A passivity-based stability criterion for a class of biochemical reaction networks

  • Received: 01 May 2007 Accepted: 29 June 2018 Published: 01 January 2008
  • MSC : Primary: 34D23, 93A15,93D30; Secondary: 34D20, 05C50.

  • This paper presents a stability test for a class of interconnected nonlinear systems motivated by biochemical reaction networks. The main result determines global asymptotic stability of the network from the diag- onal stability of a dissipativity matrix which incorporates information about the passivity properties of the subsystems, the interconnection structure of the network, and the signs of the interconnection terms. This stability test encom- passes the secant criterion for cyclic networks presented in [1], and extends it to a general interconnection structure represented by a graph. The new stabil- ity test is illustrated on a mitogen-activated protein kinase (MAPK) cascade model, and on a branched interconnection structure motivated by metabolic networks. The next problem addressed is the robustness of stability in the presence of di®usion terms. A compartmental model is used to represent the localization of the reactions, and conditions are presented under which stability is preserved despite the di®usion terms between the compartments.

    Citation: Murat Arcak, Eduardo D. Sontag. A passivity-based stability criterion for a class of biochemical reaction networks[J]. Mathematical Biosciences and Engineering, 2008, 5(1): 1-19. doi: 10.3934/mbe.2008.5.1

    Related Papers:

    [1] Giorgos Minas, David A Rand . Parameter sensitivity analysis for biochemical reaction networks. Mathematical Biosciences and Engineering, 2019, 16(5): 3965-3987. doi: 10.3934/mbe.2019196
    [2] Luyao Li, Licheng Fang, Huan Liang, Tengda Wei . Observer-based event-triggered impulsive control of delayed reaction-diffusion neural networks. Mathematical Biosciences and Engineering, 2025, 22(7): 1634-1652. doi: 10.3934/mbe.2025060
    [3] Paula Mercurio, Di Liu . Identifying transition states of chemical kinetic systems using network embedding techniques. Mathematical Biosciences and Engineering, 2021, 18(1): 868-887. doi: 10.3934/mbe.2021046
    [4] Stefano Fasani, Sergio Rinaldi . Local stabilization and network synchronization: The case of stationary regimes. Mathematical Biosciences and Engineering, 2010, 7(3): 623-639. doi: 10.3934/mbe.2010.7.623
    [5] José Daniel Padilla-de la-Rosa, Mario Alberto García-Ramírez, Anne Christine Gschaedler-Mathis, Abril Ivette Gómez-Guzmán, Josué R. Solís-Pacheco, Orfil González-Reynoso . Estimation of metabolic fluxes distribution in Saccharomyces cerevisiae during the production of volatile compounds of Tequila. Mathematical Biosciences and Engineering, 2021, 18(5): 5094-5113. doi: 10.3934/mbe.2021259
    [6] Cheng-Cheng Zhu, Jiang Zhu, Xiao-Lan Liu . Influence of spatial heterogeneous environment on long-term dynamics of a reaction-diffusion SVIR epidemic model with relaps. Mathematical Biosciences and Engineering, 2019, 16(5): 5897-5922. doi: 10.3934/mbe.2019295
    [7] Adélia Sequeira, Rafael F. Santos, Tomáš Bodnár . Blood coagulation dynamics: mathematical modeling and stability results. Mathematical Biosciences and Engineering, 2011, 8(2): 425-443. doi: 10.3934/mbe.2011.8.425
    [8] Linard Hoessly, Carsten Wiuf . Fast reactions with non-interacting species in stochastic reaction networks. Mathematical Biosciences and Engineering, 2022, 19(3): 2720-2749. doi: 10.3934/mbe.2022124
    [9] Pan Yang, Jianwen Feng, Xinchu Fu . Cluster collective behaviors via feedback pinning control induced by epidemic spread in a patchy population with dispersal. Mathematical Biosciences and Engineering, 2020, 17(5): 4718-4746. doi: 10.3934/mbe.2020259
    [10] Songbai Guo, Wanbiao Ma . Remarks on a variant of Lyapunov-LaSalle theorem. Mathematical Biosciences and Engineering, 2019, 16(2): 1056-1066. doi: 10.3934/mbe.2019050
  • This paper presents a stability test for a class of interconnected nonlinear systems motivated by biochemical reaction networks. The main result determines global asymptotic stability of the network from the diag- onal stability of a dissipativity matrix which incorporates information about the passivity properties of the subsystems, the interconnection structure of the network, and the signs of the interconnection terms. This stability test encom- passes the secant criterion for cyclic networks presented in [1], and extends it to a general interconnection structure represented by a graph. The new stabil- ity test is illustrated on a mitogen-activated protein kinase (MAPK) cascade model, and on a branched interconnection structure motivated by metabolic networks. The next problem addressed is the robustness of stability in the presence of di®usion terms. A compartmental model is used to represent the localization of the reactions, and conditions are presented under which stability is preserved despite the di®usion terms between the compartments.


  • This article has been cited by:

    1. Nicolas Hudon, Martin Guay, Damping feedback stabilization for cyclic interconnections systems: Oscillations suppression and synchronization, 2011, 21, 09591524, 1533, 10.1016/j.jprocont.2011.05.003
    2. Process Control: The Passive Systems Approach (Bao, K. and Lee. P.L.; 2007)[Book Shelf], 2010, 30, 1066-033X, 78, 10.1109/MCS.2009.935226
    3. Peng Sun, Qinzhen Huang, Jinxiang Yang, 2019, Diagonal Stability Analysis of Discrete-Time Nonlinear Positive Switched Systems with Delays: A Homogeneous Polynomial Diagonal Lyapunov Function Method, 978-9-8815-6397-2, 549, 10.23919/ChiCC.2019.8865847
    4. Baoyong Zhang, Wei Xing Zheng, Shengyuan Xu, Delay-dependent passivity and passification for uncertain Markovian jump systems with time-varying delays, 2012, 22, 10498923, 1837, 10.1002/rnc.1790
    5. Farhan Khan, Luca Scardovi, 2016, Synchronization control of interconnected systems with applications to neuronal networks, 978-1-5090-2591-6, 1850, 10.1109/ECC.2016.7810560
    6. Erin Summers, Murat Arcak, Andrew Packard, 2011, Evaluating the delay robustness of interconnected passive systems with a frequency-dependent integral quadratic constraint, 978-1-4577-0081-1, 4237, 10.1109/ACC.2011.5990903
    7. Vishwesh V. Kulkarni, Lucy Y. Pao, Michael G. Safonov, On stability analysis of systems featuring a multiplicative combination of nonlinear and linear time-invariant feedback, 2011, 21, 10498923, 2101, 10.1002/rnc.1684
    8. Masaki Inoue, Kengo Urata, Performance Evaluation and Reinforcement in Interconnected Passive System * *This work was supported by JST CREST Grant Number JP-MJCR15K1, Japan, 2017, 50, 24058963, 9589, 10.1016/j.ifacol.2017.08.1680
    9. Harald K. Wimmer, Diagonal stability of matrices with cyclic structure and the secant condition, 2009, 58, 01676911, 309, 10.1016/j.sysconle.2008.11.009
    10. Alessio Franci, Luca Scardovi, Antoine Chaillet, 2011, An Input-Output approach to the robust synchronization of dynamical systems with an application to the Hindmarsh-Rose neuronal model, 978-1-61284-801-3, 6504, 10.1109/CDC.2011.6161356
    11. Otto Hadač, František Muzika, Vladislav Nevoral, Michal Přibyl, Igor Schreiber, William W Lytton, Minimal oscillating subnetwork in the Huang-Ferrell model of the MAPK cascade, 2017, 12, 1932-6203, e0178457, 10.1371/journal.pone.0178457
    12. Yun Chen, Anke Xue, Renquan Lu, Shaosheng Zhou, Hongbo Zou, Passive Control for Bilinear Stochastic Systems with Bounded Control, 2014, 47, 14746670, 11183, 10.3182/20140824-6-ZA-1003.01861
    13. Kengo URATA, Masaki INOUE, Dissipative Reinforcement in Feedback Systems, 2016, 52, 0453-4654, 401, 10.9746/sicetr.52.401
    14. Ana Sofia Rufino Ferreira, Murat Arcak, Eduardo D. Sontag, Stability certification of large scale stochastic systems using dissipativity, 2012, 48, 00051098, 2956, 10.1016/j.automatica.2012.07.001
    15. Linlin Zhao, Dong Xue, 2016, An operator-theoretic approach to synchronization of dynamically coupled biological rhythms, 978-9-8815-6391-0, 9342, 10.1109/ChiCC.2016.7554843
    16. Mehmet Eren Ahsen, Hitay Ozbay, Silviu-Iulian Niculescu, Analysis of a Gene Regulatory Network Model With Time Delay Using the Secant Condition, 2016, 2, 2332-7685, 5, 10.1109/LLS.2016.2615091
    17. Chris Meissen, Laurent Lessard, Andrew Packard, 2014, Performance certification of interconnected systems using decomposition techniques, 978-1-4799-3274-0, 5030, 10.1109/ACC.2014.6859323
    18. J. William Helton, Vitaly Katsnelson, Igor Klep, Sign patterns for chemical reaction networks, 2010, 47, 0259-9791, 403, 10.1007/s10910-009-9579-4
    19. Luca Scardovi, Murat Arcak, Eduardo D Sontag, Synchronization of Interconnected Systems With Applications to Biochemical Networks: An Input-Output Approach, 2010, 55, 0018-9286, 1367, 10.1109/TAC.2010.2041974
    20. Franco Blanchini, Giulia Giordano, Structural analysis in biology: A control-theoretic approach, 2021, 126, 00051098, 109376, 10.1016/j.automatica.2020.109376
    21. Magdi S. Mahmoud, Abdul-Wahid A. Saif, Dissipativity analysis and design for uncertain Markovian jump systems with time-varying delays, 2013, 219, 00963003, 9681, 10.1016/j.amc.2013.03.024
    22. Murat Arcak, Chris Meissen, Andrew Packard, 2016, Chapter 4, 978-3-319-29927-3, 29, 10.1007/978-3-319-29928-0_4
    23. Erin Summers, Murat Arcak, Andrew Packard, Delay Robustness of Interconnected Passive Systems: An Integral Quadratic Constraint Approach, 2013, 58, 0018-9286, 712, 10.1109/TAC.2012.2219972
    24. Nicolas Hudon, Martin Guay, Damping Feedback Stabilization for Cyclic Interconnections Systems: Oscillations Suppression and Synchronization, 2010, 43, 14746670, 48, 10.3182/20100707-3-BE-2012.0078
    25. Murat Arcak, Diagonal Stability on Cactus Graphs and Application to Network Stability Analysis, 2011, 56, 0018-9286, 2766, 10.1109/TAC.2011.2125130
    26. Alessandro Abate, Stephane Vincent, Roel Dobbe, Alberto Silletti, Neal Master, Jeffrey D. Axelrod, Claire J. Tomlin, A Mathematical Model to Study the Dynamics of Epithelial Cellular Networks, 2012, 9, 1545-5963, 1607, 10.1109/TCBB.2012.126
    27. Vishwesh V. Kulkarni, Lucy Y. Pao, Michael G. Safonov, 2010, On stability analysis of systems featuring a multiplicative combination of nonlinear and linear time-invariant feedback, 978-1-4244-7745-6, 4036, 10.1109/CDC.2010.5717688
    28. Milad Alekajbaf, Luca Scardovi, 2015, An input-output approach to robust synchronization, 978-1-4799-8684-2, 4392, 10.1109/ACC.2015.7172020
    29. Priya Chandrasekar, Lakshmi Ponnusamy, 2013, Passivity based level controller design applied to a nonlinear SISO system, 978-1-4673-6126-2, 392, 10.1109/ICGCE.2013.6823467
    30. Kengo Urata, Masaki Inoue, Takayuki Ishizaki, Jun-ichi Imura, Performance Improvement via Iterative Connection of Passive Systems, 2020, 65, 0018-9286, 1325, 10.1109/TAC.2019.2930806
    31. VALENTINA LANZA, FERNANDO CORINTO, MARCO GILLI, LOCALIZED OSCILLATIONS IN DIFFUSIVELY COUPLED CYCLIC NEGATIVE FEEDBACK SYSTEMS, 2012, 22, 0218-1274, 1250014, 10.1142/S0218127412500149
    32. Toby J. Gibson, Cell regulation: determined to signal discrete cooperation, 2009, 34, 09680004, 471, 10.1016/j.tibs.2009.06.007
    33. Robert Planqué, Frank J. Bruggeman, Bas Teusink, Josephus Hulshof, Understanding bistability in yeast glycolysis using general properties of metabolic pathways, 2014, 255, 00255564, 33, 10.1016/j.mbs.2014.06.006
    34. L. Scardovi, M. Arcak, E. D. Sontag, 2009, Synchronization of interconnected systems with an input-output approach. Part II: State-space result and application to biochemical networks, 978-1-4244-3871-6, 615, 10.1109/CDC.2009.5400420
    35. 2018, 9781315218700, 924, 10.1201/b10384-89
    36. Nader Motee, Bassam Bamieh, Mustafa Khammash, Stability analysis of quasi-polynomial dynamical systems with applications to biological network models, 2012, 48, 00051098, 2945, 10.1016/j.automatica.2012.06.094
    37. Tae-Hyoung Kim, Yutaka Hori, Shinji Hara, Robust stability analysis of gene–protein regulatory networks with cyclic activation–repression interconnections, 2011, 60, 01676911, 373, 10.1016/j.sysconle.2011.03.003
    38. Liming Wang, A passivity-based stability criterion for reaction diffusion systems with interconnected structure, 2012, 17, 1553-524X, 303, 10.3934/dcdsb.2012.17.303
    39. L. Scardovi, M. Arcak, E. D. Sontag, 2009, Synchronization of interconnected systems with an input-output approach. Part I: Main results, 978-1-4244-3871-6, 609, 10.1109/CDC.2009.5400531
    40. Chris Meissen, Laurent Lessard, Murat Arcak, Andrew Packard, 2014, Performance certification of interconnected nonlinear systems using ADMM, 978-1-4673-6090-6, 5131, 10.1109/CDC.2014.7040191
    41. Mehmet Eren Ahsen, Hitay Özbay, Silviu-Iulian Niculescu, 2017, Chapter 11, 978-3-319-53425-1, 155, 10.1007/978-3-319-53426-8_11
    42. Murat Arcak, 2010, Linear matrix inequality tests for synchrony of diffusively coupled nonlinear systems, 978-1-4244-8215-3, 1651, 10.1109/ALLERTON.2010.5707114
    43. Murat Arcak, Certifying spatially uniform behavior in reaction–diffusion PDE and compartmental ODE systems, 2011, 47, 00051098, 1219, 10.1016/j.automatica.2011.01.010
    44. Gentian Buzi, Ufuk Topcu, John C. Doyle, Analysis of autocatalytic networks in biology, 2011, 47, 00051098, 1123, 10.1016/j.automatica.2011.02.040
    45. Yutaka Hori, Tae-Hyoung Kim, Shinji Hara, Existence criteria of periodic oscillations in cyclic gene regulatory networks, 2011, 47, 00051098, 1203, 10.1016/j.automatica.2011.02.042
    46. Mehmet Eren Ahsen, Hitay Özbay, Silviu-Iulian Niculescu, A Secant Condition for Cyclic Systems with Time Delays and its Application to Gene Regulatory Networks, 2015, 48, 24058963, 171, 10.1016/j.ifacol.2015.09.372
    47. Gentian Buzi, John Doyle, 2010, Topological tradeoffs in autocatalytic metabolic pathways, 978-1-4244-7745-6, 4697, 10.1109/CDC.2010.5717490
    48. Giovanni Russo, Mario di Bernardo, Eduardo D. Sontag, A Contraction Approach to the Hierarchical Analysis and Design of Networked Systems, 2013, 58, 0018-9286, 1328, 10.1109/TAC.2012.2223355
    49. Giovanni Russo, Mario di Bernardo, Eduardo D. Sontag, 2010, Stability of networked systems: A multi-scale approach using contraction, 978-1-4244-7745-6, 6559, 10.1109/CDC.2010.5717887
    50. Pietro DeLellis, Mario Bernardo, Thomas Gorochowski, Giovanni Russo, Synchronization and Control of Complex Networks via Contraction, Adaptation and Evolution, 2010, 10, 1531-636X, 64, 10.1109/MCAS.2010.937884
    51. Yang-Yu Liu, Albert-László Barabási, Control principles of complex systems, 2016, 88, 0034-6861, 10.1103/RevModPhys.88.035006
    52. Gheorghe Craciun, J. William Helton, Ruth J. Williams, Homotopy methods for counting reaction network equilibria, 2008, 216, 00255564, 140, 10.1016/j.mbs.2008.09.001
    53. J. William Helton, Igor Klep, Raul Gomez, Determinant Expansions of Signed Matrices and of Certain Jacobians, 2009, 31, 0895-4798, 732, 10.1137/080718838
    54. E. Summers, M. Arcak, A. Packard, 2012, Further results on delay robustness of interconnected passive systems, 978-1-4577-1096-4, 4697, 10.1109/ACC.2012.6315300
    55. Yutaka Hori, Richard M. Murray, 2015, Engineering principles of synthetic biochemical oscillators with negative cyclic feedback, 978-1-4799-7886-1, 584, 10.1109/CDC.2015.7402292
    56. Murat Arcak, 2010, Diagonal stability on cactus graphs, 978-1-4244-7745-6, 6553, 10.1109/CDC.2010.5717799
    57. Valentina Lanza, Fernando Corinto, Marco Gilli, 2010, Bifurcations in simple genetic cyclic models, 978-1-4244-5308-5, 2574, 10.1109/ISCAS.2010.5537101
    58. George H. Hines, Murat Arcak, Andrew K. Packard, Equilibrium-independent passivity: A new definition and numerical certification, 2011, 47, 00051098, 1949, 10.1016/j.automatica.2011.05.011
    59. Nicolas Augier, Madalena Chaves, Jean‐Luc Gouzé, Weak synchronization and convergence in coupled genetic regulatory networks: Applications to damped oscillators and multistable circuits, 2022, 1049-8923, 10.1002/rnc.6061
    60. Nicolas Augier, Agustín G. Yabo, Time‐optimal control of piecewise affine bistable gene‐regulatory networks, 2022, 1049-8923, 10.1002/rnc.6012
    61. Mirko Pasquini, David Angeli, On convergence for hybrid models of gene regulatory networks under polytopic uncertainties: a Lyapunov approach, 2021, 83, 0303-6812, 10.1007/s00285-021-01690-3
    62. Shirantha Welikala, Hai Lin, Panos J. Antsaklis, 2023, Non-Linear Networked Systems Analysis and Synthesis using Dissipativity Theory, 979-8-3503-2806-6, 2951, 10.23919/ACC55779.2023.10155851
    63. Kaiwen Chen, Alessandro Astolfi, Thomas Parisini, Active Nodes for Passivity and Finite-Gain Stability of Non-autonomous Networks, 2023, 56, 24058963, 3812, 10.1016/j.ifacol.2023.10.1311
    64. Murat Arcak, Compositional Design and Verification of Large-Scale Systems Using Dissipativity Theory: Determining Stability and Performance from Subsystem Properties and Interconnection Structures, 2022, 42, 1066-033X, 51, 10.1109/MCS.2021.3139721
    65. Narges Rezaei Kookhdan, Hamid Reza Koofigar, 2023, Dissipativity-Based Stability Analysis of Power Networks with Uncertain Interconnections, 979-8-3503-6601-3, 1, 10.1109/ICCIA61416.2023.10506355
    66. Can Chen, Xu-Wen Wang, Yang-Yu Liu, Stability of ecological systems: A theoretical review, 2024, 1088, 03701573, 1, 10.1016/j.physrep.2024.08.001
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2982) PDF downloads(502) Cited by(66)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog