Processing math: 100%

The effect of nonreproductive groups on persistent sexually transmitted diseases

  • Received: 01 September 2006 Accepted: 29 June 2018 Published: 01 May 2007
  • MSC : 92D30.

  • We describe several population models exposed to a mild life-long sexually transmitted disease, i.e. without significant increased mortality among infected individuals and providing no immunity/recovery. We then modify these models to include groups isolated from sexual contact and analyze their potential effect on the dynamics of the population. We are interested in how the isolated class may curb the growth of the infected group while keeping the healthy population at acceptable levels.

    Citation: Daniel Maxin, Fabio Augusto Milner. The effect of nonreproductive groups on persistent sexually transmitted diseases[J]. Mathematical Biosciences and Engineering, 2007, 4(3): 505-522. doi: 10.3934/mbe.2007.4.505

    Related Papers:

    [1] Abba B. Gumel, Baojun Song . Existence of multiple-stable equilibria for a multi-drug-resistant model of mycobacterium tuberculosis. Mathematical Biosciences and Engineering, 2008, 5(3): 437-455. doi: 10.3934/mbe.2008.5.437
    [2] Georgi Kapitanov . A double age-structured model of the co-infection of tuberculosis and HIV. Mathematical Biosciences and Engineering, 2015, 12(1): 23-40. doi: 10.3934/mbe.2015.12.23
    [3] Wenshuang Li, Shaojian Cai, Xuanpei Zhai, Jianming Ou, Kuicheng Zheng, Fengying Wei, Xuerong Mao . Transmission dynamics of symptom-dependent HIV/AIDS models. Mathematical Biosciences and Engineering, 2024, 21(2): 1819-1843. doi: 10.3934/mbe.2024079
    [4] Juan Pablo Aparicio, Carlos Castillo-Chávez . Mathematical modelling of tuberculosis epidemics. Mathematical Biosciences and Engineering, 2009, 6(2): 209-237. doi: 10.3934/mbe.2009.6.209
    [5] Tao-Li Kang, Hai-Feng Huo, Hong Xiang . Dynamics and optimal control of tuberculosis model with the combined effects of vaccination, treatment and contaminated environments. Mathematical Biosciences and Engineering, 2024, 21(4): 5308-5334. doi: 10.3934/mbe.2024234
    [6] Eduardo Ibarguen-Mondragon, Lourdes Esteva, Leslie Chávez-Galán . A mathematical model for cellular immunology of tuberculosis. Mathematical Biosciences and Engineering, 2011, 8(4): 973-986. doi: 10.3934/mbe.2011.8.973
    [7] Benjamin H. Singer, Denise E. Kirschner . Influence of backward bifurcation on interpretation of R0 in a model of epidemic tuberculosis with reinfection. Mathematical Biosciences and Engineering, 2004, 1(1): 81-93. doi: 10.3934/mbe.2004.1.81
    [8] Xinli Hu . Threshold dynamics for a Tuberculosis model with seasonality. Mathematical Biosciences and Engineering, 2012, 9(1): 111-122. doi: 10.3934/mbe.2012.9.111
    [9] Surabhi Pandey, Ezio Venturino . A TB model: Is disease eradication possible in India?. Mathematical Biosciences and Engineering, 2018, 15(1): 233-254. doi: 10.3934/mbe.2018010
    [10] Hongbin Guo, Jianhong Wu . Persistent high incidence of tuberculosis among immigrants in a low-incidence country: Impact of immigrants with early or late latency. Mathematical Biosciences and Engineering, 2011, 8(3): 695-709. doi: 10.3934/mbe.2011.8.695
  • We describe several population models exposed to a mild life-long sexually transmitted disease, i.e. without significant increased mortality among infected individuals and providing no immunity/recovery. We then modify these models to include groups isolated from sexual contact and analyze their potential effect on the dynamics of the population. We are interested in how the isolated class may curb the growth of the infected group while keeping the healthy population at acceptable levels.


  • This article has been cited by:

    1. Yingwei Song, Tie Zhang, SPATIAL PATTERN FORMATIONS IN DIFFUSIVE PREDATOR-PREY SYSTEMS WITH NON-HOMOGENEOUS DIRICHLET BOUNDARY CONDITIONS, 2020, 10, 2156-907X, 165, 10.11948/20190097
    2. Prof Inyiama H.C, Dimoji D.O, SMS Based Remote Monitoring and Control of Industrial Processes using Artificial, 2020, 12, 2412-8856, 1, 10.47277/IJCEIT/12(1)1
    3. Fang Yu, Lin Wang, James Watmough, Transient spatio-temporal dynamics of a diffusive plant–herbivore system with Neumann boundary conditions, 2016, 10, 1751-3758, 477, 10.1080/17513758.2016.1218961
    4. Jun Jiang, Jinfeng Wang, Yingwei Song, The Influence of Dirichlet Boundary Conditions on the Dynamics for a Diffusive Predator–Prey System, 2019, 29, 0218-1274, 1950113, 10.1142/S021812741950113X
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2385) PDF downloads(410) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog