Evaluating growth measures in an immigration process subject to binomial and geometric catastrophes

  • Received: 01 March 2007 Accepted: 29 June 2018 Published: 01 August 2007
  • MSC : Primary: 92D25; Secondary: 60J99.

  • Populations are often subject to the effect of catastrophic events that cause mass removal. In particular, metapopulation models, epidemics, and migratory flows provide practical examples of populations subject to disasters (e.g., habitat destruction, environmental catastrophes). Many stochastic models have been developed to explain the behavior of these populations. Most of the reported results concern the measures of the risk of extinction and the distribution of the population size in the case of total catastrophes where all individuals in the population are removed simultaneously. In this paper, we investigate the basic immigration process subject to binomial and geometric catastrophes; that is, the population size is reduced according to a binomial or a geometric law. We carry out an extensive analysis including first extinction time, number of individuals removed, survival time of a tagged individual, and maximum population size reached between two consecutive extinctions. Many explicit expressions are derived for these system descriptors, and some emphasis is put to show that some of them deserve extra attention.

    Citation: Jesus R. Artalejo, A. Economou, M.J. Lopez-Herrero. Evaluating growth measures in an immigration process subject to binomial and geometric catastrophes[J]. Mathematical Biosciences and Engineering, 2007, 4(4): 573-594. doi: 10.3934/mbe.2007.4.573

    Related Papers:

  • Populations are often subject to the effect of catastrophic events that cause mass removal. In particular, metapopulation models, epidemics, and migratory flows provide practical examples of populations subject to disasters (e.g., habitat destruction, environmental catastrophes). Many stochastic models have been developed to explain the behavior of these populations. Most of the reported results concern the measures of the risk of extinction and the distribution of the population size in the case of total catastrophes where all individuals in the population are removed simultaneously. In this paper, we investigate the basic immigration process subject to binomial and geometric catastrophes; that is, the population size is reduced according to a binomial or a geometric law. We carry out an extensive analysis including first extinction time, number of individuals removed, survival time of a tagged individual, and maximum population size reached between two consecutive extinctions. Many explicit expressions are derived for these system descriptors, and some emphasis is put to show that some of them deserve extra attention.


    加载中
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1648) PDF downloads(625) Cited by(35)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog