Nonlinear semelparous Leslie models

  • Received: 01 February 2005 Accepted: 29 June 2018 Published: 01 November 2005
  • MSC : 92D30.

  • In this paper we consider the bifurcations that occur at the trivial equilibrium of a general class of nonlinear Leslie matrix models for the dynamics of a structured population in which only the oldest class is reproductive. Using the inherent net reproductive number n as a parameter, we show that a global branch of positive equilibria bifurcates from the trivial equilibrium at n=1 despite the fact that the bifurcation is nongeneric. The bifurcation can be either supercritical or subcritical, but unlike the case of a generic transcritical bifurcation in iteroparous models, the stability of the bifurcating positive equilibria is not determined by the direction of bifurcation. In addition we show that a branch of single-class cycles also bifurcates from the trivial equilibrium at n=1. In the case of two population classes, either the bifurcating equilibria or the bifurcating cycles are stable (but not both) depending on the relative strengths of the inter- and intra-class competition. Strong inter-class competition leads to stable cycles in which the two population classes are temporally separated. In the case of three or more classes the bifurcating cycles often lie on a bifurcating invariant loop whose structure is that of a cycle chain consisting of the different phases of a periodic cycle connected by heteroclinic orbits. Under certain circumstances, these bifurcating loops are attractors.

    Citation: J. M. Cushing. Nonlinear semelparous Leslie models[J]. Mathematical Biosciences and Engineering, 2006, 3(1): 17-36. doi: 10.3934/mbe.2006.3.17

    Related Papers:

    [1] Hongqiuxue Wu, Zhong Li, Mengxin He . Dynamic analysis of a Leslie-Gower predator-prey model with the fear effect and nonlinear harvesting. Mathematical Biosciences and Engineering, 2023, 20(10): 18592-18629. doi: 10.3934/mbe.2023825
    [2] J. M. Cushing . Discrete time darwinian dynamics and semelparity versus iteroparity. Mathematical Biosciences and Engineering, 2019, 16(4): 1815-1835. doi: 10.3934/mbe.2019088
    [3] Jim M. Cushing . A Darwinian version of the Leslie logistic model for age-structured populations. Mathematical Biosciences and Engineering, 2025, 22(6): 1263-1279. doi: 10.3934/mbe.2025047
    [4] Manoj K. Singh, Brajesh K. Singh, Poonam, Carlo Cattani . Under nonlinear prey-harvesting, effect of strong Allee effect on the dynamics of a modified Leslie-Gower predator-prey model. Mathematical Biosciences and Engineering, 2023, 20(6): 9625-9644. doi: 10.3934/mbe.2023422
    [5] J. M. Cushing, Simon Maccracken Stump . Darwinian dynamics of a juvenile-adult model. Mathematical Biosciences and Engineering, 2013, 10(4): 1017-1044. doi: 10.3934/mbe.2013.10.1017
    [6] Zhenliang Zhu, Yuming Chen, Zhong Li, Fengde Chen . Dynamic behaviors of a Leslie-Gower model with strong Allee effect and fear effect in prey. Mathematical Biosciences and Engineering, 2023, 20(6): 10977-10999. doi: 10.3934/mbe.2023486
    [7] Mengyun Xing, Mengxin He, Zhong Li . Dynamics of a modified Leslie-Gower predator-prey model with double Allee effects. Mathematical Biosciences and Engineering, 2024, 21(1): 792-831. doi: 10.3934/mbe.2024034
    [8] Peng Feng . On a diffusive predator-prey model with nonlinear harvesting. Mathematical Biosciences and Engineering, 2014, 11(4): 807-821. doi: 10.3934/mbe.2014.11.807
    [9] Saheb Pal, Nikhil Pal, Sudip Samanta, Joydev Chattopadhyay . Fear effect in prey and hunting cooperation among predators in a Leslie-Gower model. Mathematical Biosciences and Engineering, 2019, 16(5): 5146-5179. doi: 10.3934/mbe.2019258
    [10] Manuel Molina, Manuel Mota, Alfonso Ramos . Mathematical modeling in semelparous biological species through two-sex branching processes. Mathematical Biosciences and Engineering, 2024, 21(6): 6407-6424. doi: 10.3934/mbe.2024280
  • In this paper we consider the bifurcations that occur at the trivial equilibrium of a general class of nonlinear Leslie matrix models for the dynamics of a structured population in which only the oldest class is reproductive. Using the inherent net reproductive number n as a parameter, we show that a global branch of positive equilibria bifurcates from the trivial equilibrium at n=1 despite the fact that the bifurcation is nongeneric. The bifurcation can be either supercritical or subcritical, but unlike the case of a generic transcritical bifurcation in iteroparous models, the stability of the bifurcating positive equilibria is not determined by the direction of bifurcation. In addition we show that a branch of single-class cycles also bifurcates from the trivial equilibrium at n=1. In the case of two population classes, either the bifurcating equilibria or the bifurcating cycles are stable (but not both) depending on the relative strengths of the inter- and intra-class competition. Strong inter-class competition leads to stable cycles in which the two population classes are temporally separated. In the case of three or more classes the bifurcating cycles often lie on a bifurcating invariant loop whose structure is that of a cycle chain consisting of the different phases of a periodic cycle connected by heteroclinic orbits. Under certain circumstances, these bifurcating loops are attractors.


  • This article has been cited by:

    1. A. Veprauskas, Synchrony and the Dynamic Dichotomy in a Class of Matrix Population Models, 2018, 78, 0036-1399, 2491, 10.1137/17M1136444
    2. Luigi Monte, Characterisation of a nonlinear Leslie matrix model for predicting the dynamics of biological populations in polluted environments: Applications to radioecology, 2013, 248, 03043800, 174, 10.1016/j.ecolmodel.2012.10.005
    3. Arild Wikan, Ørjan Kristensen, Nonstationary and Chaotic Dynamics in Age-Structured Population Models, 2017, 2017, 1026-0226, 1, 10.1155/2017/1964286
    4. Sophia R.-J. Jang, Allee effects in an iteroparous host population and in host-parasitoid interactions, 2011, 15, 1553-524X, 113, 10.3934/dcdsb.2011.15.113
    5. Ryusuke Kon, 2008, Chapter 7, 978-0-8176-4555-7, 75, 10.1007/978-0-8176-4556-4_7
    6. Yuanshi Wang, Hong Wu, Shigui Ruan, Periodic orbits near heteroclinic cycles in a cyclic replicator system, 2012, 64, 0303-6812, 855, 10.1007/s00285-011-0435-3
    7. Yuanshi Wang, Hong Wu, Shigui Ruan, Global dynamics and bifurcations in a four-dimensional replicator system, 2013, 18, 1553-524X, 259, 10.3934/dcdsb.2013.18.259
    8. Darwinian dynamics of a juvenile-adult model, 2013, 10, 1551-0018, 1017, 10.3934/mbe.2013.10.1017
    9. Amy Veprauskas, J. M. Cushing, A juvenile–adult population model: climate change, cannibalism, reproductive synchrony, and strong Allee effects, 2017, 11, 1751-3758, 1, 10.1080/17513758.2015.1131853
    10. Michael Brei, Agustín Pérez-Barahona, Eric Strobl, Environmental pollution and biodiversity: Light pollution and sea turtles in the Caribbean, 2016, 77, 00950696, 95, 10.1016/j.jeem.2016.02.003
    11. J. M. Cushing, Shandelle M. Henson, Stable bifurcations in semelparous Leslie models, 2012, 6, 1751-3758, 80, 10.1080/17513758.2012.716085
    12. AZMY S. ACKLEH, Md. Istiaq Hossain, Amy Veprauskas, Aijun Zhang, 2020, Chapter 6, 978-3-030-60106-5, 145, 10.1007/978-3-030-60107-2_6
    13. J. M. Cushing, A dynamic dichotomy for a system of hierarchical difference equations, 2012, 18, 1023-6198, 1, 10.1080/10236198.2011.628319
    14. Jim M. Cushing, 2016, Chapter 3, 978-81-322-3638-2, 41, 10.1007/978-81-322-3640-5_3
    15. Ryusuke Kon, Age-Structured Lotka–Volterra Equations for Multiple Semelparous Populations, 2011, 71, 0036-1399, 694, 10.1137/100794262
    16. J. M. Cushing, 2015, Chapter 12, 978-3-319-16117-4, 215, 10.1007/978-3-319-16118-1_12
    17. Ryusuke Kon, Non-synchronous oscillations in four-dimensional nonlinear semelparous Leslie matrix models, 2017, 1023-6198, 1, 10.1080/10236198.2017.1365144
    18. J. M. Cushing, Shandelle M. Henson, Lih-Ing Roeger, Coexistence of competing juvenile–adult structured populations, 2007, 1, 1751-3758, 201, 10.1080/17513750701201372
    19. O. Diekmann, S. A. van Gils, On the Cyclic Replicator Equation and the Dynamics of Semelparous Populations, 2009, 8, 1536-0040, 1160, 10.1137/080722734
    20. J. M. Cushing, Three stage semelparous Leslie models, 2009, 59, 0303-6812, 75, 10.1007/s00285-008-0208-9
    21. Amy Veprauskas, J. M. Cushing, Evolutionary dynamics of a multi-trait semelparous model, 2015, 21, 1531-3492, 655, 10.3934/dcdsb.2016.21.655
    22. Ryusuke Kon, 2017, Chapter 1, 978-981-10-6408-1, 3, 10.1007/978-981-10-6409-8_1
    23. Yunshyong Chow, Ryusuke Kon, Global dynamics of a special class of nonlinear semelparous Leslie matrix models, 2020, 26, 1023-6198, 625, 10.1080/10236198.2020.1777288
    24. Ryusuke Kon, Yoh Iwasa, Single-class orbits in nonlinear Leslie matrix models for semelparous populations, 2007, 55, 0303-6812, 781, 10.1007/s00285-007-0111-9
    25. Ryusuke Kon, Bifurcations of cycles in nonlinear semelparous Leslie matrix models, 2020, 80, 0303-6812, 1187, 10.1007/s00285-019-01459-9
    26. R. Bravo de la Parra, M. Marvá, F. Sansegundo, A. Morozov, S. Petrovskii, Fast Dispersal in Semelparous Populations, 2016, 11, 1760-6101, 120, 10.1051/mmnp/201611409
    27. Arild Wikan, An Analysis of a Semelparous Population Model with Density-Dependent Fecundity and Density-Dependent Survival Probabilities, 2017, 2017, 1110-757X, 1, 10.1155/2017/8934295
    28. A. Veprauskas, A nonlinear continuous-time model for a semelparous species, 2018, 297, 00255564, 1, 10.1016/j.mbs.2018.01.003
    29. Gaël Bardon, Frédéric Barraquand, Effects of Stage Structure on Coexistence: Mixed Benefits, 2023, 85, 0092-8240, 10.1007/s11538-023-01135-6
    30. Arild Wikan, Ørjan Kristensen, Elmetwally Elabbasy, Stage-Dependent Predation on Prey Species Who Possess Different Life Histories, 2023, 2023, 1607-887X, 1, 10.1155/2023/4344922
    31. Azmy S. Ackleh, Amy Veprauskas, Aijun Zhang, The impact of dispersal and allee effects on tick invasion: a spatially-explicit discrete-time modelling approach, 2023, 1023-6198, 1, 10.1080/10236198.2023.2285895
    32. Arild Wikan, Ørjan Kristensen, On bifurcations, resonances and dynamical behaviour in nonlinear iteroparous Leslie matrix models, 2024, 0924-090X, 10.1007/s11071-023-09143-w
    33. Ram Singh, Yogesh Trivedi, Anushaya Mohapatra, Synchronous cycles in migrating population dynamics, 2024, 1598-5865, 10.1007/s12190-024-02144-x
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2672) PDF downloads(560) Cited by(33)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog