Global stability of equilibria in a tick-borne disease model

  • Received: 01 April 2007 Accepted: 29 June 2018 Published: 01 August 2007
  • MSC : 34C60, 34D23, 92D30.

  • In this short note we establish global stability results for a four-dimensional nonlinear system that was developed in modeling a tick-borne disease by H.D. Gaff and L.J. Gross (Bull. Math. Biol., 69 (2007), 265--288) where local stability results were obtained. These results provide the parameter ranges for controlling long-term population and disease dynamics.

    Citation: Shangbing Ai. Global stability of equilibria in a tick-borne disease model[J]. Mathematical Biosciences and Engineering, 2007, 4(4): 567-572. doi: 10.3934/mbe.2007.4.567

    Related Papers:

    [1] Muhammad Uzair Awan, Nousheen Akhtar, Artion Kashuri, Muhammad Aslam Noor, Yu-Ming Chu . 2D approximately reciprocal ρ-convex functions and associated integral inequalities. AIMS Mathematics, 2020, 5(5): 4662-4680. doi: 10.3934/math.2020299
    [2] Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable fractional integral inequalities for GG- and GA-convex functions. AIMS Mathematics, 2020, 5(5): 5012-5030. doi: 10.3934/math.2020322
    [3] Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386
    [4] Mehmet Eyüp Kiriş, Miguel Vivas-Cortez, Gözde Bayrak, Tuğba Çınar, Hüseyin Budak . On Hermite-Hadamard type inequalities for co-ordinated convex function via conformable fractional integrals. AIMS Mathematics, 2024, 9(4): 10267-10288. doi: 10.3934/math.2024502
    [5] Ghulam Farid, Saira Bano Akbar, Shafiq Ur Rehman, Josip Pečarić . Boundedness of fractional integral operators containing Mittag-Leffler functions via (s,m)-convexity. AIMS Mathematics, 2020, 5(2): 966-978. doi: 10.3934/math.2020067
    [6] Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328
    [7] Yue Wang, Ghulam Farid, Babar Khan Bangash, Weiwei Wang . Generalized inequalities for integral operators via several kinds of convex functions. AIMS Mathematics, 2020, 5(5): 4624-4643. doi: 10.3934/math.2020297
    [8] M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253
    [9] Muhammad Zakria Javed, Muhammad Uzair Awan, Loredana Ciurdariu, Omar Mutab Alsalami . Pseudo-ordering and δ1-level mappings: A study in fuzzy interval convex analysis. AIMS Mathematics, 2025, 10(3): 7154-7190. doi: 10.3934/math.2025327
    [10] Xiuzhi Yang, G. Farid, Waqas Nazeer, Muhammad Yussouf, Yu-Ming Chu, Chunfa Dong . Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions. AIMS Mathematics, 2020, 5(6): 6325-6340. doi: 10.3934/math.2020407
  • In this short note we establish global stability results for a four-dimensional nonlinear system that was developed in modeling a tick-borne disease by H.D. Gaff and L.J. Gross (Bull. Math. Biol., 69 (2007), 265--288) where local stability results were obtained. These results provide the parameter ranges for controlling long-term population and disease dynamics.


    The inequalities discovered by C. Hermite and J. Hadamard for convex functions are considerable significant in the literature (see, e.g., [9], [18], [27,p.137]). These inequalities state that if f:IR is a convex function on the interval I of real numbers and a,bI with a<b, then

    f(a+b2)1babaf(x)dxf(a)+f(b)2. (1.1)

    Both inequalities hold in the reversed direction if f is concave.

    The Hermite-Hadamard inequality, which is the first fundamental result for convex mappings with a natural geometrical interpretation and many applications, has drawn attention much interest in elementary mathematics. A number of mathematicians have devoted their efforts.

    The most well-known inequalities related to the integral mean of a convex function are the Hermite Hadamard inequalities or its weighted versions, the so-called Hermite-Hadamard-Fejér inequalities. In [17], Fejer gave a weighted generalization of the inequalities (1.1) as the following:

    Theorem 1. f:[a,b]R, be a convex function, then the inequality

    f(a+b2)bag(x)dxbaf(x)g(x)dxf(a)+f(b)2bag(x)dx (1.2)

    holds, where g:[a,b]R is nonnegative, integrable, and symmetric about x=a+b2 (i.e. g(x)=g(a+bx)).

    In this paper we will establish some new Fejér type inequalities for the new concept of co-ordinated hyperbolic ρ-convex functions.

    The overall structure of the paper takes the form of four sections including introduction. The paper is organized as follows: we first give the definition of co-ordinated convex functions, the definition of fractional integrals and related Hermite-Hadamard inequality in Section 1. We also recall the concept of hyperbolic ρ-convex functions and co-ordinated hyperbolic ρ-convex functions introduced by Özçelik et. al in [23]. Moreover, we give a lemma and a theorem which will be frequently used in the next section. Some Hermite-Hadamard-Fejer type inequalities for co-ordinated hyperbolic ρ-convex functions are obtained and some special cases of the results are also given in Section 2. Then, we also apply the inequalities obtained in Section 2 to establish some fractional Fejer type inequalities in Section 3. Finally, in Section 4, some conclusions and further directions of research are discussed.

    A formal definition for co-ordinated convex function may be stated as follows:

    Definition 1. A function f:Δ:=[a,b]×[c,d]R is called co-ordinated convex on Δ, for all (x,u),(y,v)Δ and t,s[0,1], if it satisfies the following inequality:

    f(tx+(1t) y,su+(1s) v)ts f(x,u)+t(1s)f(x,v)+s(1t)f(y,u)+(1t)(1s)f(y,v). (1.3)

    The mapping f is a co-ordinated concave on Δ if the inequality (1.3) holds in reversed direction for all t,s[0,1] and (x,u),(y,v)Δ.

    In [11], Dragomir proved the following inequalities which is Hermite-Hadamard type inequalities for co-ordinated convex functions on the rectangle from the plane R2.

    Theorem 2. Suppose that f:Δ:=[a,b]×[c,d]R is co-ordinated convex, then we have the following inequalities:

    f(a+b2,c+d2)12[1babaf(x,c+d2)dx+1dcdcf(a+b2,y)dy]1(ba)(dc)badcf(x,y)dydx14[1babaf(x,c)dx+1babaf(x,d)dx+1dcdcf(a,y)dy+1dcdcf(b,y)dy]f(a,c)+f(a,d)+f(b,c)+f(b,d)4. (1.4)

    The above inequalities are sharp. The inequalities in (1.4) hold in reverse direction if the mapping f is a co-ordinated concave mapping.

    Over the years, the numerous studies have focused on to establish generalization of the inequality (1.1) and (1.4). For some of them, please see ([1,2,3,4,5,6,7,8], [19,20,21,22,23,24,25,26], [28,29,30,31,32,33,34,35,36]).

    Definition 2. [29] Let fL1(Δ).The Riemann-Lioville integrals Jα,βa+,c+,Jα,βa+,d,+Jα,βb,c+ and Jα,βb,dof order α,β>0 with a,c0 are defined by

    Jα,βa+,c+f(x,y)=1Γ(α)Γ(β)xayc(xt)α1(ys)β1f(t,s)dsdt,  x>a, y>c,Jα,βa+,df(x,y)=1Γ(α)Γ(β)xady(xt)α1(sy)β1f(t,s)dsdt,  x>a, y>d,Jα,βb,c+f(x,y)=1Γ(α)Γ(β)bxyc(tx)α1(ys)β1f(t,s)dsdt,  x<b, y>c,Jα,βb,df(x,y)=1Γ(α)Γ(β)bxdy(tx)α1(sy)β1f(t,s)dsdt,  x<b, y<d,

    respectively. Here, Γ is the Gamma funtion,

    J0,0a+,c+f(x,y)=J0,0a+,df(x,y)=J0,0b,c+f(x,y)=J0,0b,df(x,y)

    and

    J1,1a+,c+f(x,y)=xaycf(t,s)dsdt.

    First, we give the definition of hyperbolic ρ-convex functions and some related inequalities. Then we define the co-ordinated hyperbolic ρ -convex functions.

    Definition 3. [10] A function f:IR is said to be hyperbolic ρ-convex, if for any arbitrary closed subinterval [a,b] of I such that we have

    f(x)sinh[ρ(bx)]sinh[ρ(ba)]f(a)+sinh[ρ(xa)]sinh[ρ(ba)]f(b) (1.5)

    for all x[a,b]. If we take x=(1t)a+tb, t[0,1] in (1.5), then the condition (1.5) becomes

    f((1t)a+tb)sinh[ρ(1t)(ba)]sinh[ρ(ba)]f(a)+sinh[ρt(ba)]sinh[ρ(ba)]f(b). (1.6)

    If the inequality (1.5) holds with "", then the function will be called hyperbolic ρ-concave on I.

    The following Hermite-Hadamard inequality for hyperbolic ρ-convex function is proved by Dragomir in [10].

    Theorem 3. Suppose that f:IR is hyperbolic ρ-convex on I. Then for any a,bI, we have

    2ρf(a+b2)sinh[ρ(ba)2]baf(x)dxf(a)+f(b)ρtanh[ρ(ba)2]. (1.7)

    Moreover in [12], Dragomir prove the following Hermite Hadamard-Fejer type inequalities for hyperbolic ρ-convex functions.

    Theorem 4. Assume that the function f:IR is hyperbolic ρ-convex on I and a,bI. Assume also that p:[a,b]R is a positive, symmetric and integrable function on [a,b], then we have

    f(a+b2)bacosh[ρ(xa+b2)]p(x)dxbaf(x)p(x)dxf(a)+f(b)2sech[ρ(ba)2]bacosh[ρ(xa+b2)]p(x)dx. (1.8)

    For the other inequalities for hyperbolic ρ-convex functions, please refer to ([12,13,14,15]).

    Now we give the definition of co-ordinated hyperbolic ρ-convex functions.

    Definition 4. [23] A function f:ΔR is said to co-ordinated hyperbolic ρ-convex on Δ, if the inequality

    f(x,y)sinh[ρ1(bx)]sinh[ρ1(ba)]sinh[ρ2(dy)]sinh[ρ2(dc)]f(a,c)+sinh[ρ1(bx)]sinh[ρ1(ba)]sinh[ρ2(yc)]sinh[ρ2(dc)]f(a,d)+sinh[ρ1(xa)]sinh[ρ1(ba)]sinh[ρ2(dy)]sinh[ρ2(dc)]f(b,c)+sinh[ρ1(xa)]sinh[ρ1(ba)]sinh[ρ2(yc)]sinh[ρ2(dc)]f(b,d). (1.9)

    holds.

    If the inequality (1.9) holds with "", then the function will be called co-ordinated hyperbolic ρ-concave on Δ.

    If we take x=(1t)a+tb and y=(1s)c+sd for t,s,[0,1], then the inequality (1.9) can be written as

    f((1t)a+tb,(1s)c+sd)sinh[ρ1(1t)(ba)]sinh[ρ1(ba)]sinh[ρ2(1s)(dy)]sinh[ρ2(dc)]f(a,c)+sinh[ρ1(1t)(ba)]sinh[ρ1(ba)]sinh[ρ2s(dy)]sinh[ρ2(dc)]f(a,d)+sinh[ρ1t(ba)]sinh[ρ1(ba)]sinh[ρ2(1s)(dy)]sinh[ρ2(dc)]f(b,c)+sinh[ρ1(ba)]sinh[ρ1(ba)]sinh[ρ2s(dy)]sinh[ρ2(dc)]f(b,d). (1.10)

    Now we give the following useful lemma:

    Lemma 1. [23] If f:Δ=[a,b]×[c,d]R is co-ordinated ρ-convex function on Δ, then we have the following inequality

    cosh[ρ1(xa+b2)]cosh[ρ2(yc+d2)]f(a+b2,c+d2)14[f(x,y)+f(x,c+dy)+f(a+bx,y)+f(a+bx,c+dy)]f(a,c)+f(a,d)+f(b,c)+f(b,d)4cosh[ρ1(xa+b2)]cosh[ρ1(ba)2]cosh[ρ2(yc+d2)]cosh[ρ2(dc)2] (1.11)

    for all (x,y)Δ.

    Theorem 5. Let p:ΔR be a positive, integrable and symmetric about a+b2 and c+d2. Let, f:ΔR be a co-ordinated hyperbolic ρ-convex functions on Δ. We have the following Hermite-Hadamard-Fejer type inequalities:

    f(a+b2,c+d2)badccosh[ρ1(xa+b2)]cosh[ρ2(yc+d2)]p(x,y)dydxbadcf(x,y)p(x,y)dydxf(a,c)+f(a,d)+f(b,c)+f(b,d)4cosh[ρ1(ba)2]cosh[ρ2(dc)2]×badccosh[ρ1(xa+b2)]cosh[ρ2(yc+d2)]p(x,y)dydx. (2.1)

    Proof. Multiplying the inequality (1.1) by p(x,y)>0 and then integrating with respect to (x,y) on Δ, we obtain

    f(a+b2,c+d2)badccosh[ρ1(xa+b2)]cosh[ρ2(yc+d2)]p(x,y)dydx14badc[f(x,y)+f(x,c+dy)+f(a+bx,y)+f(a+bx,c+dy)]p(x,y)dydxf(a,c)+f(a,d)+f(b,c)+f(b,d)4cosh[ρ1(ba)2]cosh[ρ2(dc)2]×badccosh[ρ1(xa+b2)]cosh[ρ2(yc+d2)]p(x,y)dydx (2.2)

    Since p is symmetric about a+b2 and c+d2, one can show that

    badcf(x,c+dy)p(x,y)dydx=badcf(a+bx,y)p(x,y)dydx=badcf(a+bx,c+dy)p(x,y)dydx=badcf(x,y)p(x,y)dydx.

    This completes the proof.

    Remark 1. If we choose p(x,y)=1 in Theorem 5, then we have the following the inequality

    4ρ1ρ2sinh[ρ1(ba)2]sinh[ρ2(dc)2]f(a+b2,c+d2)badcf(x,y)dydxf(a,c)+f(a,d)+f(b,c)+f(b,d)ρ1ρ2tanh[ρ1(ba)2]tanh[ρ2(dc)2]

    which is proved by Özçelik et. al in [23].

    Corollary 1. Suppose that all assumptions of Theorem 5 are satisfied. Then we have the following inequality,

    f(a+b2,c+d2)badcw(x,y)dydxbadcf(x,y)w(x,y)sech[ρ1(xa+b2)]sech[ρ2(yc+d2)]dydxf(a,c)+f(a,d)+f(b,c)+f(b,d)4sech[ρ1(ba)2]sech[ρ2(dc)2]badcw(x,y)dydx. (2.3)

    Proof. Let us define the function p(x,y) by

    w(x,y)=p(x,y)cosh[ρ1(xa+b2)]cosh[ρ2(yc+d2)].

    Clearly, w(x.y) is a a positive, integrable and symmetric about a+b2 and c+d2. If we apply Theorem 5 for the function w(x,y) then we establish the desired inequality (2.3).

    Remark 2. If we choose w(x,y)=1 for all (x,y)ϵΔ in Corollary 1, then we have the following the inequality

    f(a+b2,c+d2)1(ba)(dc)badcf(x,y)sech[ρ1(xa+b2)]sech[ρ2(yc+d2)]dydxf(a,c)+f(a,d)+f(b,c)+f(b,d)4sech[ρ1(ba)2]sech[ρ2(dc)2]. (2.4)

    which is proved by Özçelik et. al in [23].

    Theorem 6. Let p:ΔR be a positive, integrable and symmetric about a+b2 and c+d2. Let f:ΔR be a co-ordinated hyperbolic ρ-convex on Δ, then we have the following Hermite-Hadamard-Fejer type inequalities

    f(a+b2,c+d2)badccosh[ρ1(xa+b2)]cosh[ρ2(yc+d2)]p(x,y)dydx12[badcf(x,c+d2)cosh[ρ2(yc+d2)]p(x,y)dydx+badcf(a+b2,y)cosh[ρ1(xa+b2)]p(x,y)dydx]badcf(x,y)p(x,y)dydx14[sech[ρ2(dc)2]badc[f(x,c)+f(x,d)]cosh[ρ2(yc+d2)]p(x,y)dydx+sech[ρ1(ba)2]badc[f(a,y)+f(b,y)]cosh[ρ1(xa+b2)]p(x,y)dydx]f(a,c)+f(b,c)+f(a,d)+f(b,d)4sech[ρ1(ba)2]sech[ρ2(dc)2]×badccosh[ρ1(xa+b2)]cosh[ρ2(yc+d2)]p(x,y)dydx. (2.5)

    Proof. Since f is co-ordinated hyperbolic ρ-convex on Δ, if we define the mappings fx:[c,d]R, fx(y)=f(x,y) and px:[c,d]R, px(y)=p(x,y), then fx(y) is hyperbolic ρ-convex on [c,d] and px(y) is positive, integrable and symmetric about c+d2 for all x[a,b]. If we apply the inequality (1.8) for the hyperbolic ρ-convex function fx(y), then we have

    fx(c+d2)dccosh[ρ2(yc+d2)]px(y)dydcfx(y)px(y)dyfx(c)+fx(d)2sech[ρ2(dc)2]dccosh[ρ2(yc+d2)]px(y)dy. (2.6)

    That is,

    f(x,c+d2)dccosh[ρ2(yc+d2)]p(x,y)dydcf(x,y)p(x,y)dyf(x,c)+f(x,d)2sech[ρ2(dc)2]dccosh[ρ2(yc+d2)]p(x,y)dy. (2.7)

    Integrating the inequality (2.7) with respect to x from a to b, we obtain

    badcf(x,c+d2)cosh[ρ2(yc+d2)]p(x,y)dydxbadcf(x,y)p(x,y)dydx12badc[f(x,c)+f(x,d)]sech[ρ2(dc)2]cosh[ρ2(yc+d2)]p(x,y)dydx. (2.8)

    Similarly, as f is co-ordinated hyperbolic ρ-convex on Δ, if we define the mappings fy:[a,b]R, fy(x)=f(x,y) and py:[a,b]R, py(x)=p(x,y), then fy(x) is hyperbolic ρ-convex on [a,b] and py(x) is positive, integrable and symmetric about a+b2 for all y[c,d]. Utilizing the inequality (1.8) for the hyperbolic ρ-convex function fy(x), then we obtain the inequality

    fy(a+b2)bacosh[ρ1(xa+b2)]py(x)dxbafy(x)py(x)dxfy(a)+fy(b)2sech[ρ1(ba)2]bacosh[ρ1(xa+b2)]py(x)dx (2.9)

    i.e.

    f(a+b2,y)bacosh[ρ1(xa+b2)]p(x,y)dxbaf(x,y)p(x,y)dxf(a,y)+f(b,y)2sech[ρ1(ba)2]bacosh[ρ1(xa+b2)]p(x,y)dx. (2.10)

    Integrating the inequality (2.10) with respect to y on [c,d], we get

    badcf(a+b2,y)cosh[ρ1(xa+b2)]p(x,y)dydxbadcf(x,y)p(x,y)dydx12badc[f(a,y)+f(b,y)]sech[ρ1(ba)2]cosh[ρ1(xa+b2)]p(x,y)dydx. (2.11)

    Summing the inequalities (2.8) and (2.11), we obtain the second and third inequalities in (2.5).

    Since f(a+b2,y) is hyperbolic ρ-convex on [c,d] and px(y) is positive, integrable and symmetric about c+d2, using the first inequality in (1.8), we have

    f(a+b2,c+d2)dccosh[ρ2(yc+d2)]p(x,y)dydcf(a+b2,y)p(x,y)dy. (2.12)

    Multiplying the inequality (2.12) by cosh[ρ1(xa+b2)] and integrating resulting inequality with respect to x on [a,b], we get

    f(a+b2,c+d2)badccosh[ρ2(yc+d2)]cosh[ρ1(xa+b2)]p(x,y)dydxbadcf(a+b2,y)cosh[ρ1(xa+b2)]p(x,y)dydx. (2.13)

    Since f(x,c+d2) is hyperbolic ρ-convex on [a,b] and py(x) is positive, integrable and symmetric about a+b2, utilizing the first inequality in (1.8), we have the following inequality

    f(a+b2,c+d2)bacosh[ρ1(xa+b2)]p(x,y)dxbaf(x,c+d2)p(x,y)dx. (2.14)

    Multiplying the inequality (2.14) by cosh[ρ2(yc+d2)] and integrating resulting inequality with respect to y on [c,d], we get

    f(a+b2,c+d2)badccosh[ρ1(xa+b2)]cosh[ρ2(yc+d2)]p(x,y)dydxbadcf(x,c+d2)cosh[ρ2(yc+d2)]p(x,y)dydx. (2.15)

    From the inequalities (2.13) and (2.15), we obtain the first inequality in (2.5).

    For the proof of last inequality in (2.5), using the second inequality in (1.8) for the hyperbolic ρ-convex functions f(x,c) and f(x,d) on [a,b] and for the symmetric function py(x), we obtain the inequalities

    baf(x,c)p(x,y)dxf(a,c)+f(b,c)2sech[ρ1(ba)2]bacosh[ρ1(xa+b2)]p(x,y)dx (2.16)

    and

    baf(x,d)p(x,y)dxf(a,d)+f(b,d)2sech[ρ1(ba)2]bacosh[ρ1(xa+b2)]p(x,y)dx. (2.17)

    If we multiply the inequalities (2.16) and (2.17) by sech[ρ2(dc)2]cosh[ρ2(yc+d2)] and integrating the resulting inequalities on [c,d], then we have

    badcf(x,c)sech[ρ2(dc)2]cosh[ρ2(yc+d2)]p(x,y)dydxf(a,c)+f(b,c)2sech[ρ1(ba)2]sech[ρ2(dc)2]×badccosh[ρ1(xa+b2)]cosh[ρ2(yc+d2)]p(x,y)dydx (2.18)

    and

    badcf(x,d)sech[ρ2(dc)2]cosh[ρ2(yc+d2)]p(x,y)dydxf(a,d)+f(b,d)2sech[ρ1(ba)2]sech[ρ2(dc)2]×badccosh[ρ1(xa+b2)]cosh[ρ2(yc+d2)]p(x,y)dydx. (2.19)

    Similarly, applying the second inequality in (1.8) for the hyperbolic ρ-convex functions f(a,y) and f(b,y) on [c,d] and for the symmetric function px(y), we have

    dcf(a,y)p(x,y)dyf(a,c)+f(a,d)2sech[ρ2(dc)2]dccosh[ρ2(yc+d2)]p(x,y)dy (2.20)

    and

    dcf(b,y)p(x,y)dyf(b,c)+f(b,d)2sech[ρ2(dc)2]dccosh[ρ2(yc+d2)]p(x,y)dy. (2.21)

    Multiplying the inequalities (2.20) and (2.21) by sech[ρ1(ba)2]cosh[ρ1(xa+b2)] and integrating the resulting inequalities on [a,b], then we have

    badcf(a,y)sech[ρ1(ba)2]cosh[ρ1(xa+b2)]p(x,y)dydxf(a,c)+f(a,d)2sech[ρ2(dc)2]sech[ρ1(ba)2]×badccosh[ρ2(yc+d2)]cosh[ρ1(xa+b2)]p(x,y)dydx (2.22)

    and

    badcf(b,y)sech[ρ1(ba)2]cosh[ρ1(xa+b2)]p(x,y)dydxf(b,c)+f(b,d)2sech[ρ2(dc)2]sech[ρ1(ba)2]×badccosh[ρ2(yc+d2)]cosh[ρ1(xa+b2)]p(x,y)dydx. (2.23)

    Summing the inequalities (2.18), (2.19), (2.22) and (2.23), we establish the last inequality in (2.5). This completes the proof.

    Remark 3. If we choose p(x,y)=1 in Theorem 6, then we have

    4ρ1ρ2sinh[ρ1(ba)2]sinh[ρ2(dc)2]f(a+b2,c+d2)1ρ1sinh[ρ1(ba)2]dcf(a+b2,y)dy+1ρ2sinh[ρ2(dc)2]baf(x,c+d2)dxbadcf(x,y)dydx12[1ρ2tanh[ρ2(dc)2]ba[f(x,c)+f(x,d)]dx+1ρ1tanh[ρ1(ba)2]dc[f(a,y)+f(b,y)]dy]tanh[ρ1(ba)2]tanh[ρ2(dc)2]f(a,c)+f(a,d)+f(b,c)+f(b,d)ρ1ρ2 (2.24)

    which is proved by Özçelik et. al in [23].

    Remark 4. Choosing ρ1=ρ2=0 in Theorem 6, we obtain

    f(a+b2,c+d2)badcp(x,y)dydx12badc[f(x,c+d2)+f(a+b2,y)]p(x,y)dydxbadcf(x,y)p(x,y)dydx14badc[f(x,c)+f(x,d)+f(a,y)+f(b,y)]p(x,y)dydxf(a,c)+f(a,d)+f(b,c)+f(b,d)4badcp(x,y)dydx.

    which is proved by Budak and Sarikaya in [5].

    Corollary 2. Let g1:[a,b]R and g1:[c,d]R be two positive, integrable and symmetric about a+b2 and c+d2, respectively. If we choose p(x,y)=g1(x)g2(y)G1G2 for all (x,y)Δ in Theorem 6, then we have

    f(a+b2,c+d2)12[1G1baf(x,c+d2)g1(x)dx+1G2dcf(a+b2,y)g2(y)dy]1G1G2badcf(x,y)g1(x)g2(y)dydx14[sech[ρ2(dc)2]1G1ba[f(x,c)+f(x,d)]g1(x)dx+sech[ρ1(ba)2]1G2dc[f(a,y)+f(b,y)]g2(y)dy]f(a,c)+f(b,c)+f(a,d)+f(b,d)4sech[ρ1(ba)2]sech[ρ2(dc)2] (2.25)

    where

    G1=bacosh[ρ1(xa+b2)]g1(x)dxandG2=dccosh[ρ2(yc+d2)]g2(y)dy.

    Remark 5. If we choose ρ1=ρ2=0 in Corollary 2, then we have

    f(a+b2,c+d2)12[1G1baf(x,c+d2)g1(x)dx+1G2dcf(a+b2,y)g2(y)dy]1G1G2badcf(x,y)g1(x)g2(y)dydx14[1G1ba[f(x,c)+f(x,d)]g1(x)dx+1G2dc[f(a,y)+f(b,y)]g2(y)dy]f(a,c)+f(a,d)+f(b,c)+f(b,d)4

    which is proved by Farid et al. in [16].

    In this section we obtain some fractional Hermite-Hadamard an Fejer type inequalities for co-ordinated hyperbolic ρ-convex functions.

    Theorem 7. If f:ΔR is a co-ordinated hyperbolic ρ-convex functions on Δ, then we have the following Hermite-Hadamard and Fejer type inequalities,

    f(a+b2,c+d2)H(α,β)[Jα,βa+,c+f(b,d)+Jα,βa+,df(b,c)+Jα,βb,c+f(a,d)+Jα,βb,df(a,c)]f(a,c)+f(a,d)+f(b,c)+f(b,d)4sech[ρ1(ba)2]sech[ρ2(dc)2]H(α,β)

    where

    H(α,β)=1Γ(α)Γ(β)badccosh[ρ1(xa+b2)]cosh[ρ2(yc+d2)]×[(bx)α1(dy)β1+(bx)α1(yc)β1+(xa)α1(dy)β1+(xa)α1(yc)β1]dydx.

    Proof. If we apply Theorem 5 for the symmetric function

    p(x,y)=1Γ(α)Γ(β)[(bx)α1(dy)β1+(bx)α1(yc)β1+(xa)α1(dy)β1+(xa)α1(yc)β1],

    then we get the following inequality

    f(a+b2,c+d2)H(α,β)1Γ(α)Γ(β)badcf(x,y)[(bx)α1(dy)β1+(bx)α1(yc)β1+(xa)α1(dy)β1+(xa)α1(yc)β1]dydxf(a,c)+f(a,d)+f(b,c)+f(b,d)4sech[ρ1(ba)2]sech[ρ2(dc)2]H(α,β).

    From the definition of the double fractional integrals we have

    1Γ(α)Γ(β)badcf(x,y)[(bx)α1(dy)β1+(bx)α1(yc)β1+(xa)α1(dy)β1+(xa)α1(yc)β1]dydx=[Jα,βa+,c+f(b,d)+Jα,βa+,df(b,c)+Jα,βb,c+f(a,d)+Jα,βb,df(a,c)]

    which completes the proof.

    Remark 6. If we choose ρ1=ρ2=0 in Theorem 7, then we have the following fractional Hermite-Hadamard inequality,

    f(a+b2,c+d2)Γ(α+1)Γ(β+1)4(ba)α(dc)β[Jα,βa+,c+f(b,d)+Jα,βa+,df(b,c)+Jα,βb,c+f(a,d)+Jα,βb,df(a,c)]f(a,c)+f(a,d)+f(b,c)+f(b,d)4

    which was proved by Sarikaya in [29,Theorem 4].

    Remark 7. If we choose α =β=1 in Theorem 7, then we have

    H(1,1)=16ρ1ρ2sinh(ρ1(ba)2)sinh(ρ2(dc)2).

    Thus, we get the following Hermite-Hadamard inequality,

    4ρ1ρ2f(a+b2,c+d2)sinh(ρ1(ba)2)sinh(ρ2(dc)2)badcf(x,y)dydxf(a,c)+f(a,d)+f(b,c)+f(b,d)ρ1ρ2tanh[ρ1(ba)2]tanh[ρ2(dc)2]

    which is proved by Özçelik et al. in [23].

    Theorem 8. Let p:ΔR be a positive, integrable and symmetric about a+b2 and c+d2. If f:ΔR is a co-ordinated hyperbolic ρ-convex functions on Δ, then we have the following Hermite-Hadamard-Fejer type inequalities,

    f(a+b2,c+d2)Hp(α,β)[Jα,βa+,c+(fp)(b,d)+Jα,βa+,d(fp)(b,c)+Jα,βb,c+(fp)(a,d)+Jα,βb,d(fp)(a,c)]f(a,c)+f(a,d)+f(b,c)+f(b,d)4sech[ρ1(ba)2]sech[ρ2(dc)2]Hp(α,β)

    where

    Hp(α,β)=1Γ(α)Γ(β)badccosh[ρ1(xa+b2)]cosh[ρ2(yc+d2)]×[(bx)α1(dy)β1+(bx)α1(yc)β1+(xa)α1(dy)β1+(xa)α1(yc)β1]p(x,y)dydx.

    Proof. Let us define the function k(x,y) by

    k(x,y)=p(x,y)Γ(α)Γ(β)[(bx)α1(dy)β1+(bx)α1(yc)β1+(xa)α1(dy)β1+(xa)α1(yc)β1],

    Clearly, k(x.y) is a a positive, integrable and symmetric about a+b2 and c+d2. If we apply Theorem 5 for the function k(x,y) then we obtain,

    f(a+b2,c+d2)Hp(α,β)1Γ(α)Γ(β)badcf(x,y)p(x,y)[(bx)α1(dy)β1+(bx)α1(yc)β1+(xa)α1(dy)β1+(xa)α1(yc)β1]dydxf(a,c)+f(a,d)+f(b,c)+f(b,d)4cosh[ρ1(ba)2]cosh[ρ2(dc)2]Hp(α,β).

    From the definition of the double fractional integrals we have

    1Γ(α)Γ(β)badcf(x,y)[(bx)α1(dy)β1+(bx)α1(yc)β1+(xa)α1(dy)β1+(xa)α1(yc)β1]p(x,y)dydx=[Jα,βa+,c+(fp)(b,d)+Jα,βa+,d(fp)(b,c)+Jα,βb,c+(fp)(a,d)+Jα,βb,d(fp)(a,c)].

    This completes the proof.

    Remark 8. If we choose ρ1=ρ2=0 in Theorem 3, then we have the following fractional Hermite-Hadamard inequality,

    f(a+b2,c+d2)[Jα,βa+,c+p(b,d)+Jα,βa+,dp(b,c)+Jα,βb,c+p(a,d)+Jα,βb,dp(a,c)][Jα,βa+,c+(fp)(b,d)+Jα,βa+,d(fp)(b,c)+Jα,βb,c+(fp)(a,d)+Jα,βb,d(fp)(a,c)]f(a,c)+f(a,d)+f(b,c)+f(b,d)4[Jα,βa+,c+p(b,d)+Jα,βa+,dp(b,c)+Jα,βb,c+p(a,d)+Jα,βb,dp(a,c)]

    which is proved by Yaldız et all in [34].

    Remark 9. If we choose α =β=1 in Theorem 3, then we have Theorem 1.3 reduces to Theorem 5.

    Theorem 9. If f:ΔR is a co-ordinated hyperbolic ρ-convex functions on Δ. Then we have the following Hermite-Hadamard type inequalities for fractional integrals,

    f(a+b2,c+d2)H1(α,β)12[(Jαa+f(b,c+d2)+Jαbf(a,c+d2))H2(β)+Jβc+f(d,a+b2)+Jβdf(c,a+b2)H3(α)][Jα,βa+,c+f(b,d)+Jα,βa+,df(b,c)+Jα,βb,c+f(a,d)+Jα,βb,df(a,c)]14[sech[ρ2(dc)2](Jαa+f(b,c)+Jαa+f(b,d)+Jαbf(a,c)+Jαbf(a,d))H2(β)+sech[ρ1(ba)2](Jβc+f(a,d)+Jβc+f(b,d)+Jβdf(a,c)+Jβdf(b,c))H3(α)]f(a,c)+f(b,c)+f(a,d)+f(b,d)4sech[ρ1(ba)2]sech[ρ2(dc)2]H1(α,β) (3.1)

    where

    H1(α,β)=1Γ(α)Γ(β)badccosh[ρ1(xa+b2)]cosh[ρ2(yc+d2)]×[(bx)α1(dy)β1+(bx)α1(yc)β1+(xa)α1(dy)β1+(xa)α1(yc)β1]dydx,
    H2(β)=1Γ(β)dccosh[ρ2(yc+d2)][(dy)β1+(yc)β1]dy

    and

    H3(α,β)=1Γ(α)bacosh[ρ1(xa+b2)][(bx)α1+(xa)α1]dx.

    Proof. If we apply Theorem 6 for the symmetric function

    p(x,y)=1Γ(α)Γ(β)[(bx)α1(dy)β1+(bx)α1(yc)β1+(xa)α1(dy)β1+(xa)α1(yc)β1],

    then we get the following inequality

    f(a+b2,c+d2)H1(α,β)12[(1Γ(α)baf(x,c+d2)[(bx)α1+(xa)α1]dx)H2(β)+(1Γ(β)dcf(a+b2,y)[(dy)β1+(yc)β1]dy)H3(α)]1Γ(α)Γ(β)badcf(x,y)[(bx)α1(dy)β1+(bx)α1(yc)β1+(xa)α1(dy)β1+(xa)α1(yc)β1]dydx14[sech[ρ2(dc)2](1Γ(α)ba[f(x,c)+f(x,d)][(bx)α1+(xa)α1]dx)H2(β)+sech[ρ1(ba)2](1Γ(β)ba[f(a,y)+f(b,y)][(dy)β1+(yc)β1]dx)H3(α)]f(a,c)+f(b,c)+f(a,d)+f(b,d)4sech[ρ1(ba)2]sech[ρ2(dc)2]H1(α,β).

    This completes the proof.

    Remark 10. Under assumptions of Theorem 9 with α=β=1, the inequalities (3.1) reduce to inequalities (2.5) proved by Özçelik et. al in [23].

    Remark 11. Under assumptions of Theorem 9 with ρ1=ρ2=0, the inequalities (3.1) reduce to inequalities proved by Sarikaya in [29,Theorem 4]

    In this paper, we establish some Fejer type inequalities for co-ordinated hyperbolic ρ-convex functions. By using these inequalities we present some inequalities for Riemann-Liouville fractional integrals. In the future works, authors can prove similar inequalities for other fractional integrals.

    All authors declare no conflicts of interest.

  • This article has been cited by:

    1. Dumitru Baleanu, Artion Kashuri, Pshtiwan Othman Mohammed, Badreddine Meftah, General Raina fractional integral inequalities on coordinates of convex functions, 2021, 2021, 1687-1847, 10.1186/s13662-021-03241-y
    2. Han Li, Muhammad Shoaib Saleem, Imran Ahmed, Kiran Naseem Aslam, Hermite–Hadamard and Fejér-type inequalities for strongly reciprocally (p, h)-convex functions of higher order, 2023, 2023, 1029-242X, 10.1186/s13660-023-02960-y
    3. Silvestru Sever Dragomir, Mohamed Jleli, Bessem Samet, Hermite-Hadamard-type inequalities for generalized trigonometrically and hyperbolic ρ-convex functions in two dimension, 2024, 22, 2391-5455, 10.1515/math-2024-0028
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2511) PDF downloads(481) Cited by(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog