Research article Special Issues

Estimation of metabolic fluxes distribution in Saccharomyces cerevisiae during the production of volatile compounds of Tequila


  • Received: 24 March 2021 Accepted: 21 May 2021 Published: 08 June 2021
  • A stoichiometric model for Saccharomyces cerevisiae is reconstructed to analyze the continuous fermentation process of agave juice in Tequila production. The metabolic model contains 94 metabolites and 117 biochemical reactions. From the above set of reactions, 93 of them are linked to internal biochemical reactions and 24 are related to transport fluxes between the medium and the cell. The central metabolism of S. cerevisiae includes the synthesis for 20 amino-acids, carbohydrates, lipids, DNA and RNA. Using flux balance analysis (FBA), different physiological states of S. cerevisiae are shown during the fermentative process; these states are compared with experimental data under different dilution rates (0.04-0.12 h$ ^{-1} $). Moreover, the model performs anabolic and catabolic biochemical reactions for the production of higher alcohols. The importance of the Saccharomyces cerevisiae genomic model in the area of alcoholic beverage fermentation is due to the fact that it allows to estimate the metabolic fluxes during the beverage fermentation process and a physiology state of the microorganism.

    Citation: José Daniel Padilla-de la-Rosa, Mario Alberto García-Ramírez, Anne Christine Gschaedler-Mathis, Abril Ivette Gómez-Guzmán, Josué R. Solís-Pacheco, Orfil González-Reynoso. Estimation of metabolic fluxes distribution in Saccharomyces cerevisiae during the production of volatile compounds of Tequila[J]. Mathematical Biosciences and Engineering, 2021, 18(5): 5094-5113. doi: 10.3934/mbe.2021259

    Related Papers:

  • A stoichiometric model for Saccharomyces cerevisiae is reconstructed to analyze the continuous fermentation process of agave juice in Tequila production. The metabolic model contains 94 metabolites and 117 biochemical reactions. From the above set of reactions, 93 of them are linked to internal biochemical reactions and 24 are related to transport fluxes between the medium and the cell. The central metabolism of S. cerevisiae includes the synthesis for 20 amino-acids, carbohydrates, lipids, DNA and RNA. Using flux balance analysis (FBA), different physiological states of S. cerevisiae are shown during the fermentative process; these states are compared with experimental data under different dilution rates (0.04-0.12 h$ ^{-1} $). Moreover, the model performs anabolic and catabolic biochemical reactions for the production of higher alcohols. The importance of the Saccharomyces cerevisiae genomic model in the area of alcoholic beverage fermentation is due to the fact that it allows to estimate the metabolic fluxes during the beverage fermentation process and a physiology state of the microorganism.



    加载中


    [1] M. Comité Consultivo Nacional de Normas de Seguridad, Norma oficial mexicana nom-006-scfi-2012: Bebidas alcohólicas-tequila-especificaciones, Diario Oficial de la Federación, 1 (2012).
    [2] M. C. Cededeño, Tequila production, Crit. Rev. Biotechnol., 15 (1995), 1-11.
    [3] G. Hernández-Córtez, J. O. Valle-Rodríguez, E. J. Herrera-López, D. M. Díaz-Montaño, Y. González-García, H. B. Escalona-Buendía, Improvement on the productivity of continuos tequila fermentation by saccharomyces cerevisiae of agave tequilana juice with supplementation of yeast extract and aereation, AMB Express, 6 (2016), 10-15. doi: 10.1186/s13568-016-0180-5
    [4] S. M. Benn, T. L. Peppard, Characterization of tequila flavor by instrumental and sensory analysis, J. Agric. Food Chem., 44 (1996), 557-566. doi: 10.1021/jf9504172
    [5] G. A. Moran-Marroquin, J. Cordova, J. O. Valle-Rodriguez, M. Estarron-Espinosa, D. M. Diaz-Montaño, Effect of dilution rate and nutrients addition on the fermentative capability and synthesis of aromatic compounds of two indigenous strains of saccharomyces cerevisiae in continuous cultures fed with agave tequilana juice, Int. J. Food Microbiol., 151 (2011), 87-92. doi: 10.1016/j.ijfoodmicro.2011.08.008
    [6] L. Pinal, M. Cedeño, H. Gutierrez, J. Alvarez-Jacobs, Fermentation parameters influencing higher alcohol production in the tequila process, Biotechnol. Lett., 19 (1997), 45-47. doi: 10.1023/A:1018362919846
    [7] L. E. Segura-Garcia, P. Taillandier, C. Brandam, A. Gschaedler, Fermentative capacity of saccharomyces and non- saccharomyces in agave juice and semi-synthetic medium, LWT-Food Sci. Technol., 60 (2015), 284-291. doi: 10.1016/j.lwt.2014.08.005
    [8] R. Pereira, J. Nielsen, Isabel Rocha, Improving the flux distributions simulated with genome-scale metabolic models of Saccharomyces cerevisiae, Metab. Eng. Commun., 3 (2016), 153-163. doi: 10.1016/j.meteno.2016.05.002
    [9] A. Aldrete-Tapia, R. Martínez-Peniche, D. Miranda-Castilleja, M. Hernández-Iturriaga, Saccharomyces cerevisiae associated with the spontaneous fermentation of tequila agave juice, J. Inst. Brew., 124 (2018), 284-290. doi: 10.1002/jib.499
    [10] J. A. Aldrete-Tapia, D. E. Miranda-Castilleja, S. M. Arvizu-Medrano, M. Hernández-Iturriaga, Selection of yeast strains for tequila fermentation based on growth dynamics in combined fructose and ethanol media, Food Sci., 83 (2018), 419-423. doi: 10.1111/1750-3841.14031
    [11] M. Adil, N. Jens, New paradigms for metabolic modeling of human cells, Curr. Opin. Biotechnol., 34 (2015), 91-97. doi: 10.1016/j.copbio.2014.12.013
    [12] R. Liu, M. C. Bassalo, R. I. Zeitoun, R. T. Gill, Genome scale engineering techniques for metabolic engineering, Metab. Eng., 32 (2015), 143-154. doi: 10.1016/j.ymben.2015.09.013
    [13] J. Forster, I. Famili, P. Fu, B. Ø. Palsson, J. Nielsen, Genome-scale reconstruction of the saccharomyces cerevisiae metabolic network, Genome Res., 13 (2003), 244-253. doi: 10.1101/gr.234503
    [14] J. Monk, J. Nogales, B. Ø. Palsson, Optimizing genome-scale network reconstructions, Nat. Biotechnol., 32 (2014), 447-452. doi: 10.1038/nbt.2870
    [15] N. C. Duarte, B. Ø. Palsson, P. Fu, Integrated analysis of metabolic phenotypes in saccharomyces cerevisiae, BMC Genomics, 5 (2004), 1-11. doi: 10.1186/1471-2164-5-1
    [16] L. Kuepfer, U. Sauer, L. M. Blank, Metabolic functions of duplicate genes in saccharomyces cerevisiae, Genome Res., 15 (2005), 1421-1430. doi: 10.1101/gr.3992505
    [17] I. Nookaew, M. C. Jewett, A. Meechai, C. Thammarongtham, K. Laoteng, S. Cheevadhanarak, et al., The genome-scale metabolic model iin800 of saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism, BMC Syst. Biol., 2 (2008), 1-15. doi: 10.1186/1752-0509-2-1
    [18] M. L. Mo, B. Ø. Palsson, M. J. Herrgard, Connecting extracellular metabolomic measurements to intracellular flux states in yeast, BMC Syst. Biol., 3 (2009), 1-17. doi: 10.1186/1752-0509-3-1
    [19] T. Osterlund, I. Nookaew, S. Bordel, J. Nielsen, Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling, BMC Syst. Biol., 7 (2013), 1-10. doi: 10.1186/1752-0509-7-1
    [20] B. D. Heavner, K. Smallbone, N. D. Price, L. P. Walker, Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance, Database, 2013 2013.
    [21] J. S. Edwards, M. Covert, B. Palsson, Metabolic modelling of microbes: the flux-balance approach, Environ. Microbiol., 4 (2002), 133-140. doi: 10.1046/j.1462-2920.2002.00282.x
    [22] I. Famili, J. Forster, J. Nielsen, B. O. Palsson, Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network, Proc. Natl. Acad. Sci., 100 (2003), 13134-13139. doi: 10.1073/pnas.2235812100
    [23] R. P. Vivek-Ananth, A. Samal, Advances in the integration of transcriptional regulatory information into genome-scale metabolic models, Biosystems, 147 (2016), 1-10.
    [24] J. C. Nielsen, J. Nielsen, Development of fungal cell factories for the production of secondary metabolites: Linking genomics and metabolism, Synth. Syst. Biotechnol., 2 (2017), 5-12. doi: 10.1016/j.synbio.2017.02.002
    [25] D. M. Díaz-Montaño, E. Favela-Torres, J. Córdova, Improvement of growth, fermentative efficiency and ethanol tolerance of kloeckera africana during the fermentation of agave tequilana juice by addition of yeast extract, J. Sci. Food Agric., 90 (2009), 321-328.
    [26] A. López-Alvarez, A. L. Díaz-Pérez, C. Sosa-Aguirre, L. Macías-Rodríguez, J. Campos-García, Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus umpe-1 comparing with Saccharomyces Cerevisiae, beaker's yeast used in tequila production, J. Biosci. Bioeng., 113 (2012), 614-618. doi: 10.1016/j.jbiosc.2011.12.015
    [27] J. D. Orth, I. Thiele, B. Ø Palsson, What is flux balance analysis? Nat. Biotechnol., 28 (2010), 245-248.
    [28] S. Genome-Data, Saccharomyces cerevisiae genome database, Genome Database, 1 (2017).
    [29] G. N. Stephanopoulos, A. A. Aristidou, J. Nielsen, Metabolic engineering: Principles and methodologies, Metab. Eng., 1998.
    [30] T. L. Nissen, U. Schulze, J. Nielsen, J. Villadsen, Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae, Microbiology, 143 (1997), 203-218. doi: 10.1099/00221287-143-1-203
    [31] L. S. Horvath, C. J. Franzén, M. J. Taherzadeh, C. Niklassonand, G. Lidén, Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats, Appl. Environ. Microbiol., 69 (2003), 4076-4086. doi: 10.1128/AEM.69.7.4076-4086.2003
    [32] G. Beltran, M. Novo, N. Rozés, A. Mas, J. Guillamón, Nitrogen catabolite repression in Saccharomyces cerevisiae during wine fermentations, FEMS Yeast Res., 4 (2004), 625-632. doi: 10.1016/j.femsyr.2003.12.004
  • mbe-18-05-259-supplementary.pdf
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1243) PDF downloads(105) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog