1.
|
S. Zozor, D. Mateos, P. W. Lamberti,
Mixing Bandt-Pompe and Lempel-Ziv approaches: another way to analyze the complexity of continuous-state sequences,
2014,
87,
1434-6028,
10.1140/epjb/e2014-41018-5
|
|
2.
|
Fikri Öztürk,
2020,
Chapter 4,
978-3-030-27671-3,
33,
10.1007/978-3-030-27672-0_4
|
|
3.
|
R. López-Ruiz, Y. Moreno, A.F. Pacheco, S. Boccaletti, D.-U. Hwang,
Awaking and sleeping of a complex network,
2007,
20,
08936080,
102,
10.1016/j.neunet.2006.04.002
|
|
4.
|
DRAGUTIN T. MIHAILOVIĆ, IGOR BALAŽ,
SYNCHRONIZATION IN BIOCHEMICAL SUBSTANCE EXCHANGE BETWEEN TWO CELLS,
2012,
26,
0217-9849,
1150031,
10.1142/S021798491150031X
|
|
5.
|
Ahmed G. Radwan,
On some generalized discrete logistic maps,
2013,
4,
20901232,
163,
10.1016/j.jare.2012.05.003
|
|
6.
|
David W Graham, Charles W Knapp, Erik S Van Vleck, Katie Bloor, Teresa B Lane, Christopher E Graham,
Experimental demonstration of chaotic instability in biological nitrification,
2007,
1,
1751-7362,
385,
10.1038/ismej.2007.45
|
|
7.
|
Ricardo López-Ruiz, Danièle Fournier-Prunaret,
Periodic and chaotic events in a discrete model of logistic type for the competitive interaction of two species,
2009,
41,
09600779,
334,
10.1016/j.chaos.2008.01.015
|
|
8.
|
Unal Ufuktepe, Burcin Kulahcioglu, Gizem Yuce,
2016,
Chapter 3,
978-3-319-42084-4,
36,
10.1007/978-3-319-42085-1_3
|
|
9.
|
Juan R. Sánchez, Ricardo López-Ruiz,
A method to discern complexity in two-dimensional patterns generated by coupled map lattices,
2005,
355,
03784371,
633,
10.1016/j.physa.2005.02.058
|
|
10.
|
Malgorzata Guzowska, Rafael Luís, Saber Elaydi,
Bifurcation and invariant manifolds of the logistic competition model,
2011,
17,
1023-6198,
1851,
10.1080/10236198.2010.504377
|
|
11.
|
DRAGUTIN T. MIHAILOVIĆ, MIRKO BUDINČEVIĆ, IGOR BALAŽ, ANJA MIHAILOVIĆ,
STABILITY OF INTERCELLULAR EXCHANGE OF BIOCHEMICAL SUBSTANCES AFFECTED BY VARIABILITY OF ENVIRONMENTAL PARAMETERS,
2011,
25,
0217-9849,
2407,
10.1142/S0217984911027431
|
|
12.
|
Maosong Yang, Shaojuan Ma,
Stochastic Hopf–Hopf bifurcation of two-species discrete coupling logistic system with symbiotic interaction,
2020,
2020,
1687-1847,
10.1186/s13662-020-02758-y
|
|
13.
|
Ricardo López-Ruiz, Jaime Sañudo, Elvira Romera, Xavier Calbet,
2011,
Chapter 4,
978-90-481-3889-0,
65,
10.1007/978-90-481-3890-6_4
|
|
14.
|
Fu Jing-chao, Zhang Zhong-hua, Liu Chun-li,
2011,
Chaos control of a discrete coupled Logistic model for the symbiotic interaction of two species,
978-1-4244-8737-0,
4115,
10.1109/CCDC.2011.5968946
|
|
15.
|
JUAN R. SANCHEZ,
COMPLEX BEHAVIOR OF FUZZY LOGISTIC RULE 90 AUTOMATON,
2005,
16,
0129-1831,
1449,
10.1142/S0129183105008047
|
|
16.
|
Xianming Wu, Longxiang Fu, Shaobo He, Huihai Wang,
Analogue circuit implementation of a new logistic‐like map,
2022,
58,
0013-5194,
533,
10.1049/ell2.12529
|
|
17.
|
Zhiheng Yu, Jiyu Zhong, Yingying Zeng, Song Li,
Dynamics in a discrete time model of logistic type,
2022,
28,
1023-6198,
869,
10.1080/10236198.2022.2102909
|
|
18.
|
Xuefen Li, Fangfang Shen,
Analysis of the Dynamical Behaviour of a Two-Dimensional Coupled Ecosystem with Stochastic Parameters,
2021,
13,
2073-8994,
1547,
10.3390/sym13081547
|
|
19.
|
Lin Wang, Rui-Wu Wang,
Host regulation and seasonality generate population chaos in a fig-wasp mutualism,
2022,
165,
09600779,
112811,
10.1016/j.chaos.2022.112811
|
|
20.
|
Alison J. Robey, Abigail Skwara, David A. Vasseur,
2023,
9780128096338,
10.1016/B978-0-12-822562-2.00137-7
|
|
21.
|
Jelena Stanojević, Nemanja Vuksanović, Katarina Kukić, Vesna Jablanović,
MODIFICATION OF THE COBWEB MODEL INTO GENERALIZED LOGISTIC EQUATION FOR THE WHEAT PRICE ANALYSIS ,
2023,
70,
2334-8453,
1025,
10.59267/ekoPolj23041025S
|
|
22.
|
Jiangqiong Yu, Jie Li, Zhiheng Yu,
Strong Resonances and Arnold Tongues in a Discrete Time Model of Logistic Type,
2025,
0170-4214,
10.1002/mma.10857
|
|