Local stabilization and network synchronization: The case of stationary regimes

  • Received: 01 October 2009 Accepted: 29 June 2018 Published: 01 June 2010
  • MSC : Primary: 37B25, 92B05, 92D25; Secondary: 34A34, 37C75, 92D40.

  • Relationships between local stability and synchronization in networks of identical dynamical systems are established through the Master Stability Function approach. First, it is shown that stable equilibria of the local dynamics correspond to stable stationary synchronous regimes of the entire network if the coupling among the systems is sufficiently weak or balanced (in other words, stationary synchronous regimes can be unstable only if the coupling is sufficiently large and unbalanced). Then, it is shown that [de]stabilizing factors at local scale are [de]synchronizing at global scale again if the coupling is sufficiently weak or balanced. These results allow one to transfer, with almost no effort, what is known for simple prototypical models in biology and engineering to complex networks composed of these models. This is shown through a series of applications ranging from networks of electrical circuits to various problems in ecology and sociology involving migrations of plants, animal and human populations.

    Citation: Stefano Fasani, Sergio Rinaldi. Local stabilization and network synchronization: The case of stationary regimes[J]. Mathematical Biosciences and Engineering, 2010, 7(3): 623-639. doi: 10.3934/mbe.2010.7.623

    Related Papers:

    [1] Guowei Wang, Yan Fu . Spatiotemporal patterns and collective dynamics of bi-layer coupled Izhikevich neural networks with multi-area channels. Mathematical Biosciences and Engineering, 2023, 20(2): 3944-3969. doi: 10.3934/mbe.2023184
    [2] Bingrui Zhang, Jin-E Zhang . Fixed-deviation stabilization and synchronization for delayed fractional-order complex-valued neural networks. Mathematical Biosciences and Engineering, 2023, 20(6): 10244-10263. doi: 10.3934/mbe.2023449
    [3] Pan Yang, Jianwen Feng, Xinchu Fu . Cluster collective behaviors via feedback pinning control induced by epidemic spread in a patchy population with dispersal. Mathematical Biosciences and Engineering, 2020, 17(5): 4718-4746. doi: 10.3934/mbe.2020259
    [4] A. Bernardini, J. Bragard, H. Mancini . Synchronization between two Hele-Shaw Cells. Mathematical Biosciences and Engineering, 2004, 1(2): 339-346. doi: 10.3934/mbe.2004.1.339
    [5] Wenjing Wang, Jingjing Dong, Dong Xu, Zhilian Yan, Jianping Zhou . Synchronization control of time-delay neural networks via event-triggered non-fragile cost-guaranteed control. Mathematical Biosciences and Engineering, 2023, 20(1): 52-75. doi: 10.3934/mbe.2023004
    [6] Ricardo López-Ruiz, Danièle Fournier-Prunaret . Complex Behavior in a Discrete Coupled Logistic Model for the Symbiotic Interaction of Two Species. Mathematical Biosciences and Engineering, 2004, 1(2): 307-324. doi: 10.3934/mbe.2004.1.307
    [7] Karim El Laithy, Martin Bogdan . Synaptic energy drives the information processing mechanisms in spiking neural networks. Mathematical Biosciences and Engineering, 2014, 11(2): 233-256. doi: 10.3934/mbe.2014.11.233
    [8] Biwen Li, Xuan Cheng . Synchronization analysis of coupled fractional-order neural networks with time-varying delays. Mathematical Biosciences and Engineering, 2023, 20(8): 14846-14865. doi: 10.3934/mbe.2023665
    [9] Harindri Chaudhary, Mohammad Sajid, Santosh Kaushik, Ali Allahem . Stability analysis of chaotic generalized Lotka-Volterra system via active compound difference anti-synchronization method. Mathematical Biosciences and Engineering, 2023, 20(5): 9410-9422. doi: 10.3934/mbe.2023413
    [10] Mahtab Mehrabbeik, Fatemeh Parastesh, Janarthanan Ramadoss, Karthikeyan Rajagopal, Hamidreza Namazi, Sajad Jafari . Synchronization and chimera states in the network of electrochemically coupled memristive Rulkov neuron maps. Mathematical Biosciences and Engineering, 2021, 18(6): 9394-9409. doi: 10.3934/mbe.2021462
  • Relationships between local stability and synchronization in networks of identical dynamical systems are established through the Master Stability Function approach. First, it is shown that stable equilibria of the local dynamics correspond to stable stationary synchronous regimes of the entire network if the coupling among the systems is sufficiently weak or balanced (in other words, stationary synchronous regimes can be unstable only if the coupling is sufficiently large and unbalanced). Then, it is shown that [de]stabilizing factors at local scale are [de]synchronizing at global scale again if the coupling is sufficiently weak or balanced. These results allow one to transfer, with almost no effort, what is known for simple prototypical models in biology and engineering to complex networks composed of these models. This is shown through a series of applications ranging from networks of electrical circuits to various problems in ecology and sociology involving migrations of plants, animal and human populations.


  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2722) PDF downloads(509) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog