Blasting neuroblastoma using optimal control of chemotherapy

  • Received: 01 July 2007 Accepted: 29 June 2018 Published: 01 June 2009
  • MSC : Primary: 49J15, 49K15; Secondary: 93C15.

  • A mathematical model is used to investigate the effectiveness of the chemotherapy drug Topotecan against neuroblastoma. Optimal control theory is applied to minimize the tumor volume and the amount of drug utilized. The model incorporates a state constraint that requires the level of circulating neutrophils (white blood cells that form an integral part of the immune system) to remain above an acceptable value. The treatment schedule is designed to simultaneously satisfy this constraint and achieve the best results in fighting the tumor. Existence and uniqueness of the solution of the optimality system, which is the state system coupled with the adjoint system, is established. Numerical simulations are given to demonstrate the behavior of the tumor and the immune system components represented in the model.

    Citation: Craig Collins, K. Renee Fister, Bethany Key, Mary Williams. Blasting neuroblastoma using optimal control of chemotherapy[J]. Mathematical Biosciences and Engineering, 2009, 6(3): 451-467. doi: 10.3934/mbe.2009.6.451

    Related Papers:

    [1] Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier . On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences and Engineering, 2017, 14(1): 217-235. doi: 10.3934/mbe.2017014
    [2] Joseph Malinzi, Rachid Ouifki, Amina Eladdadi, Delfim F. M. Torres, K. A. Jane White . Enhancement of chemotherapy using oncolytic virotherapy: Mathematical and optimal control analysis. Mathematical Biosciences and Engineering, 2018, 15(6): 1435-1463. doi: 10.3934/mbe.2018066
    [3] Andrzej Swierniak, Jaroslaw Smieja . Analysis and Optimization of Drug Resistant an Phase-Specific Cancer. Mathematical Biosciences and Engineering, 2005, 2(3): 657-670. doi: 10.3934/mbe.2005.2.657
    [4] Urszula Ledzewicz, Heinz Schättler . The Influence of PK/PD on the Structure of Optimal Controls in Cancer Chemotherapy Models. Mathematical Biosciences and Engineering, 2005, 2(3): 561-578. doi: 10.3934/mbe.2005.2.561
    [5] Hongli Yang, Jinzhi Lei . A mathematical model of chromosome recombination-induced drug resistance in cancer therapy. Mathematical Biosciences and Engineering, 2019, 16(6): 7098-7111. doi: 10.3934/mbe.2019356
    [6] Urszula Ledzewicz, Heinz Schättler . Controlling a model for bone marrow dynamics in cancer chemotherapy. Mathematical Biosciences and Engineering, 2004, 1(1): 95-110. doi: 10.3934/mbe.2004.1.95
    [7] Damilola Olabode, Libin Rong, Xueying Wang . Optimal control in HIV chemotherapy with termination viral load and latent reservoir. Mathematical Biosciences and Engineering, 2019, 16(2): 619-635. doi: 10.3934/mbe.2019030
    [8] Urszula Ledzewicz, Heinz Schättler, Mostafa Reisi Gahrooi, Siamak Mahmoudian Dehkordi . On the MTD paradigm and optimal control for multi-drug cancer chemotherapy. Mathematical Biosciences and Engineering, 2013, 10(3): 803-819. doi: 10.3934/mbe.2013.10.803
    [9] Shuo Wang, Heinz Schättler . Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences and Engineering, 2016, 13(6): 1223-1240. doi: 10.3934/mbe.2016040
    [10] Urszula Ledzewicz, Behrooz Amini, Heinz Schättler . Dynamics and control of a mathematical model for metronomic chemotherapy. Mathematical Biosciences and Engineering, 2015, 12(6): 1257-1275. doi: 10.3934/mbe.2015.12.1257
  • A mathematical model is used to investigate the effectiveness of the chemotherapy drug Topotecan against neuroblastoma. Optimal control theory is applied to minimize the tumor volume and the amount of drug utilized. The model incorporates a state constraint that requires the level of circulating neutrophils (white blood cells that form an integral part of the immune system) to remain above an acceptable value. The treatment schedule is designed to simultaneously satisfy this constraint and achieve the best results in fighting the tumor. Existence and uniqueness of the solution of the optimality system, which is the state system coupled with the adjoint system, is established. Numerical simulations are given to demonstrate the behavior of the tumor and the immune system components represented in the model.


  • This article has been cited by:

    1. Pratik Adhikari, Scarlett S. Bracey, Katie A. Evans, Isidro B. Magana, D. Patrick O'Neal, 2013, LQR tracking of a delay differential equation model for the study of nanoparticle dosing strategies for cancer therapy, 978-1-4799-0178-4, 2068, 10.1109/ACC.2013.6580140
    2. Matthew Peet, Peter Kim, Peter P. Lee, 2011, Biological circuit models of immune regulatory response: A decentralized control system, 978-1-61284-801-3, 3020, 10.1109/CDC.2011.6161395
    3. K. Renee Fister, Maeve L. McCarthy, Seth F. Oppenheimer, Craig Collins, Optimal control of insects through sterile insect release and habitat modification, 2013, 244, 00255564, 201, 10.1016/j.mbs.2013.05.008
    4. Barbara Mika, Magdalena Pełka, Ewaryst Tkacz, Mathematical modeling of the neutrophil production process supported by administration of glycoprotein, 2021, 41, 02085216, 45, 10.1016/j.bbe.2020.12.001
    5. Furaha Chuma, Gasper Godson Mwanga, Verdiana Grace Masanja, Application of Optimal Control Theory to Newcastle Disease Dynamics in Village Chicken by Considering Wild Birds as Reservoir of Disease Virus, 2019, 2019, 1110-757X, 1, 10.1155/2019/3024965
    6. Scarlett S. Bracey, Katie A. Evans, 2014, Analysis of tracking control designs for a delay differential equation model used in the study of nanoparticle dosing strategies, 978-1-4799-3274-0, 353, 10.1109/ACC.2014.6859172
    7. Matteo Italia, Kenneth Y. Wertheim, Sabine Taschner-Mandl, Dawn Walker, Fabio Dercole, Mathematical Model of Clonal Evolution Proposes a Personalised Multi-Modal Therapy for High-Risk Neuroblastoma, 2023, 15, 2072-6694, 1986, 10.3390/cancers15071986
    8. Kenneth Y. Wertheim, Robert Chisholm, Paul Richmond, Dawn Walker, Martin Meier-Schellersheim, Multicellular model of neuroblastoma proposes unconventional therapy based on multiple roles of p53, 2024, 20, 1553-7358, e1012648, 10.1371/journal.pcbi.1012648
  • Reader Comments
  • © 2009 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2819) PDF downloads(481) Cited by(8)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog