Modelling with measures: Approximation of a mass-emitting object by a point source

  • Received: 01 April 2014 Accepted: 29 June 2018 Published: 01 December 2014
  • MSC : Primary: 35K05, 35A35; Secondary: 35B45.

  • We consider a linear diffusion equation on $\Omega:=\mathbb{R}^2\setminus\overline{\Omega_\mathcal{o}}$, where $\Omega_\mathcal{o}$ is a bounded domain. The time-dependent flux on the boundary $\Gamma:=∂\Omega_\mathcal{o}$ is prescribed. The aim of the paper is to approximate the dynamics by the solution of the diffusion equation on the whole of $\mathbb{R}^2$ with a measure-valued point source in the origin and provide estimates for the quality of approximation. For all time $t$, we derive an $L^2([0,t];L^2(\Gamma))$-bound on the difference in flux on the boundary. Moreover, we derive for all $t>0$ an $L^2(\Omega)$-bound and an $L^2([0,t];H^1(\Omega))$-bound for the difference of the solutions to the two models.

    Citation: Joep H.M. Evers, Sander C. Hille, Adrian Muntean. Modelling with measures: Approximation of a mass-emitting object by a point source[J]. Mathematical Biosciences and Engineering, 2015, 12(2): 357-373. doi: 10.3934/mbe.2015.12.357

    Related Papers:

    [1] Hamed Azizollahi, Marion Darbas, Mohamadou M. Diallo, Abdellatif El Badia, Stephanie Lohrengel . EEG in neonates: Forward modeling and sensitivity analysis with respect to variations of the conductivity. Mathematical Biosciences and Engineering, 2018, 15(4): 905-932. doi: 10.3934/mbe.2018041
    [2] H. T. Banks, D. Rubio, N. Saintier, M. I. Troparevsky . Optimal design for parameter estimation in EEG problems in a 3D multilayered domain. Mathematical Biosciences and Engineering, 2015, 12(4): 739-760. doi: 10.3934/mbe.2015.12.739
    [3] Xiaomei Feng, Jing Chen, Kai Wang, Lei Wang, Fengqin Zhang, Zhen Jin, Lan Zou, Xia Wang . Phase-adjusted estimation of the COVID-19 outbreak in South Korea under multi-source data and adjustment measures: a modelling study. Mathematical Biosciences and Engineering, 2020, 17(4): 3637-3648. doi: 10.3934/mbe.2020205
    [4] Peter W. Bates, Jianing Chen, Mingji Zhang . Dynamics of ionic flows via Poisson-Nernst-Planck systems with local hard-sphere potentials: Competition between cations. Mathematical Biosciences and Engineering, 2020, 17(4): 3736-3766. doi: 10.3934/mbe.2020210
    [5] Yingzi Li, Mingxuan Yang, Shuo Zhang . Study on the influence diffusion of SMEs in open-source communities from the perspective of complex networks. Mathematical Biosciences and Engineering, 2023, 20(7): 12731-12749. doi: 10.3934/mbe.2023568
    [6] Wen Cao, Siqi Zhao, Xiaochong Tong, Haoran Dai, Jiang Sun, Jiaqi Xu, Gongrun Qiu, Jingwen Zhu, Yuzhen Tian . Spatial-temporal diffusion model of aggregated infectious diseases based on population life characteristics: a case study of COVID-19. Mathematical Biosciences and Engineering, 2023, 20(7): 13086-13112. doi: 10.3934/mbe.2023583
    [7] Arthur D. Lander, Qing Nie, Frederic Y. M. Wan . Spatially Distributed Morphogen Production and Morphogen Gradient Formation. Mathematical Biosciences and Engineering, 2005, 2(2): 239-262. doi: 10.3934/mbe.2005.2.239
    [8] Ting Kang, Yanyan Du, Ming Ye, Qimin Zhang . Approximation of invariant measure for a stochastic population model with Markov chain and diffusion in a polluted environment. Mathematical Biosciences and Engineering, 2020, 17(6): 6702-6719. doi: 10.3934/mbe.2020349
    [9] Xu Song, Jingyu Li . Asymptotic stability of spiky steady states for a singular chemotaxis model with signal-suppressed motility. Mathematical Biosciences and Engineering, 2022, 19(12): 13988-14028. doi: 10.3934/mbe.2022652
    [10] Junhua Ku, Shuijia Li, Wenyin Gong . Photovoltaic models parameter estimation via an enhanced Rao-1 algorithm. Mathematical Biosciences and Engineering, 2022, 19(2): 1128-1153. doi: 10.3934/mbe.2022052
  • We consider a linear diffusion equation on $\Omega:=\mathbb{R}^2\setminus\overline{\Omega_\mathcal{o}}$, where $\Omega_\mathcal{o}$ is a bounded domain. The time-dependent flux on the boundary $\Gamma:=∂\Omega_\mathcal{o}$ is prescribed. The aim of the paper is to approximate the dynamics by the solution of the diffusion equation on the whole of $\mathbb{R}^2$ with a measure-valued point source in the origin and provide estimates for the quality of approximation. For all time $t$, we derive an $L^2([0,t];L^2(\Gamma))$-bound on the difference in flux on the boundary. Moreover, we derive for all $t>0$ an $L^2(\Omega)$-bound and an $L^2([0,t];H^1(\Omega))$-bound for the difference of the solutions to the two models.


    [1] 2nd edition, Academic Press, 2003.
    [2] Trends in Cell Biology, 13 (2003), 282-285.
    [3] Development, 140 (2013), 2253-2268.
    [4] J. Funct. Anal., 147 (1997), 237-258.
    [5] Journal of Experimental Botany, 63 (2012), 4213-4218.
    [6] Mathematical Models and Methods in Applied Sciences, 23 (2013), 1795-1859.
    [7] Nonlinear Analysis: Real World Applications, 11 (2010), 4524-4532.
    [8] Mem. Am. Math. Soc., 166 (2003), Viii+114 pp.
    [9] Math. Z., 257 (2007), 193-224.
    [10] Springer-Verlag, New York, 2000.
    [11] 2nd edition, Wiley, New York, 1999.
    [12] 3rd edition, Pearson Education, 2008.
    [13] Journal of Statistical Mechanics: Theory and Experiment, 2013 (2013), p04025.
    [14] Journal of Evolution Equations, 8 (2008), 423-448.
    [15] Integr. Equ. Oper. Theory, 63 (2009), 351-371.
    [16] Neuron, 68 (2010), 610-638.
    [17] Second edition, John Wiley and Sons, New York-London-Sydney, 1975.
    [18] Science, 255 (1982), 1523-1531.
    [19] Journal of Experimental Botany, 59 (2008), 45-53.
    [20] Appl. Math. Optim., 6 (1980), 287-333.
    [21] Springer Verlag, 1972.
    [22] Ann. Rev. Neurosci., 20 (1997), 125-156.
    [23] Trends in Plant Science, 12 (2007), 384-390.
    [24] Eur. J. Appl. Math, 25 (2014), 749-781.
    [25] Kluwer Academic Publishers, Dordrecht, 1991.
    [26] Springer-Verlang, New York, 1983.
    [27] Journal of Experimental Botany, 64 (2013), 1-9.
    [28] Math. Zeit., 27 (1928), 218-244.
    [29] Eleventh Copper Mountain Conference on Multigrid Methods, 2003.
    [30] Numer. Math., 122 (2012), 709-723.
    [31] Trudy Mat. Fust. Steklov, 83 (1965), 3-163 (Russian). Engl. Transl.: Proc. Steklov Inst. Math., 83 (1965), 1-184.
    [32] Princeton University Press, Princeton, New Jersey, 1970.
  • This article has been cited by:

    1. Joep H. M. Evers, Sander C. Hille, Adrian Muntean, Measure-Valued Mass Evolution Problems with Flux Boundary Conditions and Solution-Dependent Velocities, 2016, 48, 0036-1410, 1929, 10.1137/15M1031655
    2. Qiyao Peng, Sander C. Hille, Quality of approximating a mass-emitting object by a point source in a diffusion model, 2023, 151, 08981221, 491, 10.1016/j.camwa.2023.10.034
    3. Xiao Yang, Qiyao Peng, Sander C. Hille, Approximation of a compound-exchanging cell by a Dirac point, 2025, 59, 24058963, 73, 10.1016/j.ifacol.2025.03.014
    4. Qiyao Peng, Sander C. Hille, 2025, Chapter 25, 978-3-031-86168-0, 243, 10.1007/978-3-031-86169-7_25
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2540) PDF downloads(457) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog