A mixed system modeling two-directional pedestrian flows

  • Received: 01 April 2014 Accepted: 29 June 2018 Published: 01 December 2014
  • MSC : Primary: 35L65, 35M30; Secondary: 90B20.

  • In this article, we present a simplified model to describe the dynamics of two groups of pedestrians moving in opposite directions in a corridor.The model consists of a $2\times 2$ system of conservation laws of mixed hyperbolic-elliptic type.We study the basic properties of the system to understand why and how bounded oscillations in numerical simulations arise.We show that Lax-Friedrichs scheme ensures the invariance of the domain and we investigate the existence of measure-valued solutionsas limit of a subsequence of approximate solutions.

    Citation: Paola Goatin, Matthias Mimault. A mixed system modeling two-directional pedestrian flows[J]. Mathematical Biosciences and Engineering, 2015, 12(2): 375-392. doi: 10.3934/mbe.2015.12.375

    Related Papers:

    [1] Sebastien Motsch, Mehdi Moussaïd, Elsa G. Guillot, Mathieu Moreau, Julien Pettré, Guy Theraulaz, Cécile Appert-Rolland, Pierre Degond . Modeling crowd dynamics through coarse-grained data analysis. Mathematical Biosciences and Engineering, 2018, 15(6): 1271-1290. doi: 10.3934/mbe.2018059
    [2] Francesca Marcellini . The Riemann problem for a Two-Phase model for road traffic with fixed or moving constraints. Mathematical Biosciences and Engineering, 2020, 17(2): 1218-1232. doi: 10.3934/mbe.2020062
    [3] Raimund Bürger, Paola Goatin, Daniel Inzunza, Luis Miguel Villada . A non-local pedestrian flow model accounting for anisotropic interactions and domain boundaries. Mathematical Biosciences and Engineering, 2020, 17(5): 5883-5906. doi: 10.3934/mbe.2020314
    [4] Chun-Chao Yeh, Ke-Jia Jhang, Chin-Chun Chang . An intelligent indoor positioning system based on pedestrian directional signage object detection: a case study of Taipei Main Station. Mathematical Biosciences and Engineering, 2020, 17(1): 266-285. doi: 10.3934/mbe.2020015
    [5] Stephan Gerster, Michael Herty, Elisa Iacomini . Stability analysis of a hyperbolic stochastic Galerkin formulation for the Aw-Rascle-Zhang model with relaxation. Mathematical Biosciences and Engineering, 2021, 18(4): 4372-4389. doi: 10.3934/mbe.2021220
    [6] Emilio N. M. Cirillo, Matteo Colangeli, Adrian Muntean, T. K. Thoa Thieu . A lattice model for active-passive pedestrian dynamics: a quest for drafting effects. Mathematical Biosciences and Engineering, 2020, 17(1): 460-477. doi: 10.3934/mbe.2020025
    [7] Lijing Ma, Shiru Qu, Jie Ren, Xiangzhou Zhang . Mixed traffic flow of human-driven vehicles and connected autonomous vehicles: String stability and fundamental diagram. Mathematical Biosciences and Engineering, 2023, 20(2): 2280-2295. doi: 10.3934/mbe.2023107
    [8] Simone Göttlich, Stephan Knapp . Modeling random traffic accidents by conservation laws. Mathematical Biosciences and Engineering, 2020, 17(2): 1677-1701. doi: 10.3934/mbe.2020088
    [9] Nattawan Chuchalerm, Wannika Sawangtong, Benchawan Wiwatanapataphee, Thanongchai Siriapisith . Study of Non-Newtonian blood flow - heat transfer characteristics in the human coronary system with an external magnetic field. Mathematical Biosciences and Engineering, 2022, 19(9): 9550-9570. doi: 10.3934/mbe.2022444
    [10] Scott R. Pope, Laura M. Ellwein, Cheryl L. Zapata, Vera Novak, C. T. Kelley, Mette S. Olufsen . Estimation and identification of parameters in a lumped cerebrovascular model. Mathematical Biosciences and Engineering, 2009, 6(1): 93-115. doi: 10.3934/mbe.2009.6.93
  • In this article, we present a simplified model to describe the dynamics of two groups of pedestrians moving in opposite directions in a corridor.The model consists of a $2\times 2$ system of conservation laws of mixed hyperbolic-elliptic type.We study the basic properties of the system to understand why and how bounded oscillations in numerical simulations arise.We show that Lax-Friedrichs scheme ensures the invariance of the domain and we investigate the existence of measure-valued solutionsas limit of a subsequence of approximate solutions.


    [1] SIAM J. Appl. Math., 46 (1986), 1000-1017.
    [2] European J. Appl. Math., 14 (2003), 587-612.
    [3] Netw. Heterog. Media, 6 (2011), 401-423.
    [4] Q. Appl. Math., XVIII (1960), 191-204.
    [5] Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press, Oxford, 2000.
    [6] Technical report, ETH Zürich, 2006.
    [7] SIAM J. Numer. Anal., 30 (1993), 675-700.
    [8] Arch. Rational Mech. Anal., 88 (1985), 223-270.
    [9] in Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, (2000), 713-1020.
    [10] Appl. Math. Modelling, 13 (1989), 618-631,
    [11] Ph.D thesis, ETH Zürich dissertation Nr. 21025, 2013.
    [12] arXiv:1402.0909.
    [13] Z. Angew. Math. Phys., 46 (1995), 913-931.
    [14] Environment and Planning B, 28 (2001), 361-383.
    [15] in Nonlinear Evolution Equations That Change Type, IMA Vol. Math. Appl., 27, Springer, New York, 1990, 67-78.
    [16] SIAM J. Appl. Math., 48 (1988), 1009-1032.
    [17] Z. Angew. Math. Mech., 75 (1995), 571-581.
    [18] Confluentes Math., 3 (2011), 445-470.
    [19] Comm. Pure Appl. Math., 13 (1960), 217-237.
    [20] Trans. Amer. Math. Soc., 199 (1974), 89-112.
    [21] PLoS Comput. Biol., 8 (2012), e1002442.
    [22] J. Comput. Phys., 56 (1984), 363-409.
    [23] in Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math., 39, Pitman, Boston, Mass.-London, 1979, 136-212.
    [24] Ph.D Thesis, University of Houston, Houston, 1992. 68 pp.
  • This article has been cited by:

    1. William Ott, Ilya Timofeyev, Thomas Weber, Stochastic and coarse-grained two-dimensional modeling of directional particle movement, 2020, 402, 01672789, 132209, 10.1016/j.physd.2019.132209
    2. Alfio Borzì, 2020, Chapter 6, 978-3-030-50449-6, 111, 10.1007/978-3-030-50450-2_6
    3. S. Roy, A. Borzì, A. Habbal, Pedestrian motion modelled by Fokker–Planck Nash games, 2017, 4, 2054-5703, 170648, 10.1098/rsos.170648
    4. Susana N. Gomes, Andrew M. Stuart, Marie-Therese Wolfram, Parameter Estimation for Macroscopic Pedestrian Dynamics Models from Microscopic Data, 2019, 79, 0036-1399, 1475, 10.1137/18M1215980
    5. Stephane Mollier, Maria Laura Delle Monache, Carlos Canudas-de-Wit, 2019, A decision support and planning mobility method for large scale traffic networks, 978-3-907144-00-8, 1, 10.23919/ECC.2019.8795881
    6. Nicola Bellomo, Livio Gibelli, Annalisa Quaini, Alessandro Reali, Towards a mathematical theory of behavioral human crowds, 2022, 32, 0218-2025, 321, 10.1142/S0218202522500087
    7. Felisia Angela Chiarello, Paola Goatin, 2023, Chapter 3, 978-3-031-29874-5, 49, 10.1007/978-3-031-29875-2_3
    8. Livio Gibelli, Damián A. Knopoff, Jie Liao, Wenbin Yan, Macroscopic modeling of social crowds, 2024, 34, 0218-2025, 1135, 10.1142/S0218202524400098
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2831) PDF downloads(506) Cited by(8)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog