Complex Behavior in a Discrete Coupled Logistic Model for the Symbiotic Interaction of Two Species

  • Received: 01 February 2004 Accepted: 29 June 2018 Published: 01 July 2004
  • MSC : 92D25, 70K50, 37M20.

  • A symmetrical cubic discrete coupled logistic equation is proposed to model the symbiotic interaction of two isolated species. The coupling depends on the population size of both species and on a positive constant , called the mutual benefit. Different dynamical regimes are obtained when the mutual benefit is modified. For small , the species become extinct. For increasing , the system stabilizes in a synchronized state or oscillates in a two-periodic orbit. For the greatest permitted values of , the dynamics evolves into a quasiperiodic, into a chaotic scenario, or into extinction. The basins for these regimes are visualized as colored figures on the plane. These patterns suffer different changes as consequence of basins' bifurcations. The use of the critical curves allows us to determine the influence of the zones with different numbers of first-rank preimages in those bifurcation mechanisms.

    Citation: Ricardo López-Ruiz, Danièle Fournier-Prunaret. Complex Behavior in a Discrete Coupled Logistic Model for the Symbiotic Interaction of Two Species[J]. Mathematical Biosciences and Engineering, 2004, 1(2): 307-324. doi: 10.3934/mbe.2004.1.307

    Related Papers:

    [1] Qianqian Li, Ankur Jyoti Kashyap, Qun Zhu, Fengde Chen . Dynamical behaviours of discrete amensalism system with fear effects on first species. Mathematical Biosciences and Engineering, 2024, 21(1): 832-860. doi: 10.3934/mbe.2024035
    [2] Prasina Alexander, Fatemeh Parastesh, Ibrahim Ismael Hamarash, Anitha Karthikeyan, Sajad Jafari, Shaobo He . Effect of the electromagnetic induction on a modified memristive neural map model. Mathematical Biosciences and Engineering, 2023, 20(10): 17849-17865. doi: 10.3934/mbe.2023793
    [3] B. Spagnolo, D. Valenti, A. Fiasconaro . Noise in ecosystems: A short review. Mathematical Biosciences and Engineering, 2004, 1(1): 185-211. doi: 10.3934/mbe.2004.1.185
    [4] Zhilan Feng, Robert Swihart, Yingfei Yi, Huaiping Zhu . Coexistence in a metapopulation model with explicit local dynamics. Mathematical Biosciences and Engineering, 2004, 1(1): 131-145. doi: 10.3934/mbe.2004.1.131
    [5] Mahtab Mehrabbeik, Fatemeh Parastesh, Janarthanan Ramadoss, Karthikeyan Rajagopal, Hamidreza Namazi, Sajad Jafari . Synchronization and chimera states in the network of electrochemically coupled memristive Rulkov neuron maps. Mathematical Biosciences and Engineering, 2021, 18(6): 9394-9409. doi: 10.3934/mbe.2021462
    [6] Nazanin Zaker, Christina A. Cobbold, Frithjof Lutscher . The effect of landscape fragmentation on Turing-pattern formation. Mathematical Biosciences and Engineering, 2022, 19(3): 2506-2537. doi: 10.3934/mbe.2022116
    [7] Sridevi Sriram, Hayder Natiq, Karthikeyan Rajagopal, Ondrej Krejcar, Hamidreza Namazi . Dynamics of a two-layer neuronal network with asymmetry in coupling. Mathematical Biosciences and Engineering, 2023, 20(2): 2908-2919. doi: 10.3934/mbe.2023137
    [8] Hebing Zhang, Xiaojing Zheng . Invariable distribution of co-evolutionary complex adaptive systems with agent's behavior and local topological configuration. Mathematical Biosciences and Engineering, 2024, 21(2): 3229-3261. doi: 10.3934/mbe.2024143
    [9] Stefano Fasani, Sergio Rinaldi . Local stabilization and network synchronization: The case of stationary regimes. Mathematical Biosciences and Engineering, 2010, 7(3): 623-639. doi: 10.3934/mbe.2010.7.623
    [10] P. E. Greenwood, L. M. Ward . Rapidly forming, slowly evolving, spatial patterns from quasi-cycle Mexican Hat coupling. Mathematical Biosciences and Engineering, 2019, 16(6): 6769-6793. doi: 10.3934/mbe.2019338
  • A symmetrical cubic discrete coupled logistic equation is proposed to model the symbiotic interaction of two isolated species. The coupling depends on the population size of both species and on a positive constant , called the mutual benefit. Different dynamical regimes are obtained when the mutual benefit is modified. For small , the species become extinct. For increasing , the system stabilizes in a synchronized state or oscillates in a two-periodic orbit. For the greatest permitted values of , the dynamics evolves into a quasiperiodic, into a chaotic scenario, or into extinction. The basins for these regimes are visualized as colored figures on the plane. These patterns suffer different changes as consequence of basins' bifurcations. The use of the critical curves allows us to determine the influence of the zones with different numbers of first-rank preimages in those bifurcation mechanisms.


  • This article has been cited by:

    1. S. Zozor, D. Mateos, P. W. Lamberti, Mixing Bandt-Pompe and Lempel-Ziv approaches: another way to analyze the complexity of continuous-state sequences, 2014, 87, 1434-6028, 10.1140/epjb/e2014-41018-5
    2. Fikri Öztürk, 2020, Chapter 4, 978-3-030-27671-3, 33, 10.1007/978-3-030-27672-0_4
    3. R. López-Ruiz, Y. Moreno, A.F. Pacheco, S. Boccaletti, D.-U. Hwang, Awaking and sleeping of a complex network, 2007, 20, 08936080, 102, 10.1016/j.neunet.2006.04.002
    4. DRAGUTIN T. MIHAILOVIĆ, IGOR BALAŽ, SYNCHRONIZATION IN BIOCHEMICAL SUBSTANCE EXCHANGE BETWEEN TWO CELLS, 2012, 26, 0217-9849, 1150031, 10.1142/S021798491150031X
    5. Ahmed G. Radwan, On some generalized discrete logistic maps, 2013, 4, 20901232, 163, 10.1016/j.jare.2012.05.003
    6. David W Graham, Charles W Knapp, Erik S Van Vleck, Katie Bloor, Teresa B Lane, Christopher E Graham, Experimental demonstration of chaotic instability in biological nitrification, 2007, 1, 1751-7362, 385, 10.1038/ismej.2007.45
    7. Ricardo López-Ruiz, Danièle Fournier-Prunaret, Periodic and chaotic events in a discrete model of logistic type for the competitive interaction of two species, 2009, 41, 09600779, 334, 10.1016/j.chaos.2008.01.015
    8. Unal Ufuktepe, Burcin Kulahcioglu, Gizem Yuce, 2016, Chapter 3, 978-3-319-42084-4, 36, 10.1007/978-3-319-42085-1_3
    9. Juan R. Sánchez, Ricardo López-Ruiz, A method to discern complexity in two-dimensional patterns generated by coupled map lattices, 2005, 355, 03784371, 633, 10.1016/j.physa.2005.02.058
    10. Malgorzata Guzowska, Rafael Luís, Saber Elaydi, Bifurcation and invariant manifolds of the logistic competition model, 2011, 17, 1023-6198, 1851, 10.1080/10236198.2010.504377
    11. DRAGUTIN T. MIHAILOVIĆ, MIRKO BUDINČEVIĆ, IGOR BALAŽ, ANJA MIHAILOVIĆ, STABILITY OF INTERCELLULAR EXCHANGE OF BIOCHEMICAL SUBSTANCES AFFECTED BY VARIABILITY OF ENVIRONMENTAL PARAMETERS, 2011, 25, 0217-9849, 2407, 10.1142/S0217984911027431
    12. Maosong Yang, Shaojuan Ma, Stochastic Hopf–Hopf bifurcation of two-species discrete coupling logistic system with symbiotic interaction, 2020, 2020, 1687-1847, 10.1186/s13662-020-02758-y
    13. Ricardo López-Ruiz, Jaime Sañudo, Elvira Romera, Xavier Calbet, 2011, Chapter 4, 978-90-481-3889-0, 65, 10.1007/978-90-481-3890-6_4
    14. Fu Jing-chao, Zhang Zhong-hua, Liu Chun-li, 2011, Chaos control of a discrete coupled Logistic model for the symbiotic interaction of two species, 978-1-4244-8737-0, 4115, 10.1109/CCDC.2011.5968946
    15. JUAN R. SANCHEZ, COMPLEX BEHAVIOR OF FUZZY LOGISTIC RULE 90 AUTOMATON, 2005, 16, 0129-1831, 1449, 10.1142/S0129183105008047
    16. Xianming Wu, Longxiang Fu, Shaobo He, Huihai Wang, Analogue circuit implementation of a new logistic‐like map, 2022, 58, 0013-5194, 533, 10.1049/ell2.12529
    17. Zhiheng Yu, Jiyu Zhong, Yingying Zeng, Song Li, Dynamics in a discrete time model of logistic type, 2022, 28, 1023-6198, 869, 10.1080/10236198.2022.2102909
    18. Xuefen Li, Fangfang Shen, Analysis of the Dynamical Behaviour of a Two-Dimensional Coupled Ecosystem with Stochastic Parameters, 2021, 13, 2073-8994, 1547, 10.3390/sym13081547
    19. Lin Wang, Rui-Wu Wang, Host regulation and seasonality generate population chaos in a fig-wasp mutualism, 2022, 165, 09600779, 112811, 10.1016/j.chaos.2022.112811
    20. Alison J. Robey, Abigail Skwara, David A. Vasseur, 2023, 9780128096338, 10.1016/B978-0-12-822562-2.00137-7
    21. Jelena Stanojević, Nemanja Vuksanović, Katarina Kukić, Vesna Jablanović, MODIFICATION OF THE COBWEB MODEL INTO GENERALIZED LOGISTIC EQUATION FOR THE WHEAT PRICE ANALYSIS , 2023, 70, 2334-8453, 1025, 10.59267/ekoPolj23041025S
    22. Jiangqiong Yu, Jie Li, Zhiheng Yu, Strong Resonances and Arnold Tongues in a Discrete Time Model of Logistic Type, 2025, 0170-4214, 10.1002/mma.10857
  • Reader Comments
  • © 2004 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2979) PDF downloads(653) Cited by(22)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog