 | 0.8713 | 0.8712 | 0.8594 | 0.8669 | 0.8688 | 0.8675 | 0.8712 | 0.8690 | 0.8675 | |
8 | 0.9066 | 0.9062 | 0.9063 | 0.8869 | 0.9035 | 0.8981 | 0.9029 | 0.9052 | 0.8815 | 0.8796 | |
10 | 0.9263 | 0.9253 | 0.9225 | 0.9161 | 0.9258 | 0.9207 | 0.9156 | 0.9261 | 0.8709 | 0.9013 | |
12 | 0.9424 | 0.9395 | 0.9338 | 0.9311 | 0.9395 | 0.9373 | 0.9187 | 0.9379 | 0.9107 | 0.9175 | |
Deer | 4 | 0.7485 | 0.7485 | 0.7485 | 0.7480 | 0.7485 | 0.7455 | 0.7466 | 0.7476 | 0.7156 | 0.7482 |
6 | 0.8607 | 0.8601 | 0.8590 | 0.8531 | 0.8593 | 0.8579 | 0.8581 | 0.8602 | 0.7937 | 0.8604 | |
8 | 0.9119 | 0.9109 | 0.9034 | 0.8856 | 0.9098 | 0.9103 | 0.9097 | 0.9068 | 0.8382 | 0.8882 | |
10 | 0.9376 | 0.9312 | 0.9307 | 0.8956 | 0.9311 | 0.9354 | 0.9178 | 0.9302 | 0.8935 | 0.9048 | |
12 | 0.9478 | 0.9419 | 0.9422 | 0.9301 | 0.9437 | 0.9429 | 0.9181 | 0.9428 | 0.9151 | 0.9192 | |
Diver | 4 | 0.8083 | 0.8083 | 0.8083 | 0.8073 | 0.8083 | 0.8008 | 0.7961 | 0.8082 | 0.7115 | 0.7290 |
6 | 0.8422 | 0.8399 | 0.8393 | 0.8396 | 0.8325 | 0.8352 | 0.8321 | 0.8403 | 0.7426 | 0.7332 | |
8 | 0.8815 | 0.8813 | 0.8620 | 0.8664 | 0.8776 | 0.8525 | 0.8497 | 0.8646 | 0.8036 | 0.7981 | |
10 | 0.9033 | 0.8998 | 0.8890 | 0.8826 | 0.8987 | 0.8729 | 0.8690 | 0.8925 | 0.8219 | 0.8381 | |
12 | 0.9100 | 0.9096 | 0.9007 | 0.8908 | 0.9040 | 0.8870 | 0.8756 | 0.9070 | 0.8686 | 0.8585 | |
Elephant | 4 | 0.7657 | 0.7653 | 0.7657 | 0.7609 | 0.7640 | 0.7651 | 0.7648 | 0.7650 | 0.6993 | 0.7016 |
6 | 0.8294 | 0.8279 | 0.8278 | 0.8219 | 0.8293 | 0.8279 | 0.8178 | 0.8278 | 0.7987 | 0.8000 | |
8 | 0.8733 | 0.8585 | 0.8582 | 0.8586 | 0.8586 | 0.8569 | 0.8431 | 0.8536 | 0.8355 | 0.8476 | |
10 | 0.8816 | 0.8808 | 0.8803 | 0.8758 | 0.8811 | 0.8757 | 0.8638 | 0.8816 | 0.8678 | 0.8794 | |
12 | 0.9084 | 0.8932 | 0.9069 | 0.8901 | 0.8964 | 0.8952 | 0.8953 | 0.8969 | 0.8796 | 0.8808 | |
Horse | 4 | 0.8266 | 0.8266 | 0.8266 | 0.8257 | 0.8266 | 0.8264 | 0.8202 | 0.8266 | 0.7711 | 0.8128 |
6 | 0.8953 | 0.8862 | 0.8871 | 0.8875 | 0.8871 | 0.8910 | 0.8842 | 0.8866 | 0.8491 | 0.8596 | |
8 | 0.9317 | 0.9201 | 0.9186 | 0.9081 | 0.9186 | 0.9165 | 0.9070 | 0.9214 | 0.8657 | 0.8913 | |
10 | 0.9498 | 0.9342 | 0.9368 | 0.9373 | 0.9374 | 0.9432 | 0.9451 | 0.9399 | 0.9153 | 0.9017 | |
12 | 0.9654 | 0.9472 | 0.9500 | 0.9520 | 0.9653 | 0.9516 | 0.9555 | 0.9545 | 0.9279 | 0.9324 | |
Kangaroo | 4 | 0.7364 | 0.7229 | 0.7229 | 0.7229 | 0.7232 | 0.7146 | 0.7214 | 0.7229 | 0.7259 | 0.7212 |
6 | 0.8423 | 0.8269 | 0.8184 | 0.8057 | 0.8239 | 0.8184 | 0.8222 | 0.8180 | 0.8174 | 0.7918 | |
8 | 0.9212 | 0.8954 | 0.8977 | 0.8613 | 0.8958 | 0.8841 | 0.8489 | 0.8879 | 0.8367 | 0.8795 | |
10 | 0.9469 | 0.9361 | 0.9204 | 0.8916 | 0.9283 | 0.9452 | 0.9122 | 0.9247 | 0.9001 | 0.8817 | |
12 | 0.9623 | 0.9486 | 0.9606 | 0.9088 | 0.9502 | 0.9582 | 0.9217 | 0.9615 | 0.9056 | 0.9228 | |
Lake | 4 | 0.7765 | 0.7764 | 0.7765 | 0.7727 | 0.7765 | 0.7731 | 0.7758 | 0.7765 | 0.7306 | 0.7314 |
6 | 0.8451 | 0.8450 | 0.8443 | 0.8448 | 0.8445 | 0.8422 | 0.8372 | 0.8449 | 0.8418 | 0.8311 | |
8 | 0.8945 | 0.8768 | 0.8812 | 0.8885 | 0.8849 | 0.8831 | 0.8704 | 0.8810 | 0.8474 | 0.8564 | |
10 | 0.9134 | 0.9047 | 0.9051 | 0.9115 | 0.9064 | 0.9079 | 0.8901 | 0.8994 | 0.8758 | 0.9036 | |
12 | 0.9370 | 0.9158 | 0.9347 | 0.9337 | 0.9248 | 0.9314 | 0.9226 | 0.9257 | 0.8956 | 0.9162 |
Threshold Methods | Images | MDA vs DA | MDA vs SSA | MDA vs SCA | MDA vs ALO | MDA vs HSO | MDA vs BA | MDA vs PSO | MDA vs BDE | MDA vs EOFPA | |||||||||
p | h | p | h | p | h | p | h | p | h | p | h | p | h | p | h | p | h | ||
Otsu | Bridge | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 |
Building | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Cactus | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Cow | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Deer | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Diver | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Elephant | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Horse | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Kangaroo | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Lake | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | 0.0540 | 0 | < 0.05 | 1 | < 0.05 | 1 | |
Kapur | Bridge | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 |
Building | < 0.05 | 1 | 0.1496 | 0 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Cactus | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Cow | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | 0.0740 | 0 | < 0.05 | 1 | < 0.05 | 1 | |
Deer | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Diver | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Elephant | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Horse | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Kangaroo | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Lake | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
MCE | Bridge | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 |
Building | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Cactus | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Cow | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Deer | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Diver | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Elephant | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Horse | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Kangaroo | < 0.05 | 1 | 0.0731 | 0 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Lake | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | 0.2401 | 0 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 |
Images | Levels | PSNR | SSIM | FSIM | |||||||
Otsu | Kapur | MCE | Otsu | Kapur | MCE | Otsu | Kapur | MCE | |||
Bridge | 4 | 18.9590 | 20.3166 | 19.2861 | 0.7113 | 0.6942 | 0.7366 | 0.7972 | 0.7954 | 0.7948 | |
6 | 21.0920 | 24.3943 | 22.1149 | 0.8056 | 0.8170 | 0.8266 | 0.8669 | 0.8787 | 0.8652 | ||
8 | 22.5471 | 25.9201 | 27.0817 | 0.8567 | 0.8558 | 0.8829 | 0.8995 | 0.9081 | 0.9101 | ||
10 | 23.4904 | 28.8445 | 28.0991 | 0.8835 | 0.8984 | 0.9071 | 0.9183 | 0.9274 | 0.9293 | ||
12 | 27.7081 | 32.1186 | 29.8725 | 0.9028 | 0.9379 | 0.9345 | 0.9378 | 0.9549 | 0.9501 | ||
Building | 4 | 17.4155 | 17.4224 | 17.4155 | 0.7372 | 0.7384 | 0.7553 | 0.7762 | 0.7776 | 0.7772 | |
6 | 19.8902 | 19.9023 | 19.9001 | 0.8052 | 0.8268 | 0.8221 | 0.8413 | 0.8574 | 0.8460 | ||
8 | 22.6625 | 22.9857 | 22.7921 | 0.8389 | 0.8690 | 0.8521 | 0.8752 | 0.9017 | 0.8811 | ||
10 | 27.1866 | 27.2576 | 27.2061 | 0.8737 | 0.8960 | 0.8820 | 0.9075 | 0.9283 | 0.9105 | ||
12 | 27.1983 | 28.4124 | 27.4723 | 0.8826 | 0.9167 | 0.9048 | 0.9161 | 0.9444 | 0.9328 | ||
Cactus | 4 | 20.3428 | 17.2477 | 21.0442 | 0.5798 | 0.6220 | 0.4681 | 0.7771 | 0.7766 | 0.7340 | |
6 | 22.6678 | 25.9105 | 24.9529 | 0.6815 | 0.8041 | 0.6581 | 0.8458 | 0.8489 | 0.8110 | ||
8 | 23.9827 | 28.7324 | 28.5911 | 0.7351 | 0.8772 | 0.7983 | 0.8812 | 0.8981 | 0.8765 | ||
10 | 24.8346 | 30.6897 | 29.9778 | 0.7690 | 0.9072 | 0.8446 | 0.9012 | 0.9266 | 0.9094 | ||
12 | 25.3709 | 32.4563 | 31.8637 | 0.7888 | 0.9187 | 0.8672 | 0.9133 | 0.9390 | 0.9270 | ||
Cow | 4 | 19.7023 | 19.3706 | 19.7030 | 0.7231 | 0.6847 | 0.7327 | 0.7983 | 0.7726 | 0.7975 | |
6 | 21.8735 | 24.6314 | 24.1672 | 0.8050 | 0.8151 | 0.8227 | 0.8698 | 0.8635 | 0.8715 | ||
8 | 23.6239 | 27.9669 | 27.3862 | 0.8455 | 0.8684 | 0.8712 | 0.9022 | 0.9024 | 0.9066 | ||
10 | 24.4648 | 30.8466 | 28.9123 | 0.8739 | 0.9059 | 0.8921 | 0.9212 | 0.9311 | 0.9263 | ||
12 | 25.0056 | 32.6043 | 30.6430 | 0.8887 | 0.9252 | 0.9139 | 0.9329 | 0.9473 | 0.9424 | ||
Deer | 4 | 17.2462 | 21.9086 | 15.6122 | 0.6480 | 0.6468 | 0.6399 | 0.7449 | 0.7496 | 0.7485 | |
6 | 22.3158 | 25.8662 | 24.6247 | 0.8121 | 0.7928 | 0.8098 | 0.8517 | 0.8617 | 0.8607 | ||
8 | 26.4239 | 29.1490 | 28.0177 | 0.8749 | 0.8663 | 0.8807 | 0.9086 | 0.9122 | 0.9119 | ||
10 | 27.1472 | 30.9920 | 30.4749 | 0.9043 | 0.9069 | 0.9130 | 0.9346 | 0.9393 | 0.9376 | ||
12 | 27.9602 | 32.9202 | 32.3489 | 0.9291 | 0.9338 | 0.9362 | 0.9481 | 0.9573 | 0.9478 | ||
Diver | 4 | 24.4620 | 21.6563 | 22.2354 | 0.3451 | 0.4393 | 0.1592 | 0.7798 | 0.7295 | 0.8083 | |
6 | 26.9548 | 23.8743 | 27.8765 | 0.4352 | 0.6108 | 0.2508 | 0.8331 | 0.7528 | 0.8422 | ||
8 | 29.4786 | 27.2237 | 29.7961 | 0.5743 | 0.8221 | 0.5062 | 0.8648 | 0.8116 | 0.8815 | ||
10 | 29.8856 | 29.4785 | 31.3786 | 0.6073 | 0.9111 | 0.6209 | 0.8877 | 0.8470 | 0.9033 | ||
12 | 31.1721 | 29.5071 | 31.8544 | 0.6730 | 0.9183 | 0.6299 | 0.9114 | 0.8776 | 0.9100 | ||
Elephant | 4 | 18.4590 | 18.6558 | 18.3463 | 0.6080 | 0.5266 | 0.5256 | 0.7582 | 0.7151 | 0.7657 | |
6 | 20.9780 | 23.4967 | 22.1628 | 0.7149 | 0.6878 | 0.6787 | 0.8248 | 0.8016 | 0.8294 | ||
8 | 24.6549 | 26.2198 | 24.7220 | 0.7957 | 0.8032 | 0.7902 | 0.8582 | 0.8543 | 0.8733 | ||
10 | 25.7650 | 28.9322 | 26.9608 | 0.8447 | 0.8242 | 0.8189 | 0.8855 | 0.8813 | 0.8816 | ||
12 | 28.5499 | 29.8636 | 29.3330 | 0.8776 | 0.8759 | 0.8670 | 0.9051 | 0.9057 | 0.9084 | ||
Horse | 4 | 18.5055 | 19.5685 | 20.1345 | 0.7462 | 0.7496 | 0.7878 | 0.8207 | 0.8264 | 0.8266 | |
6 | 22.6464 | 24.0011 | 24.6958 | 0.8736 | 0.8645 | 0.8841 | 0.8887 | 0.8900 | 0.8953 | ||
8 | 25.8693 | 27.3558 | 27.2155 | 0.9207 | 0.9231 | 0.9249 | 0.9303 | 0.9355 | 0.9317 | ||
10 | 28.6567 | 29.3890 | 28.8068 | 0.9475 | 0.9455 | 0.9413 | 0.9489 | 0.9558 | 0.9498 | ||
12 | 30.1088 | 31.6166 | 31.2694 | 0.9552 | 0.9602 | 0.9601 | 0.9568 | 0.9707 | 0.9654 | ||
Kangaroo | 4 | 19.3419 | 19.3602 | 18.3519 | 0.7130 | 0.6355 | 0.7084 | 0.7456 | 0.7364 | 0.7364 | |
6 | 25.2386 | 25.3116 | 23.1569 | 0.8414 | 0.7745 | 0.8353 | 0.8534 | 0.8485 | 0.8423 | ||
8 | 30.1938 | 30.2043 | 30.0907 | 0.9101 | 0.8555 | 0.8978 | 0.9214 | 0.9153 | 0.9212 | ||
10 | 33.3271 | 33.3301 | 32.6099 | 0.9352 | 0.8983 | 0.9297 | 0.9522 | 0.9450 | 0.9469 | ||
12 | 34.2483 | 34.2579 | 34.1968 | 0.9494 | 0.9235 | 0.9479 | 0.9685 | 0.9612 | 0.9623 | ||
Lake | 4 | 17.8079 | 18.2514 | 20.0431 | 0.6677 | 0.6625 | 0.6875 | 0.7694 | 0.7464 | 0.7765 | |
6 | 23.7148 | 23.6183 | 23.1596 | 0.7982 | 0.7980 | 0.7906 | 0.8582 | 0.8443 | 0.8451 | ||
8 | 25.1894 | 27.4202 | 26.8396 | 0.8781 | 0.8682 | 0.8579 | 0.9063 | 0.8988 | 0.8945 | ||
10 | 27.3522 | 31.8548 | 28.9053 | 0.8929 | 0.9156 | 0.8919 | 0.9137 | 0.9441 | 0.9134 | ||
12 | 29.8302 | 33.5569 | 30.8523 | 0.9186 | 0.9390 | 0.9200 | 0.9399 | 0.9620 | 0.9370 |
Algorithm | Parameters | Values |
MDA | Number of dragonflies | 30 |
No. of iterations | 500 | |
Mutation scaling factor $ SF $ | 0.5 | |
Crossover probability $ CR $ | 0.9 | |
Maximum velocity | 25.5 | |
DA | Number of dragonflies | 30 |
No. of iterations | 500 | |
Maximum velocity | 25.5 | |
controlling parameter $ {c_1} $ | [0, 2] | |
SSA | Number of salps | 30 |
No. of iterations | 500 | |
controlling parameter $ {r_1} $ | [0, 2] | |
SCA | Population size | 30 |
No. of iterations | 500 | |
ALO | Number of antlions | 30 |
No. of iterations | 500 | |
Pitch Adjustment Rate | 0.3 | |
HSO | Harmony Memory Considering Rate | 0.95 |
Tuning bandwidth $ BW $ | 25.5 | |
Harmony memory size | 30 | |
No. of iterations | 500 | |
Loudness | 0.25 | |
BA | Pulse emission rate | 0.5 |
Maximum frequency | 2 | |
Minimum frequency | 0 | |
Factor updating loudness $ \alpha $ | 0.95 | |
Factor updating pulse emission rate $ \gamma $ | 0.05 | |
Scaling factor | 4 | |
Number of bats | 30 | |
No. of iterations | 500 | |
Maximum particle velocity | 25.5 | |
PSO | Maximum inertia weight | 0.9 |
Minimum inertia weight | 0.4 | |
Learning factors $ {c_1} $ and $ {c_2} $ | 2 | |
Number of particles | 30 | |
No. of iterations | 500 | |
BED | The array of scaling factor F | [0, 1] |
The crossover rate CR | [0, 1] | |
No. of iterations | 500 | |
Population size | 30 | |
EOFPA | No. of iterations | 500 |
The flowers/pollen gametes | 30 | |
Switch probability | [0, 1] |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 4386.0155 | 4386.0155 | 4386.0155 | 4383.2562 | 4386.0155 | 4385.6741 | 4385.6859 | 4386.0155 | 4275.6231 | 4305.6849 |
6 | 4456.6941 | 4456.6745 | 4456.6812 | 4444.5333 | 4456.6812 | 4454.8023 | 4455.0995 | 4456.6896 | 4389.0323 | 4433.0295 | |
8 | 4484.1180 | 4483.9262 | 4481.7449 | 4459.9789 | 4484.1093 | 4481.4416 | 4466.3154 | 4484.1162 | 4382.9916 | 4433.2254 | |
10 | 4498.2080 | 4497.9168 | 4497.7713 | 4482.3727 | 4498.2009 | 4494.7658 | 4471.7015 | 4497.7081 | 4459.3658 | 4433.7415 | |
12 | 4506.5451 | 4504.8726 | 4504.8661 | 4488.6786 | 4506.5326 | 4501.1585 | 4475.5967 | 4502.7801 | 4341.1585 | 4332.5967 | |
Building | 4 | 3666.7889 | 3666.7889 | 3666.7889 | 3661.2005 | 3666.7889 | 3666.4479 | 3666.5619 | 3666.7889 | 3535.4479 | 3598.5619 |
6 | 3736.1408 | 3736.1359 | 3736.1408 | 3701.9165 | 3736.1289 | 3734.3517 | 3715.7878 | 3736.1157 | 3689.3517 | 3687.7878 | |
8 | 3765.4064 | 3763.7146 | 3761.8726 | 3732.2340 | 3765.3964 | 3776.4662 | 3754.6370 | 3765.2956 | 3722.6370 | 3733.2956 | |
10 | 3780.2478 | 3780.0474 | 3775.2198 | 3761.4603 | 3780.2365 | 3780.1030 | 3764.3500 | 3779.2472 | 3759.7500 | 3733.9872 | |
12 | 3788.7772 | 3785.0051 | 3784.1982 | 3764.2379 | 3785.6140 | 3784.0790 | 3767.8448 | 3787.9557 | 3698.8448 | 3780.9557 | |
Cactus | 4 | 2126.2412 | 2126.2412 | 2126.2412 | 2122.4910 | 2126.2412 | 2124.6012 | 2125.8760 | 2126.2412 | 2120.6012 | 2122.8650 |
6 | 2188.8128 | 2188.7833 | 2188.8074 | 2170.4086 | 2188.7851 | 2187.7032 | 2173.0367 | 2188.7902 | 2174.7042 | 2169.0577 | |
8 | 2213.2398 | 2211.6703 | 2209.8554 | 2185.0069 | 2213.1713 | 2210.4804 | 2200.8495 | 2212.9784 | 2199.4804 | 2198.8485 | |
10 | 2225.0856 | 2223.9729 | 2224.1614 | 2206.6749 | 2224.7509 | 2222.4256 | 2212.5880 | 2224.8807 | 2216.4286 | 2216.5640 | |
12 | 2231.9191 | 2227.8378 | 2230.5400 | 2214.0593 | 2230.9317 | 2227.4470 | 2213.0484 | 2230.2080 | 2217.4470 | 2218.0484 | |
Cow | 4 | 3953.7954 | 3953.7954 | 3953.7954 | 3947.6284 | 3953.7937 | 3953.6631 | 3953.3749 | 3953.7954 | 3947.6651 | 3949.3589 |
6 | 4018.8130 | 4018.5006 | 4018.8067 | 3997.9203 | 4018.7855 | 4016.5598 | 4006.7333 | 4018.8091 | 4004.5578 | 4010.7833 | |
8 | 4048.9214 | 4047.7684 | 4048.9027 | 4025.8279 | 4048.9098 | 4046.5501 | 4030.1545 | 4048.7097 | 4030.5471 | 4047.1755 | |
10 | 4063.2203 | 4062.2329 | 4062.3868 | 4046.0778 | 4060.1107 | 4058.5699 | 4051.8095 | 4062.5712 | 4048.5669 | 4049.8045 | |
12 | 4071.2438 | 4070.4191 | 4069.9258 | 4050.7113 | 4071.1365 | 4063.9022 | 4053.6927 | 4070.1930 | 4069.9062 | 4058.6927 | |
Deer | 4 | 1122.5798 | 1122.5798 | 1122.5798 | 1121.1187 | 1122.5798 | 1122.2487 | 1122.5083 | 1110.4477 | 1117.2487 | 1120.9083 |
6 | 1161.5839 | 1161.5775 | 1161.5775 | 1142.9409 | 1161.5705 | 1154.9956 | 1147.5510 | 1152.1515 | 1097.9556 | 1148.5540 | |
8 | 1178.1038 | 1178.0725 | 1178.1023 | 1157.6053 | 1175.7847 | 1169.9586 | 1173.4041 | 1175.1126 | 1158.966 | 1168.4061 | |
10 | 1186.5170 | 1186.2849 | 1180.0212 | 1166.4972 | 1185.4142 | 1178.7451 | 1172.1178 | 1183.8460 | 1168.7851 | 1169.1168 | |
12 | 1191.1450 | 1189.9832 | 1187.3761 | 1177.2843 | 1187.0185 | 1183.5727 | 1172.5974 | 1187.5187 | 1178.547 | 1177.5944 | |
Diver | 4 | 1522.2967 | 1522.2967 | 1522.2967 | 1520.5664 | 1522.2967 | 1519.8700 | 1521.7928 | 1522.2640 | 1507.8700 | 1519.7928 |
6 | 1551.5394 | 1551.4815 | 1551.5394 | 1548.3600 | 1551.5337 | 1549.0623 | 1549.0902 | 1551.4279 | 1539.0863 | 1538.0702 | |
8 | 1562.9129 | 1562.7854 | 1561.9790 | 1556.4619 | 1561.9507 | 1559.9760 | 1558.8788 | 1562.4085 | 1559.9760 | 1558.8788 | |
10 | 1569.5513 | 1568.2960 | 1568.0981 | 1560.6939 | 1569.4202 | 1565.9504 | 1557.2689 | 1564.9109 | 1548.9904 | 1553.2009 | |
12 | 1572.8927 | 1572.8457 | 1570.6416 | 1565.8103 | 1571.7146 | 1570.6842 | 1561.5625 | 1570.6104 | 1568.8042 | 1551.5355 | |
Elephant | 4 | 1922.2912 | 1922.2912 | 1922.2912 | 1918.9804 | 1922.2912 | 1921.8603 | 1922.0942 | 1922.2682 | 1919.8643 | 1920.0542 |
6 | 1965.3704 | 1965.3704 | 1965.2581 | 1938.3278 | 1965.3693 | 1964.1737 | 1962.4793 | 1965.1725 | 1963.1757 | 1952.4453 | |
8 | 1984.7096 | 1982.4376 | 1981.5554 | 1964.4215 | 1984.6837 | 1979.0474 | 1977.1272 | 1979.8723 | 1975.0444 | 1976.1242 | |
10 | 1994.7387 | 1993.2369 | 1989.9457 | 1978.0828 | 1992.1249 | 1987.8605 | 1984.2041 | 1987.1609 | 1985.8365 | 1983.2043 | |
12 | 2000.4189 | 1998.6301 | 1996.5621 | 1986.4930 | 1997.8161 | 1994.4913 | 1978.0329 | 1994.6057 | 1992.4333 | 1979.0459 | |
Horse | 4 | 2310.6909 | 2310.6909 | 2310.6909 | 2305.7078 | 2310.6909 | 2309.9326 | 2310.3382 | 2310.6598 | 2299.9456 | 2307.3332 |
6 | 2378.2916 | 2378.2825 | 2378.2916 | 2370.1264 | 2378.2680 | 2375.9490 | 2369.4067 | 2370.9811 | 2369.9230 | 2370.4567 | |
8 | 2406.3611 | 2406.3126 | 2406.3320 | 2383.0984 | 2406.2989 | 2401.2306 | 2382.1623 | 2405.4886 | 2399.2546 | 2375.1633 | |
10 | 2420.4694 | 2418.4885 | 2418.1694 | 2399.4467 | 2416.1505 | 2411.9233 | 2399.8047 | 2418.6889 | 2401.9343 | 2397.8467 | |
12 | 2428.4816 | 2427.6154 | 2427.5850 | 2408.8655 | 2426.3828 | 2422.8833 | 2403.5197 | 2423.5853 | 2400.8223 | 2403.5332 | |
Kangaroo | 4 | 1114.7964 | 1114.7964 | 1114.7964 | 1110.2121 | 1114.7903 | 1114.3295 | 1114.6277 | 1114.7889 | 1107.3295 | 1105.4477 |
6 | 1164.7521 | 1164.7327 | 1164.7463 | 1146.3046 | 1164.7463 | 1163.3312 | 1154.3339 | 1158.7069 | 1154.3212 | 1149.3459 | |
8 | 1187.4052 | 1187.0806 | 1186.6851 | 1165.7543 | 1187.3525 | 1183.0318 | 1167.0394 | 1186.8491 | 1179.0338 | 1170.0344 | |
10 | 1199.0953 | 1196.3070 | 1196.2935 | 1183.8805 | 1198.8494 | 1194.1221 | 1180.9305 | 1195.4164 | 1189.1561 | 1179.9455 | |
12 | 1205.6955 | 1200.5395 | 1200.9629 | 1189.7715 | 1204.7195 | 1201.8035 | 1186.1872 | 1201.2637 | 1200.8465 | 1176.1342 | |
Lake | 4 | 3602.5126 | 3602.5126 | 3602.5126 | 3595.0459 | 3602.5126 | 3602.0153 | 3602.1261 | 3602.4966 | 3599.0442 | 3600.1445 |
6 | 3676.1680 | 3675.8735 | 3676.1650 | 3654.2173 | 3668.5190 | 3675.3194 | 3671.9734 | 3676.0909 | 3659.3174 | 3669.9564 | |
8 | 3705.3747 | 3699.8939 | 3705.3197 | 3667.8620 | 3705.3361 | 3701.3738 | 3688.8008 | 3697.8809 | 3686.3458 | 3677.8358 | |
10 | 3719.6677 | 3719.4646 | 3719.6472 | 3691.5485 | 3719.5805 | 3712.8384 | 3706.5417 | 3716.1525 | 3710.8335 | 3705.5865 | |
12 | 3727.6944 | 3726.4808 | 3725.0242 | 3698.3776 | 3724.0969 | 3721.2794 | 3710.6391 | 3724.5939 | 3690.7961 | 3684.5679 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 18.1907 | 18.1907 | 18.1906 | 18.1526 | 18.1445 | 18.1873 | 18.1827 | 18.1907 | 18.1663 | 18.1597 |
6 | 23.5682 | 23.5675 | 23.5679 | 23.3085 | 23.5678 | 23.5383 | 23.5023 | 23.5680 | 23.5597 | 23.5483 | |
8 | 28.3015 | 28.2786 | 28.2814 | 27.6408 | 28.3002 | 28.2265 | 27.6685 | 28.2965 | 28.2197 | 27.6589 | |
10 | 32.6202 | 32.6118 | 32.6137 | 30.9182 | 32.6175 | 32.5149 | 30.9871 | 32.5589 | 32.5078 | 30.9861 | |
12 | 36.5456 | 36.3356 | 36.4038 | 34.5257 | 35.8899 | 36.1310 | 34.6846 | 36.3876 | 36.1290 | 34.6754 | |
Building | 4 | 18.8295 | 18.8295 | 18.8295 | 18.8158 | 18.8295 | 18.8226 | 18.8278 | 18.8295 | 18.8117 | 18.8256 |
6 | 24.1205 | 24.1102 | 24.1201 | 23.8745 | 24.0527 | 24.0527 | 23.9953 | 24.0966 | 24.0156 | 23.9643 | |
8 | 28.9969 | 28.9867 | 28.9965 | 27.8900 | 28.9943 | 28.9057 | 28.3981 | 28.9857 | 28.8521 | 28.2457 | |
10 | 33.4091 | 33.3553 | 33.3952 | 31.4147 | 31.4153 | 33.0362 | 31.9753 | 33.3670 | 32.9653 | 31.8533 | |
12 | 37.4610 | 37.3651 | 37.1874 | 34.8359 | 37.3891 | 37.1524 | 35.6430 | 37.3001 | 37.0854 | 35.3576 | |
Cactus | 4 | 18.5843 | 18.5843 | 18.5843 | 18.5632 | 18.5843 | 18.5761 | 18.5818 | 18.5843 | 18.4797 | 18.5748 |
6 | 23.8420 | 23.8418 | 23.8420 | 23.4790 | 23.8417 | 23.7550 | 23.8085 | 23.8412 | 23.6854 | 23.7422 | |
8 | 28.5198 | 28.5051 | 28.4490 | 27.8225 | 28.5094 | 28.3850 | 27.7631 | 28.4991 | 28.3742 | 27.6854 | |
10 | 32.8542 | 32.8325 | 32.8457 | 31.3685 | 32.8479 | 32.6682 | 32.0858 | 32.7519 | 32.5853 | 32.0753 | |
12 | 36.8707 | 36.7269 | 36.7470 | 34.5881 | 36.7313 | 36.6221 | 34.7641 | 36.6960 | 36.5586 | 34.4763 | |
Cow | 4 | 18.5002 | 18.4994 | 18.5002 | 18.4624 | 18.5002 | 18.4902 | 18.4983 | 18.5002 | 18.4774 | 18.4333 |
6 | 23.9812 | 23.9795 | 23.9811 | 23.7240 | 23.8746 | 23.9496 | 23.8805 | 23.9796 | 23.5974 | 23.8365 | |
8 | 28.8794 | 28.8320 | 28.8785 | 28.1316 | 28.7981 | 28.7163 | 28.4547 | 28.7927 | 28.6873 | 28.3766 | |
10 | 33.3769 | 33.2290 | 33.2647 | 32.0085 | 33.3423 | 33.1886 | 31.9696 | 33.2887 | 33.0674 | 31.6773 | |
12 | 37.5478 | 37.3152 | 37.4710 | 35.6447 | 37.4301 | 37.1716 | 34.9981 | 37.2740 | 37.1643 | 34.4351 | |
Deer | 4 | 17.7349 | 17.7349 | 17.7349 | 17.6786 | 17.7349 | 17.7135 | 17.7281 | 17.7349 | 17.4555 | 17.2441 |
6 | 22.8322 | 22.8321 | 22.8319 | 22.5782 | 22.8321 | 22.7880 | 22.7745 | 22.8309 | 22.6470 | 22.6845 | |
8 | 27.2958 | 27.2929 | 27.2812 | 26.2300 | 27.2806 | 27.2006 | 26.2772 | 27.2733 | 27.1996 | 26.2692 | |
10 | 31.3387 | 31.3160 | 31.3360 | 29.2343 | 30.6775 | 30.9565 | 29.5594 | 31.2597 | 30.85645 | 29.5474 | |
12 | 35.0702 | 34.4227 | 34.3552 | 31.7673 | 34.4560 | 34.5034 | 32.6665 | 34.4692 | 34.4694 | 32.5765 | |
Diver | 4 | 18.3361 | 18.3358 | 18.3350 | 18.2989 | 18.3364 | 18.3263 | 18.3232 | 18.3364 | 18.2883 | 18.1972 |
6 | 23.6781 | 23.6780 | 23.6775 | 23.4056 | 23.6385 | 23.6085 | 23.6370 | 23.6772 | 23.4785 | 23.5850 | |
8 | 28.3676 | 28.3511 | 28.3668 | 27.4894 | 28.3655 | 28.3069 | 27.8034 | 28.3593 | 28.2788 | 27.6444 | |
10 | 32.6130 | 32.5412 | 32.5953 | 31.5176 | 31.9590 | 32.4207 | 30.5849 | 32.5548 | 32.2977 | 30.6059 | |
12 | 36.5313 | 35.7728 | 35.9128 | 33.6363 | 35.8612 | 36.0536 | 33.4780 | 35.7932 | 36.0156 | 33.4620 | |
Elephant | 4 | 18.1761 | 18.1759 | 18.1761 | 18.1295 | 18.1761 | 18.1649 | 18.1713 | 18.1761 | 18.1086 | 18.1478 |
6 | 23.3175 | 23.3173 | 23.3173 | 23.0015 | 23.3151 | 23.2798 | 23.2584 | 23.3080 | 23.1976 | 23.1658 | |
8 | 27.9489 | 27.8447 | 27.9453 | 26.9483 | 27.8597 | 27.8217 | 27.7337 | 27.9263 | 27.7937 | 26.9867 | |
10 | 32.1636 | 32.0784 | 32.1632 | 30.4741 | 32.1142 | 31.9377 | 30.3712 | 32.0997 | 31.7812 | 30.3647 | |
12 | 36.0009 | 35.7483 | 35.7545 | 32.9324 | 35.8113 | 35.5656 | 33.4534 | 35.7970 | 34.8626 | 32.8634 | |
Horse | 4 | 18.6122 | 18.6122 | 18.6122 | 18.5974 | 18.6121 | 18.6081 | 18.6089 | 18.6121 | 18.0771 | 18.2979 |
6 | 23.7909 | 23.7897 | 23.7908 | 23.5302 | 23.7903 | 23.7650 | 23.7601 | 23.7906 | 23.6997 | 22.9791 | |
8 | 28.4407 | 28.4312 | 28.4404 | 27.8054 | 28.4385 | 28.3584 | 28.1669 | 28.4277 | 27.3234 | 26.1239 | |
10 | 32.6907 | 32.5229 | 32.6719 | 31.2299 | 32.6865 | 32.2931 | 31.9769 | 32.6336 | 32.1891 | 31.3566 | |
12 | 36.5861 | 36.4546 | 36.4579 | 34.1298 | 36.5790 | 35.9428 | 33.9804 | 36.4842 | 35.6435 | 33.6689 | |
Kangaroo | 4 | 18.9363 | 18.9362 | 18.9360 | 18.8904 | 18.9215 | 18.9352 | 18.9227 | 18.9363 | 18.7633 | 18.8644 |
6 | 24.4756 | 24.4707 | 24.4650 | 24.2231 | 24.4742 | 24.4465 | 24.3311 | 24.4713 | 24.0535 | 24.1431 | |
8 | 29.4235 | 29.4222 | 29.4202 | 28.8466 | 29.4191 | 29.3775 | 29.2686 | 29.4158 | 29.2777 | 29.1576 | |
10 | 33.8985 | 33.8650 | 33.8894 | 32.4266 | 33.8981 | 33.6472 | 31.7512 | 33.8709 | 33.5347 | 31.2442 | |
12 | 38.0564 | 37.9305 | 37.9644 | 36.4710 | 37.9993 | 37.7302 | 36.7833 | 37.9278 | 37.6432 | 36.6453 | |
Lake | 4 | 17.7485 | 17.7485 | 17.7485 | 17.7140 | 17.7347 | 17.7431 | 17.7477 | 17.7485 | 17.3476791 | 17.5897 |
6 | 22.7151 | 22.7148 | 22.7150 | 22.5244 | 22.7149 | 22.6387 | 22.6811 | 22.7146 | 22.5467 | 22.3551 | |
8 | 27.2343 | 27.2271 | 27.2291 | 26.4737 | 27.2342 | 27.0464 | 26.8541 | 27.2195 | 26.5671 | 27.2305 | |
10 | 31.3868 | 31.3760 | 31.3488 | 29.4879 | 31.3622 | 31.1878 | 30.4835 | 31.3469 | 30.3657 | 31.2569 | |
12 | 35.2977 | 34.9685 | 35.1190 | 33.2548 | 34.6736 | 34.7786 | 33.0519 | 34.5806 | 32.0652 | 33.5967 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | -620.2763 | -620.2763 | -620.2763 | -620.2542 | -620.2763 | -620.2648 | -620.2578 | -620.2763 | -609.0790 | -609.3784 |
6 | -620.6749 | -620.6743 | -620.6749 | -620.6221 | -620.6748 | -620.6437 | -620.6128 | -620.6748 | -609.6698 | -609.7163 | |
8 | -620.8419 | -620.8385 | -620.8414 | -620.7237 | -620.8097 | -620.7891 | -620.6825 | -620.8393 | -609.8519 | -609.8320 | |
10 | -620.9233 | -620.9178 | -620.9058 | -620.8120 | -620.9068 | -620.8768 | -620.8129 | -620.9175 | -609.9459 | -610.0020 | |
12 | -620.9702 | -620.9608 | -620.9477 | -620.8790 | -620.9668 | -620.9398 | -620.8730 | -620.9541 | -609.9813 | -610.0675 | |
Building | 4 | -660.4584 | -660.4584 | -660.4584 | -660.4452 | -660.4584 | -660.4560 | -660.4562 | -660.4584 | -658.6000 | -658.7712 |
6 | -660.8619 | -660.8616 | -660.8619 | -660.8236 | -660.8014 | -660.8492 | -660.8435 | -660.8619 | -659.0710 | -659.1223 | |
8 | -661.0323 | -661.0316 | -661.0312 | -660.8618 | -661.0320 | -660.9857 | -660.7957 | -661.0070 | -659.3262 | -659.3747 | |
10 | -661.1222 | -661.1219 | -661.0910 | -661.0239 | -661.1093 | -661.0670 | -661.0161 | -661.0894 | -659.3922 | -659.4202 | |
12 | -661.1753 | -661.1616 | -661.1249 | -661.0725 | -661.1443 | -661.1479 | -661.0530 | -661.1650 | -659.5068 | -659.5193 | |
Cactus | 4 | -375.3032 | -375.3032 | -375.3032 | -375.2890 | -375.3032 | -375.2894 | -375.2985 | -375.3032 | -372.5073 | -371.6678 |
6 | -375.6282 | -375.6275 | -375.6281 | -375.5085 | -375.5830 | -375.6132 | -375.5937 | -375.6275 | -372.9594 | -373.0201 | |
8 | -375.7553 | -375.7483 | -375.7532 | -375.6164 | -375.7541 | -375.7250 | -375.5836 | -375.7529 | -375.1600 | -370.2542 | |
10 | -375.8189 | -375.8003 | -375.8125 | -375.7240 | -375.8078 | -375.7907 | -375.7469 | -375.8125 | -372.1932 | -372.3085 | |
12 | -375.8552 | -375.8445 | -375.8338 | -375.7616 | -375.8434 | -375.8263 | -375.7679 | -375.8484 | -370.3258 | -374.3484 | |
Cow | 4 | -700.7303 | -700.7303 | -700.7303 | -700.7303 | -700.7134 | -700.7303 | -700.7263 | -700.6034 | -698.8509 | -698.9133 |
6 | -701.0632 | -701.0632 | -701.0632 | -700.9918 | -701.0281 | -701.0334 | -701.0425 | -701.0631 | -699.1213 | -699.1382 | |
8 | -701.1934 | -701.1928 | -701.1932 | -701.0718 | -701.1763 | -701.1654 | -701.1646 | -701.1924 | -699.3032 | -699.2943 | |
10 | -701.2660 | -701.2620 | -701.2453 | -701.1829 | -701.2657 | -701.2356 | -701.1861 | -701.2536 | -699.3819 | -699.4248 | |
12 | -701.3083 | -701.2998 | -701.2872 | -701.2130 | -701.2949 | -701.2783 | -701.2162 | -701.2998 | -699.4799 | -699.4939 | |
Deer | 4 | -394.8162 | -394.8162 | -394.8162 | -394.7204 | -394.8162 | -394.8098 | -394.8158 | -394.7272 | -377.5073 | -377.6678 |
6 | -395.0601 | -395.0601 | -395.0601 | -394.9579 | -395.0290 | -394.9943 | -394.9624 | -395.0593 | -377.9594 | -378.0201 | |
8 | -395.1690 | -395.1521 | -395.1171 | -395.1094 | -395.1303 | -395.1088 | -395.0924 | -395.1305 | -378.1600 | -378.2542 | |
10 | -395.2250 | -395.2132 | -395.1898 | -395.1037 | -395.1815 | -395.1494 | -395.1254 | -395.1797 | -378.1932 | -378.3085 | |
12 | -395.2572 | -395.2394 | -395.2311 | -395.1551 | -395.2271 | -395.2057 | -395.1679 | -395.2235 | -378.3258 | -378.3484 | |
Diver | 4 | -130.2537 | -130.2537 | -130.2537 | -130.2490 | -130.2537 | -130.1758 | -130.1763 | -130.2537 | -129.9030 | -129.1653 |
6 | -130.4961 | -130.4955 | -130.4816 | -130.4609 | -130.4587 | -130.4076 | -130.4042 | -130.4947 | -128.4047 | -126.3978 | |
8 | -130.6021 | -130.6007 | -130.5604 | -130.5324 | -130.5841 | -130.5097 | -130.4255 | -130.5598 | -127.5298 | -129.6061 | |
10 | -130.6536 | -130.6447 | -130.6170 | -130.5825 | -130.6424 | -130.5848 | -130.5879 | -130.6252 | -128.6593 | -129.7220 | |
12 | -130.6882 | -130.6721 | -130.6341 | -130.5951 | -130.6744 | -130.6113 | -130.5267 | -130.6643 | -129.7131 | -129.7822 | |
Elephant | 4 | -456.8572 | -456.8572 | -456.8572 | -456.8455 | -456.8552 | -456.8524 | -456.8540 | -456.8552 | -4552665 | -455.2189 |
6 | -457.1171 | -457.1171 | -457.1171 | -457.0303 | -457.0916 | -457.0805 | -457.0660 | -457.1167 | -455.4441 | -455.7034 | |
8 | -457.2138 | -457.2028 | -457.2017 | -457.1199 | -457.1564 | -457.1792 | -457.1036 | -457.1707 | -455.7360 | -455.7811 | |
10 | -457.2615 | -457.2584 | -457.2571 | -457.1509 | -457.2461 | -457.2384 | -457.2160 | -457.2471 | -455.8112 | -455.9329 | |
12 | -457.2974 | -457.2750 | -457.2645 | -457.1782 | -457.2761 | -457.2625 | -457.2034 | -457.2755 | -455.8923 | -4559428 | |
Horse | 4 | -650.9465 | -650.9465 | -650.9465 | -650.9346 | -650.9464 | -650.9453 | -650.8275 | -650.9464 | -638.8670 | -639.0225 |
6 | -651.2310 | -651.2305 | -651.2310 | -651.1613 | -651.2309 | -651.2223 | -651.2226 | -651.2308 | -639.0824 | -639.1809 | |
8 | -651.3496 | -651.3491 | -651.3492 | -651.2074 | -651.3354 | -651.3218 | -651.3145 | -651.3486 | -639.2078 | -639.2707 | |
10 | -651.4103 | -651.4075 | -651.3959 | -651.3230 | -651.4090 | -651.3884 | -651.3445 | -651.3985 | -639.3381 | -639.3124 | |
12 | -651.4451 | -651.4384 | -651.4396 | -651.3675 | -651.4213 | -651.4220 | -651.3387 | -651.4357 | -639.3136 | -639.3694 | |
Kangaroo | 4 | -441.3100 | -441.3100 | -441.3100 | -441.2870 | -441.3099 | -441.3033 | -441.3051 | -441.3100 | -440.3940 | -440.6180 |
6 | -441.6207 | -441.6151 | -441.6207 | -441.5240 | -441.6198 | -441.5944 | -441.5567 | -441.6204 | -440.8093 | -440.8583 | |
8 | -441.7491 | -441.7469 | -441.7401 | -441.6495 | -441.7466 | -441.7079 | -441.6409 | -441.7284 | -440.9658 | -440.0692 | |
10 | -441.8182 | -441.8136 | -441.7947 | -441.7388 | -441.7836 | -441.7767 | -441.6903 | -441.7961 | -440.1546 | -440.1106 | |
12 | -441.8579 | -441.8372 | -441.8412 | -441.7623 | -441.8426 | -441.8145 | -441.7252 | -441.8418 | -440.1620 | -440.2211 | |
Lake | 4 | -812.1139 | -812.1139 | -812.1139 | -812.0987 | -812.1139 | -812.1079 | -812.0152 | -812.1139 | -811.9079 | -810.5752 |
6 | -812.3819 | -812.3818 | -812.3819 | -812.2984 | -812.3818 | -812.3736 | -812.3574 | -812.3818 | -811.7736 | -810.3594 | |
8 | -812.4913 | -812.4849 | -812.4913 | -812.3919 | -812.4845 | -812.4776 | -812.4708 | -812.4777 | -810.6776 | -810.2308 | |
10 | -812.5476 | -812.5416 | -812.5465 | -812.4565 | -812.5374 | -812.5347 | -812.4901 | -812.5360 | -810.8347 | -811.4691 | |
12 | -812.5797 | -812.5663 | -812.5738 | -812.4903 | -812.5752 | -812.5588 | -812.5076 | -812.5747 | -811.9588 | -810.4976 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 0.0000e + 00 | 0.0000e + 00 | 0.0000e + 00 | 1.5052e + 00 | 6.9599e - 03 | 2.9240e - 01 | 1.0625e + 01 | 1.9536e - 02 | 1.2525e - 02 | 1.5216e - 02 |
6 | 4.1541e - 03 | 1.0091e - 01 | 5.6543e - 03 | 1.3679e + 01 | 4.6615e + 00 | 1.7517e + 00 | 1.4785e + 01 | 4.5974e + 00 | 1.3759e + 01 | 4.4865e + 00 | |
8 | 2.2692e - 03 | 7.3258e - 01 | 1.1033e + 00 | 3.3881e + 00 | 3.8795e + 00 | 9.8235e - 01 | 3.1223e + 00 | 1.5591e - 01 | 3.3871e + 00 | 1.9732e - 01 | |
10 | 5.3445e - 02 | 1.8133e + 00 | 8.9802e - 01 | 4.4712e + 00 | 2.2772e + 00 | 7.2268e - 01 | 8.1170e + 00 | 1.4814e + 00 | 9.5750e + 00 | 3.4353e + 00 | |
12 | 2.2612e - 01 | 8.7240e - 01 | 1.1039e + 00 | 2.5169e + 00 | 1.6665e + 00 | 1.2467e + 00 | 1.8633e + 00 | 1.1796e + 00 | 2.9986e + 00 | 2.8652e + 00 | |
Building | 4 | 0.0000e + 00 | 5.2206e - 03 | 0.0000e + 00 | 1.0556e + 00 | 0.0000e + 00 | 2.0873e - 01 | 1.9321e - 01 | 4.9614e - 03 | 3.2768e - 01 | 5.9787e - 03 |
6 | 2.7075e - 03 | 4.1034e - 01 | 1.4030e - 03 | 5.8629e + 00 | 3.7949e + 00 | 5.4196e - 01 | 4.5020e + 00 | 4.8013e + 00 | 5.9732e + 00 | 5.8364e + 00 | |
8 | 1.5158e - 02 | 7.8094e - 01 | 3.6351e + 00 | 4.4713e + 00 | 1.8527e + 00 | 1.0868e + 00 | 7.2455e + 00 | 1.8760e + 00 | 9.8648e + 00 | 7.8648e + 00 | |
10 | 2.5611e - 02 | 1.5275e + 00 | 2.2609e + 00 | 1.8080e + 00 | 1.8371e + 00 | 1.1496e + 00 | 2.8591e + 00 | 2.5056e + 00 | 6.8734e + 00 | 6.8642e + 00 | |
12 | 2.6689e - 01 | 6.5488e - 01 | 1.0901e + 00 | 1.5993e + 00 | 6.8305e - 01 | 1.0169e + 00 | 3.8292e + 00 | 9.4510e - 01 | 5.8743e + 00 | 9.9608e - 01 | |
Cactus | 4 | 0.0000e + 00 | 8.8624e - 03 | 0.0000e + 00 | 9.7805e - 01 | 1.9783e - 03 | 2.2157e - 01 | 9.0407e - 02 | 1.0212e + 01 | 8.8738e - 02 | 7.9492e + 01 |
6 | 0.0000e + 00 | 1.4716e - 01 | 1.0193e - 02 | 6.3001e + 00 | 2.8521e + 00 | 1.2033e + 00 | 5.9922e + 00 | 3.6189e + 00 | 6.8438e + 00 | 7.9332e + 00 | |
8 | 2.7104e - 03 | 9.2525e - 01 | 4.1563e - 01 | 5.5874e + 00 | 1.8328e + 00 | 1.4973e + 00 | 5.7798e + 00 | 1.6235e + 00 | 6.6432e + 00 | 4.4932e + 00 | |
10 | 7.5561e - 03 | 7.4369e - 01 | 2.9334e - 01 | 3.4511e + 00 | 1.7996e + 00 | 8.5357e - 01 | 5.9010e + 00 | 1.3657e + 00 | 6.9754e + 00 | 5.9733e + 00 | |
12 | 1.2812e - 01 | 1.4887e + 00 | 4.1829e - 01 | 1.7774e + 00 | 8.5019e - 01 | 7.4279e - 01 | 1.6913e + 00 | 6.4976e - 01 | 5.4883e + 00 | 7.4934e - 01 | |
Cow | 4 | 5.0842e - 13 | 9.4847e - 06 | 6.1882e - 07 | 1.3402e + 00 | 5.1671e - 03 | 3.2173e - 01 | 1.4038e - 01 | 9.3752e - 03 | 3.9754e - 01 | 9.7353e - 03 |
6 | 1.6545e - 01 | 1.9084e - 01 | 1.6323e - 01 | 5.9744e + 00 | 2.5197e + 00 | 1.3783e + 00 | 2.3592e + 00 | 1.6166e - 01 | 5.4873e + 00 | 2.9753e - 01 | |
8 | 2.4108e - 02 | 7.2264e - 01 | 9.2347e - 01 | 4.8122e + 00 | 2.4409e - 02 | 1.5244e + 00 | 6.3387e + 00 | 8.8607e - 01 | 7.8478e + 00 | 9.7743e - 01 | |
10 | 2.5064e - 01 | 3.3253e - 01 | 9.2932e - 01 | 3.1243e + 00 | 6.9114e - 01 | 7.6097e - 01 | 6.7771e + 00 | 1.2230e + 00 | 7.6436e + 00 | 8.9549e + 00 | |
12 | 1.0103e - 01 | 1.3010e + 00 | 1.0714e - 01 | 2.1099e + 00 | 4.9416e - 01 | 1.0799e + 00 | 5.4692e + 00 | 1.0640e + 00 | 6.7484e + 00 | 5.8622e + 00 | |
Deer | 4 | 0.0000e + 00 | 0.0000e + 00 | 5.4207e + 00 | 5.4024e + 00 | 7.4593e - 03 | 4.5577e - 01 | 6.2558e - 02 | 5.3883e + 00 | 7.6532e - 02 | 8.7353e + 00 |
6 | 0.0000e + 00 | 2.3296e + 00 | 2.5645e + 00 | 3.9302e + 00 | 2.2381e + 00 | 2.2796e + 00 | 6.8111e + 00 | 4.7647e + 00 | 7.3752e + 00 | 6.8352e + 00 | |
8 | 2.4978e - 02 | 3.0141e + 00 | 1.5768e + 00 | 2.9499e + 00 | 3.4235e + 00 | 3.2422e + 00 | 3.7797e + 00 | 2.0554e + 00 | 6.7534e + 00 | 5.7534e + 00 | |
10 | 4.0174e - 01 | 1.5329e + 00 | 1.5146e + 00 | 2.1600e + 00 | 1.9536e + 00 | 1.6882e + 00 | 8.6796e + 00 | 3.0491e + 00 | 7.9333e + 00 | 6.8457e + 00 | |
12 | 4.1945e - 01 | 1.3304e + 00 | 1.0805e + 00 | 3.8898e + 00 | 9.9896e - 01 | 7.9462e - 01 | 5.3120e + 00 | 1.7347e + 00 | 6.4378e + 00 | 4.8363e + 00 | |
Diver | 4 | 1.6462e - 03 | 1.3852e - 02 | 0.0000e + 00 | 4.2953e - 01 | 1.0325e - 02 | 4.3669e - 01 | 1.8932e - 01 | 2.0237e + 00 | 4.7522e - 01 | 5.4656e + 00 |
6 | 0.0000e + 00 | 4.5469e - 02 | 1.3710e - 03 | 2.1993e + 00 | 7.7053e - 01 | 1.6244e + 00 | 4.9161e + 00 | 3.5567e - 02 | 7.7453e + 00 | 6.8634e - 02 | |
8 | 3.0942e - 02 | 9.2514e - 01 | 4.5038e - 01 | 1.8318e + 00 | 4.4823e - 01 | 3.5167e - 01 | 2.0986e + 00 | 1.0432e + 00 | 3.7543e + 00 | 4.8652e + 00 | |
10 | 8.3825e - 03 | 7.0084e - 01 | 5.9167e - 01 | 1.9117e + 00 | 2.1269e - 01 | 9.7038e - 01 | 1.2839e + 00 | 7.0318e - 01 | 3.8658e + 00 | 8.7454e - 01 | |
12 | 1.3694e - 01 | 5.1430e - 01 | 4.0234e - 01 | 2.1263e + 00 | 2.6468e - 01 | 1.4983e - 01 | 1.9739e + 00 | 5.5533e - 01 | 5.4867e + 00 | 6.7543e - 01 | |
Elephant | 4 | 0.0000e + 00 | 6.4237e - 03 | 0.0000e + 00 | 6.0503e + 00 | 9.0498e - 04 | 1.6488e - 01 | 1.8436e - 01 | 7.2737e - 03 | 3.7523e - 01 | 8.7647e - 03 |
6 | 4.4492e - 02 | 1.9454e + 00 | 2.3242e + 00 | 6.2803e + 00 | 1.7561e + 00 | 1.3165e + 00 | 3.0963e + 00 | 4.7712e + 00 | 5.8437e + 00 | 6.8783e + 00 | |
8 | 5.5357e - 01 | 1.2826e + 00 | 1.5730e + 00 | 3.1859e + 00 | 1.5738e + 00 | 7.7418e - 01 | 4.9522e + 00 | 7.3335e - 01 | 6.8773e + 00 | 8.6534e - 01 | |
10 | 1.2384e + 00 | 2.1375e + 00 | 1.2931e + 00 | 5.7291e + 00 | 6.7686e + 01 | 1.6294e + 00 | 1.0518e + 01 | 2.0065e + 00 | 3.8856e + 01 | 4.7436e + 00 | |
12 | 4.3928e - 01 | 5.2442e - 01 | 1.0687e + 00 | 2.3214e + 00 | 1.7015e + 00 | 1.1204e + 00 | 2.8496e + 00 | 1.7069e + 00 | 4.8753e + 00 | 5.8475e + 00 | |
Horse | 4 | 0.0000e + 00 | 0.0000e + 00 | 0.0000e + 00 | 2.9545e + 00 | 1.0649e - 03 | 2.2981e - 01 | 1.4238e + 01 | 1.8426e - 02 | 4.7583e + 01 | 3.8964e - 02 |
6 | 7.9497e - 04 | 4.3199e - 02 | 4.3438e - 03 | 7.1120e + 00 | 1.2905e - 02 | 8.5581e - 01 | 6.9369e - 01 | 5.0399e + 00 | 7.7643e - 01 | 6.8353e + 00 | |
8 | 4.5720e - 02 | 2.3215e + 00 | 1.7100e + 00 | 6.0056e + 00 | 2.2284e + 00 | 6.7892e - 01 | 4.5581e + 00 | 2.1843e - 01 | 6.7654e + 00 | 5.8753e - 01 | |
10 | 1.7780e - 02 | 1.0456e + 00 | 1.0097e + 00 | 4.8101e + 00 | 2.8650e + 00 | 1.0801e + 00 | 7.7065e + 00 | 1.5548e + 00 | 8.8775e + 00 | 5.8753e + 00 | |
12 | 3.6262e - 02 | 9.1042e - 01 | 5.2105e - 01 | 2.7274e + 00 | 9.6076e - 01 | 1.3683e + 00 | 3.1956e + 00 | 1.2537e + 00 | 4.7535e + 00 | 4.7653e + 00 | |
Kangaroo | 4 | 0.0000e + 00 | 2.8080e - 03 | 0.0000e + 00 | 1.4197e + 00 | 0.0000e + 00 | 4.5233e - 01 | 1.5513e - 01 | 1.1710e - 02 | 2.8684e - 01 | 4.7833e - 02 |
6 | 7.0945e - 04 | 3.3564e - 02 | 3.1934e - 03 | 8.2077e + 00 | 1.2418e - 02 | 1.0105e + 00 | 4.8869e + 00 | 3.0115e + 00 | 5.7536e + 00 | 4.8753e + 00 | |
8 | 7.9087e - 03 | 5.6464e - 02 | 3.6501e - 01 | 6.1105e + 00 | 1.2628e + 00 | 1.2967e + 00 | 5.9183e + 00 | 2.3696e + 00 | 6.8733e + 00 | 5.8757e + 00 | |
10 | 2.5610e - 03 | 4.6108e - 01 | 1.1588e + 00 | 4.0363e + 00 | 5.7158e - 01 | 8.9576e - 01 | 6.7443e + 00 | 1.3835e + 00 | 7.9864e + 00 | 4.8875e + 00 | |
12 | 4.0049e - 02 | 8.7691e - 01 | 1.1766e + 00 | 2.5601e + 00 | 3.8831e - 01 | 6.2671e - 01 | 3.8655e + 00 | 1.3033e + 00 | 5.8754e + 00 | 4.8684e + 00 | |
Lake | 4 | 5.0842e - 13 | 8.5440e - 07 | 4.4517e - 03 | 1.0043e + 01 | 1.4746e - 04 | 1.5678e - 01 | 2.4311e + 01 | 1.2714e - 02 | 4.9854e + 01 | 3.9685e - 02 |
6 | 1.3355e - 03 | 1.0129e - 01 | 3.4139e + 00 | 6.2361e + 00 | 1.6624e - 02 | 1.4420e + 00 | 1.4072e + 01 | 3.6018e + 00 | 3.7987e + 01 | 4.8644e + 00 | |
8 | 1.8655e - 01 | 1.5349e + 00 | 1.5352e + 00 | 2.7270e + 00 | 1.5140e + 00 | 1.8072e + 00 | 7.3736e + 00 | 3.7370e + 00 | 9.3875e + 00 | 4.8743e + 00 | |
10 | 5.2140e - 03 | 1.3903e + 00 | 1.4982e + 00 | 3.8401e + 00 | 1.6502e + 00 | 1.7344e + 00 | 1.1550e + 01 | 2.2614e + 00 | 5.9486e + 01 | 3.7844e + 00 | |
12 | 1.3347e - 01 | 8.2871e - 01 | 6.0813e - 01 | 9.4868e - 01 | 1.0480e + 00 | 1.1963e + 00 | 7.1376e + 00 | 1.8657e + 00 | 8.7543e + 00 | 5.9883e + 00 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 0.0000e + 00 | 1.1889e - 03 | 4.5792e - 05 | 1.2654e - 02 | 2.5227e - 02 | 2.6238e - 03 | 2.3338e - 02 | 4.5792e - 05 | 3.8752e - 03 | 4.8758e - 02 |
6 | 1.0803e - 04 | 1.1619e - 04 | 1.2647e - 04 | 7.0324e - 02 | 3.1088e - 04 | 1.7798e - 02 | 4.0157e - 02 | 1.3631e - 04 | 4.8775e - 02 | 6.8753e - 02 | |
8 | 1.9295e - 04 | 8.4380e - 03 | 1.3024e - 02 | 2.3574e - 01 | 2.5639e - 02 | 4.3985e - 02 | 1.3272e - 01 | 1.4655e - 02 | 5.8753e - 02 | 4.7533e - 01 | |
10 | 6.3220e - 03 | 5.5282e - 02 | 5.7422e - 02 | 2.0425e - 01 | 1.9574e - 02 | 4.6981e - 02 | 5.8561e - 01 | 3.1833e - 02 | 6.8735e - 02 | 7.8743e - 01 | |
12 | 1.6956e - 02 | 9.7999e - 02 | 4.5541e - 02 | 3.0201e - 01 | 3.6739e - 01 | 1.2307e - 01 | 6.4889e - 01 | 2.4119e - 02 | 3.9864e - 01 | 7.8743e - 01 | |
Building | 4 | 0.0000e + 00 | 0.0000e + 00 | 0.0000e + 00 | 7.0614e - 03 | 3.2018e - 05 | 1.2271e - 03 | 9.2528e - 04 | 0.0000e + 00 | 4.9863e - 03 | 9.8743e - 04 |
6 | 8.8020e - 03 | 1.5824e - 02 | 4.2359e - 02 | 6.1177e - 02 | 9.7401e - 03 | 3.0400e - 02 | 1.7481e - 01 | 1.1671e - 02 | 4.8733e - 02 | 4.3734e - 01 | |
8 | 2.8468e - 03 | 3.2699e - 02 | 3.0477e - 03 | 1.7964e - 01 | 4.6111e - 02 | 3.0846e - 02 | 2.1943e - 01 | 3.3616e - 02 | 4.8753e - 02 | 5.9843e - 01 | |
10 | 2.0785e - 02 | 2.3636e - 02 | 2.1609e - 02 | 2.5603e - 01 | 8.2992e - 02 | 3.5160e - 02 | 5.6484e - 01 | 2.2881e - 02 | 4.8753e - 02 | 6.9886e - 01 | |
12 | 5.2186e - 02 | 9.7696e - 02 | 1.5118e - 01 | 5.0506e - 01 | 9.8895e - 02 | 1.6661e - 01 | 6.3697e - 01 | 1.7954e - 01 | 5.9864e - 01 | 7.4875e - 01 | |
Cactus | 4 | 2.6599e - 05 | 2.5477e - 03 | 8.5579e - 05 | 4.3927e - 03 | 5.8348e - 05 | 3.1864e - 03 | 2.1741e - 03 | 2.6752e - 05 | 5.3634e - 03 | 3.8767e - 03 |
6 | 1.4541e - 04 | 9.5823e - 04 | 1.6053e - 04 | 7.4453e - 02 | 2.9505e - 04 | 1.9699e - 02 | 5.3930e - 02 | 4.3274e - 04 | 4.9863e - 02 | 6.8244e - 02 | |
8 | 9.5675e - 04 | 8.8883e - 03 | 2.7352e - 02 | 1.3299e - 01 | 3.2443e - 02 | 3.3815e - 02 | 1.8186e - 01 | 7.3041e - 03 | 5.8743e - 02 | 4.7863e - 01 | |
10 | 4.3610e - 03 | 3.9010e - 02 | 5.3608e - 03 | 2.6713e - 01 | 4.9142e - 02 | 3.2420e - 02 | 1.5062e - 01 | 3.3415e - 02 | 5.8674e - 02 | 4.9836e - 01 | |
12 | 2.7111e - 03 | 7.4828e - 02 | 3.2452e - 02 | 2.3010e - 01 | 1.8277e - 02 | 5.0186e - 02 | 6.4139e - 01 | 7.3479e - 03 | 6.8765e - 02 | 7.8754e - 01 | |
Cow | 4 | 4.3875e - 04 | 4.5348e - 04 | 4.5512e - 03 | 1.9697e - 02 | 2.1813e - 02 | 3.4052e - 02 | 7.4689e - 03 | 4.3942e - 04 | 4.6733e - 02 | 8.8735e - 03 |
6 | 2.8795e - 05 | 8.4886e - 02 | 3.9295e - 02 | 5.9538e - 02 | 6.2887e - 02 | 1.5797e - 02 | 2.9128e - 01 | 4.9848e - 04 | 2.7535e - 02 | 3.8965e - 01 | |
8 | 3.6982e - 02 | 1.2156e - 01 | 4.4534e - 02 | 1.1567e - 01 | 7.5803e - 02 | 4.3787e - 02 | 4.7450e - 01 | 6.0485e - 02 | 5.8767e - 02 | 5.9886e - 01 | |
10 | 4.3049e - 02 | 1.2759e - 01 | 7.2200e - 02 | 2.1993e - 01 | 5.6487e - 02 | 4.4582e - 02 | 4.3961e - 01 | 5.2046e - 02 | 6.7854e - 02 | 5.9846e - 01 | |
12 | 3.2045e - 02 | 2.6235e - 01 | 7.0662e - 02 | 3.1597e - 01 | 1.1705e - 01 | 5.1689e - 02 | 5.3110e - 01 | 7.5080e - 02 | 7.8775e - 02 | 8.7654e - 01 | |
Deer | 4 | 0.0000e + 00 | 5.8974e - 03 | 5.9135e - 03 | 4.0585e - 03 | 7.2305e - 03 | 1.9331e - 02 | 6.9060e - 03 | 7.2004e - 03 | 6.7864e - 02 | 7.7435e - 03 |
6 | 2.2839e - 04 | 1.4763e - 03 | 3.3548e - 04 | 8.1484e - 02 | 6.2308e - 04 | 1.9429e - 02 | 1.1446e - 02 | 8.4301e - 04 | 2.8863e - 02 | 3.9753e - 02 | |
8 | 2.9669e - 03 | 6.7418e - 03 | 3.2304e - 03 | 1.3820e - 01 | 2.3685e - 02 | 7.5112e - 02 | 3.6370e - 01 | 5.8357e - 03 | 9.8754e - 02 | 4.8963e - 01 | |
10 | 4.9822e - 03 | 2.8841e - 01 | 2.7250e - 01 | 6.5556e - 01 | 2.6518e - 01 | 1.9191e - 01 | 6.4420e - 01 | 2.8244e - 01 | 2.0793e - 01 | 7.8735e - 01 | |
12 | 6.1415e - 02 | 4.7209e - 01 | 2.0164e - 01 | 3.5708e - 01 | 4.9867e - 01 | 1.1798e - 01 | 4.9348e - 01 | 2.4177e - 01 | 2.9753e - 01 | 5.4383e - 01 | |
Diver | 4 | 4.5390e - 04 | 9.5888e - 04 | 7.7273e - 04 | 1.8401e - 02 | 6.0705e - 04 | 4.7672e - 03 | 1.4489e - 03 | 4.5784e - 04 | 5.8986e - 03 | 2.8633e - 03 |
6 | 0.0000e + 00 | 2.0699e - 02 | 2.1247e - 02 | 2.0500e - 02 | 1.6986e - 02 | 2.0526e - 02 | 5.9176e - 02 | 2.1127e - 02 | 3.8646e - 02 | 6.9743e - 02 | |
8 | 4.9174e - 04 | 2.1986e - 02 | 2.7020e - 02 | 2.9803e - 01 | 2.7249e - 02 | 3.1078e - 02 | 8.7167e - 02 | 3.3923e - 01 | 5.8946e - 02 | 9.8763e - 02 | |
10 | 5.5672e - 03 | 2.1660e - 02 | 4.5160e - 02 | 2.5325e - 01 | 2.7837e - 01 | 9.0056e - 02 | 5.5104e - 01 | 2.7969e - 01 | 9.8534e - 02 | 6.8754e - 01 | |
12 | 2.1843e - 02 | 3.0838e - 01 | 2.8180e - 02 | 1.3301e - 01 | 4.2689e - 01 | 8.5895e - 02 | 5.6435e - 01 | 3.2203e - 01 | 9.8757e - 02 | 6.7654e - 01 | |
Elephant | 4 | 0.0000e + 00 | 1.9632e - 02 | 0.0000e + 00 | 1.6930e - 02 | 1.9460e - 02 | 3.0622e - 03 | 4.9727e - 03 | 1.5939e - 02 | 5.8754e - 03 | 5.8754e - 03 |
6 | 8.9460e - 04 | 4.7949e - 03 | 7.4900e - 03 | 2.7495e - 02 | 3.9956e - 03 | 3.5767e - 02 | 1.0488e - 02 | 3.3018e - 03 | 4.8753e - 02 | 2.8785e - 02 | |
8 | 1.2782e - 02 | 1.4891e - 02 | 5.2655e - 02 | 3.0559e - 01 | 1.1137e - 01 | 7.2515e - 02 | 2.7681e - 01 | 1.8693e - 02 | 8.4875e - 02 | 3.8754e - 01 | |
10 | 1.0683e - 02 | 2.2650e - 02 | 7.8857e - 02 | 3.4112e - 01 | 3.1072e - 02 | 1.4351e - 01 | 8.6519e - 01 | 6.9635e - 02 | 2.8645e - 01 | 9.7643e - 01 | |
12 | 3.2082e - 02 | 1.5757e - 01 | 7.0852e - 02 | 4.7685e - 01 | 9.6941e - 02 | 1.2052e - 01 | 6.8057e - 01 | 3.7980e - 02 | 3.9865e - 01 | 7.9863e - 01 | |
Horse | 4 | 0.0000e + 00 | 4.3697e - 05 | 0.0000e + 00 | 5.7362e - 03 | 3.0031e - 05 | 1.1992e - 03 | 9.0646e - 04 | 0.0000e + 00 | 2.9864e - 03 | 9.7845e - 04 |
6 | 3.9001e - 05 | 6.8235e - 04 | 6.4030e - 05 | 2.7168e - 02 | 1.8898e - 02 | 2.4707e - 02 | 3.9755e - 01 | 1.6253e - 04 | 3.8496e - 02 | 4.0379e - 01 | |
8 | 1.0658e - 03 | 1.5830e - 02 | 1.5773e - 02 | 1.7886e - 01 | 3.2528e - 01 | 2.0050e - 02 | 5.1045e - 02 | 1.8431e - 02 | 3.8564e - 02 | 6.8734e - 02 | |
10 | 1.1899e - 03 | 2.6765e - 02 | 1.0699e - 02 | 4.4824e - 01 | 2.0086e - 03 | 9.0610e - 02 | 1.0780e + 00 | 1.9035e - 02 | 9.9363e - 02 | 2.9747e + 00 | |
12 | 1.0195e - 02 | 9.3998e - 02 | 1.0905e - 02 | 1.4685e - 01 | 2.7702e - 01 | 1.3892e - 01 | 1.1139e + 00 | 1.6405e - 02 | 2.9875e - 01 | 3.9785e + 00 | |
Kangaroo | 4 | 0.0000e + 00 | 1.8494e - 03 | 0.0000e + 00 | 1.3075e - 02 | 7.9334e - 03 | 2.8633e - 03 | 3.8586e - 03 | 5.7127e - 05 | 3.4079e - 03 | 4.9445e - 03 |
6 | 2.9074e - 03 | 3.7403e - 03 | 2.9915e - 03 | 7.1561e - 02 | 3.3148e - 03 | 5.2471e - 03 | 3.8709e - 02 | 3.0783e - 03 | 6.9856e - 03 | 4.9865e - 02 | |
8 | 5.6649e - 04 | 1.1019e - 02 | 5.4813e - 03 | 8.2995e - 02 | 5.6226e - 03 | 7.0540e - 03 | 3.1840e - 01 | 4.0150e - 03 | 8.4835e - 03 | 4.9864e - 01 | |
10 | 3.7801e - 03 | 1.1827e - 02 | 1.8489e - 02 | 3.4071e - 01 | 6.9291e - 03 | 3.8810e - 02 | 5.2978e - 01 | 8.3780e - 03 | 5.9836e - 02 | 6.9886e - 01 | |
12 | 8.7743e - 03 | 4.7216e - 02 | 1.6021e - 02 | 4.4485e - 01 | 2.2123e - 02 | 6.8302e - 02 | 8.7635e - 01 | 3.7581e - 02 | 7.9867e - 02 | 9.7643e - 01 | |
Lake | 4 | 0.0000e + 00 | 0.0000e + 00 | 0.0000e + 00 | 9.7684e - 03 | 6.1440e - 03 | 4.9956e - 03 | 2.4380e - 04 | 9.6789e - 05 | 5.6536e - 03 | 3.8464e - 04 |
6 | 1.1065e - 04 | 3.8191e - 03 | 1.1223e - 04 | 5.6110e - 02 | 3.2872e - 04 | 2.1645e - 02 | 1.6446e - 02 | 2.1150e - 04 | 3.9865e - 02 | 2.4783e - 02 | |
8 | 1.2889e - 03 | 7.5427e - 03 | 2.1513e - 02 | 9.1336e - 02 | 2.0880e - 02 | 4.3782e - 02 | 5.4877e - 01 | 5.1575e - 03 | 5.4765e - 02 | 6.6584e - 01 | |
10 | 6.1286e - 03 | 4.2495e - 02 | 2.5681e - 02 | 3.4080e - 01 | 1.3618e - 02 | 1.2310e - 01 | 8.1195e - 01 | 1.3520e - 02 | 2.9864e - 01 | 9.8346e - 01 | |
12 | 1.0719e - 02 | 6.5413e - 02 | 2.2308e - 01 | 2.9771e - 01 | 6.4892e - 02 | 5.0581e - 02 | 6.3487e - 01 | 3.5103e - 02 | 6.5794e - 02 | 7.3875e - 01 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 0.0000e + 00 | 4.3555e - 05 | 0.0000e + 00 | 4.9764e - 03 | 1.9393e - 05 | 8.8101e - 04 | 1.0221e - 02 | 1.9393e - 05 | 3.0201e - 01 | 6.3697e - 01 |
6 | 1.6098e - 05 | 2.2962e - 03 | 4.1531e - 05 | 2.2771e - 02 | 1.8929e - 02 | 8.7123e - 03 | 5.3511e - 02 | 3.2681e - 04 | 1.7954e - 01 | 2.2881e - 02 | |
8 | 4.1976e - 05 | 2.6942e - 03 | 1.6424e - 02 | 1.6160e - 02 | 9.5683e - 03 | 1.2381e - 02 | 5.2152e - 02 | 1.3810e - 02 | 7.4453e - 02 | 5.3608e - 03 | |
10 | 4.5375e - 05 | 5.3553e - 03 | 2.9144e - 02 | 1.7617e - 02 | 6.8743e - 03 | 1.0299e - 02 | 4.5361e - 02 | 6.4860e - 03 | 1.9697e - 02 | 2.1813e - 02 | |
12 | 1.3560e - 03 | 5.3794e - 03 | 1.3202e - 02 | 1.9366e - 02 | 1.4206e - 02 | 5.8245e - 03 | 2.5064e - 02 | 8.4871e - 03 | 2.9128e - 01 | 1.1567e - 01 | |
Building | 4 | 0.0000e + 00 | 0.0000e + 00 | 0.0000e + 00 | 8.4222e - 03 | 8.2640e - 02 | 1.8660e - 03 | 4.0474e - 03 | 3.7078e - 05 | 1.5062e - 01 | 5.9538e - 02 |
6 | 5.7722e - 06 | 2.2725e - 02 | 1.8815e - 05 | 2.1296e - 02 | 1.3243e - 04 | 1.4934e - 02 | 6.4824e - 02 | 4.4130e - 05 | 6.4139e - 01 | 1.1567e - 01 | |
8 | 8.1194e - 05 | 4.6351e - 03 | 1.0580e - 02 | 2.0644e - 02 | 1.8725e - 02 | 9.6663e - 03 | 3.7373e - 02 | 8.9031e - 03 | 5.9538e - 02 | 2.4707e - 02 | |
10 | 4.3296e - 03 | 4.5957e - 03 | 1.4784e - 02 | 2.9631e - 02 | 1.4996e - 02 | 7.8380e - 03 | 4.1964e - 02 | 1.3119e - 02 | 1.1567e - 01 | 2.2050e - 02 | |
12 | 2.9477e - 03 | 4.7520e - 03 | 1.0995e - 02 | 1.4305e - 02 | 9.2023e - 03 | 3.3979e - 03 | 3.3865e - 02 | 3.3371e - 03 | 5.9538e - 02 | 9.0610e - 02 | |
Cactus | 4 | 0.0000e + 00 | 1.7572e - 06 | 0.0000e + 00 | 5.5546e - 03 | 1.4347e - 06 | 1.9111e - 03 | 1.9601e - 03 | 0.0000e + 00 | 1.1567e - 01 | 1.3892e - 01 |
6 | 0.0000e + 00 | 2.2275e - 04 | 3.3031e - 05 | 2.0208e - 02 | 1.6240e - 02 | 7.5591e - 03 | 3.3427e - 03 | 1.8360e - 04 | 3.1104e - 03 | 1.3820e - 01 | |
8 | 5.7902e - 05 | 7.8170e - 03 | 1.6810e - 03 | 3.3547e - 02 | 7.3692e - 03 | 4.4322e - 03 | 6.7041e - 02 | 2.6121e - 03 | 2.7250e - 01 | 6.5556e - 01 | |
10 | 1.3753e - 04 | 7.0512e - 03 | 5.4453e - 03 | 5.7462e - 03 | 7.6790e - 03 | 7.0182e - 03 | 4.6264e - 02 | 1.3599e - 03 | 2.3624e - 01 | 3.468e - 01 | |
12 | 1.7572e - 06 | 1.9572e - 06 | 6.2473e - 05 | 5.5546e - 03 | 1.9347e - 06 | 1.9111e - 03 | 1.9601e - 03 | 3.9851e - 04 | 7.7243e - 03 | 1.8401e - 02 | |
Cow | 4 | 0.0000e + 00 | 3.5553e - 06 | 0.0000e + 00 | 4.3800e - 03 | 7.0152e - 06 | 1.4766e - 03 | 5.5669e - 02 | 2.1702e - 05 | 2.730e - 01 | 6.5556e - 01 |
6 | 8.3327e - 06 | 3.3821e - 04 | 2.9309e - 05 | 2.9149e - 02 | 1.5862e - 02 | 1.1595e - 02 | 2.3744e - 02 | 5.9844e - 05 | 2.0164e - 01 | 3.5708e - 01 | |
8 | 1.0541e - 05 | 7.6901e - 03 | 8.9780e - 03 | 1.2516e - 02 | 7.2417e - 03 | 5.5736e - 03 | 3.6431e - 02 | 1.4694e - 02 | 7.7273e - 02 | 1.8401e - 02 | |
10 | 4.4374e - 04 | 7.8347e - 03 | 6.0441e - 03 | 2.7480e - 02 | 8.2380e - 03 | 6.4775e - 03 | 8.9388e - 03 | 7.9328e - 03 | 2.1247e - 02 | 2.0322e - 02 | |
12 | 6.9515e - 04 | 7.2237e - 03 | 4.2157e - 03 | 1.2538e - 02 | 5.5394e - 03 | 5.9790e - 03 | 2.4809e - 02 | 3.0575e - 03 | 2.7010e - 02 | 2.673e - 01 | |
Deer | 4 | 0.0000e + 00 | 2.8320e - 05 | 4.2927e - 02 | 3.5671e - 02 | 5.1525e - 02 | 6.7133e - 03 | 5.1398e - 02 | 3.0850e - 05 | 7.6374e - 03 | 7.6974e - 03 |
6 | 2.6894e - 05 | 3.4557e - 05 | 2.5596e - 02 | 3.2448e - 02 | 1.6901e - 02 | 1.9843e - 02 | 5.0846e - 02 | 1.6964e - 02 | 3.8839e - 04 | 1.9763e - 03 | |
8 | 2.8452e - 05 | 1.2801e - 02 | 3.2649e - 02 | 2.4045e - 02 | 2.0842e - 02 | 9.6566e - 03 | 2.4055e - 02 | 1.7755e - 02 | 4.6669e - 03 | 2.7418e - 03 | |
10 | 1.7530e - 04 | 2.9018e - 02 | 1.2639e - 02 | 1.9853e - 02 | 1.1923e - 02 | 1.6688e - 02 | 5.3703e - 02 | 5.5481e - 03 | 5.6722e - 03 | 3.4841e - 01 | |
12 | 2.1929e - 03 | 1.2338e - 02 | 8.8961e - 03 | 9.8628e - 03 | 6.5436e - 03 | 6.7611e - 03 | 1.7855e - 02 | 1.0242e - 02 | 6.5415e - 02 | 6.5209e - 01 | |
Diver | 4 | 0.0000e + 00 | 0.0000e + 00 | 0.0000e + 00 | 4.1200e - 03 | 2.9214e - 02 | 2.5662e - 02 | 4.3891e - 02 | 3.1663e - 05 | 8.5668e - 04 | 6.3673e - 04 |
6 | 2.4028e - 07 | 2.7901e - 04 | 2.3344e - 02 | 1.4257e - 02 | 1.0952e - 02 | 1.3559e - 02 | 7.2014e - 02 | 1.1899e - 02 | 3.0089e - 02 | 8.7357e - 02 | |
8 | 7.2607e - 05 | 7.7633e - 03 | 1.4945e - 02 | 1.9285e - 02 | 1.3145e - 02 | 1.6465e - 02 | 4.3331e - 02 | 9.7951e - 03 | 3.9863e - 02 | 4.6700e - 02 | |
10 | 6.6864e - 04 | 2.8358e - 03 | 1.1158e - 02 | 1.8721e - 02 | 1.1055e - 02 | 6.6527e - 03 | 3.3078e - 02 | 9.4649e - 03 | 5.9793e - 02 | 5.7864e - 02 | |
12 | 3.0549e - 03 | 7.9756e - 03 | 8.9144e - 03 | 7.0841e - 03 | 1.2907e - 02 | 1.3726e - 02 | 4.1452e - 02 | 1.1751e - 02 | 5.4598e - 01 | 3.7680e - 02 | |
Elephant | 4 | 0.0000e + 00 | 9.0077e - 04 | 9.0267e - 04 | 4.1081e - 02 | 1.1055e - 03 | 4.1184e - 04 | 4.9507e - 02 | 9.2036e - 04 | 2.7340e - 02 | 6.4674e - 02 |
6 | 1.4221e - 06 | 8.0570e - 04 | 1.3606e - 02 | 2.4760e - 02 | 1.1116e - 02 | 1.4617e - 02 | 4.5924e - 02 | 3.0920e - 02 | 3.9863e - 02 | 4.5632e - 03 | |
8 | 7.9685e - 04 | 1.0640e - 02 | 1.2130e - 02 | 2.6000e - 02 | 1.0469e - 02 | 7.8799e - 03 | 2.8428e - 02 | 1.1566e - 02 | 9.8876e - 01 | 3.9450e - 01 | |
10 | 2.3569e - 03 | 2.6128e - 03 | 3.0860e - 03 | 1.8732e - 02 | 8.0987e - 03 | 8.4090e - 03 | 2.4145e - 02 | 6.6496e - 03 | 6.9973e - 01 | 4.0876e - 02 | |
12 | 1.0095e - 03 | 8.1323e - 03 | 5.5866e - 03 | 2.3722e - 02 | 1.2886e - 02 | 3.3161e - 03 | 3.9390e - 02 | 5.4535e - 03 | 5.6643e - 01 | 3.0267e - 02 | |
Horse | 4 | 0.0000e + 00 | 7.6146e - 06 | 0.0000e + 00 | 3.9869e - 02 | 0.0000e + 00 | 1.2334e - 03 | 3.3564e - 04 | 0.0000e + 00 | 8.6683e - 03 | 4.9931e - 05 |
6 | 6.9579e - 06 | 2.9511e - 04 | 1.4611e - 05 | 3.9917e - 02 | 1.3604e - 02 | 1.9567e - 03 | 3.8756e - 02 | 1.0109e - 04 | 3.9825e - 02 | 1.9603e - 02 | |
8 | 3.2793e - 05 | 3.6051e - 03 | 5.9145e - 04 | 1.9079e - 02 | 3.1548e - 04 | 1.3885e - 02 | 3.6609e - 02 | 6.0967e - 03 | 2.1978e - 01 | 4.9930e - 01 | |
10 | 2.6460e - 05 | 2.5018e - 03 | 2.0397e - 03 | 1.4575e - 02 | 8.7068e - 03 | 6.2620e - 03 | 2.7941e - 02 | 4.9061e - 03 | 4.5722e - 01 | 4.9928e - 03 | |
12 | 4.5934e - 04 | 5.9886e - 03 | 5.6341e - 03 | 2.3385e - 02 | 5.5206e - 03 | 6.2517e - 03 | 1.9090e - 02 | 3.7609e - 03 | 2.7638e - 01 | 3.0145e - 01 | |
Kangaroo | 4 | 0.0000e + 00 | 6.9161e - 05 | 0.0000e + 00 | 4.5684e - 03 | 1.3734e - 05 | 3.7605e - 03 | 5.9342e - 02 | 7.9425e - 06 | 3.0024e - 02 | 1.5722e - 03 |
6 | 1.8491e - 06 | 3.5289e - 06 | 7.4256e - 04 | 2.8424e - 02 | 5.6422e - 03 | 4.7666e - 03 | 6.5992e - 02 | 6.9616e - 05 | 5.7732e - 02 | 4.9731e - 03 | |
8 | 4.1239e - 05 | 1.3851e - 03 | 5.3166e - 03 | 2.3963e - 02 | 9.8772e - 03 | 4.3838e - 03 | 3.9993e - 02 | 7.9770e - 03 | 9.0244e - 02 | 6.0721e - 03 | |
10 | 2.7729e - 04 | 2.3215e - 03 | 6.1821e - 03 | 1.5739e - 02 | 8.2379e - 03 | 6.0833e - 03 | 2.9610e - 02 | 8.2685e - 03 | 3.5673e - 01 | 7.0421e - 03 | |
12 | 3.2988e - 04 | 6.1240e - 03 | 8.4453e - 03 | 9.4158e - 03 | 1.0962e - 02 | 5.6801e - 03 | 2.7494e - 02 | 3.0349e - 03 | 5.9722e - 01 | 6.8722e - 02 | |
Lake | 4 | 0.0000e + 00 | 2.0336e - 06 | 0.0000e + 00 | 8.3246e - 03 | 9.5161e - 06 | 4.1782e - 04 | 2.1471e - 03 | 2.0336e - 06 | 8.6322e - 03 | 6.2880e - 03 |
6 | 5.4704e - 06 | 5.7846e - 04 | 1.3840e - 02 | 4.1747e - 02 | 1.8414e - 02 | 1.6083e - 03 | 4.1550e - 02 | 6.8613e - 05 | 8.9630e - 02 | 7.8652e - 04 | |
8 | 2.5563e - 05 | 6.9062e - 03 | 5.9416e - 03 | 2.7668e - 02 | 1.9965e - 02 | 4.8122e - 03 | 2.8436e - 02 | 1.1764e - 02 | 9.7383e - 02 | 5.8235e - 02 | |
10 | 7.3581e - 05 | 3.9563e - 03 | 3.9417e - 03 | 8.5210e - 03 | 1.1233e - 02 | 4.2182e - 03 | 2.3901e - 02 | 3.8337e - 03 | 4.8252e - 01 | 2.8433e - 02 | |
12 | 9.4260e - 04 | 6.5949e - 03 | 2.0884e - 03 | 1.2109e - 02 | 9.0033e - 03 | 5.1305e - 03 | 3.5508e - 02 | 2.7738e - 03 | 3.0211e - 01 | 5.9363e - 02 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 18.9590 | 18.9590 | 18.9590 | 18.8034 | 18.9590 | 18.8983 | 18.8959 | 18.9590 | 17.3764 | 17.316 |
6 | 21.0920 | 21.0911 | 21.0912 | 20.5635 | 21.0920 | 20.9637 | 20.6669 | 21.0909 | 19.1881 | 18.6372 | |
8 | 22.5471 | 22.3377 | 22.4018 | 22.3838 | 22.5463 | 22.4298 | 21.9278 | 22.4010 | 22.0039 | 21.0101 | |
10 | 23.4904 | 23.3166 | 23.9987 | 23.0423 | 23.4885 | 24.0388 | 23.1488 | 23.5456 | 23.1010 | 22.3231 | |
12 | 27.7081 | 24.5108 | 27.6512 | 23.5212 | 24.8332 | 27.6248 | 27.6485 | 24.7378 | 24.0274 | 24.7898 | |
Building | 4 | 17.4155 | 17.4155 | 17.4155 | 16.9523 | 17.4155 | 17.4062 | 17.4155 | 17.4155 | 16.9011 | 16.9837 |
6 | 19.8902 | 19.8187 | 19.8827 | 19.2310 | 19.8816 | 19.5492 | 19.0128 | 19.8782 | 18.9328 | 18.9880 | |
8 | 22.6625 | 22.5599 | 22.5680 | 19.5148 | 22.3500 | 22.6063 | 22.0638 | 22.4596 | 21.8258 | 22.4735 | |
10 | 27.1866 | 24.2853 | 24.1301 | 22.4138 | 23.9861 | 24.8874 | 23.0124 | 24.2530 | 22.9203 | 23.4174 | |
12 | 27.1983 | 26.3422 | 24.7812 | 24.3360 | 25.2812 | 25.9322 | 24.9121 | 25.0993 | 23.8136 | 25.8439 | |
Cactus | 4 | 20.3428 | 20.3428 | 20.3428 | 20.3309 | 20.3428 | 19.8275 | 20.3239 | 20.3428 | 18.5723 | 18.7159 |
6 | 22.6678 | 22.6661 | 22.6656 | 22.6482 | 22.6643 | 22.6390 | 22.5184 | 22.6668 | 19.2167 | 19.3623 | |
8 | 23.9827 | 23.7898 | 23.9062 | 23.9712 | 23.9422 | 23.5290 | 23.2659 | 23.9202 | 21.3695 | 21.8403 | |
10 | 24.8346 | 24.4556 | 24.6361 | 24.4523 | 24.7911 | 24.5695 | 24.7745 | 24.8199 | 22.4557 | 23.5664 | |
12 | 25.3709 | 24.8899 | 25.0184 | 24.5561 | 25.2555 | 24.8233 | 25.2156 | 25.2255 | 22.8350 | 22.6485 | |
Cow | 4 | 19.7023 | 19.7023 | 19.7023 | 19.0298 | 19.6970 | 19.7023 | 19.6131 | 19.7023 | 16.7087 | 17.7800 |
6 | 21.8735 | 21.8689 | 21.6575 | 21.2382 | 21.6519 | 21.5546 | 21.7785 | 21.6414 | 18.8470 | 19.6007 | |
8 | 23.6239 | 23.2169 | 23.4659 | 23.0928 | 23.5503 | 23.4506 | 22.9317 | 23.5084 | 21.8301 | 21.2347 | |
10 | 24.4648 | 24.4371 | 24.4203 | 24.3740 | 24.3462 | 23.7822 | 23.2376 | 24.2446 | 21.5213 | 23.1898 | |
12 | 25.0056 | 24.5718 | 24.8910 | 24.5712 | 24.5871 | 24.6769 | 23.8856 | 24.9461 | 23.2105 | 24.1131 | |
Deer | 4 | 17.2462 | 17.2462 | 17.2462 | 17.1630 | 17.2462 | 17.1945 | 17.2462 | 16.8531 | 17.2167 | 17.2285 |
6 | 22.3158 | 21.1255 | 21.1255 | 21.2796 | 21.0306 | 20.9120 | 21.0078 | 21.0168 | 19.9878 | 22.3087 | |
8 | 26.4239 | 23.5746 | 23.5002 | 24.0895 | 24.6123 | 26.3803 | 25.5392 | 23.9308 | 20.6895 | 22.7359 | |
10 | 27.1472 | 26.4163 | 26.8848 | 27.1317 | 27.1133 | 26.5453 | 26.8428 | 26.8889 | 22.3587 | 24.5996 | |
12 | 27.9602 | 27.1372 | 27.5484 | 27.8531 | 26.8076 | 26.9325 | 27.5315 | 27.3095 | 24.1497 | 26.6583 | |
Diver | 4 | 24.4620 | 24.4620 | 24.4620 | 24.1907 | 24.4620 | 24.3989 | 24.3677 | 24.3073 | 22.1893 | 22.9514 |
6 | 26.9548 | 26.9170 | 26.9448 | 26.7044 | 26.9499 | 26.6182 | 26.8265 | 26.9420 | 23.9825 | 24.7704 | |
8 | 29.5492 | 29.0513 | 28.6783 | 29.0786 | 28.7387 | 28.3422 | 29.2312 | 28.3347 | 25.0701 | 25.4638 | |
10 | 29.8856 | 29.4112 | 29.3481 | 29.1587 | 29.8131 | 29.2198 | 29.7836 | 29.8342 | 25.1395 | 27.5492 | |
12 | 31.1721 | 30.5343 | 29.7237 | 31.0997 | 31.0803 | 30.9819 | 30.5211 | 30.6319 | 26.5864 | 27.9708 | |
Elephant | 4 | 18.4590 | 18.4590 | 18.4590 | 18.0512 | 18.4590 | 18.4539 | 18.3943 | 18.4092 | 17.9796 | 18.4096 |
6 | 20.9780 | 20.5021 | 20.7348 | 20.9025 | 20.4230 | 20.9187 | 19.9182 | 20.5901 | 19.6514 | 20.2232 | |
8 | 24.6549 | 23.6814 | 23.3417 | 23.1786 | 22.8950 | 24.5622 | 23.5645 | 24.3392 | 21.5350 | 24.2511 | |
10 | 25.7650 | 25.4617 | 25.5042 | 25.0738 | 25.6656 | 25.1711 | 25.4416 | 25.6173 | 22.8253 | 23.9163 | |
12 | 28.5499 | 26.3839 | 27.1607 | 27.3927 | 26.9031 | 28.4144 | 28.2370 | 26.5514 | 23.4172 | 25.3764 | |
Horse | 4 | 18.5055 | 18.5055 | 18.5055 | 18.1434 | 18.5055 | 18.4145 | 18.3600 | 18.4552 | 17.2096 | 17.1942 |
6 | 22.6464 | 21.6461 | 21.6464 | 21.7744 | 21.6383 | 21.6707 | 21.8331 | 21.4744 | 20.7108 | 21.6493 | |
8 | 27.1218 | 23.7877 | 23.7854 | 25.8693 | 24.0577 | 25.3926 | 24.7503 | 23.8225 | 22.3332 | 22.7768 | |
10 | 28.6567 | 24.9734 | 26.1591 | 28.5737 | 28.3542 | 28.0356 | 26.0373 | 26.8562 | 23.3827 | 22.5028 | |
12 | 30.1088 | 25.9198 | 28.5245 | 28.8863 | 29.9344 | 29.6778 | 29.5050 | 28.9135 | 25.1314 | 24.9332 | |
Kangaroo | 4 | 19.3419 | 19.3419 | 19.3419 | 18.9806 | 19.3351 | 19.2601 | 19.2313 | 19.3312 | 18.5756 | 19.2651 |
6 | 25.2386 | 24.3138 | 24.3100 | 22.7301 | 24.3100 | 24.6060 | 24.8281 | 24.7980 | 21.1692 | 22.5045 | |
8 | 30.1938 | 28.9547 | 29.4461 | 26.8673 | 28.4724 | 30.1943 | 26.9309 | 28.0531 | 21.6472 | 22.6528 | |
10 | 33.3271 | 32.0741 | 32.5754 | 31.3008 | 31.8186 | 31.2343 | 30.6409 | 31.7392 | 23.6473 | 25.961 | |
12 | 34.2483 | 33.3702 | 33.5729 | 28.8392 | 33.8080 | 34.2136 | 31.7286 | 33.0561 | 24.8493 | 25.4618 | |
Lake | 4 | 17.8079 | 17.8079 | 17.8079 | 17.8948 | 17.8079 | 17.8154 | 17.8994 | 17.7555 | 15.13304217 | 16.62476501 |
6 | 23.7148 | 20.0906 | 20.2511 | 23.6525 | 22.1280 | 20.5707 | 20.5545 | 20.1912 | 16.80790196 | 16.45672222 | |
8 | 25.1894 | 23.7439 | 22.1234 | 24.4846 | 22.2729 | 23.2811 | 23.1193 | 24.2111 | 21.46744331 | 18.86515735 | |
10 | 27.3522 | 24.2819 | 23.3769 | 25.8174 | 23.2683 | 26.8299 | 26.3802 | 25.8904 | 22.20327956 | 21.45476838 | |
12 | 29.8302 | 25.2634 | 29.3626 | 29.1830 | 29.6264 | 29.0032 | 27.3752 | 26.0006 | 23.99130606 | 23.80486517 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 20.3166 | 20.3166 | 20.2807 | 20.1875 | 18.3087 | 20.0478 | 20.0579 | 20.3166 | 18.0357 | 18.6645 |
6 | 24.3943 | 23.2706 | 23.2631 | 23.9862 | 23.3301 | 24.0850 | 22.8633 | 23.3948 | 19.5943 | 20.5940 | |
8 | 25.9201 | 25.3943 | 25.5275 | 25.7371 | 25.5862 | 25.4035 | 25.6526 | 25.6077 | 21.1853 | 22.0672 | |
10 | 28.8445 | 27.5984 | 27.0704 | 28.3361 | 27.2035 | 27.9440 | 27.2823 | 27.4710 | 22.4667 | 23.2884 | |
12 | 32.1186 | 27.8596 | 30.0963 | 31.4096 | 30.0612 | 31.8332 | 28.2530 | 30.9551 | 23.3027 | 24.6414 | |
Building | 4 | 17.4224 | 17.4155 | 17.415 | 17.0523 | 17.4155 | 17.4142 | 17.4155 | 17.4155 | 17.4116 | 17.4155 |
6 | 19.9023 | 19.8637 | 19.8907 | 19.2310 | 19.8816 | 19.5492 | 19.7828 | 19.8072 | 19.7734 | 19.7631 | |
8 | 22.9857 | 22.5599 | 22.5680 | 21.3148 | 22.3500 | 22.6063 | 22.0638 | 22.6296 | 20.1984 | 20.5919 | |
10 | 27.2576 | 26.8043 | 24.1301 | 22.3738 | 23.9861 | 24.8874 | 23.0124 | 24.4590 | 22.2514 | 22.0813 | |
12 | 28.4124 | 27.3672 | 26.2312 | 24.8230 | 25.67 12 | 25.8392 | 24.9071 | 25.0989 | 24.2399 | 24.4493 | |
Cactus | 4 | 17.2477 | 17.2477 | 17.2477 | 17.2083 | 17.2477 | 17.1240 | 17.2076 | 17.2477 | 16.4696 | 16.7799 |
6 | 25.9105 | 24.0561 | 23.9672 | 21.5683 | 21.5404 | 24.9770 | 22.9863 | 22.2332 | 18.0968 | 19.4701 | |
8 | 28.7324 | 28.6092 | 28.5111 | 25.5115 | 28.6082 | 28.5553 | 27.6544 | 28.4325 | 19.1565 | 20.9022 | |
10 | 30.6897 | 30.4082 | 30.4321 | 28.3328 | 30.6687 | 30.4376 | 27.8268 | 30.5039 | 20.9462 | 22.4891 | |
12 | 32.4563 | 31.8106 | 32.0824 | 29.9900 | 32.1917 | 32.2054 | 29.6553 | 31.6696 | 22.3502 | 21.3577 | |
Cow | 4 | 19.3706 | 19.3456 | 19.3706 | 19.1520 | 19.3706 | 19.2890 | 19.3563 | 19.3706 | 16.3414 | 18.2875 |
6 | 24.6314 | 23.7690 | 23.9292 | 23.9305 | 22.0374 | 24.1317 | 23.3235 | 23.8404 | 18.4244 | 21.1759 | |
8 | 27.9669 | 26.7169 | 26.5471 | 27.1888 | 26.0817 | 27.2073 | 27.0670 | 25.9695 | 21.8036 | 21.3845 | |
10 | 30.8466 | 28.8963 | 28.4620 | 28.5871 | 29.1743 | 28.6751 | 27.6186 | 29.6997 | 23.6779 | 23.4505 | |
12 | 32.6043 | 32.2767 | 32.4801 | 28.9822 | 32.1704 | 32.5000 | 30.2576 | 31.5353 | 21.9672 | 23.9536 | |
Deer | 4 | 21.9086 | 21.9086 | 21.9086 | 21.8579 | 21.9086 | 21.8656 | 21.8624 | 21.9086 | 15.8959 | 18.8904 |
6 | 25.8662 | 25.7468 | 25.7976 | 25.2465 | 25.7708 | 25.7644 | 25.8643 | 25.8127 | 21.3477 | 20.6717 | |
8 | 29.1490 | 28.3340 | 28.0174 | 28.3990 | 28.1621 | 28.5526 | 28.3437 | 28.4946 | 22.1424 | 22.4715 | |
10 | 30.9920 | 30.4913 | 30.9573 | 28.9004 | 30.0481 | 30.8749 | 28.8843 | 30.1549 | 23.4554 | 23.8936 | |
12 | 32.9202 | 32.0876 | 30.9895 | 29.7392 | 32.7632 | 31.7944 | 29.8111 | 32.4031 | 25.5468 | 25.6665 | |
Diver | 4 | 21.6563 | 20.9671 | 21.4636 | 21.3132 | 20.9636 | 20.9593 | 21.4310 | 20.9636 | 20.3982 | 21.2676 |
6 | 23.8743 | 22.3082 | 22.3113 | 22.9759 | 22.3083 | 22.3378 | 22.1613 | 22.3090 | 23.0791 | 21.7095 | |
8 | 27.2237 | 24.4619 | 24.4493 | 24.4387 | 24.4538 | 24.6248 | 25.8560 | 24.4246 | 22.6522 | 25.1251 | |
10 | 29.4785 | 26.0826 | 26.3010 | 26.3667 | 26.4421 | 26.5201 | 28.3006 | 26.7262 | 25.0380 | 26.7153 | |
12 | 29.5071 | 27.2349 | 27.1253 | 26.9334 | 26.8751 | 26.6722 | 28.5156 | 27.0078 | 24.8993 | 24.2954 | |
Elephant | 4 | 18.6558 | 18.6551 | 18.6558 | 18.6533 | 18.6558 | 18.5722 | 18.4352 | 18.6558 | 17.9303 | 18.2680 |
6 | 23.4967 | 20.8588 | 20.8588 | 22.2481 | 21.3148 | 20.8610 | 20.2596 | 21.7136 | 18.8900 | 20.7315 | |
8 | 26.2198 | 23.1849 | 23.4237 | 23.4877 | 24.1624 | 24.5724 | 23.1158 | 23.3720 | 20.5137 | 21.8626 | |
10 | 28.9322 | 27.6131 | 25.2279 | 27.0446 | 27.7051 | 25.3211 | 25.1289 | 25.3938 | 20.8363 | 23.6299 | |
12 | 29.8636 | 29.4535 | 26.7054 | 28.6767 | 29.4309 | 26.3023 | 29.2218 | 29.8395 | 24.1360 | 22.5109 | |
Horse | 4 | 19.5685 | 19.5685 | 19.5685 | 19.5569 | 19.5616 | 19.5208 | 19.2442 | 19.5037 | 17.6152 | 18.1643 |
6 | 24.0011 | 23.0457 | 22.9153 | 23.1092 | 22.9575 | 23.1314 | 22.7394 | 23.0037 | 20.2580 | 21.0483 | |
8 | 27.3558 | 26.6826 | 26.9406 | 26.3270 | 27.1482 | 27.2741 | 26.7321 | 26.9479 | 22.8904 | 21.8187 | |
10 | 29.3890 | 28.0878 | 28.9131 | 28.8581 | 29.3174 | 29.3410 | 27.3223 | 29.1691 | 23.5858 | 21.4618 | |
12 | 31.6166 | 29.1202 | 30.4900 | 29.8254 | 30.7306 | 30.7994 | 30.0701 | 30.8250 | 24.5833 | 23.3923 | |
Kangaroo | 4 | 19.3602 | 19.3419 | 19.3419 | 18.9906 | 19.3351 | 19.2890 | 19.2313 | 19.3451 | 17.6221 | 19.2606 |
6 | 25.3116 | 24.3138 | 24.3120 | 22.8730 | 24.9068 | 24.6890 | 24.8608 | 24.3312 | 21.5133 | 21.5163 | |
8 | 30.2043 | 28.8512 | 29.4451 | 26.8932 | 28.8920 | 30.1893 | 26.9309 | 28.0531 | 21.7764 | 21.4465 | |
10 | 33.3301 | 32.1521 | 32.5122 | 31.4008 | 31.9123 | 31.2653 | 30.5950 | 31.7392 | 23.0558 | 21.7999 | |
12 | 34.2579 | 33.5667 | 33.5679 | 28.8232 | 33.9012 | 34.2716 | 31.7886 | 33.8661 | 24.1207 | 23.6892 | |
Lake | 4 | 18.2514 | 18.2514 | 18.2514 | 18.1857 | 18.0607 | 18.2348 | 18.2435 | 18.2514 | 16.4759 | 15.0601 |
6 | 23.6183 | 22.9541 | 22.7654 | 22.8559 | 23.0808 | 23.0525 | 22.6119 | 22.9201 | 17.8063 | 18.2172 | |
8 | 27.4202 | 26.1891 | 26.0786 | 27.2324 | 26.0580 | 25.9331 | 25.6984 | 25.8055 | 20.0112 | 19.3166 | |
10 | 31.8548 | 29.0040 | 29.1402 | 28.3226 | 28.8951 | 28.6493 | 28.0904 | 28.9814 | 22.3835 | 22.3242 | |
12 | 33.5569 | 30.7909 | 30.4219 | 29.9866 | 31.1864 | 32.9733 | 28.4370 | 30.7989 | 23.3754 | 22.4949 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 19.2861 | 19.2861 | 19.2861 | 19.2055 | 19.2861 | 19.2229 | 19.2480 | 19.2861 | 16.9146 | 17.8353 |
6 | 22.1149 | 21.6223 | 21.6743 | 21.8527 | 21.6255 | 21.6285 | 21.5617 | 21.6775 | 20.6040 | 19.7740 | |
8 | 27.0817 | 23.1912 | 23.2581 | 23.7577 | 23.3021 | 23.7125 | 23.7922 | 23.0945 | 21.9409 | 21.0794 | |
10 | 28.0991 | 24.4551 | 24.6218 | 25.4063 | 26.6986 | 24.3297 | 24.5463 | 24.3360 | 23.2507 | 21.9060 | |
12 | 29.8725 | 25.1136 | 29.8542 | 27.2696 | 26.9861 | 25.5679 | 24.7926 | 29.3463 | 23.9524 | 24.4563 | |
Building | 4 | 17.4155 | 17.4155 | 17.4155 | 17.3512 | 17.4155 | 17.2362 | 17.4155 | 17.4155 | 17.4155 | 17.4155 |
6 | 19.9001 | 19.8187 | 19.8827 | 19.0280 | 19.8816 | 19.5492 | 19.0638 | 19. 4596 | 19.8014 | 19.5000 | |
8 | 22.7921 | 22.5599 | 22.6780 | 19.5148 | 22.3500 | 22.6063 | 22.0128 | 22.4512 | 21.8680 | 22.1245 | |
10 | 27.2061 | 24.2853 | 24.1301 | 22.2338 | 23.8961 | 24.9474 | 23.3224 | 24.6730 | 22.5496 | 23.0076 | |
12 | 27.4723 | 27.0421 | 25.0232 | 24.8906 | 25.6701 | 25.8344 | 24.9589 | 25.1773 | 24.5120 | 24.9875 | |
Cactus | 4 | 21.0442 | 21.0442 | 21.0442 | 21.0422 | 21.0126 | 21.0118 | 21.0333 | 21.0442 | 18.2742 | 19.3560 |
6 | 24.9529 | 23.3510 | 23.3674 | 23.3678 | 24.0485 | 23.5364 | 23.4052 | 23.3895 | 20.2090 | 20.6766 | |
8 | 28.5911 | 24.5707 | 24.5779 | 24.5286 | 24.5989 | 24.5600 | 26.5850 | 24.6217 | 21.9887 | 22.1574 | |
10 | 29.9778 | 25.3832 | 25.3712 | 25.4471 | 27.9011 | 25.6677 | 27.6291 | 25.6254 | 22.0914 | 23.7324 | |
12 | 31.8637 | 26.1599 | 25.7562 | 26.2726 | 28.2229 | 28.9389 | 29.0718 | 26.3566 | 23.9993 | 23.2377 | |
Cow | 4 | 19.7030 | 19.7030 | 19.6961 | 19.7030 | 19.6629 | 19.7030 | 19.6343 | 19.2385 | 18.4964 | 17.9766 |
6 | 24.1672 | 21.9280 | 21.9130 | 21.3218 | 21.9130 | 21.8494 | 21.7807 | 21.9032 | 20.3522 | 19.2911 | |
8 | 27.3862 | 24.0409 | 24.0290 | 22.8483 | 24.0287 | 23.9099 | 23.6381 | 23.9633 | 20.2832 | 22.2579 | |
10 | 28.9123 | 25.1526 | 25.0983 | 24.6953 | 25.1431 | 26.3286 | 25.5584 | 28.8959 | 20.6888 | 21.3226 | |
12 | 30.6430 | 30.5606 | 29.4939 | 27.4681 | 26.0056 | 27.0059 | 29.7306 | 29.9207 | 24.3489 | 23.7499 | |
Deer | 4 | 15.6122 | 15.6122 | 15.6122 | 15.0935 | 15.6122 | 15.5409 | 15.3976 | 15.6084 | 15.6122 | 15.6122 |
6 | 24.6247 | 19.1380 | 19.1380 | 17.9988 | 22.2128 | 23.7311 | 19.1380 | 19.4118 | 21.0277 | 22.7668 | |
8 | 28.0177 | 23.9777 | 23.6379 | 21.3379 | 24.2505 | 25.7888 | 22.3424 | 25.0594 | 21.7233 | 23.8596 | |
10 | 30.4749 | 27.9028 | 24.8091 | 23.3179 | 28.4935 | 30.3411 | 28.8443 | 27.0434 | 24.3608 | 25.5655 | |
12 | 32.3489 | 31.2369 | 25.0884 | 26.1129 | 29.9859 | 31.2170 | 31.0402 | 30.0412 | 26.2164 | 26.8012 | |
Diver | 4 | 22.2354 | 22.2354 | 22.2354 | 22.2239 | 22.2354 | 22.2020 | 22.1763 | 22.2124 | 22.1863 | 22.2354 |
6 | 27.8765 | 25.6318 | 26.8252 | 25.4321 | 27.6780 | 26.0988 | 26.4248 | 26.3044 | 24.2075 | 24.2863 | |
8 | 29.7961 | 27.7268 | 27.6574 | 27.5539 | 28.5651 | 29.6757 | 26.8094 | 27.5598 | 26.0722 | 24.1376 | |
10 | 31.3786 | 29.0860 | 28.7092 | 28.1075 | 28.5887 | 30.6830 | 30.3389 | 31.3065 | 25.7920 | 27.7836 | |
12 | 31.8544 | 30.3199 | 30.1751 | 29.0378 | 30.8514 | 31.1978 | 31.4286 | 31.3641 | 27.3253 | 27.4796 | |
Elephant | 4 | 18.3463 | 18.3336 | 18.3463 | 18.1708 | 17.4852 | 17.3805 | 17.5702 | 17.4852 | 18.3463 | 18.2466 |
6 | 22.1628 | 20.4135 | 20.4535 | 21.9961 | 21.7783 | 20.4135 | 20.6891 | 20.3317 | 20.1564 | 21.0282 | |
8 | 24.7220 | 23.3686 | 23.7688 | 20.9605 | 24.5748 | 22.0756 | 22.7301 | 24.5871 | 23.1261 | 21.9422 | |
10 | 26.9608 | 25.5516 | 25.8022 | 22.5515 | 25.4095 | 25.9089 | 24.3794 | 26.5956 | 23.0379 | 23.8127 | |
12 | 29.3330 | 27.9280 | 28.9816 | 24.8952 | 27.1191 | 28.2273 | 25.7960 | 28.3370 | 23.8743 | 23.5579 | |
Horse | 4 | 20.1345 | 19.6709 | 19.6709 | 19.6709 | 19.6763 | 19.7642 | 20.0307 | 19.6716 | 18.1976 | 19.3682 |
6 | 24.6958 | 23.0096 | 23.1941 | 23.2140 | 23.1452 | 23.2670 | 22.9247 | 23.1408 | 20.7912 | 21.0884 | |
8 | 27.2155 | 25.6084 | 25.4453 | 25.5795 | 25.4993 | 25.5279 | 24.7919 | 25.7945 | 21.5042 | 22.3496 | |
10 | 28.8068 | 26.7811 | 27.7569 | 27.8577 | 27.2524 | 27.9344 | 27.2989 | 28.1843 | 24.2632 | 23.8468 | |
12 | 31.2694 | 28.2212 | 28.6299 | 29.7647 | 31.1706 | 29.1077 | 30.2376 | 29.5208 | 24.7799 | 25.3405 | |
Kangaroo | 4 | 18.3519 | 17.4067 | 17.4067 | 17.4067 | 17.4103 | 17.0564 | 17.5407 | 17.4078 | 18.2768 | 18.3300 |
6 | 23.1569 | 21.4058 | 20.6824 | 21.1593 | 21.0394 | 20.6824 | 22.5463 | 20.6663 | 20.7331 | 21.1320 | |
8 | 30.0907 | 26.0815 | 26.7610 | 25.4635 | 26.1473 | 24.6898 | 23.6899 | 26.0395 | 22.3714 | 23.3637 | |
10 | 32.6099 | 30.3705 | 27.9116 | 26.5561 | 30.5514 | 32.0864 | 29.5856 | 30.0876 | 25.4257 | 25.1888 | |
12 | 34.1968 | 34.1044 | 31.2554 | 27.3589 | 32.5094 | 33.6201 | 31.1735 | 33.9460 | 25.4637 | 27.0112 | |
Lake | 4 | 20.0431 | 18.9654 | 18.9611 | 18.5261 | 18.9611 | 18.5723 | 18.9711 | 18.9611 | 15.2170 | 17.5212 |
6 | 23.1596 | 21.9103 | 21.8344 | 21.9101 | 21.8345 | 21.7848 | 21.6807 | 21.9074 | 19.9245 | 19.0321 | |
8 | 26.8396 | 22.9554 | 23.4779 | 23.4811 | 24.2708 | 24.7097 | 22.7091 | 23.7849 | 19.4923 | 21.2751 | |
10 | 28.9053 | 25.3040 | 25.3547 | 25.6594 | 26.8900 | 26.4456 | 24.8679 | 24.7697 | 21.2984 | 23.3053 | |
12 | 30.8523 | 25.6771 | 28.9978 | 27.3762 | 29.6128 | 28.9323 | 28.0416 | 27.6008 | 23.7859 | 23.7204 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 0.7113 | 0.7113 | 0.7113 | 0.7043 | 0.7113 | 0.7110 | 0.7090 | 0.7113 | 0.6573 | 0.7026 |
6 | 0.8056 | 0.8056 | 0.8055 | 0.8003 | 0.8055 | 0.7992 | 0.7921 | 0.8056 | 0.8047 | 0.7817 | |
8 | 0.8567 | 0.8522 | 0.8544 | 0.8441 | 0.8566 | 0.8461 | 0.8505 | 0.8543 | 0.8567 | 0.8424 | |
10 | 0.8835 | 0.8792 | 0.8717 | 0.8715 | 0.8826 | 0.8756 | 0.8777 | 0.8824 | 0.8762 | 0.8763 | |
12 | 0.9028 | 0.8903 | 0.9003 | 0.8828 | 0.8944 | 0.8980 | 0.8969 | 0.8935 | 0.8888 | 0.9020 | |
Building | 4 | 0.7372 | 0.7372 | 0.7372 | 0.7313 | 0.7372 | 0.7372 | 0.7365 | 0.7372 | 0.6592 | 0.6868 |
6 | 0.8052 | 0.8043 | 0.8030 | 0.8052 | 0.8031 | 0.8031 | 0.8002 | 0.8024 | 0.7017 | 0.7455 | |
8 | 0.8389 | 0.8382 | 0.8384 | 0.8353 | 0.8382 | 0.8346 | 0.8303 | 0.8387 | 0.7955 | 0.8048 | |
10 | 0.8737 | 0.8637 | 0.8635 | 0.8558 | 0.8639 | 0.8545 | 0.8531 | 0.8633 | 0.8005 | 0.8252 | |
12 | 0.8831 | 0.8813 | 0.8826 | 0.8751 | 0.8824 | 0.8823 | 0.8826 | 0.8824 | 0.8461 | 0.8729 | |
Cactus | 4 | 0.5798 | 0.5798 | 0.5798 | 0.5785 | 0.5798 | 0.5599 | 0.5798 | 0.5798 | 0.5737 | 0.5700 |
6 | 0.6815 | 0.6812 | 0.6813 | 0.6790 | 0.6815 | 0.6815 | 0.6705 | 0.6813 | 0.6729 | 0.6498 | |
8 | 0.7351 | 0.7275 | 0.7320 | 0.7287 | 0.7349 | 0.7151 | 0.7087 | 0.7344 | 0.7325 | 0.7321 | |
10 | 0.7690 | 0.7541 | 0.7611 | 0.7678 | 0.7654 | 0.7551 | 0.7681 | 0.7689 | 0.7650 | 0.7628 | |
12 | 0.7888 | 0.7668 | 0.7747 | 0.7767 | 0.7823 | 0.7693 | 0.7724 | 0.7828 | 0.7851 | 0.7677 | |
Cow | 4 | 0.7231 | 0.7231 | 0.7231 | 0.7081 | 0.7229 | 0.7225 | 0.7219 | 0.7231 | 0.7038 | 0.7067 |
6 | 0.8050 | 0.7960 | 0.8045 | 0.7888 | 0.8044 | 0.7897 | 0.7975 | 0.8057 | 0.7858 | 0.7798 | |
8 | 0.8455 | 0.8403 | 0.8446 | 0.8430 | 0.8447 | 0.8436 | 0.8362 | 0.8448 | 0.8170 | 0.8453 | |
10 | 0.8739 | 0.8688 | 0.8730 | 0.8651 | 0.8723 | 0.8706 | 0.8675 | 0.8706 | 0.8031 | 0.8469 | |
12 | 0.8887 | 0.8751 | 0.8818 | 0.8835 | 0.8842 | 0.8768 | 0.8778 | 0.8841 | 0.8701 | 0.8823 | |
Deer | 4 | 0.6480 | 0.6480 | 0.6480 | 0.6434 | 0.6480 | 0.6432 | 0.6480 | 0.6326 | 0.6397 | 0.6463 |
6 | 0.8121 | 0.7898 | 0.7898 | 0.8034 | 0.7901 | 0.7874 | 0.7656 | 0.7923 | 0.7591 | 0.8120 | |
8 | 0.8749 | 0.8566 | 0.8554 | 0.8606 | 0.8595 | 0.8667 | 0.8642 | 0.8653 | 0.7847 | 0.8208 | |
10 | 0.9043 | 0.8987 | 0.8931 | 0.8869 | 0.8971 | 0.9015 | 0.9016 | 0.9042 | 0.8587 | 0.8950 | |
12 | 0.9291 | 0.9203 | 0.9190 | 0.9248 | 0.9171 | 0.9161 | 0.9087 | 0.9281 | 0.8958 | 0.9057 | |
Diver | 4 | 0.3451 | 0.3451 | 0.3451 | 0.3404 | 0.3451 | 0.3437 | 0.3436 | 0.3450 | 0.3446 | 0.3411 |
6 | 0.4352 | 0.4349 | 0.4352 | 0.4132 | 0.4352 | 0.4053 | 0.4352 | 0.4314 | 0.4327 | 0.4324 | |
8 | 0.5743 | 0.5517 | 0.4710 | 0.4917 | 0.4702 | 0.4425 | 0.5405 | 0.4771 | 0.5675 | 0.5233 | |
10 | 0.6073 | 0.5922 | 0.4985 | 0.6026 | 0.6024 | 0.4838 | 0.6380 | 0.5744 | 0.4822 | 0.6048 | |
12 | 0.6730 | 0.6262 | 0.5055 | 0.6130 | 0.6159 | 0.6107 | 0.6456 | 0.5841 | 0.6068 | 0.6632 | |
Elephant | 4 | 0.6080 | 0.6080 | 0.6080 | 0.5992 | 0.6080 | 0.6073 | 0.6041 | 0.6080 | 0.6065 | 0.6042 |
6 | 0.7149 | 0.7073 | 0.6950 | 0.7079 | 0.7084 | 0.6944 | 0.6911 | 0.6945 | 0.6990 | 0.7145 | |
8 | 0.7957 | 0.7560 | 0.7446 | 0.7685 | 0.7692 | 0.7543 | 0.7834 | 0.7588 | 0.7497 | 0.7838 | |
10 | 0.8447 | 0.8029 | 0.7844 | 0.8421 | 0.8229 | 0.7777 | 0.8314 | 0.8229 | 0.8102 | 0.8029 | |
12 | 0.8776 | 0.8164 | 0.8458 | 0.8775 | 0.8257 | 0.8376 | 0.8431 | 0.8309 | 0.8776 | 0.8657 | |
Horse | 4 | 0.7462 | 0.7462 | 0.7462 | 0.7304 | 0.7462 | 0.7370 | 0.7428 | 0.7450 | 0.6384 | 0.6560 |
6 | 0.8736 | 0.8433 | 0.8436 | 0.8582 | 0.8436 | 0.8573 | 0.8427 | 0.8350 | 0.7952 | 0.8313 | |
8 | 0.9207 | 0.8900 | 0.8900 | 0.9195 | 0.8928 | 0.9059 | 0.8915 | 0.8913 | 0.8388 | 0.8528 | |
10 | 0.9475 | 0.9069 | 0.9332 | 0.9399 | 0.9426 | 0.9334 | 0.9128 | 0.9283 | 0.8639 | 0.8476 | |
12 | 0.9552 | 0.9232 | 0.9479 | 0.9457 | 0.9503 | 0.9458 | 0.9424 | 0.9447 | 0.9002 | 0.8971 | |
Kangaroo | 4 | 0.7130 | 0.7130 | 0.7130 | 0.7042 | 0.7126 | 0.7116 | 0.7086 | 0.7129 | 0.6375 | 0.6732 |
6 | 0.8414 | 0.8413 | 0.8414 | 0.8207 | 0.8414 | 0.8363 | 0.8220 | 0.8338 | 0.7698 | 0.8036 | |
8 | 0.9101 | 0.9014 | 0.9015 | 0.8687 | 0.9007 | 0.8978 | 0.8672 | 0.8976 | 0.7547 | 0.8233 | |
10 | 0.9352 | 0.9266 | 0.9286 | 0.9069 | 0.9333 | 0.9211 | 0.9014 | 0.9256 | 0.8290 | 0.8893 | |
12 | 0.9494 | 0.9378 | 0.9394 | 0.9219 | 0.9492 | 0.9454 | 0.9192 | 0.9436 | 0.8724 | 0.8834 | |
Lake | 4 | 0.6677 | 0.6676 | 0.6676 | 0.6624 | 0.6676 | 0.6672 | 0.6677 | 0.6662 | 0.6199 | 0.6635 |
6 | 0.7982 | 0.7646 | 0.7673 | 0.7979 | 0.7853 | 0.7719 | 0.7699 | 0.7663 | 0.6870 | 0.7027 | |
8 | 0.8781 | 0.8408 | 0.8277 | 0.8589 | 0.8290 | 0.8388 | 0.8212 | 0.8698 | 0.8205 | 0.7837 | |
10 | 0.8929 | 0.8620 | 0.8630 | 0.8812 | 0.8618 | 0.8846 | 0.8778 | 0.8804 | 0.8681 | 0.8331 | |
12 | 0.9186 | 0.8836 | 0.9057 | 0.8897 | 0.9070 | 0.9044 | 0.8912 | 0.8888 | 0.8515 | 0.8652 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDA | EOFPA |
Bridge | 4 | 0.6942 | 0.6942 | 0.6930 | 0.6352 | 0.6889 | 0.6941 | 0.6851 | 0.6942 | 0.6645 | 0.6772 |
6 | 0.8170 | 0.7948 | 0.7945 | 0.8051 | 0.7958 | 0.8073 | 0.7890 | 0.7969 | 0.7594 | 0.8127 | |
8 | 0.8558 | 0.8437 | 0.8490 | 0.8370 | 0.8509 | 0.8425 | 0.8443 | 0.8509 | 0.8557 | 0.8551 | |
10 | 0.8984 | 0.8837 | 0.8770 | 0.8780 | 0.8798 | 0.8880 | 0.8859 | 0.8803 | 0.8841 | 0.8857 | |
12 | 0.9379 | 0.8904 | 0.9126 | 0.9359 | 0.9135 | 0.9236 | 0.8982 | 0.9221 | 0.9241 | 0.9100 | |
Building | 4 | 0.7384 | 0.7384 | 0.7384 | 0.7370 | 0.7384 | 0.7321 | 0.7379 | 0.7384 | 0.7100 | 0.6493 |
6 | 0.8268 | 0.8242 | 0.8214 | 0.8194 | 0.8061 | 0.8216 | 0.8199 | 0.8160 | 0.7319 | 0.7376 | |
8 | 0.8690 | 0.8660 | 0.8666 | 0.8503 | 0.8671 | 0.8685 | 0.8462 | 0.8656 | 0.7095 | 0.7367 | |
10 | 0.8960 | 0.8930 | 0.8915 | 0.8649 | 0.8943 | 0.8907 | 0.8694 | 0.8924 | 0.8010 | 0.8069 | |
12 | 0.9167 | 0.9124 | 0.9134 | 0.8945 | 0.9137 | 0.9147 | 0.8866 | 0.9089 | 0.8416 | 0.8599 | |
Cactus | 4 | 0.6220 | 0.6220 | 0.6220 | 0.6211 | 0.6207 | 0.6198 | 0.6201 | 0.6220 | 0.4588 | 0.4650 |
6 | 0.8041 | 0.7119 | 0.7130 | 0.7132 | 0.7546 | 0.7120 | 0.7118 | 0.7138 | 0.5973 | 0.6548 | |
8 | 0.8772 | 0.7557 | 0.7570 | 0.7589 | 0.7612 | 0.7453 | 0.8131 | 0.7586 | 0.6363 | 0.7261 | |
10 | 0.9072 | 0.7797 | 0.7837 | 0.7903 | 0.8430 | 0.7859 | 0.8569 | 0.7907 | 0.7089 | 0.7736 | |
12 | 0.9187 | 0.8078 | 0.7949 | 0.8164 | 0.8462 | 0.8472 | 0.8668 | 0.8164 | 0.7656 | 0.7188 | |
Cow | 4 | 0.6847 | 0.6827 | 0.6847 | 0.6837 | 0.6847 | 0.6833 | 0.6838 | 0.6847 | 0.6793 | 0.6830 |
6 | 0.8151 | 0.7801 | 0.7823 | 0.7823 | 0.7913 | 0.7838 | 0.7701 | 0.7804 | 0.7421 | 0.8128 | |
8 | 0.8684 | 0.8558 | 0.8543 | 0.8584 | 0.8404 | 0.8499 | 0.8451 | 0.8386 | 0.8317 | 0.8199 | |
10 | 0.9059 | 0.8786 | 0.8922 | 0.8798 | 0.9045 | 0.8955 | 0.8481 | 0.8948 | 0.8544 | 0.8746 | |
12 | 0.9252 | 0.9176 | 0.9218 | 0.9106 | 0.9209 | 0.9234 | 0.8943 | 0.9140 | 0.8741 | 0.8815 | |
Deer | 4 | 0.6468 | 0.6468 | 0.6468 | 0.6385 | 0.6468 | 0.6467 | 0.6424 | 0.6468 | 0.4978 | 0.6468 |
6 | 0.7928 | 0.7918 | 0.7907 | 0.7868 | 0.7923 | 0.7846 | 0.7902 | 0.7928 | 0.7919 | 0.7580 | |
8 | 0.8663 | 0.8649 | 0.8542 | 0.8222 | 0.8581 | 0.8598 | 0.8544 | 0.8650 | 0.7811 | 0.8139 | |
10 | 0.9069 | 0.9031 | 0.9063 | 0.8389 | 0.8937 | 0.8933 | 0.8675 | 0.8977 | 0.8291 | 0.8549 | |
12 | 0.9338 | 0.9251 | 0.9138 | 0.8882 | 0.9322 | 0.9164 | 0.8742 | 0.9272 | 0.8947 | 0.8984 | |
Diver | 4 | 0.4393 | 0.4393 | 0.4393 | 0.4298 | 0.4393 | 0.4095 | 0.4202 | 0.4393 | 0.4383 | 0.4321 |
6 | 0.6108 | 0.6060 | 0.5739 | 0.5831 | 0.5682 | 0.4672 | 0.5918 | 0.5862 | 0.6001 | 0.5501 | |
8 | 0.8221 | 0.6708 | 0.6074 | 0.6724 | 0.6627 | 0.6000 | 0.7211 | 0.6304 | 0.7962 | 0.8003 | |
10 | 0.9111 | 0.6921 | 0.6520 | 0.7011 | 0.6873 | 0.6278 | 0.7519 | 0.6820 | 0.8130 | 0.8131 | |
12 | 0.9183 | 0.7537 | 0.6933 | 0.7615 | 0.7566 | 0.6303 | 0.7791 | 0.7146 | 0.8281 | 0.8814 | |
Elephant | 4 | 0.5266 | 0.5258 | 0.5266 | 0.5253 | 0.5266 | 0.5212 | 0.5212 | 0.5266 | 0.5266 | 0.5195 |
6 | 0.6878 | 0.6103 | 0.6103 | 0.6105 | 0.6192 | 0.6520 | 0.5864 | 0.6332 | 0.6492 | 0.6845 | |
8 | 0.8032 | 0.6783 | 0.6942 | 0.6976 | 0.7281 | 0.7224 | 0.7094 | 0.6978 | 0.7229 | 0.7631 | |
10 | 0.8242 | 0.8025 | 0.7513 | 0.7701 | 0.7996 | 0.7534 | 0.7247 | 0.7594 | 0.7079 | 0.8019 | |
12 | 0.8759 | 0.8403 | 0.7942 | 0.7859 | 0.8411 | 0.8463 | 0.8182 | 0.8505 | 0.8187 | 0.7491 | |
Horse | 4 | 0.7496 | 0.7496 | 0.7496 | 0.7483 | 0.7492 | 0.7476 | 0.7425 | 0.7482 | 0.6587 | 0.6769 |
6 | 0.8645 | 0.8532 | 0.8503 | 0.8535 | 0.8507 | 0.8557 | 0.8493 | 0.8526 | 0.7706 | 0.7907 | |
8 | 0.9231 | 0.9168 | 0.9198 | 0.9082 | 0.9218 | 0.9203 | 0.9186 | 0.9199 | 0.8587 | 0.8251 | |
10 | 0.9455 | 0.9306 | 0.9434 | 0.9357 | 0.9452 | 0.9387 | 0.9252 | 0.9445 | 0.8553 | 0.7948 | |
12 | 0.9602 | 0.9453 | 0.9562 | 0.9434 | 0.9581 | 0.9579 | 0.9409 | 0.9586 | 0.8730 | 0.8409 | |
Kangaroo | 4 | 0.6355 | 0.6345 | 0.6347 | 0.6264 | 0.5800 | 0.6354 | 0.6266 | 0.6355 | 0.6344 | 0.6335 |
6 | 0.7745 | 0.7558 | 0.7647 | 0.7499 | 0.7700 | 0.7661 | 0.7377 | 0.7698 | 0.7686 | 0.7738 | |
8 | 0.8555 | 0.8487 | 0.8514 | 0.8133 | 0.8493 | 0.8333 | 0.8335 | 0.8468 | 0.7650 | 0.7709 | |
10 | 0.8983 | 0.8874 | 0.8851 | 0.8398 | 0.8927 | 0.8880 | 0.8412 | 0.8963 | 0.8167 | 0.7521 | |
12 | 0.9235 | 0.9170 | 0.9193 | 0.8954 | 0.9143 | 0.9114 | 0.8838 | 0.9208 | 0.8294 | 0.8155 | |
Lake | 4 | 0.6625 | 0.6625 | 0.6625 | 0.6610 | 0.6599 | 0.6615 | 0.6613 | 0.6625 | 0.6609 | 0.6377 |
6 | 0.7980 | 0.7970 | 0.7900 | 0.7864 | 0.7975 | 0.7964 | 0.7871 | 0.7923 | 0.7442 | 0.7460 | |
8 | 0.8682 | 0.8641 | 0.8630 | 0.8551 | 0.8649 | 0.8635 | 0.8531 | 0.8610 | 0.8138 | 0.7938 | |
10 | 0.9156 | 0.9018 | 0.9065 | 0.8733 | 0.9016 | 0.9025 | 0.8876 | 0.8998 | 0.8369 | 0.8575 | |
12 | 0.9390 | 0.9275 | 0.9258 | 0.9034 | 0.9287 | 0.9323 | 0.8979 | 0.9220 | 0.8718 | 0.8648 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 0.7366 | 0.7366 | 0.7366 | 0.7355 | 0.7366 | 0.7348 | 0.7356 | 0.7366 | 0.6931 | 0.6918 |
6 | 0.8266 | 0.8214 | 0.8224 | 0.8199 | 0.8212 | 0.8226 | 0.8202 | 0.8221 | 0.7918 | 0.7982 | |
8 | 0.8829 | 0.8694 | 0.8703 | 0.8635 | 0.8710 | 0.8679 | 0.8739 | 0.8672 | 0.8516 | 0.8550 | |
10 | 0.9071 | 0.8966 | 0.9070 | 0.8893 | 0.9052 | 0.9002 | 0.8795 | 0.8957 | 0.8976 | 0.8873 | |
12 | 0.9345 | 0.9101 | 0.9180 | 0.9195 | 0.9204 | 0.9212 | 0.8978 | 0.9238 | 0.9022 | 0.9265 | |
Building | 4 | 0.7553 | 0.7553 | 0.7553 | 0.7537 | 0.7553 | 0.7549 | 0.7551 | 0.7553 | 0.6365 | 0.6991 |
6 | 0.8221 | 0.8185 | 0.8176 | 0.8131 | 0.8181 | 0.8185 | 0.8172 | 0.8175 | 0.7506 | 0.7318 | |
8 | 0.8521 | 0.8468 | 0.8466 | 0.8239 | 0.8491 | 0.8511 | 0.8390 | 0.8476 | 0.8003 | 0.8024 | |
10 | 0.8820 | 0.8639 | 0.8645 | 0.8540 | 0.8726 | 0.8724 | 0.8571 | 0.8735 | 0.8023 | 0.8297 | |
12 | 0.9048 | 0.8922 | 0.8802 | 0.8765 | 0.8966 | 0.8811 | 0.8957 | 0.8786 | 0.8527 | 0.8656 | |
Cactus | 4 | 0.4681 | 0.4681 | 0.4681 | 0.4671 | 0.4681 | 0.4637 | 0.4673 | 0.4681 | 0.4657 | 0.4629 |
6 | 0.6581 | 0.5566 | 0.5548 | 0.5573 | 0.5546 | 0.5960 | 0.5702 | 0.5560 | 0.6454 | 0.6295 | |
8 | 0.7983 | 0.7213 | 0.7949 | 0.7707 | 0.6305 | 0.6478 | 0.7329 | 0.6397 | 0.7855 | 0.7888 | |
10 | 0.8446 | 0.7609 | 0.8330 | 0.7738 | 0.7436 | 0.8322 | 0.7820 | 0.7121 | 0.8344 | 0.8363 | |
12 | 0.8672 | 0.7861 | 0.8619 | 0.8372 | 0.7952 | 0.8634 | 0.8492 | 0.8624 | 0.8513 | 0.8209 | |
Cow | 4 | 0.7327 | 0.7327 | 0.7320 | 0.7327 | 0.7285 | 0.7327 | 0.7319 | 0.7140 | 0.7252 | 0.7327 |
6 | 0.8227 | 0.8206 | 0.8206 | 0.8137 | 0.8133 | 0.8149 | 0.8217 | 0.8199 | 0.7943 | 0.8213 | |
8 | 0.8712 | 0.8604 | 0.8603 | 0.8610 | 0.8568 | 0.8455 | 0.8677 | 0.8583 | 0.8489 | 0.8318 | |
10 | 0.8921 | 0.8895 | 0.8848 | 0.8830 | 0.8912 | 0.8865 | 0.8896 | 0.8889 | 0.8156 | 0.8744 | |
12 | 0.9139 | 0.9108 | 0.9043 | 0.9131 | 0.9119 | 0.9075 | 0.8956 | 0.9097 | 0.8822 | 0.8922 | |
Deer | 4 | 0.6399 | 0.6399 | 0.6399 | 0.6170 | 0.6399 | 0.6304 | 0.6345 | 0.6323 | 0.6381 | 0.6330 |
6 | 0.8098 | 0.7790 | 0.7790 | 0.7627 | 0.7956 | 0.7790 | 0.8026 | 0.7845 | 0.7389 | 0.7832 | |
8 | 0.8807 | 0.8621 | 0.8671 | 0.8443 | 0.8553 | 0.8544 | 0.8305 | 0.8628 | 0.7842 | 0.8523 | |
10 | 0.9130 | 0.9108 | 0.8948 | 0.8491 | 0.9035 | 0.8997 | 0.8915 | 0.8886 | 0.8737 | 0.8860 | |
12 | 0.9362 | 0.9336 | 0.9174 | 0.8651 | 0.9227 | 0.9218 | 0.9191 | 0.9235 | 0.8922 | 0.9079 | |
Diver | 4 | 0.1592 | 0.1351 | 0.1579 | 0.1516 | 0.1351 | 0.1570 | 0.1337 | 0.1351 | 0.1448 | 0.1413 |
6 | 0.2508 | 0.1743 | 0.1743 | 0.2117 | 0.1743 | 0.1736 | 0.1667 | 0.1743 | 0.2476 | 0.2455 | |
8 | 0.5062 | 0.2698 | 0.2715 | 0.2716 | 0.2717 | 0.2864 | 0.3493 | 0.2697 | 0.4995 | 0.4941 | |
10 | 0.6209 | 0.3446 | 0.3557 | 0.5907 | 0.3566 | 0.3814 | 0.3595 | 0.3819 | 0.6119 | 0.6123 | |
12 | 0.6299 | 0.5336 | 0.3968 | 0.6005 | 0.3868 | 0.3936 | 0.5492 | 0.3971 | 0.6141 | 0.6193 | |
Elephant | 4 | 0.5256 | 0.5208 | 0.5256 | 0.5253 | 0.5036 | 0.5212 | 0.5092 | 0.5191 | 0.5189 | 0.5169 |
6 | 0.6787 | 0.6093 | 0.6001 | 0.6605 | 0.6192 | 0.6760 | 0.5864 | 0.6332 | 0.6716 | 0.6679 | |
8 | 0.7902 | 0.6983 | 0.6984 | 0.6876 | 0.7281 | 0.7204 | 0.7254 | 0.6868 | 0.7902 | 0.7803 | |
10 | 0.8189 | 0.8015 | 0.7845 | 0.7861 | 0.7866 | 0.7214 | 0.7357 | 0.7414 | 0.8141 | 0.8042 | |
12 | 0.8670 | 0.8303 | 0.7712 | 0.7989 | 0.8311 | 0.8543 | 0.8212 | 0.8435 | 0.8125 | 0.8098 | |
Horse | 4 | 0.7878 | 0.7769 | 0.7769 | 0.7769 | 0.7791 | 0.7783 | 0.7855 | 0.7689 | 0.6849 | 0.7398 |
6 | 0.8841 | 0.8679 | 0.8700 | 0.8700 | 0.8687 | 0.8673 | 0.8647 | 0.8691 | 0.7936 | 0.8095 | |
8 | 0.9249 | 0.9118 | 0.9106 | 0.9139 | 0.9117 | 0.9069 | 0.9032 | 0.9144 | 0.8239 | 0.8532 | |
10 | 0.9413 | 0.9313 | 0.9354 | 0.9320 | 0.9336 | 0.9339 | 0.9389 | 0.9398 | 0.8851 | 0.8743 | |
12 | 0.9601 | 0.9451 | 0.9459 | 0.9537 | 0.9596 | 0.9529 | 0.9504 | 0.9536 | 0.8939 | 0.9144 | |
Kangaroo | 4 | 0.7084 | 0.6978 | 0.6978 | 0.6958 | 0.6985 | 0.6881 | 0.6919 | 0.6980 | 0.6295 | 0.7071 |
6 | 0.8353 | 0.8252 | 0.8211 | 0.8024 | 0.8256 | 0.8211 | 0.8106 | 0.8203 | 0.7677 | 0.7520 | |
8 | 0.8978 | 0.8934 | 0.8936 | 0.8646 | 0.8916 | 0.8878 | 0.8445 | 0.8867 | 0.7731 | 0.8215 | |
10 | 0.9297 | 0.9289 | 0.9222 | 0.8966 | 0.9190 | 0.9228 | 0.8905 | 0.9224 | 0.8699 | 0.8722 | |
12 | 0.9479 | 0.9457 | 0.9471 | 0.9050 | 0.9434 | 0.9398 | 0.9086 | 0.9471 | 0.8763 | 0.9062 | |
Lake | 4 | 0.6875 | 0.6871 | 0.6875 | 0.6807 | 0.6875 | 0.6783 | 0.6788 | 0.6875 | 0.6346 | 0.6589 |
6 | 0.7906 | 0.7904 | 0.7892 | 0.7882 | 0.7895 | 0.7856 | 0.7800 | 0.7902 | 0.7906 | 0.7692 | |
8 | 0.8579 | 0.8360 | 0.8441 | 0.8470 | 0.8487 | 0.8473 | 0.8280 | 0.8432 | 0.7952 | 0.8246 | |
10 | 0.8919 | 0.8798 | 0.8813 | 0.8785 | 0.8835 | 0.8833 | 0.8612 | 0.8740 | 0.8399 | 0.8827 | |
12 | 0.9200 | 0.8950 | 0.9176 | 0.9049 | 0.9090 | 0.9093 | 0.8971 | 0.9092 | 0.8726 | 0.8929 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 0.7972 | 0.7972 | 0.7972 | 0.7925 | 0.7972 | 0.7972 | 0.7972 | 0.7972 | 0.7684 | 0.7886 |
6 | 0.8669 | 0.8667 | 0.8669 | 0.8525 | 0.8669 | 0.8642 | 0.8576 | 0.8669 | 0.8669 | 0.8365 | |
8 | 0.8995 | 0.8988 | 0.8993 | 0.8795 | 0.8995 | 0.8973 | 0.8916 | 0.8989 | 0.8826 | 0.8775 | |
10 | 0.9183 | 0.9177 | 0.9164 | 0.9099 | 0.9175 | 0.9126 | 0.9086 | 0.9181 | 0.9039 | 0.8923 | |
12 | 0.9383 | 0.9274 | 0.9378 | 0.9103 | 0.9289 | 0.9318 | 0.9292 | 0.9288 | 0.9120 | 0.9240 | |
Building | 4 | 0.7762 | 0.7762 | 0.7762 | 0.7722 | 0.7762 | 0.7762 | 0.7762 | 0.7762 | 0.7234 | 0.7362 |
6 | 0.8413 | 0.8413 | 0.8409 | 0.8370 | 0.8408 | 0.8413 | 0.8387 | 0.8403 | 0.7659 | 0.7850 | |
8 | 0.8752 | 0.8749 | 0.8747 | 0.8575 | 0.8739 | 0.8731 | 0.8660 | 0.8744 | 0.8161 | 0.8417 | |
10 | 0.9075 | 0.8981 | 0.8975 | 0.8827 | 0.8968 | 0.8923 | 0.8857 | 0.8979 | 0.8348 | 0.8574 | |
12 | 0.9161 | 0.9156 | 0.9021 | 0.9036 | 0.9130 | 0.9130 | 0.9049 | 0.9122 | 0.8883 | 0.8905 | |
Cactus | 4 | 0.7771 | 0.7771 | 0.7771 | 0.7747 | 0.7771 | 0.7740 | 0.7764 | 0.7771 | 0.7770 | 0.7771 |
6 | 0.8458 | 0.8456 | 0.8458 | 0.8371 | 0.8456 | 0.8444 | 0.8402 | 0.8458 | 0.8454 | 0.8464 | |
8 | 0.8812 | 0.8760 | 0.8794 | 0.8805 | 0.8812 | 0.8746 | 0.8650 | 0.8810 | 0.8804 | 0.8733 | |
10 | 0.9012 | 0.8957 | 0.8993 | 0.9011 | 0.9001 | 0.8971 | 0.8790 | 0.9009 | 0.8968 | 0.9012 | |
12 | 0.9133 | 0.9064 | 0.9101 | 0.9078 | 0.9129 | 0.9044 | 0.9099 | 0.9113 | 0.9013 | 0.9053 | |
Cow | 4 | 0.7983 | 0.7983 | 0.7983 | 0.7909 | 0.7983 | 0.7982 | 0.7975 | 0.7983 | 0.7813 | 0.7834 |
6 | 0.8698 | 0.8657 | 0.8695 | 0.8455 | 0.8694 | 0.8612 | 0.8607 | 0.8690 | 0.8434 | 0.8397 | |
8 | 0.9022 | 0.8990 | 0.9017 | 0.8830 | 0.9015 | 0.9008 | 0.8961 | 0.9015 | 0.8810 | 0.8885 | |
10 | 0.9212 | 0.9207 | 0.9214 | 0.9086 | 0.9103 | 0.9190 | 0.9129 | 0.9196 | 0.8495 | 0.8888 | |
12 | 0.9329 | 0.9307 | 0.9313 | 0.9178 | 0.9136 | 0.9203 | 0.9186 | 0.9312 | 0.9076 | 0.9279 | |
Deer | 4 | 0.7449 | 0.7449 | 0.7449 | 0.7422 | 0.7449 | 0.7434 | 0.7439 | 0.7410 | 0.7158 | 0.7332 |
6 | 0.8517 | 0.8423 | 0.8423 | 0.8367 | 0.8420 | 0.8466 | 0.8307 | 0.8507 | 0.7969 | 0.8551 | |
8 | 0.9086 | 0.8875 | 0.8861 | 0.8840 | 0.8921 | 0.9033 | 0.9022 | 0.8940 | 0.8153 | 0.8513 | |
10 | 0.9346 | 0.9203 | 0.9233 | 0.9097 | 0.9212 | 0.9322 | 0.9223 | 0.9292 | 0.8827 | 0.9027 | |
12 | 0.9481 | 0.9349 | 0.9416 | 0.9466 | 0.9363 | 0.9382 | 0.9323 | 0.9445 | 0.9009 | 0.9307 | |
Diver | 4 | 0.7798 | 0.7798 | 0.7798 | 0.7776 | 0.7798 | 0.7739 | 0.7754 | 0.7783 | 0.7798 | 0.7798 |
6 | 0.8331 | 0.8329 | 0.8331 | 0.8303 | 0.8332 | 0.8212 | 0.8327 | 0.8331 | 0.8324 | 0.8301 | |
8 | 0.8648 | 0.8599 | 0.8627 | 0.8631 | 0.8617 | 0.8471 | 0.8498 | 0.8641 | 0.8614 | 0.8614 | |
10 | 0.8877 | 0.8819 | 0.8798 | 0.8870 | 0.8853 | 0.8717 | 0.8562 | 0.8643 | 0.8804 | 0.8739 | |
12 | 0.9114 | 0.9021 | 0.8913 | 0.8982 | 0.8979 | 0.8879 | 0.8746 | 0.8910 | 0.9114 | 0.9114 | |
Elephant | 4 | 0.7582 | 0.7582 | 0.7582 | 0.7516 | 0.7582 | 0.7564 | 0.7568 | 0.7582 | 0.7924 | 0.7582 |
6 | 0.8248 | 0.8217 | 0.8139 | 0.8245 | 0.8216 | 0.8130 | 0.8150 | 0.8136 | 0.8228 | 0.8209 | |
8 | 0.8582 | 0.8514 | 0.8477 | 0.8533 | 0.8552 | 0.8515 | 0.8574 | 0.8539 | 0.8463 | 0.8582 | |
10 | 0.8855 | 0.8775 | 0.8723 | 0.8854 | 0.8848 | 0.8683 | 0.8849 | 0.8828 | 0.8738 | 0.8778 | |
12 | 0.9051 | 0.8915 | 0.9023 | 0.9036 | 0.8947 | 0.8943 | 0.8851 | 0.8866 | 0.8802 | 0.9008 | |
Horse | 4 | 0.8207 | 0.8207 | 0.8207 | 0.8194 | 0.8207 | 0.8206 | 0.8181 | 0.8200 | 0.7313 | 0.7576 |
6 | 0.8887 | 0.8786 | 0.8787 | 0.8881 | 0.8783 | 0.8867 | 0.8760 | 0.8736 | 0.8576 | 0.8862 | |
8 | 0.9303 | 0.9079 | 0.9078 | 0.9298 | 0.9102 | 0.9215 | 0.9069 | 0.9070 | 0.8814 | 0.8808 | |
10 | 0.9489 | 0.9252 | 0.9363 | 0.9466 | 0.9393 | 0.9386 | 0.9169 | 0.9370 | 0.9081 | 0.8875 | |
12 | 0.9568 | 0.9349 | 0.9392 | 0.9479 | 0.9559 | 0.9559 | 0.9501 | 0.9466 | 0.9103 | 0.9323 | |
Kangaroo | 4 | 0.7456 | 0.7456 | 0.7456 | 0.7387 | 0.7455 | 0.7448 | 0.7425 | 0.7452 | 0.7207 | 0.7456 |
6 | 0.8534 | 0.8529 | 0.8529 | 0.8250 | 0.8529 | 0.8515 | 0.8468 | 0.8498 | 0.8340 | 0.8528 | |
8 | 0.9214 | 0.9148 | 0.9186 | 0.8776 | 0.9117 | 0.9213 | 0.8827 | 0.9086 | 0.8286 | 0.8690 | |
10 | 0.9522 | 0.9457 | 0.9471 | 0.9279 | 0.9453 | 0.9375 | 0.9224 | 0.9434 | 0.9075 | 0.9026 | |
12 | 0.9685 | 0.9557 | 0.9567 | 0.9392 | 0.9607 | 0.9628 | 0.9356 | 0.9554 | 0.9239 | 0.9292 | |
Lake | 4 | 0.7694 | 0.7694 | 0.7694 | 0.7684 | 0.7654 | 0.7677 | 0.7682 | 0.7689 | 0.7399 | 0.7694 |
6 | 0.8582 | 0.8370 | 0.8376 | 0.8560 | 0.8478 | 0.8401 | 0.8389 | 0.8369 | 0.7859 | 0.7923 | |
8 | 0.9063 | 0.8804 | 0.8730 | 0.8902 | 0.8738 | 0.8790 | 0.8666 | 0.8936 | 0.8610 | 0.8461 | |
10 | 0.9137 | 0.8929 | 0.8936 | 0.9132 | 0.8933 | 0.9120 | 0.9074 | 0.9103 | 0.8870 | 0.8808 | |
12 | 0.9399 | 0.9054 | 0.9357 | 0.9210 | 0.9384 | 0.9317 | 0.9166 | 0.9189 | 0.8835 | 0.8849 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 0.7954 | 0.7954 | 0.7947 | 0.7941 | 0.7856 | 0.7943 | 0.7915 | 0.7954 | 0.7262 | 0.7361 |
6 | 0.8787 | 0.8701 | 0.8695 | 0.8651 | 0.8700 | 0.8749 | 0.8641 | 0.8705 | 0.7359 | 0.8764 | |
8 | 0.9081 | 0.9008 | 0.9043 | 0.8956 | 0.9052 | 0.9004 | 0.8941 | 0.9051 | 0.8783 | 0.8948 | |
10 | 0.9274 | 0.9240 | 0.9220 | 0.9095 | 0.9227 | 0.9244 | 0.9225 | 0.9221 | 0.8928 | 0.9056 | |
12 | 0.9549 | 0.9308 | 0.9409 | 0.9471 | 0.9434 | 0.9505 | 0.9276 | 0.9451 | 0.9054 | 0.9201 | |
Building | 4 | 0.7776 | 0.7776 | 0.7776 | 0.7771 | 0.7776 | 0.7757 | 0.7769 | 0.7776 | 0.7401 | 0.7354 |
6 | 0.8574 | 0.8564 | 0.8547 | 0.8472 | 0.8428 | 0.8547 | 0.8502 | 0.8507 | 0.8022 | 0.7879 | |
8 | 0.9017 | 0.9009 | 0.9000 | 0.8703 | 0.9004 | 0.9001 | 0.8757 | 0.8987 | 0.8136 | 0.7887 | |
10 | 0.9283 | 0.9257 | 0.9258 | 0.8887 | 0.9274 | 0.9228 | 0.8992 | 0.9260 | 0.8481 | 0.8528 | |
12 | 0.9444 | 0.9423 | 0.9440 | 0.9193 | 0.9439 | 0.9440 | 0.9149 | 0.9394 | 0.8840 | 0.8803 | |
Cactus | 4 | 0.7766 | 0.7766 | 0.7766 | 0.7756 | 0.7761 | 0.7762 | 0.7762 | 0.7766 | 0.7304 | 0.7284 |
6 | 0.8489 | 0.8488 | 0.8482 | 0.8470 | 0.8464 | 0.8483 | 0.8448 | 0.8484 | 0.8011 | 0.8056 | |
8 | 0.8981 | 0.8840 | 0.8847 | 0.8834 | 0.8835 | 0.8827 | 0.8728 | 0.8846 | 0.8344 | 0.8758 | |
10 | 0.9266 | 0.9045 | 0.9070 | 0.9181 | 0.9054 | 0.9049 | 0.8886 | 0.9066 | 0.8683 | 0.8960 | |
12 | 0.9390 | 0.9196 | 0.9165 | 0.9187 | 0.9271 | 0.9262 | 0.9203 | 0.9161 | 0.8800 | 0.8806 | |
Cow | 4 | 0.7726 | 0.7708 | 0.7726 | 0.7722 | 0.7726 | 0.7709 | 0.7717 | 0.7726 | 0.7703 | 0.7703 |
6 | 0.8635 | 0.8522 | 0.8538 | 0.8442 | 0.8635 | 0.8548 | 0.8418 | 0.8524 | 0.8304 | 0.8547 | |
8 | 0.9024 | 0.8964 | 0.9014 | 0.8891 | 0.8984 | 0.8959 | 0.8834 | 0.8973 | 0.8765 | 0.8779 | |
10 | 0.9311 | 0.9223 | 0.9256 | 0.9038 | 0.9201 | 0.9298 | 0.8881 | 0.9251 | 0.8951 | 0.9120 | |
12 | 0.9473 | 0.9428 | 0.9453 | 0.9282 | 0.9453 | 0.9471 | 0.9114 | 0.9412 | 0.9017 | 0.9080 | |
Deer | 4 | 0.7496 | 0.7496 | 0.7496 | 0.7470 | 0.7496 | 0.7355 | 0.7456 | 0.7496 | 0.6511 | 0.7429 |
6 | 0.8617 | 0.8607 | 0.8600 | 0.8511 | 0.8613 | 0.8559 | 0.8580 | 0.8612 | 0.8397 | 0.8291 | |
8 | 0.9122 | 0.9114 | 0.9061 | 0.8735 | 0.9078 | 0.9083 | 0.8997 | 0.9118 | 0.8417 | 0.8613 | |
10 | 0.9393 | 0.9352 | 0.9387 | 0.8841 | 0.9323 | 0.9337 | 0.9115 | 0.9322 | 0.8806 | 0.9047 | |
12 | 0.9573 | 0.9509 | 0.9440 | 0.9275 | 0.9568 | 0.9468 | 0.9145 | 0.9531 | 0.9168 | 0.9195 | |
Diver | 4 | 0.7295 | 0.7093 | 0.7275 | 0.7159 | 0.7092 | 0.7268 | 0.7066 | 0.7092 | 0.7037 | 0.7242 |
6 | 0.7528 | 0.7528 | 0.7528 | 0.7527 | 0.7526 | 0.7511 | 0.7387 | 0.7528 | 0.7446 | 0.7525 | |
8 | 0.8116 | 0.7948 | 0.7945 | 0.8045 | 0.7949 | 0.7982 | 0.7944 | 0.7925 | 0.8115 | 0.8116 | |
10 | 0.8470 | 0.8129 | 0.8234 | 0.8263 | 0.8251 | 0.8399 | 0.8329 | 0.8461 | 0.8464 | 0.8456 | |
12 | 0.8776 | 0.8625 | 0.8548 | 0.8551 | 0.8512 | 0.8410 | 0.8359 | 0.8547 | 0.8679 | 0.8685 | |
Elephant | 4 | 0.7151 | 0.7148 | 0.7151 | 0.7149 | 0.7151 | 0.7117 | 0.7115 | 0.7151 | 0.7115 | 0.7120 |
6 | 0.8016 | 0.7707 | 0.7707 | 0.7708 | 0.7711 | 0.7921 | 0.7577 | 0.7799 | 0.8007 | 0.8008 | |
8 | 0.8543 | 0.8104 | 0.8221 | 0.8246 | 0.8426 | 0.8313 | 0.8093 | 0.8240 | 0.8244 | 0.8451 | |
10 | 0.8813 | 0.8782 | 0.8601 | 0.8423 | 0.8738 | 0.8616 | 0.8153 | 0.8640 | 0.8425 | 0.8786 | |
12 | 0.9057 | 0.8965 | 0.8835 | 0.9036 | 0.9007 | 0.8978 | 0.8531 | 0.8806 | 0.8882 | 0.8725 | |
Horse | 4 | 0.8264 | 0.8264 | 0.8264 | 0.8243 | 0.8262 | 0.8254 | 0.8231 | 0.8264 | 0.7714 | 0.7843 |
6 | 0.8900 | 0.8897 | 0.8883 | 0.8890 | 0.8891 | 0.8891 | 0.8847 | 0.8892 | 0.8358 | 0.8393 | |
8 | 0.9355 | 0.9316 | 0.9324 | 0.9197 | 0.9339 | 0.9341 | 0.9316 | 0.9326 | 0.8989 | 0.8731 | |
10 | 0.9558 | 0.9457 | 0.9518 | 0.9495 | 0.9531 | 0.9541 | 0.9390 | 0.9520 | 0.9011 | 0.8674 | |
12 | 0.9707 | 0.9536 | 0.9632 | 0.9565 | 0.9647 | 0.9655 | 0.9538 | 0.9638 | 0.9147 | 0.9060 | |
Kangaroo | 4 | 0.7364 | 0.7362 | 0.7355 | 0.7275 | 0.6934 | 0.7359 | 0.7347 | 0.7364 | 0.7349 | 0.7364 |
6 | 0.8485 | 0.8388 | 0.8427 | 0.8298 | 0.8470 | 0.8450 | 0.8203 | 0.8468 | 0.8388 | 0.8445 | |
8 | 0.9153 | 0.9116 | 0.9113 | 0.8906 | 0.9113 | 0.9058 | 0.9020 | 0.9110 | 0.8460 | 0.8402 | |
10 | 0.9450 | 0.9403 | 0.9393 | 0.8920 | 0.9421 | 0.9386 | 0.9072 | 0.9431 | 0.8831 | 0.8697 | |
12 | 0.9612 | 0.9576 | 0.9589 | 0.9295 | 0.9575 | 0.9545 | 0.9288 | 0.9587 | 0.8962 | 0.9052 | |
Lake | 4 | 0.7464 | 0.7464 | 0.7464 | 0.7430 | 0.7408 | 0.7452 | 0.7449 | 0.7464 | 0.7430 | 0.7381 |
6 | 0.8443 | 0.8371 | 0.8366 | 0.8276 | 0.8387 | 0.8371 | 0.8312 | 0.8370 | 0.7971 | 0.8113 | |
8 | 0.8988 | 0.8948 | 0.8936 | 0.8888 | 0.8920 | 0.8912 | 0.8827 | 0.8894 | 0.8458 | 0.8448 | |
10 | 0.9441 | 0.9268 | 0.9297 | 0.9017 | 0.9258 | 0.9259 | 0.9165 | 0.9263 | 0.8775 | 0.8727 | |
12 | 0.9620 | 0.9465 | 0.9441 | 0.9274 | 0.9477 | 0.9582 | 0.9249 | 0.9436 | 0.8995 | 0.8989 |
Images | Levels | MDA | DA | SSA | SCA | ALO | HSO | BA | PSO | BDE | EOFPA |
Bridge | 4 | 0.7948 | 0.7948 | 0.7948 | 0.7940 | 0.7948 | 0.7945 | 0.7938 | 0.7948 | 0.7881 | 0.7891 |
6 | 0.8652 | 0.8573 | 0.8570 | 0.8453 | 0.8556 | 0.8554 | 0.8517 | 0.8570 | 0.86520 | 0.8600 | |
8 | 0.9101 | 0.8985 | 0.8963 | 0.8728 | 0.8951 | 0.9015 | 0.8927 | 0.8921 | 0.8914 | 0.8619 | |
10 | 0.9293 | 0.9182 | 0.9176 | 0.8977 | 0.9235 | 0.9266 | 0.8966 | 0.9138 | 0.9065 | 0.8803 | |
12 | 0.9501 | 0.9314 | 0.9302 | 0.9335 | 0.9348 | 0.9422 | 0.9128 | 0.9406 | 0.9101 | 0.9289 | |
Building | 4 | 0.7772 | 0.7772 | 0.7772 | 0.7754 | 0.7772 | 0.7762 | 0.7770 | 0.7772 | 0.7277 | 0.7619 |
6 | 0.8460 | 0.8425 | 0.8419 | 0.8348 | 0.8451 | 0.8420 | 0.8408 | 0.8418 | 0.8029 | 0.7832 | |
8 | 0.8811 | 0.8726 | 0.8731 | 0.8416 | 0.8740 | 0.8731 | 0.8637 | 0.8783 | 0.8221 | 0.8537 | |
10 | 0.9105 | 0.8907 | 0.8904 | 0.8741 | 0.8984 | 0.9025 | 0.8800 | 0.9016 | 0.8490 | 0.8660 | |
12 | 0.9328 | 0.9205 | 0.9060 | 0.8996 | 0.9244 | 0.9063 | 0.9173 | 0.9042 | 0.8928 | 0.8911 | |
Cactus | 4 | 0.7340 | 0.7340 | 0.7340 | 0.7335 | 0.7340 | 0.7312 | 0.7331 | 0.7340 | 0.7244 | 0.7325 |
6 | 0.8110 | 0.7972 | 0.7966 | 0.8018 | 0.7965 | 0.7976 | 0.8020 | 0.7975 | 0.7917 | 0.7965 | |
8 | 0.8765 | 0.8619 | 0.8742 | 0.8745 | 0.8400 | 0.8475 | 0.8658 | 0.8430 | 0.8577 | 0.8673 | |
10 | 0.9094 | 0.8887 | 0.9039 | 0.8903 | 0.8934 | 0.9035 | 0.8925 | 0.8775 | 0.8754 | 0.8922 | |
12 | 0.9270 | 0.9015 | 0.9246 | 0.8909 | 0.9257 | 0.9078 | 0.9009 | 0.9241 | 0.9117 | 0.9067 | |
Cow | 4 | 0.7975 | 0.7975 | 0.7973 | 0.7975 | 0.7949 | 0.7975 | 0.7968 | 0.7774 | 0.7974 | 0.7935 |
6 | 0.8715 | 0.8713 | 0.8712 | 0.8594 | 0.8669 | 0.8688 | 0.8675 | 0.8712 | 0.8690 | 0.8675 | |
8 | 0.9066 | 0.9062 | 0.9063 | 0.8869 | 0.9035 | 0.8981 | 0.9029 | 0.9052 | 0.8815 | 0.8796 | |
10 | 0.9263 | 0.9253 | 0.9225 | 0.9161 | 0.9258 | 0.9207 | 0.9156 | 0.9261 | 0.8709 | 0.9013 | |
12 | 0.9424 | 0.9395 | 0.9338 | 0.9311 | 0.9395 | 0.9373 | 0.9187 | 0.9379 | 0.9107 | 0.9175 | |
Deer | 4 | 0.7485 | 0.7485 | 0.7485 | 0.7480 | 0.7485 | 0.7455 | 0.7466 | 0.7476 | 0.7156 | 0.7482 |
6 | 0.8607 | 0.8601 | 0.8590 | 0.8531 | 0.8593 | 0.8579 | 0.8581 | 0.8602 | 0.7937 | 0.8604 | |
8 | 0.9119 | 0.9109 | 0.9034 | 0.8856 | 0.9098 | 0.9103 | 0.9097 | 0.9068 | 0.8382 | 0.8882 | |
10 | 0.9376 | 0.9312 | 0.9307 | 0.8956 | 0.9311 | 0.9354 | 0.9178 | 0.9302 | 0.8935 | 0.9048 | |
12 | 0.9478 | 0.9419 | 0.9422 | 0.9301 | 0.9437 | 0.9429 | 0.9181 | 0.9428 | 0.9151 | 0.9192 | |
Diver | 4 | 0.8083 | 0.8083 | 0.8083 | 0.8073 | 0.8083 | 0.8008 | 0.7961 | 0.8082 | 0.7115 | 0.7290 |
6 | 0.8422 | 0.8399 | 0.8393 | 0.8396 | 0.8325 | 0.8352 | 0.8321 | 0.8403 | 0.7426 | 0.7332 | |
8 | 0.8815 | 0.8813 | 0.8620 | 0.8664 | 0.8776 | 0.8525 | 0.8497 | 0.8646 | 0.8036 | 0.7981 | |
10 | 0.9033 | 0.8998 | 0.8890 | 0.8826 | 0.8987 | 0.8729 | 0.8690 | 0.8925 | 0.8219 | 0.8381 | |
12 | 0.9100 | 0.9096 | 0.9007 | 0.8908 | 0.9040 | 0.8870 | 0.8756 | 0.9070 | 0.8686 | 0.8585 | |
Elephant | 4 | 0.7657 | 0.7653 | 0.7657 | 0.7609 | 0.7640 | 0.7651 | 0.7648 | 0.7650 | 0.6993 | 0.7016 |
6 | 0.8294 | 0.8279 | 0.8278 | 0.8219 | 0.8293 | 0.8279 | 0.8178 | 0.8278 | 0.7987 | 0.8000 | |
8 | 0.8733 | 0.8585 | 0.8582 | 0.8586 | 0.8586 | 0.8569 | 0.8431 | 0.8536 | 0.8355 | 0.8476 | |
10 | 0.8816 | 0.8808 | 0.8803 | 0.8758 | 0.8811 | 0.8757 | 0.8638 | 0.8816 | 0.8678 | 0.8794 | |
12 | 0.9084 | 0.8932 | 0.9069 | 0.8901 | 0.8964 | 0.8952 | 0.8953 | 0.8969 | 0.8796 | 0.8808 | |
Horse | 4 | 0.8266 | 0.8266 | 0.8266 | 0.8257 | 0.8266 | 0.8264 | 0.8202 | 0.8266 | 0.7711 | 0.8128 |
6 | 0.8953 | 0.8862 | 0.8871 | 0.8875 | 0.8871 | 0.8910 | 0.8842 | 0.8866 | 0.8491 | 0.8596 | |
8 | 0.9317 | 0.9201 | 0.9186 | 0.9081 | 0.9186 | 0.9165 | 0.9070 | 0.9214 | 0.8657 | 0.8913 | |
10 | 0.9498 | 0.9342 | 0.9368 | 0.9373 | 0.9374 | 0.9432 | 0.9451 | 0.9399 | 0.9153 | 0.9017 | |
12 | 0.9654 | 0.9472 | 0.9500 | 0.9520 | 0.9653 | 0.9516 | 0.9555 | 0.9545 | 0.9279 | 0.9324 | |
Kangaroo | 4 | 0.7364 | 0.7229 | 0.7229 | 0.7229 | 0.7232 | 0.7146 | 0.7214 | 0.7229 | 0.7259 | 0.7212 |
6 | 0.8423 | 0.8269 | 0.8184 | 0.8057 | 0.8239 | 0.8184 | 0.8222 | 0.8180 | 0.8174 | 0.7918 | |
8 | 0.9212 | 0.8954 | 0.8977 | 0.8613 | 0.8958 | 0.8841 | 0.8489 | 0.8879 | 0.8367 | 0.8795 | |
10 | 0.9469 | 0.9361 | 0.9204 | 0.8916 | 0.9283 | 0.9452 | 0.9122 | 0.9247 | 0.9001 | 0.8817 | |
12 | 0.9623 | 0.9486 | 0.9606 | 0.9088 | 0.9502 | 0.9582 | 0.9217 | 0.9615 | 0.9056 | 0.9228 | |
Lake | 4 | 0.7765 | 0.7764 | 0.7765 | 0.7727 | 0.7765 | 0.7731 | 0.7758 | 0.7765 | 0.7306 | 0.7314 |
6 | 0.8451 | 0.8450 | 0.8443 | 0.8448 | 0.8445 | 0.8422 | 0.8372 | 0.8449 | 0.8418 | 0.8311 | |
8 | 0.8945 | 0.8768 | 0.8812 | 0.8885 | 0.8849 | 0.8831 | 0.8704 | 0.8810 | 0.8474 | 0.8564 | |
10 | 0.9134 | 0.9047 | 0.9051 | 0.9115 | 0.9064 | 0.9079 | 0.8901 | 0.8994 | 0.8758 | 0.9036 | |
12 | 0.9370 | 0.9158 | 0.9347 | 0.9337 | 0.9248 | 0.9314 | 0.9226 | 0.9257 | 0.8956 | 0.9162 |
Threshold Methods | Images | MDA vs DA | MDA vs SSA | MDA vs SCA | MDA vs ALO | MDA vs HSO | MDA vs BA | MDA vs PSO | MDA vs BDE | MDA vs EOFPA | |||||||||
p | h | p | h | p | h | p | h | p | h | p | h | p | h | p | h | p | h | ||
Otsu | Bridge | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 |
Building | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Cactus | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Cow | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Deer | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Diver | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Elephant | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Horse | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Kangaroo | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Lake | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | 0.0540 | 0 | < 0.05 | 1 | < 0.05 | 1 | |
Kapur | Bridge | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 |
Building | < 0.05 | 1 | 0.1496 | 0 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Cactus | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Cow | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | 0.0740 | 0 | < 0.05 | 1 | < 0.05 | 1 | |
Deer | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Diver | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Elephant | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Horse | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Kangaroo | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Lake | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
MCE | Bridge | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 |
Building | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Cactus | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Cow | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Deer | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Diver | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Elephant | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Horse | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Kangaroo | < 0.05 | 1 | 0.0731 | 0 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | |
Lake | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | 0.2401 | 0 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 | < 0.05 | 1 |
Images | Levels | PSNR | SSIM | FSIM | |||||||
Otsu | Kapur | MCE | Otsu | Kapur | MCE | Otsu | Kapur | MCE | |||
Bridge | 4 | 18.9590 | 20.3166 | 19.2861 | 0.7113 | 0.6942 | 0.7366 | 0.7972 | 0.7954 | 0.7948 | |
6 | 21.0920 | 24.3943 | 22.1149 | 0.8056 | 0.8170 | 0.8266 | 0.8669 | 0.8787 | 0.8652 | ||
8 | 22.5471 | 25.9201 | 27.0817 | 0.8567 | 0.8558 | 0.8829 | 0.8995 | 0.9081 | 0.9101 | ||
10 | 23.4904 | 28.8445 | 28.0991 | 0.8835 | 0.8984 | 0.9071 | 0.9183 | 0.9274 | 0.9293 | ||
12 | 27.7081 | 32.1186 | 29.8725 | 0.9028 | 0.9379 | 0.9345 | 0.9378 | 0.9549 | 0.9501 | ||
Building | 4 | 17.4155 | 17.4224 | 17.4155 | 0.7372 | 0.7384 | 0.7553 | 0.7762 | 0.7776 | 0.7772 | |
6 | 19.8902 | 19.9023 | 19.9001 | 0.8052 | 0.8268 | 0.8221 | 0.8413 | 0.8574 | 0.8460 | ||
8 | 22.6625 | 22.9857 | 22.7921 | 0.8389 | 0.8690 | 0.8521 | 0.8752 | 0.9017 | 0.8811 | ||
10 | 27.1866 | 27.2576 | 27.2061 | 0.8737 | 0.8960 | 0.8820 | 0.9075 | 0.9283 | 0.9105 | ||
12 | 27.1983 | 28.4124 | 27.4723 | 0.8826 | 0.9167 | 0.9048 | 0.9161 | 0.9444 | 0.9328 | ||
Cactus | 4 | 20.3428 | 17.2477 | 21.0442 | 0.5798 | 0.6220 | 0.4681 | 0.7771 | 0.7766 | 0.7340 | |
6 | 22.6678 | 25.9105 | 24.9529 | 0.6815 | 0.8041 | 0.6581 | 0.8458 | 0.8489 | 0.8110 | ||
8 | 23.9827 | 28.7324 | 28.5911 | 0.7351 | 0.8772 | 0.7983 | 0.8812 | 0.8981 | 0.8765 | ||
10 | 24.8346 | 30.6897 | 29.9778 | 0.7690 | 0.9072 | 0.8446 | 0.9012 | 0.9266 | 0.9094 | ||
12 | 25.3709 | 32.4563 | 31.8637 | 0.7888 | 0.9187 | 0.8672 | 0.9133 | 0.9390 | 0.9270 | ||
Cow | 4 | 19.7023 | 19.3706 | 19.7030 | 0.7231 | 0.6847 | 0.7327 | 0.7983 | 0.7726 | 0.7975 | |
6 | 21.8735 | 24.6314 | 24.1672 | 0.8050 | 0.8151 | 0.8227 | 0.8698 | 0.8635 | 0.8715 | ||
8 | 23.6239 | 27.9669 | 27.3862 | 0.8455 | 0.8684 | 0.8712 | 0.9022 | 0.9024 | 0.9066 | ||
10 | 24.4648 | 30.8466 | 28.9123 | 0.8739 | 0.9059 | 0.8921 | 0.9212 | 0.9311 | 0.9263 | ||
12 | 25.0056 | 32.6043 | 30.6430 | 0.8887 | 0.9252 | 0.9139 | 0.9329 | 0.9473 | 0.9424 | ||
Deer | 4 | 17.2462 | 21.9086 | 15.6122 | 0.6480 | 0.6468 | 0.6399 | 0.7449 | 0.7496 | 0.7485 | |
6 | 22.3158 | 25.8662 | 24.6247 | 0.8121 | 0.7928 | 0.8098 | 0.8517 | 0.8617 | 0.8607 | ||
8 | 26.4239 | 29.1490 | 28.0177 | 0.8749 | 0.8663 | 0.8807 | 0.9086 | 0.9122 | 0.9119 | ||
10 | 27.1472 | 30.9920 | 30.4749 | 0.9043 | 0.9069 | 0.9130 | 0.9346 | 0.9393 | 0.9376 | ||
12 | 27.9602 | 32.9202 | 32.3489 | 0.9291 | 0.9338 | 0.9362 | 0.9481 | 0.9573 | 0.9478 | ||
Diver | 4 | 24.4620 | 21.6563 | 22.2354 | 0.3451 | 0.4393 | 0.1592 | 0.7798 | 0.7295 | 0.8083 | |
6 | 26.9548 | 23.8743 | 27.8765 | 0.4352 | 0.6108 | 0.2508 | 0.8331 | 0.7528 | 0.8422 | ||
8 | 29.4786 | 27.2237 | 29.7961 | 0.5743 | 0.8221 | 0.5062 | 0.8648 | 0.8116 | 0.8815 | ||
10 | 29.8856 | 29.4785 | 31.3786 | 0.6073 | 0.9111 | 0.6209 | 0.8877 | 0.8470 | 0.9033 | ||
12 | 31.1721 | 29.5071 | 31.8544 | 0.6730 | 0.9183 | 0.6299 | 0.9114 | 0.8776 | 0.9100 | ||
Elephant | 4 | 18.4590 | 18.6558 | 18.3463 | 0.6080 | 0.5266 | 0.5256 | 0.7582 | 0.7151 | 0.7657 | |
6 | 20.9780 | 23.4967 | 22.1628 | 0.7149 | 0.6878 | 0.6787 | 0.8248 | 0.8016 | 0.8294 | ||
8 | 24.6549 | 26.2198 | 24.7220 | 0.7957 | 0.8032 | 0.7902 | 0.8582 | 0.8543 | 0.8733 | ||
10 | 25.7650 | 28.9322 | 26.9608 | 0.8447 | 0.8242 | 0.8189 | 0.8855 | 0.8813 | 0.8816 | ||
12 | 28.5499 | 29.8636 | 29.3330 | 0.8776 | 0.8759 | 0.8670 | 0.9051 | 0.9057 | 0.9084 | ||
Horse | 4 | 18.5055 | 19.5685 | 20.1345 | 0.7462 | 0.7496 | 0.7878 | 0.8207 | 0.8264 | 0.8266 | |
6 | 22.6464 | 24.0011 | 24.6958 | 0.8736 | 0.8645 | 0.8841 | 0.8887 | 0.8900 | 0.8953 | ||
8 | 25.8693 | 27.3558 | 27.2155 | 0.9207 | 0.9231 | 0.9249 | 0.9303 | 0.9355 | 0.9317 | ||
10 | 28.6567 | 29.3890 | 28.8068 | 0.9475 | 0.9455 | 0.9413 | 0.9489 | 0.9558 | 0.9498 | ||
12 | 30.1088 | 31.6166 | 31.2694 | 0.9552 | 0.9602 | 0.9601 | 0.9568 | 0.9707 | 0.9654 | ||
Kangaroo | 4 | 19.3419 | 19.3602 | 18.3519 | 0.7130 | 0.6355 | 0.7084 | 0.7456 | 0.7364 | 0.7364 | |
6 | 25.2386 | 25.3116 | 23.1569 | 0.8414 | 0.7745 | 0.8353 | 0.8534 | 0.8485 | 0.8423 | ||
8 | 30.1938 | 30.2043 | 30.0907 | 0.9101 | 0.8555 | 0.8978 | 0.9214 | 0.9153 | 0.9212 | ||
10 | 33.3271 | 33.3301 | 32.6099 | 0.9352 | 0.8983 | 0.9297 | 0.9522 | 0.9450 | 0.9469 | ||
12 | 34.2483 | 34.2579 | 34.1968 | 0.9494 | 0.9235 | 0.9479 | 0.9685 | 0.9612 | 0.9623 | ||
Lake | 4 | 17.8079 | 18.2514 | 20.0431 | 0.6677 | 0.6625 | 0.6875 | 0.7694 | 0.7464 | 0.7765 | |
6 | 23.7148 | 23.6183 | 23.1596 | 0.7982 | 0.7980 | 0.7906 | 0.8582 | 0.8443 | 0.8451 | ||
8 | 25.1894 | 27.4202 | 26.8396 | 0.8781 | 0.8682 | 0.8579 | 0.9063 | 0.8988 | 0.8945 | ||
10 | 27.3522 | 31.8548 | 28.9053 | 0.8929 | 0.9156 | 0.8919 | 0.9137 | 0.9441 | 0.9134 | ||
12 | 29.8302 | 33.5569 | 30.8523 | 0.9186 | 0.9390 | 0.9200 | 0.9399 | 0.9620 | 0.9370 |