Citation: Fred Brauer. Some simple epidemic models[J]. Mathematical Biosciences and Engineering, 2006, 3(1): 1-15. doi: 10.3934/mbe.2006.3.1
[1] | Jianquan Li, Xiaoqin Wang, Xiaolin Lin . Impact of behavioral change on the epidemic characteristics of an epidemic model without vital dynamics. Mathematical Biosciences and Engineering, 2018, 15(6): 1425-1434. doi: 10.3934/mbe.2018065 |
[2] | Yu Tsubouchi, Yasuhiro Takeuchi, Shinji Nakaoka . Calculation of final size for vector-transmitted epidemic model. Mathematical Biosciences and Engineering, 2019, 16(4): 2219-2232. doi: 10.3934/mbe.2019109 |
[3] | Fred Brauer, Zhilan Feng, Carlos Castillo-Chávez . Discrete epidemic models. Mathematical Biosciences and Engineering, 2010, 7(1): 1-15. doi: 10.3934/mbe.2010.7.1 |
[4] | M. C. J. Bootsma, K. M. D. Chan, O. Diekmann, H. Inaba . Separable mixing: The general formulation and a particular example focusing on mask efficiency. Mathematical Biosciences and Engineering, 2023, 20(10): 17661-17671. doi: 10.3934/mbe.2023785 |
[5] | Sarah Treibert, Helmut Brunner, Matthias Ehrhardt . A nonstandard finite difference scheme for the SVICDR model to predict COVID-19 dynamics. Mathematical Biosciences and Engineering, 2022, 19(2): 1213-1238. doi: 10.3934/mbe.2022056 |
[6] | Beatriz Machado, Liliana Antunes, Constantino Caetano, João F. Pereira, Baltazar Nunes, Paula Patrício, M. Luísa Morgado . The impact of vaccination on the evolution of COVID-19 in Portugal. Mathematical Biosciences and Engineering, 2022, 19(1): 936-952. doi: 10.3934/mbe.2022043 |
[7] | ZongWang, Qimin Zhang, Xining Li . Markovian switching for near-optimal control of a stochastic SIV epidemic model. Mathematical Biosciences and Engineering, 2019, 16(3): 1348-1375. doi: 10.3934/mbe.2019066 |
[8] | Mostafa Adimy, Abdennasser Chekroun, Claudia Pio Ferreira . Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Mathematical Biosciences and Engineering, 2020, 17(2): 1329-1354. doi: 10.3934/mbe.2020067 |
[9] | Yifan Xing, Hong-Xu Li . Almost periodic solutions for a SVIR epidemic model with relapse. Mathematical Biosciences and Engineering, 2021, 18(6): 7191-7217. doi: 10.3934/mbe.2021356 |
[10] | Pannathon Kreabkhontho, Watchara Teparos, Thitiya Theparod . Potential for eliminating COVID-19 in Thailand through third-dose vaccination: A modeling approach. Mathematical Biosciences and Engineering, 2024, 21(8): 6807-6828. doi: 10.3934/mbe.2024298 |
1. | Maria Kiskowski, Gerardo Chowell, Modeling household and community transmission of Ebola virus disease: Epidemic growth, spatial dynamics and insights for epidemic control, 2016, 7, 2150-5594, 163, 10.1080/21505594.2015.1076613 | |
2. | R. KRUMKAMP, M. KRETZSCHMAR, J. W. RUDGE, A. AHMAD, P. HANVORAVONGCHAI, J. WESTENHOEFER, M. STEIN, W. PUTTHASRI, R. COKER, Health service resource needs for pandemic influenza in developing countries: a linked transmission dynamics, interventions and resource demand model, 2011, 139, 0950-2688, 59, 10.1017/S0950268810002220 | |
3. | N. Ringa, C.T. Bauch, Impacts of constrained culling and vaccination on control of foot and mouth disease in near-endemic settings: A pair approximation model, 2014, 9, 17554365, 18, 10.1016/j.epidem.2014.09.008 | |
4. | N. Ringa, C.T. Bauch, Dynamics and control of foot-and-mouth disease in endemic countries: A pair approximation model, 2014, 357, 00225193, 150, 10.1016/j.jtbi.2014.05.010 | |
5. | Carlos Castillo-Garsow, Carlos Castillo-Chavez, Sherry Woodley, A Preliminary Theoretical Analysis of a Research Experience for Undergraduates Community Model, 2013, 23, 1051-1970, 860, 10.1080/10511970.2012.697099 | |
6. | Ping Yan, Gerardo Chowell, 2019, Chapter 8, 978-3-030-21922-2, 273, 10.1007/978-3-030-21923-9_8 | |
7. | Baltazar Espinoza, Victor Moreno, Derdei Bichara, Carlos Castillo-Chavez, 2016, Chapter 9, 978-3-319-40411-0, 123, 10.1007/978-3-319-40413-4_9 | |
8. | Marco Cremonini, Samira Maghool, The Unknown of the Pandemic: An Agent-based Model of Final Phase Risks, 2020, 1556-5068, 10.2139/ssrn.3584368 | |
9. | Nicholas J. Watkins, Cameron Nowzari, George J. Pappas, Robust Economic Model Predictive Control of Continuous-Time Epidemic Processes, 2020, 65, 0018-9286, 1116, 10.1109/TAC.2019.2919136 | |
10. | O. Sharomi, C.N. Podder, A.B. Gumel, E.H. Elbasha, James Watmough, Role of incidence function in vaccine-induced backward bifurcation in some HIV models, 2007, 210, 00255564, 436, 10.1016/j.mbs.2007.05.012 | |
11. | SOPHIA R.-J. JANG, BACKWARD BIFURCATION IN A DISCRETE SIS MODEL WITH VACCINATION, 2008, 16, 0218-3390, 479, 10.1142/S0218339008002630 | |
12. | Benjamin Wacker, Jan Schlüter, Time-continuous and time-discrete SIR models revisited: theory and applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02995-1 | |
13. | Julien Arino, Fred Brauer, P. van den Driessche, James Watmough, Jianhong Wu, A model for influenza with vaccination and antiviral treatment, 2008, 253, 00225193, 118, 10.1016/j.jtbi.2008.02.026 | |
14. | Jeehyun Lee, Jungeun Kim, Hee-Dae Kwon, Optimal control of an influenza model with seasonal forcing and age-dependent transmission rates, 2013, 317, 00225193, 310, 10.1016/j.jtbi.2012.10.032 | |
15. | Andrei Korobeinikov, Evgenii Khailov, Ellina Grigorieva, 2015, Optimal control for an epidemic in populations of varying size, 1-60133-018-9, 549, 10.3934/proc.2015.0549 | |
16. | Gerardo Chowell, Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty, identifiability, and forecasts, 2017, 2, 24680427, 379, 10.1016/j.idm.2017.08.001 | |
17. | Jana L. Gevertz, James M. Greene, Cynthia H. Sanchez-Tapia, Eduardo D. Sontag, A novel COVID-19 epidemiological model with explicit susceptible and asymptomatic isolation compartments reveals unexpected consequences of timing social distancing, 2021, 510, 00225193, 110539, 10.1016/j.jtbi.2020.110539 | |
18. | J. Li, X. Zou, Generalization of the Kermack-McKendrick SIR Model to a Patchy Environment for a Disease with Latency, 2009, 4, 0973-5348, 92, 10.1051/mmnp/20094205 | |
19. | E. V. Grigorieva, N. V. Bondarenko, E. N. Khailov, Time Optimal Control Problem for the Waste Water Biotreatment Model, 2015, 21, 1079-2724, 3, 10.1007/s10883-014-9214-y | |
20. | Gerardo Chowell, Cécile Viboud, Lone Simonsen, Stefano Merler, Alessandro Vespignani, Perspectives on model forecasts of the 2014–2015 Ebola epidemic in West Africa: lessons and the way forward, 2017, 15, 1741-7015, 10.1186/s12916-017-0811-y | |
21. | Fan Bai, Uniqueness of Nash equilibrium in vaccination games, 2016, 10, 1751-3758, 395, 10.1080/17513758.2016.1213319 | |
22. | Carlos Castillo-Chavez, Sunmi Lee, 2015, Chapter 85, 978-3-540-70528-4, 427, 10.1007/978-3-540-70529-1_85 | |
23. | Julien Arino, C. Connell McCluskey, Effect of a sharp change of the incidence function on the dynamics of a simple disease, 2010, 4, 1751-3758, 490, 10.1080/17513751003793017 | |
24. | Junyoung Jang, Hee-Dae Kwon, Jeehyun Lee, Optimal control problem of an SIR reaction–diffusion model with inequality constraints, 2020, 171, 03784754, 136, 10.1016/j.matcom.2019.08.002 | |
25. | Mojtaba Sharifi, Hamed Moradi, Nonlinear robust adaptive sliding mode control of influenza epidemic in the presence of uncertainty, 2017, 56, 09591524, 48, 10.1016/j.jprocont.2017.05.010 | |
26. | Brandy Rapatski, Juan Tolosa, Modeling and analysis of the San Francisco City Clinic Cohort (SFCCC) HIV-epidemic including treatment, 2014, 11, 1551-0018, 599, 10.3934/mbe.2014.11.599 | |
27. |
Jean M. Tchuenche,
A SIR SIR epidemic model with incubation period,
2015,
26,
1012-9405,
77,
10.1007/s13370-013-0189-8
|
|
28. | Mahmood Parsamanesh, Majid Erfanian, Saeed Mehrshad, Stability and bifurcations in a discrete-time epidemic model with vaccination and vital dynamics, 2020, 21, 1471-2105, 10.1186/s12859-020-03839-1 | |
29. | Antoine Danchin, Tuen Wai Ng, Gabriel Turinici, A New Transmission Route for the Propagation of the SARS-CoV-2 Coronavirus, 2020, 10, 2079-7737, 10, 10.3390/biology10010010 | |
30. | Ping Yan, Gerardo Chowell, 2019, Chapter 4, 978-3-030-21922-2, 79, 10.1007/978-3-030-21923-9_4 | |
31. | Amin Yousefpour, Hadi Jahanshahi, Stelios Bekiros, Optimal policies for control of the novel coronavirus disease (COVID-19) outbreak, 2020, 136, 09600779, 109883, 10.1016/j.chaos.2020.109883 | |
32. | Ping Yan, Gerardo Chowell, 2019, Chapter 1, 978-3-030-21922-2, 1, 10.1007/978-3-030-21923-9_1 | |
33. | Petra Klepac, Hal Caswell, The stage-structured epidemic: linking disease and demography with a multi-state matrix approach model, 2011, 4, 1874-1738, 301, 10.1007/s12080-010-0079-8 | |
34. | Gerardo Chowell, Amna Tariq, Maria Kiskowski, Benjamin Althouse, Vaccination strategies to control Ebola epidemics in the context of variable household inaccessibility levels, 2019, 13, 1935-2735, e0007814, 10.1371/journal.pntd.0007814 | |
35. | Julien Arino, Fred Brauer, P van den Driessche, James Watmough, Jianhong Wu, Simple models for containment of a pandemic, 2006, 3, 1742-5689, 453, 10.1098/rsif.2006.0112 | |
36. | Gerardo Chowell, Amna Tariq, James M. Hyman, A novel sub-epidemic modeling framework for short-term forecasting epidemic waves, 2019, 17, 1741-7015, 10.1186/s12916-019-1406-6 | |
37. | M Nuño, G Chowell, A.B Gumel, Assessing the role of basic control measures, antivirals and vaccine in curtailing pandemic influenza: scenarios for the US, UK and the Netherlands, 2007, 4, 1742-5689, 505, 10.1098/rsif.2006.0186 | |
38. | Arman Rajaei, Amin Vahidi‐Moghaddam, Amir Chizfahm, Mojtaba Sharifi, Control of malaria outbreak using a non‐linear robust strategy with adaptive gains, 2019, 13, 1751-8652, 2308, 10.1049/iet-cta.2018.5292 | |
39. | Fan Bai, Modeling vaccination decision making process in a finite population, 2019, 311, 00255564, 82, 10.1016/j.mbs.2018.09.003 | |
40. | Jean M. Tchuenche, Alexander Nwagwo, Richard Levins, Global behaviour of an SIR epidemic model with time delay, 2007, 30, 01704214, 733, 10.1002/mma.810 | |
41. | T.K. Kar, Ashim Batabyal, Stability analysis and optimal control of an SIR epidemic model with vaccination, 2011, 104, 03032647, 127, 10.1016/j.biosystems.2011.02.001 | |
42. | Horst Thieme, 2006, 202, 00255564, 218, 10.1016/j.mbs.2006.03.015 | |
43. | Taeyong Lee, Hee-Dae Kwon, Jeehyun Lee, Siew Ann Cheong, The effect of control measures on COVID-19 transmission in South Korea, 2021, 16, 1932-6203, e0249262, 10.1371/journal.pone.0249262 | |
44. | Arman Rajaei, Mahsa Raeiszadeh, Vahid Azimi, Mojtaba Sharifi, State estimation-based control of COVID-19 epidemic before and after vaccine development, 2021, 09591524, 10.1016/j.jprocont.2021.03.008 | |
45. | Hanna Wulkow, Tim O. F. Conrad, Nataša Djurdjevac Conrad, Sebastian A. Müller, Kai Nagel, Christof Schütte, Seyedali Mirjalili, Prediction of Covid-19 spreading and optimal coordination of counter-measures: From microscopic to macroscopic models to Pareto fronts, 2021, 16, 1932-6203, e0249676, 10.1371/journal.pone.0249676 | |
46. | Eric Che, Abdul-Aziz Yakubu, A discrete-time risk-structured model of cholera infections in Cameroon, 2021, 15, 1751-3758, 523, 10.1080/17513758.2021.1991497 | |
47. | Hua Wang, Hadi Jahanshahi, Miao-Kun Wang, Stelios Bekiros, Jinping Liu, Ayman A. Aly, A Caputo–Fabrizio Fractional-Order Model of HIV/AIDS with a Treatment Compartment: Sensitivity Analysis and Optimal Control Strategies, 2021, 23, 1099-4300, 610, 10.3390/e23050610 | |
48. | Nash Rochman, Yuri Wolf, Eugene V. Koonin, Evolution of human respiratory virus epidemics, 2021, 10, 2046-1402, 447, 10.12688/f1000research.53392.2 | |
49. | Marcelo A. Pires, Nuno Crokidakis, Daniel O. Cajueiro, Marcio Argollo de Menezes, Silvio M. Duarte Queirós, What is the potential for a second peak in the evolution of SARS-CoV-2 in emerging and developing economies? Insights from a SIRASD model considering the informal economy, 2021, 32, 0129-1831, 2150107, 10.1142/S0129183121501072 | |
50. | Reza Najarzadeh, Maryam Dehghani, Mohammad Hassan Asemani, Amir Afsharinejad, 2021, LPV Control of an Influenza Model with Vaccination and Antiviral Treatment, 978-1-6654-0350-4, 1, 10.1109/ICCIA52082.2021.9403611 | |
51. | Baojun Song, Basic reinfection number and backward bifurcation, 2021, 18, 1551-0018, 8064, 10.3934/mbe.2021400 | |
52. | Sabrina H. Streipert, Gail S.K. Wolkowicz, An augmented phase plane approach for discrete planar maps: Introducing next-iterate operators, 2023, 355, 00255564, 108924, 10.1016/j.mbs.2022.108924 | |
53. | Zhenhe Pan, Taige Wang, Yuanlin Zhang, 2021, COVID-19 SIHR Modeling and Dynamic Analysis, 978-1-6654-2463-9, 1711, 10.1109/COMPSAC51774.2021.00255 | |
54. | F. Movahedi, Controlling infectious disease outbreak in a community using a new technique, 2022, 25, 0972-0502, 351, 10.1080/09720502.2021.1932856 | |
55. | Dinesh Kumar Saini, Hemraj Saini, Punit Gupta, Anouar Ben Mabrouk, Prediction of malicious objects using prey-predator model in Internet of Things (IoT) for smart cities, 2022, 168, 03608352, 108061, 10.1016/j.cie.2022.108061 | |
56. | Fred Brauer, Yanyu Xiao, Seyed M. Moghadas, Drug resistance in an age-of-infection model, 2017, 24, 0889-8480, 64, 10.1080/08898480.2015.1054216 | |
57. | Ran An, Jixin Hu, Luosheng Wen, A nonlinear model predictive control model aimed at the epidemic spread with quarantine strategy, 2021, 531, 00225193, 110915, 10.1016/j.jtbi.2021.110915 | |
58. | Julien Arino, Evan Milliken, Bistability in deterministic and stochastic SLIAR-type models with imperfect and waning vaccine protection, 2022, 84, 0303-6812, 10.1007/s00285-022-01765-9 | |
59. | Eleonora Messina, Mario Pezzella, Antonia Vecchio, Asymptotic solutions of non-linear implicit Volterra discrete equations, 2023, 425, 03770427, 115068, 10.1016/j.cam.2023.115068 | |
60. | Nash Rochman, Yuri Wolf, Eugene V. Koonin, Evolution of human respiratory virus epidemics, 2021, 10, 2046-1402, 447, 10.12688/f1000research.53392.1 | |
61. | Kalyani Devendra Jagtap, Kundan Kandhway, Mitigating biological epidemic on heterogeneous social networks, 2022, 6, 26667207, 100078, 10.1016/j.rico.2021.100078 | |
62. | Yoon‐gu Hwang, Hee‐Dae Kwon, Jeehyun Lee, Optimal control problem of various epidemic models with uncertainty based on deep reinforcement learning, 2022, 38, 0749-159X, 2142, 10.1002/num.22872 | |
63. | Pablo Jadraque, A phenomenological approach to predicting tuberculosis cases with an assessment of measurement errors, 2022, 40, 17554365, 100609, 10.1016/j.epidem.2022.100609 | |
64. | Lingling Wang, Miao Liu, Shaoyong Lai, Wealth exchange and decision-making psychology in epidemic dynamics, 2023, 20, 1551-0018, 9839, 10.3934/mbe.2023431 | |
65. | Ilias Elmouki, Ling Zhong, Abdelilah Jraifi, Aziz Darouichi, 2023, Chapter 9, 978-3-031-17777-4, 191, 10.1007/978-3-031-17778-1_9 | |
66. | Benjamin Wacker, Jan Christian Schlüter, A non-standard finite-difference-method for a non-autonomous epidemiological model: analysis, parameter identification and applications, 2023, 20, 1551-0018, 12923, 10.3934/mbe.2023577 | |
67. | Xiaojing Zheng, The Robustness and Vulnerability of a Complex Adaptive System With Co-Evolving Agent Behavior and Local Structure, 2023, 35, 1546-2234, 1, 10.4018/JOEUC.324072 | |
68. | Islam M Elbaz, MA Sohaly, H El-Metwally, On the extinction of stochastic Susceptible-Infected-Susceptible epidemic with distributed delays, 2023, 1461-3484, 10.1177/14613484231181956 | |
69. | Lenka Přibylová, Veronika Eclerová, Ondřej Májek, Jiří Jarkovský, Tomáš Pavlík, Ladislav Dušek, Seth Blumberg, Using real-time ascertainment rate estimate from infection and hospitalization dataset for modeling the spread of infectious disease: COVID-19 case study in the Czech Republic, 2023, 18, 1932-6203, e0287959, 10.1371/journal.pone.0287959 | |
70. | Gerardo Chowell, Sushma Dahal, Yuganthi R. Liyanage, Amna Tariq, Necibe Tuncer, Structural identifiability analysis of epidemic models based on differential equations: a tutorial-based primer, 2023, 87, 0303-6812, 10.1007/s00285-023-02007-2 | |
71. | Muhammad Riaz, Kamal Shah, Aman Ullah, Manar A. Alqudah, Thabet Abdeljawad, The Volterra-Lyapunov matrix theory and nonstandard finite difference scheme to study a dynamical system, 2023, 52, 22113797, 106890, 10.1016/j.rinp.2023.106890 | |
72. | Lili Han, Sha Song, Qiuhui Pan, Mingfeng He, The impact of multiple population-wide testing and social distancing on the transmission of an infectious disease, 2023, 630, 03784371, 129243, 10.1016/j.physa.2023.129243 | |
73. | Scott Greenhalgh, Anna Dumas, A generalized ODE susceptible-infectious-susceptible compartmental model with potentially periodic behavior, 2023, 24680427, 10.1016/j.idm.2023.11.007 | |
74. | Mohamed Ladib, Aziz Ouhinou, Abdul-Aziz Yakubu, Mathematical modeling of contact tracing and stability analysis to inform its impact on disease outbreaks; an application to COVID-19, 2024, 24680427, 10.1016/j.idm.2024.01.010 | |
75. | Aditi Ghosh, Pradyuta Padmanabhan, Anuj Mubayi, Padmanabhan Seshaiyer, Influence of distinct social contexts of long-term care facilities on the dynamics of spread of COVID-19 under predefine epidemiological scenarios, 2023, 11, 2544-7297, 10.1515/cmb-2023-0102 | |
76. | Tahir Khan, Fathalla A. Rihan, Muhammad Ibrahim, Shuo Li, Atif M. Alamri, Salman A. AlQahtani, Modeling different infectious phases of hepatitis B with generalized saturated incidence: An analysis and control, 2024, 21, 1551-0018, 5207, 10.3934/mbe.2024230 | |
77. | Ilias Elmouki, Albatoul Khaled, Amine Hamdache, Ling Zhong, Abdelilah Jraifi, Aziz Darouichi, 2024, Chapter 7, 978-3-031-60501-7, 71, 10.1007/978-3-031-60502-4_7 | |
78. | Shiv Dutt Gupta, Rohit Jain, Sunil Bhatnagar, COVID-19 Pandemic in Rajasthan: Mathematical Modelling and Social Distancing, 2020, 22, 0972-0634, 129, 10.1177/0972063420935537 | |
79. | Shahram Rezapour, V. Madhusudanan, Luca Guerrini, B. S. N. Murthy, M. N. Srinivas, Sina Etemad, A study on the qualitative properties for effects of two delays on dynamical behaviors of HIV-AIDS-TB model, 2024, 1598-5865, 10.1007/s12190-024-02282-2 | |
80. | Benjamin Wacker, Qualitative Study of a Dynamical System for Computer Virus Propagation—A Nonstandard Finite‐Difference‐Methodological View, 2025, 0170-4214, 10.1002/mma.10798 | |
81. | Tin Phan, Samantha Brozak, Bruce Pell, Stanca M. Ciupe, Ruian Ke, Ruy M. Ribeiro, Anna Gitter, Kristina D. Mena, Alan S. Perelson, Yang Kuang, Fuqing Wu, Post-recovery viral shedding shapes wastewater-based epidemiological inferences, 2025, 5, 2730-664X, 10.1038/s43856-025-00908-5 |