Some simple epidemic models

  • Received: 01 December 2004 Accepted: 29 June 2018 Published: 01 November 2005
  • MSC : 92D30.

  • The SARS epidemic of 2002-3 led to the study of epidemic models including management measures and other generalizations of the original 1927 epidemic model of Kermack and McKendrick. We consider some natural extensions of the Kermack-McKendrick model and show that they share the main properties of the original model.

    Citation: Fred Brauer. Some simple epidemic models[J]. Mathematical Biosciences and Engineering, 2006, 3(1): 1-15. doi: 10.3934/mbe.2006.3.1

    Related Papers:

    [1] Jianquan Li, Xiaoqin Wang, Xiaolin Lin . Impact of behavioral change on the epidemic characteristics of an epidemic model without vital dynamics. Mathematical Biosciences and Engineering, 2018, 15(6): 1425-1434. doi: 10.3934/mbe.2018065
    [2] Yu Tsubouchi, Yasuhiro Takeuchi, Shinji Nakaoka . Calculation of final size for vector-transmitted epidemic model. Mathematical Biosciences and Engineering, 2019, 16(4): 2219-2232. doi: 10.3934/mbe.2019109
    [3] Fred Brauer, Zhilan Feng, Carlos Castillo-Chávez . Discrete epidemic models. Mathematical Biosciences and Engineering, 2010, 7(1): 1-15. doi: 10.3934/mbe.2010.7.1
    [4] M. C. J. Bootsma, K. M. D. Chan, O. Diekmann, H. Inaba . Separable mixing: The general formulation and a particular example focusing on mask efficiency. Mathematical Biosciences and Engineering, 2023, 20(10): 17661-17671. doi: 10.3934/mbe.2023785
    [5] Sarah Treibert, Helmut Brunner, Matthias Ehrhardt . A nonstandard finite difference scheme for the SVICDR model to predict COVID-19 dynamics. Mathematical Biosciences and Engineering, 2022, 19(2): 1213-1238. doi: 10.3934/mbe.2022056
    [6] Beatriz Machado, Liliana Antunes, Constantino Caetano, João F. Pereira, Baltazar Nunes, Paula Patrício, M. Luísa Morgado . The impact of vaccination on the evolution of COVID-19 in Portugal. Mathematical Biosciences and Engineering, 2022, 19(1): 936-952. doi: 10.3934/mbe.2022043
    [7] ZongWang, Qimin Zhang, Xining Li . Markovian switching for near-optimal control of a stochastic SIV epidemic model. Mathematical Biosciences and Engineering, 2019, 16(3): 1348-1375. doi: 10.3934/mbe.2019066
    [8] Mostafa Adimy, Abdennasser Chekroun, Claudia Pio Ferreira . Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Mathematical Biosciences and Engineering, 2020, 17(2): 1329-1354. doi: 10.3934/mbe.2020067
    [9] Yifan Xing, Hong-Xu Li . Almost periodic solutions for a SVIR epidemic model with relapse. Mathematical Biosciences and Engineering, 2021, 18(6): 7191-7217. doi: 10.3934/mbe.2021356
    [10] Pannathon Kreabkhontho, Watchara Teparos, Thitiya Theparod . Potential for eliminating COVID-19 in Thailand through third-dose vaccination: A modeling approach. Mathematical Biosciences and Engineering, 2024, 21(8): 6807-6828. doi: 10.3934/mbe.2024298
  • The SARS epidemic of 2002-3 led to the study of epidemic models including management measures and other generalizations of the original 1927 epidemic model of Kermack and McKendrick. We consider some natural extensions of the Kermack-McKendrick model and show that they share the main properties of the original model.


  • This article has been cited by:

    1. Maria Kiskowski, Gerardo Chowell, Modeling household and community transmission of Ebola virus disease: Epidemic growth, spatial dynamics and insights for epidemic control, 2016, 7, 2150-5594, 163, 10.1080/21505594.2015.1076613
    2. R. KRUMKAMP, M. KRETZSCHMAR, J. W. RUDGE, A. AHMAD, P. HANVORAVONGCHAI, J. WESTENHOEFER, M. STEIN, W. PUTTHASRI, R. COKER, Health service resource needs for pandemic influenza in developing countries: a linked transmission dynamics, interventions and resource demand model, 2011, 139, 0950-2688, 59, 10.1017/S0950268810002220
    3. N. Ringa, C.T. Bauch, Impacts of constrained culling and vaccination on control of foot and mouth disease in near-endemic settings: A pair approximation model, 2014, 9, 17554365, 18, 10.1016/j.epidem.2014.09.008
    4. N. Ringa, C.T. Bauch, Dynamics and control of foot-and-mouth disease in endemic countries: A pair approximation model, 2014, 357, 00225193, 150, 10.1016/j.jtbi.2014.05.010
    5. Carlos Castillo-Garsow, Carlos Castillo-Chavez, Sherry Woodley, A Preliminary Theoretical Analysis of a Research Experience for Undergraduates Community Model, 2013, 23, 1051-1970, 860, 10.1080/10511970.2012.697099
    6. Ping Yan, Gerardo Chowell, 2019, Chapter 8, 978-3-030-21922-2, 273, 10.1007/978-3-030-21923-9_8
    7. Baltazar Espinoza, Victor Moreno, Derdei Bichara, Carlos Castillo-Chavez, 2016, Chapter 9, 978-3-319-40411-0, 123, 10.1007/978-3-319-40413-4_9
    8. Marco Cremonini, Samira Maghool, The Unknown of the Pandemic: An Agent-based Model of Final Phase Risks, 2020, 1556-5068, 10.2139/ssrn.3584368
    9. Nicholas J. Watkins, Cameron Nowzari, George J. Pappas, Robust Economic Model Predictive Control of Continuous-Time Epidemic Processes, 2020, 65, 0018-9286, 1116, 10.1109/TAC.2019.2919136
    10. O. Sharomi, C.N. Podder, A.B. Gumel, E.H. Elbasha, James Watmough, Role of incidence function in vaccine-induced backward bifurcation in some HIV models, 2007, 210, 00255564, 436, 10.1016/j.mbs.2007.05.012
    11. SOPHIA R.-J. JANG, BACKWARD BIFURCATION IN A DISCRETE SIS MODEL WITH VACCINATION, 2008, 16, 0218-3390, 479, 10.1142/S0218339008002630
    12. Benjamin Wacker, Jan Schlüter, Time-continuous and time-discrete SIR models revisited: theory and applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02995-1
    13. Julien Arino, Fred Brauer, P. van den Driessche, James Watmough, Jianhong Wu, A model for influenza with vaccination and antiviral treatment, 2008, 253, 00225193, 118, 10.1016/j.jtbi.2008.02.026
    14. Jeehyun Lee, Jungeun Kim, Hee-Dae Kwon, Optimal control of an influenza model with seasonal forcing and age-dependent transmission rates, 2013, 317, 00225193, 310, 10.1016/j.jtbi.2012.10.032
    15. Andrei Korobeinikov, Evgenii Khailov, Ellina Grigorieva, 2015, Optimal control for an epidemic in populations of varying size, 1-60133-018-9, 549, 10.3934/proc.2015.0549
    16. Gerardo Chowell, Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty, identifiability, and forecasts, 2017, 2, 24680427, 379, 10.1016/j.idm.2017.08.001
    17. Jana L. Gevertz, James M. Greene, Cynthia H. Sanchez-Tapia, Eduardo D. Sontag, A novel COVID-19 epidemiological model with explicit susceptible and asymptomatic isolation compartments reveals unexpected consequences of timing social distancing, 2021, 510, 00225193, 110539, 10.1016/j.jtbi.2020.110539
    18. J. Li, X. Zou, Generalization of the Kermack-McKendrick SIR Model to a Patchy Environment for a Disease with Latency, 2009, 4, 0973-5348, 92, 10.1051/mmnp/20094205
    19. E. V. Grigorieva, N. V. Bondarenko, E. N. Khailov, Time Optimal Control Problem for the Waste Water Biotreatment Model, 2015, 21, 1079-2724, 3, 10.1007/s10883-014-9214-y
    20. Gerardo Chowell, Cécile Viboud, Lone Simonsen, Stefano Merler, Alessandro Vespignani, Perspectives on model forecasts of the 2014–2015 Ebola epidemic in West Africa: lessons and the way forward, 2017, 15, 1741-7015, 10.1186/s12916-017-0811-y
    21. Fan Bai, Uniqueness of Nash equilibrium in vaccination games, 2016, 10, 1751-3758, 395, 10.1080/17513758.2016.1213319
    22. Carlos Castillo-Chavez, Sunmi Lee, 2015, Chapter 85, 978-3-540-70528-4, 427, 10.1007/978-3-540-70529-1_85
    23. Julien Arino, C. Connell McCluskey, Effect of a sharp change of the incidence function on the dynamics of a simple disease, 2010, 4, 1751-3758, 490, 10.1080/17513751003793017
    24. Junyoung Jang, Hee-Dae Kwon, Jeehyun Lee, Optimal control problem of an SIR reaction–diffusion model with inequality constraints, 2020, 171, 03784754, 136, 10.1016/j.matcom.2019.08.002
    25. Mojtaba Sharifi, Hamed Moradi, Nonlinear robust adaptive sliding mode control of influenza epidemic in the presence of uncertainty, 2017, 56, 09591524, 48, 10.1016/j.jprocont.2017.05.010
    26. Brandy Rapatski, Juan Tolosa, Modeling and analysis of the San Francisco City Clinic Cohort (SFCCC) HIV-epidemic including treatment, 2014, 11, 1551-0018, 599, 10.3934/mbe.2014.11.599
    27. Jean M. Tchuenche, A SIR
    SIR epidemic model with incubation period, 2015, 26, 1012-9405, 77, 10.1007/s13370-013-0189-8
    28. Mahmood Parsamanesh, Majid Erfanian, Saeed Mehrshad, Stability and bifurcations in a discrete-time epidemic model with vaccination and vital dynamics, 2020, 21, 1471-2105, 10.1186/s12859-020-03839-1
    29. Antoine Danchin, Tuen Wai Ng, Gabriel Turinici, A New Transmission Route for the Propagation of the SARS-CoV-2 Coronavirus, 2020, 10, 2079-7737, 10, 10.3390/biology10010010
    30. Ping Yan, Gerardo Chowell, 2019, Chapter 4, 978-3-030-21922-2, 79, 10.1007/978-3-030-21923-9_4
    31. Amin Yousefpour, Hadi Jahanshahi, Stelios Bekiros, Optimal policies for control of the novel coronavirus disease (COVID-19) outbreak, 2020, 136, 09600779, 109883, 10.1016/j.chaos.2020.109883
    32. Ping Yan, Gerardo Chowell, 2019, Chapter 1, 978-3-030-21922-2, 1, 10.1007/978-3-030-21923-9_1
    33. Petra Klepac, Hal Caswell, The stage-structured epidemic: linking disease and demography with a multi-state matrix approach model, 2011, 4, 1874-1738, 301, 10.1007/s12080-010-0079-8
    34. Gerardo Chowell, Amna Tariq, Maria Kiskowski, Benjamin Althouse, Vaccination strategies to control Ebola epidemics in the context of variable household inaccessibility levels, 2019, 13, 1935-2735, e0007814, 10.1371/journal.pntd.0007814
    35. Julien Arino, Fred Brauer, P van den Driessche, James Watmough, Jianhong Wu, Simple models for containment of a pandemic, 2006, 3, 1742-5689, 453, 10.1098/rsif.2006.0112
    36. Gerardo Chowell, Amna Tariq, James M. Hyman, A novel sub-epidemic modeling framework for short-term forecasting epidemic waves, 2019, 17, 1741-7015, 10.1186/s12916-019-1406-6
    37. M Nuño, G Chowell, A.B Gumel, Assessing the role of basic control measures, antivirals and vaccine in curtailing pandemic influenza: scenarios for the US, UK and the Netherlands, 2007, 4, 1742-5689, 505, 10.1098/rsif.2006.0186
    38. Arman Rajaei, Amin Vahidi‐Moghaddam, Amir Chizfahm, Mojtaba Sharifi, Control of malaria outbreak using a non‐linear robust strategy with adaptive gains, 2019, 13, 1751-8652, 2308, 10.1049/iet-cta.2018.5292
    39. Fan Bai, Modeling vaccination decision making process in a finite population, 2019, 311, 00255564, 82, 10.1016/j.mbs.2018.09.003
    40. Jean M. Tchuenche, Alexander Nwagwo, Richard Levins, Global behaviour of an SIR epidemic model with time delay, 2007, 30, 01704214, 733, 10.1002/mma.810
    41. T.K. Kar, Ashim Batabyal, Stability analysis and optimal control of an SIR epidemic model with vaccination, 2011, 104, 03032647, 127, 10.1016/j.biosystems.2011.02.001
    42. Horst Thieme, 2006, 202, 00255564, 218, 10.1016/j.mbs.2006.03.015
    43. Taeyong Lee, Hee-Dae Kwon, Jeehyun Lee, Siew Ann Cheong, The effect of control measures on COVID-19 transmission in South Korea, 2021, 16, 1932-6203, e0249262, 10.1371/journal.pone.0249262
    44. Arman Rajaei, Mahsa Raeiszadeh, Vahid Azimi, Mojtaba Sharifi, State estimation-based control of COVID-19 epidemic before and after vaccine development, 2021, 09591524, 10.1016/j.jprocont.2021.03.008
    45. Hanna Wulkow, Tim O. F. Conrad, Nataša Djurdjevac Conrad, Sebastian A. Müller, Kai Nagel, Christof Schütte, Seyedali Mirjalili, Prediction of Covid-19 spreading and optimal coordination of counter-measures: From microscopic to macroscopic models to Pareto fronts, 2021, 16, 1932-6203, e0249676, 10.1371/journal.pone.0249676
    46. Eric Che, Abdul-Aziz Yakubu, A discrete-time risk-structured model of cholera infections in Cameroon, 2021, 15, 1751-3758, 523, 10.1080/17513758.2021.1991497
    47. Hua Wang, Hadi Jahanshahi, Miao-Kun Wang, Stelios Bekiros, Jinping Liu, Ayman A. Aly, A Caputo–Fabrizio Fractional-Order Model of HIV/AIDS with a Treatment Compartment: Sensitivity Analysis and Optimal Control Strategies, 2021, 23, 1099-4300, 610, 10.3390/e23050610
    48. Nash Rochman, Yuri Wolf, Eugene V. Koonin, Evolution of human respiratory virus epidemics, 2021, 10, 2046-1402, 447, 10.12688/f1000research.53392.2
    49. Marcelo A. Pires, Nuno Crokidakis, Daniel O. Cajueiro, Marcio Argollo de Menezes, Silvio M. Duarte Queirós, What is the potential for a second peak in the evolution of SARS-CoV-2 in emerging and developing economies? Insights from a SIRASD model considering the informal economy, 2021, 32, 0129-1831, 2150107, 10.1142/S0129183121501072
    50. Reza Najarzadeh, Maryam Dehghani, Mohammad Hassan Asemani, Amir Afsharinejad, 2021, LPV Control of an Influenza Model with Vaccination and Antiviral Treatment, 978-1-6654-0350-4, 1, 10.1109/ICCIA52082.2021.9403611
    51. Baojun Song, Basic reinfection number and backward bifurcation, 2021, 18, 1551-0018, 8064, 10.3934/mbe.2021400
    52. Sabrina H. Streipert, Gail S.K. Wolkowicz, An augmented phase plane approach for discrete planar maps: Introducing next-iterate operators, 2023, 355, 00255564, 108924, 10.1016/j.mbs.2022.108924
    53. Zhenhe Pan, Taige Wang, Yuanlin Zhang, 2021, COVID-19 SIHR Modeling and Dynamic Analysis, 978-1-6654-2463-9, 1711, 10.1109/COMPSAC51774.2021.00255
    54. F. Movahedi, Controlling infectious disease outbreak in a community using a new technique, 2022, 25, 0972-0502, 351, 10.1080/09720502.2021.1932856
    55. Dinesh Kumar Saini, Hemraj Saini, Punit Gupta, Anouar Ben Mabrouk, Prediction of malicious objects using prey-predator model in Internet of Things (IoT) for smart cities, 2022, 168, 03608352, 108061, 10.1016/j.cie.2022.108061
    56. Fred Brauer, Yanyu Xiao, Seyed M. Moghadas, Drug resistance in an age-of-infection model, 2017, 24, 0889-8480, 64, 10.1080/08898480.2015.1054216
    57. Ran An, Jixin Hu, Luosheng Wen, A nonlinear model predictive control model aimed at the epidemic spread with quarantine strategy, 2021, 531, 00225193, 110915, 10.1016/j.jtbi.2021.110915
    58. Julien Arino, Evan Milliken, Bistability in deterministic and stochastic SLIAR-type models with imperfect and waning vaccine protection, 2022, 84, 0303-6812, 10.1007/s00285-022-01765-9
    59. Eleonora Messina, Mario Pezzella, Antonia Vecchio, Asymptotic solutions of non-linear implicit Volterra discrete equations, 2023, 425, 03770427, 115068, 10.1016/j.cam.2023.115068
    60. Nash Rochman, Yuri Wolf, Eugene V. Koonin, Evolution of human respiratory virus epidemics, 2021, 10, 2046-1402, 447, 10.12688/f1000research.53392.1
    61. Kalyani Devendra Jagtap, Kundan Kandhway, Mitigating biological epidemic on heterogeneous social networks, 2022, 6, 26667207, 100078, 10.1016/j.rico.2021.100078
    62. Yoon‐gu Hwang, Hee‐Dae Kwon, Jeehyun Lee, Optimal control problem of various epidemic models with uncertainty based on deep reinforcement learning, 2022, 38, 0749-159X, 2142, 10.1002/num.22872
    63. Pablo Jadraque, A phenomenological approach to predicting tuberculosis cases with an assessment of measurement errors, 2022, 40, 17554365, 100609, 10.1016/j.epidem.2022.100609
    64. Lingling Wang, Miao Liu, Shaoyong Lai, Wealth exchange and decision-making psychology in epidemic dynamics, 2023, 20, 1551-0018, 9839, 10.3934/mbe.2023431
    65. Ilias Elmouki, Ling Zhong, Abdelilah Jraifi, Aziz Darouichi, 2023, Chapter 9, 978-3-031-17777-4, 191, 10.1007/978-3-031-17778-1_9
    66. Benjamin Wacker, Jan Christian Schlüter, A non-standard finite-difference-method for a non-autonomous epidemiological model: analysis, parameter identification and applications, 2023, 20, 1551-0018, 12923, 10.3934/mbe.2023577
    67. Xiaojing Zheng, The Robustness and Vulnerability of a Complex Adaptive System With Co-Evolving Agent Behavior and Local Structure, 2023, 35, 1546-2234, 1, 10.4018/JOEUC.324072
    68. Islam M Elbaz, MA Sohaly, H El-Metwally, On the extinction of stochastic Susceptible-Infected-Susceptible epidemic with distributed delays, 2023, 1461-3484, 10.1177/14613484231181956
    69. Lenka Přibylová, Veronika Eclerová, Ondřej Májek, Jiří Jarkovský, Tomáš Pavlík, Ladislav Dušek, Seth Blumberg, Using real-time ascertainment rate estimate from infection and hospitalization dataset for modeling the spread of infectious disease: COVID-19 case study in the Czech Republic, 2023, 18, 1932-6203, e0287959, 10.1371/journal.pone.0287959
    70. Gerardo Chowell, Sushma Dahal, Yuganthi R. Liyanage, Amna Tariq, Necibe Tuncer, Structural identifiability analysis of epidemic models based on differential equations: a tutorial-based primer, 2023, 87, 0303-6812, 10.1007/s00285-023-02007-2
    71. Muhammad Riaz, Kamal Shah, Aman Ullah, Manar A. Alqudah, Thabet Abdeljawad, The Volterra-Lyapunov matrix theory and nonstandard finite difference scheme to study a dynamical system, 2023, 52, 22113797, 106890, 10.1016/j.rinp.2023.106890
    72. Lili Han, Sha Song, Qiuhui Pan, Mingfeng He, The impact of multiple population-wide testing and social distancing on the transmission of an infectious disease, 2023, 630, 03784371, 129243, 10.1016/j.physa.2023.129243
    73. Scott Greenhalgh, Anna Dumas, A generalized ODE susceptible-infectious-susceptible compartmental model with potentially periodic behavior, 2023, 24680427, 10.1016/j.idm.2023.11.007
    74. Mohamed Ladib, Aziz Ouhinou, Abdul-Aziz Yakubu, Mathematical modeling of contact tracing and stability analysis to inform its impact on disease outbreaks; an application to COVID-19, 2024, 24680427, 10.1016/j.idm.2024.01.010
    75. Aditi Ghosh, Pradyuta Padmanabhan, Anuj Mubayi, Padmanabhan Seshaiyer, Influence of distinct social contexts of long-term care facilities on the dynamics of spread of COVID-19 under predefine epidemiological scenarios, 2023, 11, 2544-7297, 10.1515/cmb-2023-0102
    76. Tahir Khan, Fathalla A. Rihan, Muhammad Ibrahim, Shuo Li, Atif M. Alamri, Salman A. AlQahtani, Modeling different infectious phases of hepatitis B with generalized saturated incidence: An analysis and control, 2024, 21, 1551-0018, 5207, 10.3934/mbe.2024230
    77. Ilias Elmouki, Albatoul Khaled, Amine Hamdache, Ling Zhong, Abdelilah Jraifi, Aziz Darouichi, 2024, Chapter 7, 978-3-031-60501-7, 71, 10.1007/978-3-031-60502-4_7
    78. Shiv Dutt Gupta, Rohit Jain, Sunil Bhatnagar, COVID-19 Pandemic in Rajasthan: Mathematical Modelling and Social Distancing, 2020, 22, 0972-0634, 129, 10.1177/0972063420935537
    79. Shahram Rezapour, V. Madhusudanan, Luca Guerrini, B. S. N. Murthy, M. N. Srinivas, Sina Etemad, A study on the qualitative properties for effects of two delays on dynamical behaviors of HIV-AIDS-TB model, 2024, 1598-5865, 10.1007/s12190-024-02282-2
    80. Benjamin Wacker, Qualitative Study of a Dynamical System for Computer Virus Propagation—A Nonstandard Finite‐Difference‐Methodological View, 2025, 0170-4214, 10.1002/mma.10798
    81. Tin Phan, Samantha Brozak, Bruce Pell, Stanca M. Ciupe, Ruian Ke, Ruy M. Ribeiro, Anna Gitter, Kristina D. Mena, Alan S. Perelson, Yang Kuang, Fuqing Wu, Post-recovery viral shedding shapes wastewater-based epidemiological inferences, 2025, 5, 2730-664X, 10.1038/s43856-025-00908-5
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3966) PDF downloads(764) Cited by(81)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog