Pinning control of spatiotemporal chaos in the LCLV device

  • Received: 01 November 2006 Accepted: 29 June 2018 Published: 01 May 2007
  • MSC : 37D45.

  • We study the feasibility of transferring data in an optical device by using a limited number of parallel channels. By applying a spatially localized correcting term to the evolution of a liquid crystal light valve in its spatio--temporal chaotic regime, we are able to restore the dynamics to a specified target pattern. The system is controlled in a finite time. The number and position of pinning points needed to attain control is also investigated.

    Citation: Carolina Mendoza, Jean Bragard, Pier Luigi Ramazza, Javier Martínez-Mardones, Stefano Boccaletti. Pinning control of spatiotemporal chaos in the LCLV device[J]. Mathematical Biosciences and Engineering, 2007, 4(3): 523-530. doi: 10.3934/mbe.2007.4.523

    Related Papers:

    [1] Ling Xue, Sitong Chen, Xinmiao Rong . Dynamics of competition model between two plants based on stoichiometry. Mathematical Biosciences and Engineering, 2023, 20(10): 18888-18915. doi: 10.3934/mbe.2023836
    [2] Xinru Zhou, Xinmiao Rong, Meng Fan, Josué-Antonio Nescolarde-Selvaa . Stoichiometric modeling of aboveground-belowground interaction of herbaceous plant. Mathematical Biosciences and Engineering, 2019, 16(1): 25-55. doi: 10.3934/mbe.2019002
    [3] Yang Kuang, Kaifa Wang . Coexistence and extinction in a data-based ratio-dependent model of an insect community. Mathematical Biosciences and Engineering, 2020, 17(4): 3274-3293. doi: 10.3934/mbe.2020187
    [4] Yawen Yan, Hongyue Wang, Xiaoyuan Chang, Jimin Zhang . Asymmetrical resource competition in aquatic producers: Constant cell quota versus variable cell quota. Mathematical Biosciences and Engineering, 2023, 20(2): 3983-4005. doi: 10.3934/mbe.2023186
    [5] Junjing Xiong, Xiong Li, Hao Wang . The survival analysis of a stochastic Lotka-Volterra competition model with a coexistence equilibrium. Mathematical Biosciences and Engineering, 2019, 16(4): 2717-2737. doi: 10.3934/mbe.2019135
    [6] Azmy S. Ackleh, Shuhua Hu . Comparison between stochastic and deterministic selection-mutation models. Mathematical Biosciences and Engineering, 2007, 4(2): 133-157. doi: 10.3934/mbe.2007.4.133
    [7] Ali Mai, Guowei Sun, Lin Wang . The impacts of dispersal on the competition outcome of multi-patch competition models. Mathematical Biosciences and Engineering, 2019, 16(4): 2697-2716. doi: 10.3934/mbe.2019134
    [8] Shingo Iwami, Shinji Nakaoka, Yasuhiro Takeuchi . Mathematical analysis of a HIV model with frequency dependence and viral diversity. Mathematical Biosciences and Engineering, 2008, 5(3): 457-476. doi: 10.3934/mbe.2008.5.457
    [9] Rina Su, Chunrui Zhang . The generation mechanism of Turing-pattern in a Tree-grass competition model with cross diffusion and time delay. Mathematical Biosciences and Engineering, 2022, 19(12): 12073-12103. doi: 10.3934/mbe.2022562
    [10] Luca Galbusera, Sara Pasquali, Gianni Gilioli . Stability and optimal control for some classes of tritrophic systems. Mathematical Biosciences and Engineering, 2014, 11(2): 257-283. doi: 10.3934/mbe.2014.11.257
  • We study the feasibility of transferring data in an optical device by using a limited number of parallel channels. By applying a spatially localized correcting term to the evolution of a liquid crystal light valve in its spatio--temporal chaotic regime, we are able to restore the dynamics to a specified target pattern. The system is controlled in a finite time. The number and position of pinning points needed to attain control is also investigated.


  • This article has been cited by:

    1. Paul Caplat, Madhur Anand, Effects of disturbance frequency, species traits and resprouting on directional succession in an individual-based model of forest dynamics, 2009, 97, 00220477, 1028, 10.1111/j.1365-2745.2009.01541.x
    2. Winfried Just, Andrew L. Nevai, Kolmogorov-type competition model with finitely supported allocation profiles and its applications to plant competition for sunlight, 2009, 3, 1751-3758, 599, 10.1080/17513750902850019
    3. Byeong-Mee Min, Distribution properties of Phragmites australis and Phacelurus latifoilus in the tidal-flat of Suncheon Bay, 2015, 38, 2287-8327, 57, 10.5141/ecoenv.2015.006
    4. Winfried Just, Andrew L. Nevai, A Kolmogorov-type competition model with multiple coexistence states and its applications to plant competition for sunlight, 2008, 348, 0022247X, 620, 10.1016/j.jmaa.2008.07.060
    5. Matteo Detto, Jonathan M. Levine, Stephen W. Pacala, Maintenance of high diversity in mechanistic forest dynamics models of competition for light, 2022, 92, 0012-9615, 10.1002/ecm.1500
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2699) PDF downloads(406) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog