In this paper, we studied the sharp bounds for the m-linear n-dimensional p-adic integral operator with a kernel on central and noncentral p-adic Morrey spaces with power weight. As an application, the sharp bounds for p-adic Hardy and Hilbert operators on p-adic weighted Morrey spaces were obtained. Finally, we also found the sharp bound for the p-adic Hausdorff operator on p-adic weighted central and noncentral Morrey spaces, which generalizes the previous results.
Citation: Tingting Xu, Zaiyong Feng, Tianyang He, Xiaona Fan. Sharp estimates for the p-adic m-linear n-dimensional Hardy and Hilbert operators on p-adic weighted Morrey space[J]. AIMS Mathematics, 2025, 10(6): 14012-14031. doi: 10.3934/math.2025630
[1] | Tianyang He, Zhiwen Liu, Ting Yu . The Weighted $ \boldsymbol{L}^{\boldsymbol{p}} $ estimates for the fractional Hardy operator and a class of integral operators on the Heisenberg group. AIMS Mathematics, 2025, 10(1): 858-883. doi: 10.3934/math.2025041 |
[2] | Pham Thi Kim Thuy, Kieu Huu Dung . Hardy–Littlewood maximal operators and Hausdorff operators on $ p $-adic block spaces with variable exponents. AIMS Mathematics, 2024, 9(8): 23060-23087. doi: 10.3934/math.20241121 |
[3] | Naqash Sarfraz, Muhammad Aslam . Some weighted estimates for the commutators of $p$-adic Hardy operator on two weighted $p$-adic Herz-type spaces. AIMS Mathematics, 2021, 6(9): 9633-9646. doi: 10.3934/math.2021561 |
[4] | Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad . Boundedness of an intrinsic square function on grand $ p $-adic Herz-Morrey spaces. AIMS Mathematics, 2023, 8(11): 26484-26497. doi: 10.3934/math.20231352 |
[5] | Yanlong Shi, Xiangxing Tao . Rough fractional integral and its multilinear commutators on $ p $-adic generalized Morrey spaces. AIMS Mathematics, 2023, 8(7): 17012-17026. doi: 10.3934/math.2023868 |
[6] | Qianjun He, Xiang Li . Necessary and sufficient conditions for boundedness of commutators of maximal function on the $ p $-adic vector spaces. AIMS Mathematics, 2023, 8(6): 14064-14085. doi: 10.3934/math.2023719 |
[7] | Zhongci Hang, Dunyan Yan, Xiang Li . Mixed radial-angular bounds for Hardy-type operators on Heisenberg group. AIMS Mathematics, 2023, 8(9): 21022-21032. doi: 10.3934/math.20231070 |
[8] | Ming Liu, Bin Zhang, Xiaobin Yao . Weighted variable Morrey-Herz space estimates for $ m $th order commutators of $ n- $dimensional fractional Hardy operators. AIMS Mathematics, 2023, 8(9): 20063-20079. doi: 10.3934/math.20231022 |
[9] | Naqash Sarfraz, Muhammad Bilal Riaz, Qasim Ali Malik . Some new characterizations of boundedness of commutators of $p$-adic maximal-type functions on $p$-adic Morrey spaces in terms of Lipschitz spaces. AIMS Mathematics, 2024, 9(7): 19756-19770. doi: 10.3934/math.2024964 |
[10] | Meichuan Lv, Wenming Li . Sharp bounds for multilinear Hardy operators on central Morrey spaces with power weights. AIMS Mathematics, 2025, 10(6): 14183-14195. doi: 10.3934/math.2025639 |
In this paper, we studied the sharp bounds for the m-linear n-dimensional p-adic integral operator with a kernel on central and noncentral p-adic Morrey spaces with power weight. As an application, the sharp bounds for p-adic Hardy and Hilbert operators on p-adic weighted Morrey spaces were obtained. Finally, we also found the sharp bound for the p-adic Hausdorff operator on p-adic weighted central and noncentral Morrey spaces, which generalizes the previous results.
In recent years, researchers on mathematical physics have paid increasing attention to p-adic fields, because p-adic numbers are widely used in theoretical and mathematical physics [1,2,22]. For this reason, the harmonic analysis of p-adic fields has attracted significant attention [16,17,18].
For a prime number p, let Qp be the field of p-adic numbers, which is defined as the completion of the field of rational numbers Q with respect to the non-Archimedean p-adic norm |⋅|p. This norm is defined as follows: |0|p=0. If any non-zero rational number x is represented as x=pγmn, where m and n are integers that are not divisible by p and γ is an integer, then |x|p=p−γ. It is not difficult to show that the norm satisfies the following properties:
|xy|p=|x|p|y|p,|x+y|p⩽max{|x|p,|y|p}, |
and
||x|py|p=|x|−1p|y|p,d(|x|py)=|x|−1pdy,x∈Qnp. |
It follows from the second property that when |x|p≠|y|p, then |x+y|p=max{|x|p,|y|p}. From the standard p-adic analysis [22], we see that any non-zero p-adic number x∈Qp can be uniquely represented in the canonical series
x=pγ∞∑j=0ajpj,γ=γ(x)∈Z, | (1.1) |
where aj are integers, 0⩽aj⩽p−1, a0≠0. The series (1.1) converges in the p-adic norm because |ajpj|p=p−γ. The space Qnp consists of points x=(x1,x2,...,xn), where xj∈Qp, j=1,2,...,n. The p-adic norm on Qnp is
|x|p:=max1⩽j⩽n|xj|p. |
Denoted by Bγ={x∈Qnp:|x−a|p⩽pγ}, the ball with center at xj∈Qp and radius pγ, γ∈Z. It is clear that Sγ(a)=Bγ(a)∖Bγ−1(a) and
Bγ(a)=⋃k⩽γSk(a),{x∈Qnp:|x−a|p<pγ}=⋃k<γSk(a). |
We set Bγ(0)=Bγ and Sγ(0)=Sγ.
Since Qnp is a locally compact commutative group under addition, it follows from the standard analysis that there exists a unique Haar measure dx on Qnp (up to positive constant multiple) that is translation invariant. We normalize the measure dx so that
∫B0(0)dx=|B0(0)|H=1, |
where |E|H denotes the Haar measure of a measurable subset E of Qnp. From this integral theory, it is easy to obtain that |Bγ(a)|H=pγn and |Sγ(a)|H=pγn(1−p−n) for any a∈Qnp. For a more complete introduction to p-adic fields, see [19].
In recent years, p-adic analysis has received a lot of attention due to its application in mathematical physics (cf. [1,2]). There are numerous papers on p-adic analysis, such as [11,12] about Riesz potentials, and [3] about p-adic pseudo-differential equations. The harmonic analysis on p-adic fields has been drawing more and more attention (cf. [14,15,20] and references therein).
The p-adic m-linear n-dimensional Hardy operator [5] is defined by
Tp1(f1,...,fm)(x)=1|x|mnp∫|(y1,...,ym)|p⩽|x|pf1(y1)⋯fm(ym)dy1⋯dym, |
where x∈Qnp∖{0}. Batbold and Sawano [5] obtained that the norm of Tp1 on p-adic Lebesgue spaces and p-adic Morrey spaces is
‖Tp1‖Lq1(Qp,|x|α1q1/qp)×⋯×Lqm(Qp,|x|αmqm/qp)→Lq(Qp,|x|αp)=(1−p−1)m∏mj=1(1−p(1/qj)+(aj/q)−1), |
and
‖Tp1‖Lq1,λ1(Qp,|x|β1q1/qp)×⋯×Lqm,λm(Qp,|x|βmqm/qp)→Lq,λ(Qp,|x|βp)=(1−p−1)m∏mi=1(1−pδi). |
The p-adic m-linear n-dimensional Hilbert operator [5] is defined by
Tp2(f1,...,fm)(x)=∫Qnp⋯∫Qnpf1(y1)⋯fm(ym)(|x|np+|y1|np+⋯+|ym|np)mdy1⋯dym, |
where x∈Qnp∖{0}. The p-adic m-linear n-dimensional Hausdorff operator [21] is defined by
TpΦ(f1,...,fm)(x)=∫Qnp⋯∫QnpΦ(x/|y1|p,...,x/|ym|p)|y1|np⋯|ym|npf1(y1)⋯fm(ym)dy1⋯dym, |
where x∈Qnp∖{0}, and Φ is a nonnegative function on Qnp. Chen et al. [6] obtained the norm of the multilinear Hausdorff operator on a p-adic function space.
Computation of the operator norm of integral operators is a challenging work in harmonic analysis. In 2017, Batbold and Sawano [4] studied one-dimensional m-linear Hilbert-type operators, incuding the sharp bounds for the Hardy-Littlewood-Pólya operator on weighted Morrey spaces. He et al. [13] extended the results in [4] and obtained the sharp bound for the generalized Hardy-Littlewood-Pólya operator on weighted central and noncentral homogenous Morrey spaces. In 2011, Wu and Fu [23] obtained the sharp estimate of the m-linear p-adic Hardy operator on Lebesgue spaces with power weight.
Inspired by the above, we study a more general operator, which includes the p-adic Hardy and Hilbert operator as a special case. We consider their operator norm on two power weighted p-adic Morrey space and its central version. Finally, we also find the sharp bound for the Hausdorff operator on power weighted central and noncentral Morrey spaces, which generalizes the previous results. Fu and Wu et al.[8,9,10] conducted many related research, which is the basis for our research.
We present the definition of the weighted p-adic Morrey space Bq,λ(Qnp,ω1,ω2) on Qnp, where ω1, ω2: Qnp→(0,∞) are positive measurable functions.
Definition 1.1. Let 1<q<∞, 1q<λ<0, then the weighted p-adic Morrey space Lq,λ(Qnp,ω1,ω2) is the set of all f∈Lqloc(Qnp) for which the norm
‖f‖Lq,λ(Qnp,ω1,ω2)=supa∈Qnp,γ∈Z(∫Bγ(a)ω1(x)dx)−λ−1q(∫Bγ(a)|f(x)|qω2(x)dx)1q<∞. | (1.2) |
Definition 1.2. Let 1<q<∞, 1q<λ<0, Bγ replace with Bγ(0) in the above definition, then the weighted p-adic Morrey space Bq,λ(Qnp,ω1,ω2) is the set of all f∈Lqloc(Qnp) for which the norm
‖f‖Bq,λ(Qnp,ω1,ω2)=supγ∈Z(∫Bγω1(x)dx)−λ−1q(∫Bγ|f(x)|qω2(x)dx)1q<∞. | (1.3) |
In this section, we will study the p-adic m-linear n-dimensional integral operator with a kernel. Let K:Qnp×⋯×Qnp→(0,∞) be a measurable radial kernel such that K(y1,...,ym)=K(|y1|−1p,...,|ym|−1p), then satisfies that
Cp=∫Qnp⋯∫QnpK(y1,...,ym)m∏i=1|yi|nλj−βjq+α(1+1qj)pdy1⋯dym<∞, | (2.1) |
where λj, βj, qj,q, α are pre-defined indicator and some fixed indicators, j=1,2,...,m. The p-adic m-linear n-dimensional integral operator with a kernel is defined by
Tp(f1,...,fm)(x)=∫Qnp⋯∫QnpK(y1,...,ym)f1(|x|−1py1)⋯fm(|x|−1pym)dy1⋯dym, | (2.2) |
where x∈Rn∖{0} and fj is a measurable radial function on Qnp with j=1,2,...,m. Note that Tp is in fact an integral operator with a homogeneous radial K of degree −mn.
In this paper, we will obatin the sharp bound of the p-adic m-linear n-dimensional integral operator with a kernel on p-adic weighted Morrey space. Finally, by taking a particular kernel K in operator Cp defined by (2.1), then we obtain the sharp bounds of the p-adic Hardy and Hilbert operators.
Lemma 2.1. Let α∈R, 1<q<qj<∞, 1q=1q1+⋯+1qm, λ=λ1+⋯+λm, β=β1+⋯+βm, −1qj<λj<0, −1q<λ<0, yj∈Qnp, if fj∈Lqj,λj(Qnp,|x|αp,|x|qjβj/qp) or Bqj,λj(Qnp,|x|αp,|x|qjβj/qp), where j=1,2,...,m, then we have
‖fj(|yj|−1p⋅x)‖Lqj,λj(Qnp,|x|αp,|x|qjβj/qp)=|yj|nλj−βjq+α(λj+1qj)p‖fj‖Lqj,λj(Qnp,|x|αp,|x|qjβj/qp), | (2.3) |
and
‖fj(|yj|−1p⋅x)‖Bqj,λj(Qnp,|x|αp,|x|qjβj/qp)=|yj|nλj−βjq+α(λj+1qj)p‖fj‖Bqj,λj(Qnp,|x|αp,|x|qjβj/qp). | (2.4) |
For convenience of this paper, we define the dilation index in (2.3) and (2.4) by
d(λ,q,α,β)=nλ−βq+α(λ+1q),d(λj,qj,α,qjβjq)=nλj−βjq+α(λj+1qj). |
Lemma 2.2. Assume that real parameters q, qj, λ, λj, β, βj with j=1,2,...,m are the same as in Lemma 2.1, α+n>0. Then we have |x|d(λj,qj,α,qjβjq)p∈Bqj,λj(Qnp,|x|αp,|x|qjβjqp). Moreover,
‖|x|d(λj,qj,α,qjβjq)p‖Bqj,λj(Qnp,|x|αp,|x|qjβjqp)=(1−p−n)−λj(1−p−(α+n))−λj−1qj(1−p−(qjλj+1)(α+n))1qj. | (2.5) |
Lemma 2.3. Assume that real parameters q, qj, λ, λj, β, βj with j=1,2,...,m are the same as in Lemma 2.1, α+n>0. Then we have |x|d(λj,qj,α,qjβjq)p∈Lqj,λj(Qnp,|x|αp,|x|qjβjqp). Moreover,
‖|x|d(λj,qj,α,qjβjq)p‖Lqj,λj(Qnp,|x|αp,|x|qjβjqp)=max{1,(1−p−n)−λj(1−p−(α+n))−λj−1qj(1−p−(qjλj+1)(α+n))1qj}. | (2.6) |
Theorem 2.1. Let α∈R, 1<q<qj<∞, 1q=1q1+⋯+1qm, λ=λ1+⋯+λm, β=β1+⋯+βm, −1qj<λj<0, −1q<λ<0 with j=1,2,...,m, fj be a radial function in Bqj,λj(Qnp,|x|αp,|x|qjβjqp). We obtain
‖Tp(f1,...,fm)(x)‖Bq,λ(Qnp,|x|αp,|x|βp)⩽Cpm∏j=1‖fj‖Bqj,λj(Qnp,|x|αp,|x|qjβjqp), | (2.7) |
where Cp is the constant defined by (2.1). Moreover, if α+n>0 and qλ=q1λ1=⋯=qmλm, then Cp is the sharp constant in (2.7), then
‖Tp(f1,...,fm)(x)‖∏mj=1Bqj,λj(Qnp,|x|αp,|x|qjβjqp)→Bq,λ(Qnp,|x|αp,|x|βp)=Cp. |
Theorem 2.2. Assume that the real parameters q, qj, λ, λj, β, βj with j=1,2,...,m are the same as in Theorem 2.1, fj be a radial function in Lqj,λj(Qnp,|x|αp,|x|qjβjqp). We get
‖Tp(f1,...,fm)(x)‖Lq,λ(Qnp,|x|αp,|x|βp)⩽Cpm∏j=1‖fj‖Lqj,λj(Qnp,|x|αp,|x|qjβjqp), | (2.8) |
where Cp is the constant defined by (2.1). Moreover, if α+n>0 and qλ=q1λ1=⋯=qmλm, then Cp is the sharp constant in (2.8), and we have
‖Tp(f1,...,fm)(x)‖∏mj=1Lqj,λj(Qnp,|x|αp,|x|qjβjqp)→Lq,λ(Qnp,|x|αp,|x|βp)=Cp. |
Corollary 2.1. Assume that the real parameters q, qj, λ, λj, β, βj with j=1,2,...,m are the same as in Theorem 2.1, fj be a radial function in Bqj,λj(Qnp,|x|αp,|x|qjβjqp). Assume also that d(λj,qj,α,qjβjq)+n>0. Then Tp1 is bounded from ∏mj=1Bqj,λj(Qnp,|x|αp,|x|qjβjqp) to Bq,λ(Qnp,|x|αp,|x|βp). Furthermore, if α+n>0, then
‖Tp1(f1,...,fm)(x)‖∏mj=1Bqj,λj(Qnp,|x|αp,|x|qjβjqp)→Bq,λ(Qnp,|x|αp,|x|βp)=(1−p−n)m∏mk=1(1−p−d(λk,qk,α,qkβkq)−n). | (2.9) |
The weighted Morrey space Lqj,λj(Qnp,|x|αp,|x|qjβjqp) is similar.
Corollary 2.2. Assume that the real parameters q, qj, λ, λj, β, βj with j=1,2,...,m are the same as in Theorem 2.1, fj be a radial function in Bqj,λj(Qnp,|x|αp,|x|qjβjqp). Assume also that d(λj,qj,α,qjβjq)+n>0 and d(λ,q,α,β)<0. Then Tp2 is bounded from ∏mj=1Bqj,λj(Qnp,|x|αp,|x|qjβjqp) to Bq,λ(Qnp,|x|αp,|x|βp). Furthermore, if α+n>0, then
‖Tp2(f1,...,fm)(x)‖∏mj=1Bqj,λj(Qnp,|x|αp,|x|qjβjqp)→Bq,λ(Qnp,|x|αp,|x|βp)=(1−p−n)m+∞∑k1=−∞+∞∑k2=−∞⋯+∞∑km=−∞1(1+pk1n+⋯+pkmn)mm∏j=1pkj(d(λj,qj,α,qjβjq)+n)⩽(1−p−n)m(1−p−mn)(1−pd(λ,q,α,β))∏mk=1(1−p−d(λk,qk,α,qkβkq)−n)<∞. | (2.10) |
The weighted Morrey space Lqj,λj(Qnp,|x|αp,|x|qjβjqp) is similar.
Proof of Lemma 2.1. We only prove the scaling in Lqj,λj(Qnp,|x|αp,|x|qjβjqp), as the other case is similar. By computing, we obtain
∥fj(|y|−1p⋅x)∥Lqj,λj(Qnp,|x|αp,|x|qjβjqp)=supa∈Qnp,γ∈Z(∫Bγ(a)|x|αpdx)−λj−1qj(∫Bγ(a)|fj(|yj|−1px)|qj|x|qjβjqdx)1qj=|yj|−nqj−βjqsupa∈Qnp,γ∈Z(∫|x−a|p⩽pγ|x|αpdx)−λj−1qj(∫||yj|pz−a|p⩽pγ|fj(z)|qj|z|qjβjqdz)1qj=|yj|nλj−βjq+α(λj+1qj)supa∈Qnp,γ∈Z(∫||yj|pz−a|p⩽pγ|z|αpdz)−λj−1qj(∫||yj|pz−a|p⩽pγ|fj(z)|qj|z|qjβjqdz)1qj=|yj|d(λj,qj,α,qjβjq)supa∈Qnp,γ∈Z(∫Bγ+logp|yj|p(a/|yj|p)|x|αpdx)−λj−1qj(∫Bγ+logp|yj|p(a/|yj|p)|fj(x)|qj|x|qjβjqdx)1qj=|yj|d(λj,qj,α,qjβjq)‖fj‖Lqj,λj(Qnp,|x|αp,|x|qjβjqp). |
This finishes the proof of Lemma 2.1.
Next, we will give the proofs of Lemmas 2.2 and 2.3.
Proof of Lemma 2.2. For the case when α+n>0, let fj(x)=|x|d(λj,qj,α,qjβjq)p for all x∈Qnp∖{0} and fj(0):=0(j=1,2,...,m). Then for any Bγ=B(0,pγ), we need to show that fj∈Bqj,λjγ(Qnp,|x|αp,|x|qjβjqp). By computing, we have
‖fj‖Bqj,λj(Qnp,|x|αp,|x|qjβjqp)=supγ∈Z(∫Bγ|x|αpdx)−λj−1qj(∫Bγ|x|d(λj,qj,α,qjβjq)p|x|qjβjqpdx)1qj=supγ∈Z(γ∑k=−∞∫Sk|x|αpdx)−λj−1qj(γ∑k′=−∞∫Sk′|x|nλjqj+α(λjqj+1)pdx)1qj=supγ∈Z(γ∑k=−∞pkα∫Skdx)−λj−1qj(γ∑k′=−∞p(λjqj(α+n)+α)k′∫Sk′dx)1qj=supγ∈Z(γ∑k=−∞pkα×pkn(1−p−n))−λj−1qj(γ∑k′=−∞p(λjqj(α+n)+α)k′×pk′n(1−p−n))1qj=(1−p−n)−λj(γ∑k=−∞pk(α+n))−λj−1qj(γ∑k′=−∞p(qjλj+1)(α+n)k′)1qj. |
Since α+n>0 and 1+qjλj>0, we have
γ∑k=−∞p(α+n)k=p(α+n)γ(1−(p−(α+n))∞)1−p−(α+n)=p(α+n)γ1−p−(α+n), |
γ∑k′=−∞p(qjλj+1)(α+n)k′=p(qjλj+1)(α+n)γ(1−(p−(qjλj+1)(α+n))∞)1−p−(qjλj+1)(α+n)=p(qjλj+1)(α+n)γ1−p−(qjλj+1)(α+n). |
Notice that (α+n)γ(−λj−1qj)+1qjγ(qjλj+1)(α+n)=0, so we obtain
‖fj‖Bqj,λj(Qnp,|x|αp,|x|qjβjqp)=(1−p−n)−λj(1−p−(α+n))−λj−1qj(1−p−(qjλj+1)(α+n))1qj<∞. | (2.11) |
Using (2.11), we have that fj∈Bqj,λj(Qnp,|x|αp,|x|qjβjqp).
This finishes the proof of Lemma 2.2.
Proof of Lemma 2.3. For the case when α+n>0, let fj(x)=|x|d(λj,qj,α,qjβjq)p for all x∈Qnp∖{0} and fj(0):=0(j=1,2,...,m). Then for any Bγ(a)=B(a,pγ), we need to show that fj∈Lqj,λjγ(Qnp,|x|αp,|x|qjβjqp). We will consider the following two cases:
(ⅰ) If |a|p>pγ and x∈Bγ(a), since |x−a|p⩽pγ, it follows that |x|p⩽max{|x−a|p,|a|p}=|a|p>pγ. Thus, we have
‖fj‖Lqj,λj(Qnp,|x|αp,|x|qjβjqp)=supa∈Qnp,γ∈Z(∫Bγ(a)|x|αpdx)−λj−1qj(∫Bγ(a)|x|d(λj,qj,α,qjβjq)qjp|x|qjβjqpdx)1qj=supa∈Qnp,γ∈Z(∫Bγ(a)|a|αpdx)−λj−1qj(∫Bγ(a)|a|nλjqj+α(λjqj+1)pdx)1qj=supa∈Qnp,γ∈Z|a|α(−λj−1qj)+1qj(nλjqj+α(λjqj+1))p(∫Bγ(a)dx)−λj−1qj(∫Bγ(a)dx)1qj=supa∈Qnp,γ∈Z|a|nλjp|Bγ(a)|−λjH=supa∈Qnp,γ∈Z|a|nλjp×p−nλjγ⩽(pγ)nλj×p−nλjγ=1. |
(ⅱ) If |a|p⩽pγ and x∈Bγ(a), since |x−a|p⩽pγ and |a|p⩽pγ, then |x|p=max{|x−a|p,|a|p}⩽pγ, so we have x∈Bγ. For x∈Bγ, then |x|p⩽pγ, we have |x−a|p⩽pγ and x∈Bγ(a). So we have Bγ(a)=Bγ, thus
‖fj‖Lqj,λj(Qnp,|x|αp,|x|qjβjqp)=supa∈Qnp,γ∈Z(∫Bγ(a)|x|αpdx)−λj−1qj(∫Bγ(a)|x|d(λj,qj,α,qjβjq)qjp|x|qjβjqpdx)1qj=supγ∈Z(∫Bγ|x|αpdx)−λj−1qj(∫Bγ|x|nλjqj+α(λjqj+1)pdx)1qj. |
By the argument in the proof of Lemma 2.2, we have that for |a|p⩽pγ, x∈Bγ(a),
‖fj‖Lqj,λj(Qnp,|x|αp,|x|qjβjqp)<∞. | (2.12) |
In conclusion, we can see that fj∈Lqj,λj(Qnp,|x|αp,|x|qjβjqp).
This finishes the proof of Lemma 2.3.
Proof of Theorem 2.1. First, we claim that the operator Tp(f1,..,fm)(x) and its restriction to the functions g(x)=g(|x|−1p) have the same operator norm. In fact, set
gj(x)=11−p−n∫|ξj|p=1fj(|x|−1pξj)dξj,x∈Qnp,j=1,...,m. |
Obviously, gj satisfies gj(x)=gj(|x|−1p), Tp(g1,...,gm)(x) is equal to
Tp(g1,...,gm)(x)=∫QnmpK(y1,...,ym)g1(|x|−1py1)⋯gm(|x|−1pym)dy1⋯dym=∫QnmpK(y1,...,ym)m∏j=1(11−p−n∫|ξj|p=1fj(||x|−1pyj|−1pξj)dξj)dy1⋯dym=1(1−p−n)m∫QnmpK(y1,...,ym)m∏j=1(∫|ξj|p=1fj(|x|−1p|yj|−1pξj)dξj)dy1⋯dym=1(1−p−n)m∫QnmpK(y1,...,ym)m∏j=1(∫|zj|p=|yj|pfj(|x|−1pzj)|yj|−npdzj)dy1⋯dym=1(1−p−n)m∫Qnmp∫|y1|p=|z1|p⋯∫|ym|p=|zm|pK(|y1|−1p,...,|ym|−1p)m∏j=1fj(|x|−1pzj)|yj|−npdy1⋯dymdzm⋯dz1=1(1−p−n)m∫Qnmp∫|t1|p=1⋯∫|tm|p=1K(|z1|−1p,...,|zm|−1p)m∏j=1fj(|x|−1pzj)dt1⋯dtmdzm⋯dz1=∫QnmpK(z1,...,zm)f1(|x|−1pz1)⋯fm(|x|−1pzm)dz1⋯dzm=Tp(f1,...,fm)(x). |
In the fourth to fifth lines, we let zj=|yj|−1pξj. From the fifth to sixth lines, we perform an integral permutation. In the sixth to seventh lines, we set yj=|zj|−1ptj. On the other hand, using the Holder's inequality, we conclude
‖gj‖Bqj,λj(Qnp,|x|αp,|x|qjβjqp)=supγ∈Z(∫Bγ|x|αpdx)−λj−1qj(∫Bγ|11−p−n∫|ξj|=1fj(|x|−1pξj)dξj|qj|x|qjβjqpdx)1qj=supγ∈Z(∫Bγ|x|αpdx)−λj−1qj11−p−n(∫Bγ|∫|ξj|=1fj(|x|−1pξj)dξj|qj|x|qjβjqpdx)1qj⩽11−p−nsupγ∈Z(∫Bγ|x|αpdx)−λj−1qj(∫Bγ∫|ξj|=1|fj(|x|−1pξj)|qjdξj(∫|ξj|=1dx)qj−1|x|qjβjqpdx)1qj=(1−p−n)−1qjsupγ∈Z(∫Bγ|x|αpdx)−λj−1qj(∫Bγ∫|ξj|=1|fj(|x|−1pξj)|qjdξj|x|qjβjqpdx)1qj=(1−p−n)−1qjsupγ∈Z(∫Bγ|x|αpdx)−λj−1qj(∫Bγ∫|zj|p=|x|p|fj(zj)|qj|x|−npdzj|x|qjβjqpdx)1qj=(1−p−n)−1qjsupγ∈Z(∫Bγ|x|αpdx)−λj−1qj(∫Bγ∫|x|p=|zj|p|x|−np|x|qjβjqpdx|fj(zj)|qjdzj)1qj=(1−p−n)−1qjsupγ∈Z(∫Bγ|x|αpdx)−λj−1qj(∫Bγ∫|tj|=1|zj|−np|tj|−n|zj|qjβjq|tj|qjβjq|fj(zj)|qj|zj|npdtjdzj)1qj=supγ∈Z(∫Bγ|x|αpdx)−λj−1qj(∫Bγ|fj(zj)|qj|zj|qjβjqdzj)1qj=‖fj‖Bqj,λj(Qnp,|x|αp,|x|qjβjqp). |
From the third to fourth lines, we apply Hölder's inequality. In the fifth to sixth lines, we let z_j = \left| x \right|_{p}^{-1}\xi _j . From the sixth to seventh lines, we perform an integral permutation. In the seventh to eighth lines, we set x = | z_j |_{p}^{-1}t_j . Therefore, we have
\frac{\left\| T^p\left( f_1,...,f_m \right) \right\| _{B^{q_j,\lambda _j}\left( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} \right)}}{\prod\limits_{j = 1}^m{\left\| f_j \right\| _{B^{q_j,\lambda _j}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}} )}}}\leqslant \frac{\left\| T^p\left( g_1,...,g_m \right) \right\| _{B^{q_j,\lambda _j}\left( \mathbb{Q} _{p}^{nm},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} \right)}}{\prod\limits_{j = 1}^m{\left\| g_j \right\| _{B^{q_j,\lambda _j}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}} )}}}, |
which implies that the operators T^p and their restriction to the function g satisfying g_j\left(x \right) = g_j(\left| x \right|_{p}^{-1}) have the same operator norm in B^{q, \lambda}(\mathbb{Q} _{p}^{n}, \left| x \right|_{p}^{\alpha}, \left| x \right|_{p}^{\beta}) . So without loss of generality, we assume that f_j\in B^{q_j, \lambda _j}(\mathbb{Q} _{p}^{n}, \left| x \right|_{p}^{\alpha}, \left| x \right|_{p}^{\frac{q_j\beta _j}{q}}) with j = 1, 2, ..., m satisfies that f_j\left(x \right) = f_j(\left| x \right|_{p}^{-1}) in the rest of the proof.
The following sequence is obtained by Minkowski's inequality and Holder's inequality; notice that \frac{1}{q} = \frac{1}{q_j}+\cdots +\frac{1}{q_m} , \lambda = \lambda _1+\cdots +\lambda _m , \beta = \beta _1+\cdots +\beta _m , then \frac{q}{q_j}+\cdots +\frac{q}{q_m} = 1 and f(\left| x \right|_{p}^{-1}y_j) = f(x| y_j |_{p}^{-1}) , thus we have
\begin{align*} &\left\| T^p\left( f_1,...,f_m \right) \left( x \right) \right\| _{B^{q,\lambda }\left( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} \right)} \\ = &\underset{\gamma > 0}{\mathrm{sup}}\left( \displaystyle {\int}_{B_{\gamma}}{\left| x \right|_{p}^{\alpha}}dx \right) ^{-\lambda -\frac{1}{q}}\left( \displaystyle {\int}_{B_{\gamma}}{\left| \displaystyle {\int}_{\mathbb{Q} _{p}^{mn}}{\left| x \right|_{p}^{\frac{\beta}{q}}K\left( y_1,...y_m \right) f_1( \left| x \right|_{p}^{-1}y_1 ) \cdots f_m( \left| x \right|_{p}^{-1}y_m ) dy_1\cdots dy_m} \right|^qdx} \right) ^{\frac{1}{q}} \\ \leqslant &\underset{\gamma > 0}{\mathrm{sup}}\left( \displaystyle {\int}_{B_{\gamma}}{\left| x \right|_{p}^{\alpha}}dx \right) ^{-\lambda -\frac{1}{q}}\displaystyle {\int}_{\mathbb{Q} _{p}^{mn}}{\left( \displaystyle {\int}_{B_{\gamma}}{\left| x \right|_{p}^{\beta}}|K\left( y_1,...y_m \right) f_1(\left| x \right|_{p}^{-1}y_1)\cdots f_m(\left| x \right|_{p}^{-1}y_m)|^qdx \right) ^{\frac{1}{q}}}dy_1\cdots dy_m \\ = &\underset{\gamma > 0}{\mathrm{sup}}\displaystyle {\int}_{\mathbb{Q} _{p}^{mn}}{K\left( y_1,...,y_m \right)}\left( \displaystyle {\int}_{B_{\gamma}}{\left| x \right|_{p}^{\alpha}}dx \right) ^{-\lambda -\frac{1}{q}}\left( \displaystyle {\int}_{B_{\gamma}}{\left| x \right|_{p}^{\beta}}| f_1( x\left| y_1 \right|_{p}^{-1} ) \cdots f_m( x\left| y_m \right|_{p}^{-1} ) |^qdx \right) ^{\frac{1}{q}}dy_1\cdots dy_m \\ \leqslant& \underset{\gamma > 0}{\mathrm{sup}}\displaystyle {\int}_{\mathbb{Q} _{p}^{mn}}{K\left( y_1,...,y_m \right)}\left( \displaystyle {\int}_{B_{\gamma}}{\left| x \right|_{p}^{\alpha}}dx \right) ^{-\lambda -\frac{1}{q}}\prod\limits_{j = 1}^m{\left( \displaystyle {\int}_{B_{\gamma}}{| f_j( x| y_j |_{p}^{-1}) |^{q_j}\left| x \right|_{p}^{\frac{q_j\beta _j}{q}}}dx \right) ^{\frac{1}{q_j}}}dy_1\cdots dy_m \\ = &\underset{\gamma > 0}{\mathrm{sup}}\displaystyle {\int}_{\mathbb{Q} _{p}^{mn}}{K\left( y_1,...,y_m \right)}\prod\limits_{j = 1}^m{\left( \displaystyle {\int}_{B_{\gamma}}{\left| x \right|_{p}^{\alpha}}dx \right) ^{-\lambda _j-\frac{1}{q_j}}}\prod\limits_{j = 1}^m{\left( \displaystyle {\int}_{B_{\gamma}}{| f_j( x| y_j |_{p}^{-1} )|^{q_j}\left| x \right|_{p}^{\frac{q_j\beta _j}{q}}}dx \right) ^{\frac{1}{q_j}}}dy_1\cdots dy_m \\ \leqslant &\displaystyle {\int}_{\mathbb{Q} _{p}^{mn}}{K\left( y_1,...,y_m \right)}\prod\limits_{j = 1}^m{\left\| f_j( x| y_j |_{p}^{-1} ) \right\| _{B^{q_j,\lambda _j}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}} )}}dy_1\cdots dy_m. \end{align*} |
Using Lemma 2.1, we can deduce that
\begin{align*} \left\| T^p\!\left( f_1,...,f_m \right) \left( x \right) \right\| _{B^{q_j,\lambda _j}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} )} &\!\leqslant \!\displaystyle {\int}_{\mathbb{Q} _{p}^{mn}}\!{K\left( y_1,...y_m \right) \prod\limits_{j = 1}^m{| y_j |_{p}^{d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} )}}}dy_1\cdots dy_m\!\prod\limits_{j = 1}^m\!{\left\| f_j \right\| _{B^{q_j,\lambda _j}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}} )}} \\ & = C^p\prod\limits_{j = 1}^m{\left\| f_j \right\| _{B^{q_j,\lambda _j}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}} )}}. \end{align*} |
Now, we will show that the operator norm of T^p(f_1, ..., f_m)(x) is equal to C^p . Taking
f_j = \left| x \right|_{p}^{d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} )},j = 1,2,...,m. |
Since \alpha+n > 0 , using Lemma 2.2, then f_j\in B^{q_j, \lambda _j}(\mathbb{Q} _{p}^{n}, \left| x \right|_{p}^{\alpha}, \left| x \right|_{p}^{\frac{q_j\beta _j}{q}}) , we calculate that
\begin{align*} T^p\left( f_1,...,f_m \right) \left( x \right) & = \displaystyle {\int}_{\mathbb{Q} _{p}^{mn}}{K\left( y_1,...y_m \right) f_1( \left| x \right|_{p}^{-1}y_1 ) \cdots}f_m( \left| x \right|_{p}^{-1}y_m ) dy_1\cdots dy_m \\ & = \displaystyle {\int}_{\mathbb{Q} _{p}^{mn}}{K\left( y_1,...y_m \right)}\prod\limits_{j = 1}^m{( \left| x \right|_p| y_j |_p )}^{d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} )}dy_1\cdots dy_m \\ & = C^p\prod\limits_{j = 1}^m{\left| x \right|_{p}^{d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} )}} = C^p\left| x \right|_{p}^{d\left( \lambda ,q,\alpha ,\beta \right)}. \end{align*} |
Since \lambda = \lambda _1+\cdots +\lambda _m , \frac{1}{q} = \frac{1}{q_j}+\cdots +\frac{1}{q_m} , q\lambda = q_1\lambda _1 = \cdots = q_m\lambda _m , we have
\begin{align*} &\left\| T^p\left( f_1,...,f_m \right) \left( x \right) \right\| _{B^{q_j,\lambda _j}\left( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} \right)} \\ = &\underset{\gamma \in \mathbb{Z}}{\mathrm{sup}}\left( \displaystyle {\int}_{B_{\gamma}}{\left| x \right|_{p}^{\alpha}}dx \right) ^{-\lambda -\frac{1}{q}}\left( \displaystyle {\int}_{B_{\gamma}}{| C^p\left| x \right|_{p}^{d\left( \lambda ,q,\alpha ,\beta \right)} |^q\left| x \right|_{p}^{\beta}dx} \right) ^{\frac{1}{q}} \\ = &C^p\underset{\gamma \in \mathbb{Z}}{\mathrm{sup}}\left( \displaystyle {\int}_{B_{\gamma}}{\left| x \right|_{p}^{\alpha}}dx \right) ^{-\lambda-\frac{1}{q}}\left( \displaystyle {\int}_{B_{\gamma}}{\left| x \right|_{p}^{nq\lambda +\alpha \left( q\lambda +1 \right)}dx} \right) ^{\frac{1}{q}} \\ = &C^p\underset{\gamma \in \mathbb{Z}}{\mathrm{sup}}\prod\limits_{j = 1}^m{\left( \displaystyle {\int}_{B_{\gamma}}{| x_j |_{p}^{\alpha}}dx_j \right) ^{-\lambda _j-\frac{1}{q_j}}}\prod\limits_{j = 1}^m{\left( \displaystyle {\int}_{B_{\gamma}}{| x_j |_{p}^{nq_j\lambda _j+\alpha ( q_j\lambda _j+1 )}}dx_j \right) ^{\frac{1}{q_j}}}. \end{align*} |
Notice that (nq_j\lambda _j+\alpha (q_j\lambda _j+1) +n) \frac{1}{q_j}+\left(n+\alpha \right) (-\lambda _j-\frac{1}{q_j}) = 0 , we obtain
\begin{align*} &\left\| T^p\left( f_1,...,f_m \right) \left( x \right) \right\| _{B^{q_j,\lambda _j}\left( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} \right)} \\ = &C^p\prod\limits_{j = 1}^m{\underset{\gamma _j\in \mathbb{Z}}{\mathrm{sup}}\left( \displaystyle {\int}_{B_0}{| y_j |_{p}^{\alpha}}dy_j \right) ^{-\lambda _j-\frac{1}{q_{j\,\,}}}}\left( \displaystyle {\int}_{B_0}{| y_j |_{p}^{nq_j\lambda _j+\alpha ( q_j\lambda _j+1 )}}dy_j \right) ^{\frac{1}{q_j}} \\ = &C^p\prod\limits_{j = 1}^m{\underset{\gamma _j\in \mathbb{Z}}{\mathrm{sup}}\left( \displaystyle {\int}_{B_{\gamma _j}}{| z_j |_{p}^{\alpha}}dz_j \right) ^{-\lambda _j-\frac{1}{q_{j\,\,}}}}\left( \displaystyle {\int}_{B_{\gamma _j}}{\left| | z_j |_{p}^{d( \lambda _j,q_j,\alpha _j,\frac{q_j\beta _j}{q} )} \right|^{q_j}| z_j |_{p}^{\frac{q_j\beta _j}{q}}}dz_j \right) ^{\frac{1}{q_j}} \\ = &C^p\prod\limits_{j = 1}^m{\left\| f_j \right\| _{B^{q_j,\lambda _j}(\mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}})}}. \end{align*} |
In the first to second lines, we let x_j = p^{-\gamma}y_j . From the second to third lines, we let y_j = z_jp^{\gamma _j} . Through the above steps, we have completed the proof of Theorem 2.1. It is
\left\| T^p\left( f_1,...,f_m \right) \left( x \right) \right\| _{\prod\nolimits_{j = 1}^m{B^{q_j,\lambda _j}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}} )}\rightarrow B^{q,\lambda}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} )} = C^p. |
Proof of Theorem 2.2. The previous step is similar to the proof of Theorem 2.1, using Lemma 2.3, then f_j\in L^{q_j, \lambda _j}(\mathbb{Q} _{p}^{n}, \left| x \right|_{p}^{\alpha}, \left| x \right|_{p}^{\frac{q_j\beta _j}{q}}) , finaly we obtain that
\begin{align*} &\left\| T^p\left( f_1,...,f_m \right) \left( x \right) \right\| _{L^{q_j,\lambda _j}\left( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} \right)} \\ = &\underset{a\in \mathbb{Q} _{p}^{n},\gamma \in \mathbb{Z}}{\mathrm{sup}}\left( \displaystyle {\int}_{B_{\gamma}(a)}{\left| x \right|_{p}^{\alpha}}dx \right) ^{-\lambda -\frac{1}{q}}\left( \displaystyle {\int}_{B_{\gamma}(a)}{| C^p\left| x \right|_{p}^{d\left( \lambda ,q,\alpha ,\beta \right)} |^q\left| x \right|_{p}^{\beta}dx} \right) ^{\frac{1}{q}} \\ = &C^p\underset{a\in \mathbb{Q} _{p}^{n},\gamma \in \mathbb{Z}}{\mathrm{sup}}\left( \displaystyle {\int}_{B_{\gamma}(a)}{\left| x \right|_{p}^{\alpha}}dx \right) ^{-\lambda-\frac{1}{q}}\left( \displaystyle {\int}_{B_{\gamma}(a)}{\left| x \right|_{p}^{nq\lambda +\alpha \left( q\lambda +1 \right)}dx} \right) ^{\frac{1}{q}} \\ = &C^p\underset{a\in \mathbb{Q} _{p}^{n},\gamma \in \mathbb{Z}}{\mathrm{sup}}\prod\limits_{j = 1}^m{\left( \displaystyle {\int}_{B_{\gamma}(a)}{| x_j |_{p}^{\alpha}}dx_j \right) ^{-\lambda _j-\frac{1}{q_j}}}\prod\limits_{j = 1}^m{\left( \displaystyle {\int}_{B_{\gamma}(a)}{| x_j |_{p}^{nq_j\lambda _j+\alpha ( q_j\lambda _j+1 )}}dx_j \right) ^{\frac{1}{q_j}}}. \end{align*} |
Notice that (nq_j\lambda _j+\alpha (q_j\lambda _j+1) +n) \frac{1}{q_j}+\left(n+\alpha \right) (-\lambda _j-\frac{1}{q_j}) = 0 , we obtain
\begin{align*} &\left\| T^p\left( f_1,...,f_m \right) \left( x \right) \right\| _{L^{q_j,\lambda _j}\left( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} \right)} \\ = &C^p\underset{a\in \mathbb{Q} _{p}^{n},\gamma \in \mathbb{Z}}{\mathrm{sup}}\prod\limits_{j = 1}^m{\left( \displaystyle {\int}_{B_{0}(p^{\gamma}a)}{| y_j |_{p}^{\alpha}}dy_j \right) ^{-\lambda _j-\frac{1}{q_j}}}\prod\limits_{j = 1}^m{\left( \displaystyle {\int}_{B_{0}(p^{\gamma}a)}{| y_j |_{p}^{nq_j\lambda _j+\alpha ( q_j\lambda _j+1 )}}dy_j \right) ^{\frac{1}{q_j}}} \\ = &C^p\prod\limits_{j = 1}^m{\underset{a_j\in \mathbb{Q} _{p}^{n}}{\mathrm{sup}}\left( \displaystyle {\int}_{B_0( a_j )}{|y_j|_{p}^{\alpha}dy_j} \right) ^{-\lambda _j-\frac{1}{q_{j\,\,}}}\left( \displaystyle {\int}_{B_0( a_j )}{|y_j|_{p}^{nq_j\lambda _j+\alpha (q_j\lambda _j+1)}dy_j} \right) ^{\frac{1}{q_j}}} \\ = &C^p\prod\limits_{j = 1}^m{\underset{a_j\in \mathbb{Q} _{p}^{n},\gamma _j\in \mathbb{Z}}{\mathrm{sup}}\left( \displaystyle {\int}_{B_{\gamma _j}(p^{-\gamma_j}a_j)}{| z_j |_{p}^{\alpha}}dz_j \right) ^{-\lambda _j-\frac{1}{q_{j\,\,}}}}\left( \displaystyle {\int}_{B_{\gamma _j}(p^{-\gamma_j}a_j)}{\left| | z_j |_{p}^{d( \lambda _j,q_j,\alpha _j,\frac{q_j\beta _j}{q} )} \right|^{q_j}| z_j |_{p}^{\frac{q_j\beta _j}{q}}}dz_j \right) ^{\frac{1}{q_j}} \\ = &C^p\prod\limits_{j = 1}^m{\underset{a_j\in \mathbb{Q} _{p}^{n},\gamma _j\in \mathbb{Z}}{\mathrm{sup}}\left( \displaystyle {\int}_{B_{\gamma _j}(a_j)}{| z_j |_{p}^{\alpha}}dz_j \right) ^{-\lambda _j-\frac{1}{q_{j\,\,}}}}\left( \displaystyle {\int}_{B_{\gamma _j}(a_j)}{\left| | z_j |_{p}^{d( \lambda _j,q_j,\alpha _j,\frac{q_j\beta _j}{q} )} \right|^{q_j}| z_j |_{p}^{\frac{q_j\beta _j}{q}}}dz_j \right) ^{\frac{1}{q_j}} \\ = &C^p\prod\limits_{j = 1}^m{\left\| f_j \right\| _{L^{q_j,\lambda _j}(\mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}})}}. \end{align*} |
In the first to second lines, we let x_j = p^{-\gamma}y_j . From the third to fourth lines, we let y_j = z_jp^{\gamma _j} . Through the above steps, we have completed the proof of Theorem 2.2. It is
\left\| T^p\left( f_1,...,f_m \right) \left( x \right) \right\| _{\prod\nolimits_{j = 1}^m{L^{q_j,\lambda _j}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}} )}\rightarrow L^{q,\lambda}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} )} = C^p. |
Proof of Corollary 2.1. Next, we will use the methods in [23]. If we take the kernel
\begin{align} K\left( y_1,...,y_m \right) = \chi _{\{ \left| \left( y_1,...,y_m \right) \right|_p\leqslant 1 \}}\left( y_1,...,y_m \right) \end{align} | (2.13) |
in Theorems 2.1 and 2.2, by a change of variables, it is easy to verify that T^p(f_1, ..., f_m)(x) = T_{1}^{p}(f_1, ..., f_m)(x) , then T_{1}^{p}(f_1, ..., f_m)(x) can be denoted by
T_{1}^{p}(f_1,...,f_m)(x) = \displaystyle {\int}_{\left| \left( y_1,...,y_m \right) \right|_p\leqslant 1}{f_1( \left| x \right|_{p}^{-1}y_1 ) \cdots f_m( \left| x \right|_{p}^{-1}y_m ) dy_1\cdots dy_m}, |
respectively, then it is all reduced to calculating
C_{1}^{p} = \displaystyle {\int}_{\left| \left( y_1,...,y_m \right) \right|_p\leqslant 1}{\prod\limits_{j = 1}^m{| y_j |_{p}^{d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} )}}dy_1\cdots dy_m}. |
To calculate this integral, we divide the integral into m parts. Let
\begin{align*} &D_1 = \{ \left( y_1,...,y_m \right) \in \mathbb{Q} _{p}^{n}\cdots \mathbb{Q} _{p}^{n}:\left| y_1 \right|_p\leqslant 1,\left| y_k \right|_p\leqslant \left| y_1 \right|_p,1 < k\leqslant m \}, \\ &D_i = \{ \left( y_1,...,y_m \right) \in \mathbb{Q} _{p}^{n}\cdots \mathbb{Q} _{p}^{n}:| y_i |_p\leqslant 1,| y_j |_p < | y_i|_p,\left| y_k \right|_p\leqslant | y_i |_p,1\leqslant j < i < k\leqslant m \}, \\ &D_m = \{ \left( y_1,...,y_m \right) \in \mathbb{Q} _{p}^{n}\cdots \mathbb{Q} _{p}^{n}:\left| y_m \right|_p\leqslant 1,| y_j|_p < \left| y_m \right|_p,1\leqslant j < m \}. \end{align*} |
It is clear that
\bigcup\limits_{j = 1}^m{D_j = \{ \left( y_1,...,y_m \right) \in \mathbb{Q} _{p}^{n}\cdots \mathbb{Q} _{p}^{n}:\left| \left( y_1,...,y_m \right) \right|_p\leqslant 1 \}}, |
and D_i\cap D_j = \varnothing \left(i\ne j \right) . Let
I_j: = \displaystyle {\int}_{D_j}{\prod\limits_{k = 1}^m{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}dy_1\cdots dy_m}. |
Then
C_{1}^{p} = \sum\limits_{j = 1}^m{I_j:} = \sum\limits_{j = 1}^m{\displaystyle {\int}_{D_j}{\prod\limits_{k = 1}^m{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}dy_1\cdots dy_m}}. |
Now, let us calculate I_j , j = 1, 2, ..., m . Since d(\lambda _j, q_j, \alpha, \frac{q_j\beta _j}{q}) +n > 0 , then d\left(\lambda, q, \alpha, \beta \right) +mn > 0 , so we have
\begin{align*} I_1& = \displaystyle {\int}_{D_1}{\prod\limits_{k = 1}^m{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}dy_1\cdots dy_m} \\ & = \displaystyle {\int}_{\left| y_1 \right|_p\leqslant 1}{\displaystyle {\int}_{\left| y_2 \right|_p\leqslant \left| y_1 \right|_p}{\cdots \displaystyle {\int}_{\left| y_m \right|_p\leqslant \left| y_1 \right|_p}{\prod\limits_{k = 1}^m{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}}}dy_m\cdots dy_1} \\ & = \displaystyle {\int}_{\left| y_1 \right|_p\leqslant 1}{\left| y_1 \right|_{p}^{d( \lambda _1,q_1,\alpha ,\frac{q_1\beta _1}{q} )}}\left( \prod\limits_{k = 2}^m{\displaystyle {\int}_{\left| y_k \right|_p\leqslant \left| y_1 \right|_p}{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}dy_k} \right) dy_1 \\ & = \displaystyle {\int}_{\left| y_1 \right|_p\leqslant 1}{\left| y_1 \right|_{p}^{d( \lambda _1,q_1,\alpha ,\frac{q_1\beta _1}{q} )}}\prod\limits_{k = 2}^m{\left( \sum\limits_{i = -\infty}^{\log _p\left| y_1 \right|_p}{\displaystyle {\int}_{S_i}{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q})}}dy_k} \right)}dy_1 \\ & = \displaystyle {\int}_{\left| y_1 \right|_p\leqslant 1}{\left| y_1 \right|_{p}^{d( \lambda _1,q_1,\alpha ,\frac{q_1\beta _1}{q} )}}\prod\limits_{k = 2}^m{\left( \sum\limits_{i = -\infty}^{\log _p\left| y_1 \right|_p}{p^{id( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}\times \displaystyle {\int}_{S_i}{dy_k} \right)}dy_1 \\ & = \frac{\left( 1-p^{-n} \right) ^{m-1}}{\prod\nolimits_{k = 2}^m{\left( 1-p^{-d\left( \lambda _k,q_k,\alpha ,q_k\beta _k/q \right) -n} \right)}}\displaystyle {\int}_{\left| y_1 \right|_p\leqslant 1}{\left| y_1 \right|_{p}^{d\left( \lambda ,q,\alpha ,\beta \right) +\left( m-1 \right) n}}dy_1 \\ & = \frac{\left( 1-p^{-n} \right) ^{m-1}}{\prod\nolimits_{k = 2}^m{\left( 1-p^{-d\left( \lambda _k,q_k,\alpha ,q_k\beta _k/q \right) -n} \right)}}\sum\limits_{i = -\infty}^0{\left( p^{i(d\left( \lambda ,q,\alpha ,\beta \right) +\left( m-1 \right) n)}\displaystyle {\int}_{S_i}{dy_1} \right)} \\ & = \frac{\left( 1-p^{-n} \right) ^m}{\left( 1-p^{-d\left( \lambda ,q,\alpha ,\beta \right) -mn} \right) \prod\nolimits_{k = 2}^m{\left( 1-p^{-d\left( \lambda _k,q_k,\alpha ,q_k\beta _k/q \right) -n} \right)}}. \end{align*} |
Similarly, for i = 2, ..., m-1 , we have
\begin{align*} I_i& = \displaystyle {\int}_{D_i}{\prod\limits_{k = 1}^m{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}}dy_1\cdots dy_m \\ & = \displaystyle {\int}_{\left| y_i \right|_p\leqslant 1}{| y_i |_{p}^{d( \lambda _i,q_i,\alpha ,\frac{q_i\beta _i}{q} )}}\left( \prod\limits_{j = 1}^{i-1}{\displaystyle {\int}_{| y_j |_p < \left| y_i \right|_p}{| y_j |_{p}^{d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} )}}dy_j} \right) \left( \prod\limits_{k = i+1}^m{\displaystyle {\int}_{\left| y_k \right|_p\leqslant \left| y_i \right|_p}{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}dy_k} \right) dy_i \\ & = \displaystyle {\int}_{\left| y_i \right|_p\leqslant 1}{\left| y_i \right|_{p}^{d( \lambda _i,q_i,\alpha ,\frac{q_i\beta _i}{q} )}}\left( \prod\limits_{j = 1}^{i-1}{\sum\limits_{u = -\infty}^{\log _p\left| y_i \right|_p-1}{\displaystyle {\int}_{S_u}{| y_j |_{p}^{d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} )}}}dy_j} \right) \left( \prod\limits_{k = i+1}^m{\sum\limits_{v = -\infty}^{\log _p\left| y_i \right|_p}{\displaystyle {\int}_{S_v}{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}}dy_k} \right) dy_i \\ & = \left( 1-p^{-n} \right) ^{m-1}\displaystyle {\int}_{\left| y_i \right|_p\leqslant 1}{\left| y_i \right|_{p}^{d( \lambda _i,q_i,\alpha ,\frac{q_i\beta _i}{q} )}}\left( \prod\limits_{j = 1}^{i-1}{\sum\limits_{u = -\infty}^{\log _p\left| y_i \right|_p-1}{p^{u( d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} ) +n )}}} \right) \left( \prod\limits_{k = i+1}^m{\sum\limits_{v = -\infty}^{\log _p\left| y_i \right|_p}{p^{v( d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} ) +n )}}} \right) dy_i \\ & = \frac{\left( 1-p^{-n} \right) ^{m-1}\prod\nolimits_{j = 1}^{i-1}{p^{-d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} ) -n}}}{\prod\nolimits_{1\leqslant k\leqslant m,k\ne i}{( 1-p^{-d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} ) -n} )}}\displaystyle {\int}_{\left| y_i \right|\leqslant 1}{\left| y_i \right|_{p}^{d( \lambda ,q,\alpha ,\beta ) +\left( m-1 \right) n}dy_i} \\ & = \frac{\left( 1-p^{-n} \right) ^{m}\prod\nolimits_{j = 1}^{i-1}{p^{-d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} ) -n}}}{( 1-p^{-d\left( \lambda ,q,\alpha ,\beta \right) -mn} ) \prod\nolimits_{1\leqslant k\leqslant m,k\ne i}{( 1-p^{-d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} ) -n} )}}. \end{align*} |
The case of i = m is similar to the previous step, and we have
\begin{align*} I_m& = \displaystyle {\int}_{\left| y_m \right|_p\leqslant 1}{\left| y_m \right|^{d( \lambda _m,q_m,\alpha ,\frac{q_m\beta _m}{q} )}}\left( \prod\limits_{j = 1}^{m-1}{\displaystyle {\int}_{| y_j | < \left| y_m \right|_p}{| y_j |^{d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} )}}dy_i} \right) dy_m \\ & = \frac{\left( 1-p^{-n} \right) ^m\prod\nolimits_{j = 1}^{m-1}{p^{-d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q}) -n}}}{\left( 1-p^{-d( \lambda ,q,\alpha ,\beta ) -mn} \right) \prod\nolimits_{j = 1}^{m-1}{( 1-p^{-d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} ) -n} )}}. \end{align*} |
Now, we will calculate their sum, let
A_m = \frac{\left( 1-p^{-n} \right) ^m}{\left( 1-p^{-d\left( \lambda ,q,\alpha ,\beta \right) -mn} \right) \prod\nolimits_{k = 1}^m{( 1-p^{-d(\lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q})-n})}},\quad-d_k = \sum\limits_{i = 1}^k{-d( \lambda _i,q_i,\alpha ,\frac{q_i\beta _i}{q} )}. |
Notice that -d_m = -d\left(\lambda, q, \alpha, \beta \right) , then
\begin{align*} C_{1}^{p}& = I_1+\sum\limits_{i = 2}^{m-1}{I_i+I_m} \\ & = A_m\left( (1-p^{-d_1-n})+(p^{-d_1-n}-p^{-d_2-2n})+\cdots +(p^{-d_{m-1}-(m-1)n}-p^{-d_m-mn}) \right) = A_m\left( 1-p^{-d_m-mn} \right) \\ & = \frac{\left( 1-p^{-n} \right) ^m}{\prod\nolimits_{k = 1}^m{(1-p^{-d(\lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q})-n})}}. \end{align*} |
This finishes the proof of Corollary 2.1.
Proof of Corollary 2.2. If we take the kernel
\begin{align} K\left( y_1,...,y_m \right) = \frac{1}{( 1+\left| y_1 \right|_{p}^{n}+\cdots +\left| y_m \right|_{p}^{n} ) ^m} \end{align} | (2.14) |
in Theorems 2.1 and 2.2, by a change of variables, it is easy to verify that T^p(f_1, ..., f_m)(x) = T_{2}^{p}(f_1, ..., f_m)(x) , then T_{2}^{p}(f_1, ..., f_m)(x) can be denoted by
T_{2}^{p}(f_1,...,f_m)(x) = \displaystyle {\int}_{\mathbb{Q}_p ^{nm}}{\frac{1}{( 1+\left| y_1 \right|_{p}^{n}+\cdots +\left| y_m \right|_{p}^{n} ) ^m}f_1( \left| x \right|_{p}^{-1}y_1 ) \cdots f_m( \left| x \right|_{p}^{-1}y_m ) dy_1\cdots dy_m}, |
respectively, then it is all reduced to calculating
C_{2}^{p} = \displaystyle {\int}_{\mathbb{Q}_p ^{nm}}{\frac{1}{( 1+\left| y_1 \right|_{p}^{n}+\cdots +\left| y_m \right|_{p}^{n} ) ^m}\prod\limits_{j = 1}^m{| y_j|_{p}^{d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} )}}dy_1\cdots dy_m}. |
After a series of simple operations, we have
\begin{align*} C_{2}^{p} & = \displaystyle {\int}_{\mathbb{Q} _{p}^{n}}{\cdots \displaystyle {\int}_{\mathbb{Q} _{p}^{n}}{\sum\limits_{k_m = -\infty}^{+\infty}{\displaystyle {\int}_{S_{k_m}}{\frac{1}{( 1+\left| y_1 \right|_{p}^{n}+\cdots +\left| y_m \right|_{p}^{n} ) ^m}}}}}\prod\limits_{j = 1}^m{| y_j |_{p}^{d(\lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q})}}dy_m\cdots dy_1 \\ & = \sum\limits_{k_1 = -\infty}^{+\infty}{\sum\limits_{k_2 = -\infty}^{+\infty}{\cdots}\sum\limits_{k_m = -\infty}^{+\infty}{\displaystyle {\int}_{S_{k_1}}{\cdots \displaystyle {\int}_{S_{k_m}}{\frac{1}{( 1+\left| y_1 \right|_{p}^{n}+\cdots +\left| y_m \right|_{p}^{n} ) ^m}\prod\limits_{j = 1}^m{| y_j |_{p}^{d(\lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q})}}}}}}dy_m\cdots dy_1 \\ & = \sum\limits_{k_1 = -\infty}^{+\infty}{\sum\limits_{k_2 = -\infty}^{+\infty}{\cdots}\sum\limits_{k_m = -\infty}^{+\infty}{\frac{1}{(1+p^{k_1n}+\cdots +p^{k_mn})^m}}}\prod\limits_{j = 1}^m{p^{k_jd(\lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q})}}\displaystyle {\int}_{S_{k_1}}{\cdots \displaystyle {\int}_{S_{k_m}}{dy_m\cdots dy_1}} \\ & = \sum\limits_{k_1 = -\infty}^{+\infty}{\sum\limits_{k_2 = -\infty}^{+\infty}{\cdots}\sum\limits_{k_m = -\infty}^{+\infty}{\frac{1}{(1+p^{k_1n}+\cdots +p^{k_mn})^m}}}\prod\limits_{j = 1}^m{p^{k_jd(\lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q})}}\prod\limits_{j = 1}^m{p^{k_jn}( 1-p^{-n} )} \\ & = ( 1-p^{-n}) ^m\sum\limits_{k_1 = -\infty}^{+\infty}{\sum\limits_{k_2 = -\infty}^{+\infty}{\cdots}\sum\limits_{k_m = -\infty}^{+\infty}{\frac{1}{(1+p^{k_1n}+\cdots +p^{k_mn})^m}}}\prod\limits_{j = 1}^m{p^{k_j(d(\lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q})+n)}}. \end{align*} |
What we want to prove is that the sum of this series is bounded. Because it is a challenging problem to calculate the sum of this series, we can indirectly prove that this series sum is bounded by an inequality. Clearly,
[ \max ( 1,\left| y_1 \right|_{p}^{n},\cdots ,\left| y_m \right|_{p}^{n}) ] ^m = \underset{1\leqslant j\leqslant m}{\max}\{ 1,| y_j |_{p}^{mn} \} \leqslant ( 1+\left| y_1 \right|_{p}^{n}+\cdots +\left| y_m \right|_{p}^{n}) ^m. |
Then we have
C_{2}^{p}\leqslant D^p = :\displaystyle {\int}_{\mathbb{Q} _{p}^{nm}}{\frac{1}{[\max\mathrm{(}1,\left| y_1 \right|_{p}^{n},...,\left| y_m \right|_{p}^{n})]^m}\prod\limits_{j = 1}^m{| y_j |_{p}^{d(\lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q})}}dy_1\cdots dy_m}. |
So if we prove that D^p is bounded, it means that C_2^p is bounded. Next, we refer to the methods in [7] to calculate D^p .
To calculate this integral, we divide the integral into m parts. Let
\begin{align*} &E_0 = \{ \left( y_1,...,y_m \right) \in \mathbb{Q} _{p}^{n}\times \cdots \times \mathbb{Q} _{p}^{n}:\left| y_k \right|_p\leqslant 1,1\leqslant k\leqslant m\} ; \\ &E_1 = \{ \left( y_1,...,y_m \right) \in \mathbb{Q} _{p}^{n}\times \cdots \times \mathbb{Q} _{p}^{n}:\left| y_1 \right|_p > 1,\left| y_k \right|_p\leqslant \left| y_1 \right|_p,1 < k\leqslant m \} ; \\ &E_i = \{ \left( y_1,...,y_m \right) \in \mathbb{Q} _{p}^{n}\times \cdots \times \mathbb{Q} _{p}^{n}:\left| y_i \right|_p > 1,| y_j |_p < \left| y_i \right|_p,\left| y_k \right|_p\leqslant \left| y_i \right|_p,1\leqslant j < i < k\leqslant m \} ; \\ &E_m = \{ \left( y_1,...,y_m \right) \in \mathbb{Q} _{p}^{n}\times \cdots \times \mathbb{Q} _{p}^{n}:\left| y_m \right|_p > 1,| y_j |_p < \left| y_m \right|_p,1\leqslant j\leqslant m \}. \end{align*} |
Its clear that
\bigcup\limits_{j = 0}^m{E_j = }\mathbb{Q} _{p}^{n}\times \cdots \times \mathbb{Q} _{p}^{n}, |
and E_i\cap E_j = \varnothing \left(i\ne j \right) . Let
J_j: = \displaystyle {\int}_{E_j}{\frac{1}{[ \max ( 1,\left| y_1 \right|_{p}^{n},...,\left| y_m \right|_{p}^{n} )] ^m}\prod\limits_{k = 1}^m{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}}dy_1\cdots dy_m, |
then we have
D^{p} = \sum\limits_{j = 1}^m{J_j:} = \sum\limits_{j = 1}^m{\displaystyle {\int}_{E_j}{\frac{1}{[ \max ( 1,\left| y_1 \right|_{p}^{n},...,\left| y_m \right|_{p}^{n} ) ] ^m}\prod\limits_{k = 1}^m{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}dy_1\cdots dy_m}}. |
Now, let us calculate J_j , j = 1, 2, ..., m . Since d(\lambda _j, q_j, \alpha, \frac{q_j\beta _j}{q}) +n > 0 , we have
\begin{align*} J_0& = \prod\limits_{k = 1}^m{\displaystyle {\int}_{\left| y_k \right|_p\leqslant 1}{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}dy_k = \prod\limits_{k = 1}^m{\left( \sum\limits_{i = -\infty}^0{\displaystyle {\int}_{S_i}{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}dy_k} \right)}} \\ & = \prod\limits_{k = 1}^m{\left( \sum\limits_{i = -\infty}^0{p^{id(\lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q})}p^{in}(1}-p^{-n}) \right)} \\ & = \frac{\left( 1-p^{-n} \right) ^m}{\prod\limits_{k = 1}^m{( 1-p^{-d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} ) -n} )}}. \end{align*} |
For j = 1 , since d\left(\lambda, q, \alpha, \beta \right) < 0 , d(\lambda _1, q_1, \alpha, \frac{q_1\beta _1}{q}) +n > 0 , then we have
\begin{align*} J_1& = \displaystyle {\int}_{E_1}{\frac{1}{[ \max( 1,\left| y_1 \right|_{p}^{n},...,\left| y_m \right|_{p}^{n} ) ] ^m}\prod\limits_{k = 1}^m{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}}dy_1\cdots dy_m \\ & = \displaystyle {\int}_{\left| y_1 \right|_p > 1}{\left| y_1 \right|_{p}^{d( \lambda _1,q_1,\alpha ,\frac{q_1\beta _1}{q} ) -mn}}\prod\limits_{k = 2}^m{\left( \displaystyle {\int}_{\left| y_k \right|_p\leqslant \left| y_1 \right|_p}{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}dy_k \right) dy_1} \\ & = \frac{\left( 1-p^{-n} \right) ^{m-1}}{\prod\nolimits_{k = 2}^m{( 1-p^{-d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} ) -n} )}}\displaystyle {\int}_{\left| y_1 \right|_p > 1}{\left| y_1 \right|_{p}^{d\left( \lambda ,q,\alpha ,\beta \right) -n}}dy_1 \\ & = B_m\left( \displaystyle {\int}_{\left| y_1 \right|_p < \infty}{\left| y_1 \right|_{p}^{d\left( \lambda ,q,\alpha ,\beta \right) -n}dy_1}-\displaystyle {\int}_{\left| y_1 \right|_p\leqslant 1}{\left| y_1 \right|_{p}^{d\left( \lambda ,q,\alpha ,\beta \right) -n}dy_1} \right) \\ & = B_m\left( \sum\limits_{i = -\infty}^{+\infty}{\displaystyle {\int}_{S_i}{\left| y_1 \right|_{p}^{d( \lambda ,q,\alpha ,\beta ) -n}}dy_1-\sum\limits_{j = -\infty}^0{\displaystyle {\int}_{S_j}{\left| y_1 \right|_{p}^{d\left( \lambda ,q,\alpha ,\beta \right) -n}}dy_1}} \right) \\ & = B_m\sum\limits_{j = 1}^{+\infty}{\displaystyle {\int}_{S_j}{\left| y_1 \right|_{p}^{d\left( \lambda ,q,\alpha ,\beta \right) -n}}dy_1} = \frac{\left( 1-p^{-n} \right) ^mp^{d\left( \lambda ,q,\alpha ,\beta \right)}}{\left( 1-p^{d\left( \lambda ,q,\alpha ,\beta \right)} \right) \prod\nolimits_{k = 2}^m{(1-p^{-d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} ) -n})}}, \end{align*} |
where
B_m = \frac{\left( 1-p^{-n} \right) ^{m-1}}{\prod\nolimits_{k = 2}^m{\left( 1-p^{-d\left( \lambda _k,q_k,\alpha ,q_k\beta _k/q \right) -n} \right)}}. |
Similarly for i = 2, ..., m-1 , we have
\begin{align*} J_i& = \displaystyle {\int}_{\left| y_i \right|_p > 1}{\left| y_i \right|_{p}^{d( \lambda _i,q_i,\alpha ,\frac{q_i\beta _i}{q} ) -mn}}\left( \prod\limits_{j = 1}^{i-1}{\displaystyle {\int}_{| y_j |_p < \left| y_i \right|_p}{| y_j |_{p}^{d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} )}}dy_j} \right) \left( \prod\limits_{k = i+1}^m{\displaystyle {\int}_{\left| y_k \right|_p\leqslant \left| y_i \right|_p}{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}dy_k} \right)dy_i \\ & = \frac{\left( 1-p^{-n} \right) ^{m-1}\prod\nolimits_{j = 1}^{i-1}{p^{-d( \lambda _j,q_j,\alpha ,\frac{q_j\beta j}{q} ) -n}}}{\prod\nolimits_{1\leqslant k\leqslant m,k\ne i}{( 1-p^{-d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} ) -n} )}}\displaystyle {\int}_{\left| y_i \right|_p > 1}{\left| y_i \right|_{p}^{d\left( \lambda ,q,\alpha ,\beta \right) -n}}dy_i \\ & = \frac{p^{d(\lambda ,q,\alpha ,\beta )}\left( 1-p^{-n} \right) ^m\prod\nolimits_{j = 1}^{i-1}{p^{-d(\lambda _j,q_j,\alpha ,\frac{q_j\beta j}{q})-n}}}{(1-p^{d\left( \lambda ,q,\alpha ,\beta \right)})\prod\nolimits_{1\leqslant k\leqslant m,k\ne i}{(1-p^{-d(\lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q})-n})}}. \end{align*} |
When i = m , similarly to the previous step, we show that
\begin{align*} J_m& = \displaystyle {\int}_{\left| y_m \right|_p}{\left| y_m \right|^{d( \lambda _m,q_m,\alpha ,\frac{q_m\beta _m}{q} ) -mn}\left( \prod\limits_{j = 1}^{i-1}{\displaystyle {\int}_{| y_j |_p < | y_i |_p}{\left| y_i \right|_{p}^{d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} )}}dy_j} \right)} \left( \prod\limits_{k = i+1}^m{\displaystyle {\int}_{\left| y_k \right|_p\leqslant \left| y_i \right|_p}{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}dy_k} \right)dy_m \\ & = \frac{p^{d(\lambda ,q,\alpha ,\beta )}\left( 1-p^{-n} \right) ^m\prod\nolimits_{j = 1}^{m-1}{p^{-d(\lambda _j,q_j,\alpha ,\frac{q_j\beta j}{q})-n}}}{\left( 1-p^{d\left( \lambda ,q,\alpha ,\beta \right)} \right) \prod\nolimits_{k = 1}^{m-1}{(1-p^{-d(\lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q})-n})}}. \end{align*} |
Now, we will calculate their sum, let
D_m = \frac{\left( 1-p^{-n} \right) ^mp^{d(\lambda ,q,\alpha ,\beta )}}{\left( 1-p^{d(\lambda ,q,\alpha ,\beta )} \right) \prod\nolimits_{k = 1}^m{(1-p^{-d(\lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q})-n})}},\quad and\quad -d_k = \sum\limits_{i = 1}^k{-d(\lambda _i,q_i,\alpha ,\frac{q_i\beta _i}{q})}. |
Notice that -d_m = -d\left(\lambda, q, \alpha, \beta \right) , then
\begin{align*} D^{p}& = J_0+J_1+\sum\limits_{i = 2}^{m-1}{J_i}+J_m \\ & = D_m\left( \frac{1-p^{d\left( \lambda ,q,\alpha ,\beta \right)}}{p^{d\left( \lambda ,q,\alpha ,\beta \right)}}+( 1-p^{-d_1-n}) +( p^{-d_1-n}-p^{-d_2-2n} ) +\cdots +( p^{-d_{m-1}-( m-1 ) n}-p^{-d_m-mn} ) \right) \\ & = D_m\left( \frac{1-p^{d_m}}{p^{d_m}}+1-p^{-d_m-mn} \right) = D_mp^{-d_m}\left( 1-p^{-mn} \right) \\ & = \frac{\left( 1-p^{-n} \right) ^m\left( 1-p^{-mn} \right)}{\left( 1-p^{d\left( \lambda ,q,\alpha ,\beta \right)} \right) \prod\nolimits_{k = 1}^m{( 1-p^{-d(\lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q})-n} )}} < \infty. \end{align*} |
In conclusion, we prove that D^p is bounded, which also means that C_2^p is bounded, that is
( 1-p^{-n}) ^m\sum\limits_{k_1 = -\infty}^{+\infty}{\sum\limits_{k_2 = -\infty}^{+\infty}{\cdots}\sum\limits_{k_m = -\infty}^{+\infty}{\frac{1}{(1+p^{k_1n}+\cdots +p^{k_mn})^m}}}\prod\limits_{j = 1}^m{p^{k_j(d(\lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q})+n)}} < \infty. |
Our results also show that D^p is Hilbert's bound. This finishes the proof of Corollary 2.2.
In this section, we will use the previous results to give the sharp bound for the p -adic m -linear n -dimensional Hausdorff operator on p -adic weighted Morrey spaces.
Corollary 3.1. Assume that the real parameters q , q_j , \lambda , \lambda_j , \beta , and \beta_j with j = 1, 2, ..., m are the same as in Theorem 2.1, and a nonnegative function \Phi on \mathbb{R} ^n satisfies
\begin{align} C_{\Phi}^{p} = \displaystyle {\int}_{\mathbb{Q} _{p}^{n}}{\cdots}\displaystyle {\int}_{\mathbb{Q} _{p}^{n}}{\frac{\Phi \left( y_1,...,y_m \right)}{\left| y_1 \right|_{p}^{n}\cdots \left| y_m \right|_{p}^{n}}\prod\limits_{j = 1}^m{| y_j |^{d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} )}}}dy_1\cdots dy_m < \infty, \end{align} | (3.1) |
then T_{\Phi}^{p} is bounded from \prod_{j = 1}^m{B^{q_j, \lambda _j}(\mathbb{Q} _{p}^{n}, \left| x \right|_{p}^{\alpha}, \left| x \right|_{p}^{\frac{q_j\beta _j}{q}})} to B^{q, \lambda}(\mathbb{Q} _{p}^{n}, \left| x \right|_{p}^{\alpha}, \left| x \right|_{p}^{\beta}). Furthermore, if \alpha+n > 0 , then
\left\| T_{\Phi}^{p}\left( f_1,...,f_m \right) \left( x \right) \right\| _{\prod\nolimits_{j = 1}^m{B^{q_j,\lambda _j}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}} )}\rightarrow B^{q,\lambda}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} )} = C_{\Phi}^{p}. |
The weighted Morrey space L^{q_j, \lambda _j}(\mathbb{Q} _{p}^{n}, \left| x \right|_{p}^{\alpha}, \left| x \right|_{p}^{\frac{q_j\beta _j}{q}}) is similar.
Proof of Corollary 3.1. By a change of variables, the p -adic m -linear n -dimensional Hausdorff operator becomes
T_{\Phi}^{p} = \displaystyle {\int}_{\mathbb{Q} _{p}^{n}}{\cdots}\displaystyle {\int}_{\mathbb{Q} _{p}^{n}}{\frac{\Phi \left( y_1,...,y_m \right)}{\left| y_1 \right|_{p}^{n}\cdots \left| y_m \right|_{p}^{n}}f_1( x\left| y_1 \right|_{p}^{-1} )}\cdots f_m( x\left| y_m \right|_{p}^{-1} ) dy_1\cdots dy_m. |
According to the proof of Theorem 2.1 and Lemma 2.2, notice that there is no need to let f_j be a radial function, and we have
\left\| T_{\Phi}^{p}\left( f_1,...,f_m \right) \left( x \right) \right\| _{\prod\nolimits_{j = 1}^m{B^{q_j,\lambda _j}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}} )}\rightarrow B^{q,\lambda}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} )} = C_{\Phi}^{p} < \infty. |
The weighted Morrey space L^{q_j, \lambda _j}(\mathbb{Q} _{p}^{n}, \left| x \right|_{p}^{\alpha}, \left| x \right|_{p}^{\frac{q_j\beta _j}{q}}) is similar, so we omit the details. This finishes the proof of Corollary 3.1.
First, the m -linear n -dimensional integral operator with a kernel has a sharp estimate. The sharp estimate on central and noncentral p -adic Morrey spaces with power weighted is given by
\begin{align*} &\left\| T^p\left( f_1,...,f_m \right) \left( x \right) \right\| _{\prod\nolimits_{j = 1}^m{B^{q_j,\lambda _j}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}} )}\rightarrow B^{q,\lambda}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} )}\\ = &\left\| T^p\left( f_1,...,f_m \right) \left( x \right) \right\| _{\prod\nolimits_{j = 1}^m{L^{q_j,\lambda _j}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}} )}\rightarrow L^{q,\lambda}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} )}\\ = &\displaystyle {\int}_{\mathbb{Q} _{p}^{n}}{\cdots \displaystyle {\int}_{\mathbb{Q} _{p}^{n}}{K\left( y_1,...,y_m \right) \prod\limits_{i = 1}^m{\left| y_i \right|_{p}^{n\lambda _j-\frac{\beta _j}{q}+\alpha (1+\frac{1}{q_j})}}}}dy_1\cdots dy_m: = C^p, \end{align*} |
where the kernel K(y_1, .., y_m) satisfies C^p < \infty .
Second, as an application, we derive the sharp bounds for the m -linear n -dimensional Hardy operator and Hilbert operators on weighted Morrey spaces, that is
\begin{align*} \left\| T_{1}^{p}\left( f_1,...,f_m \right) \left( x \right) \right\| _{\prod\nolimits_{j = 1}^m{B^{q_j,\lambda _j}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}} )}\rightarrow B^{q,\lambda}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} )} = \frac{\left( 1-p^{-n} \right) ^m}{\prod\nolimits_{k = 1}^m{( 1-p^{-d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} ) -n} )}}, \end{align*} |
and
\begin{equation*} \begin{aligned} &\left\| T_{2}^{p}\left( f_1,...,f_m \right) \left( x \right) \right\| _{\prod\nolimits_{j = 1}^m{B^{q_j,\lambda _j}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}} )}\rightarrow B^{q,\lambda}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} )} \\ = &(1-p^{-n})^m\sum\limits_{k_1 = -\infty}^{+\infty}{\sum\limits_{k_2 = -\infty}^{+\infty}{\cdots}\sum\limits_{k_m = -\infty}^{+\infty}{\frac{1}{(1+p^{k_1n}+\cdots +p^{k_mn})^m}}}\prod\limits_{j = 1}^m{p^{k_j(d(\lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q})+n)}} \\ \leqslant& \frac{\left( 1-p^{-n} \right) ^m\left( 1-p^{-mn} \right)}{(1-p^{d\left( \lambda ,q,\alpha ,\beta \right)})\prod\nolimits_{k = 1}^m{(1-p^{-d(\lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q})-n})}} < \infty. \end{aligned} \end{equation*} |
Finally, based on the previous result, we also find the estimate for the Hausdorff operator on weighted Morrey spaces:
\begin{align*} \left\| T_{\Phi}^{p}\!\left( f_1,\!...,\!f_m \right)\! \left( x \right) \right\|\! _{\prod\nolimits_{j = 1}^m\!\!{B^{q_j,\lambda _j}\!( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}} \!)}\!\rightarrow \! B^{q,\lambda}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} )}\!\displaystyle {\int}_{\mathbb{Q} _{p}^{n}}\!\!{\cdots}\!\!\displaystyle {\int}_{\mathbb{Q} _{p}^{n}}\!\!{\frac{\Phi \!\left( y_1,\!...,\!y_m \right)}{\left| y_1 \right|_{p}^{n}\!\cdots\! \left| y_m \right|_{p}^{n}}\!\prod\limits_{j = 1}^m\!{| y_j |^{d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} )}}}dy_1\!\cdots\! dy_m\!: = \!C_{\Phi}^{p}, \end{align*} |
where the nonnegative function \Phi on \mathbb{R} ^n satisfies C_{\Phi}^{p} < \infty .
Tingting Xu: Conceptualization, methodology; Zaiyong Feng: Writing-original draft; Tianyang He: Writing-review and editing, validation, methodology; Xiaona Fan: Theoretical derivation, proof verification. All authors have read and approved the final version of the manuscript for publication.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work is supported by Foundation of the Natural Science Foundation of China under Grant No. 12271262. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.
The authors declare that they have no conflict of interest.
[1] |
A. V. Avetisov, A. H. Bikulov, S. V. Kozyrev, V. A. Osipov, p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes, J. Phys. A: Math. Gen., 35 (2002), 177. https://doi.org/10.1088/0305-4470/35/2/301 doi: 10.1088/0305-4470/35/2/301
![]() |
[2] |
S. Albeverio, W. Karwoski, A random walk on p-adics: the generator and its spectrum, Stoch. Proc. Appl., 53 (1994), 1–22. https://doi.org/10.1016/0304-4149(94)90054-x doi: 10.1016/0304-4149(94)90054-x
![]() |
[3] |
S. Albeverio, A. Y. Khrennikov, V. M. Shelkovich, Harmonic analysis in the p-adic Lizorkin spaces: fractional operators, pseudo-differential equations, p-adic wavelets, Tauberian theorems, J. Fourier Anal. Appl., 12 (2006), 393–425. https://doi.org/10.1007/s00041-006-6014-0 doi: 10.1007/s00041-006-6014-0
![]() |
[4] |
T. Batblod, Y. Sawano, Sharp bounds for m-linear Hilbert-type operators on the weighted Morrey spaces, Math. Inequal. Appl., 20 (2017), 263–283. https://doi.org/10.7153/mia-20-20 doi: 10.7153/mia-20-20
![]() |
[5] |
T. Batbold, Y. Sawano, G. Tumendemberel, Sharp bounds for certain m-linear integral operators on p-adic function spaces, Filomat, 36 (2022), 801–812. https://doi.org/10.2298/fil2203801b doi: 10.2298/fil2203801b
![]() |
[6] |
J. C. Chen, D. S. Fan, C. J. Zhang, Multilinear Hausdorff operators and their best constants, Acta. Math. Sin.-English Ser., 28 (2012), 1521–1530. https://doi.org/10.1007/s10114-012-1455-7 doi: 10.1007/s10114-012-1455-7
![]() |
[7] |
Y. Deng, D. Yan, M. Wei, Sharp estimates for m linear p-adic Hardy and Hardy-Littlewood-Pólya operators on p-adic central Morrey spaces, J. Math. Inequal., 15 (2021), 1447–1458. https://doi.org/10.7153/jmi-2021-15-99 doi: 10.7153/jmi-2021-15-99
![]() |
[8] |
Z. Fu, S. Gong, S. Lu, W. Yuan, Weighted multilinear Hardy operators and commutators, Forum Math., 27 (2015), 2825–2851. https://doi.org/10.1515/forum-2013-0064 doi: 10.1515/forum-2013-0064
![]() |
[9] |
Z. Fu, R. Gong, E. Pozzi, Q. Wu, Cauchy-Szegö commutators on weighted Morrey spaces, Math. Nachr., 296 (2023), 1859–1885. https://doi.org/10.1002/mana.202000139 doi: 10.1002/mana.202000139
![]() |
[10] |
Z. Fu, S. Lu, Y. Pan, S. Shi, Some one-sided estimates for oscillatory singular integrals, Nonlinear Anal.-Theor., 108 (2014), 144–160. https://doi.org/10.1016/j.na.2014.05.016 doi: 10.1016/j.na.2014.05.016
![]() |
[11] |
S. Haran, Riesz potentials and explicit sums in arithmetic, Invent. Math., 101 (1990), 697–703. https://doi.org/10.1007/bf01231521 doi: 10.1007/bf01231521
![]() |
[12] |
S. Haran, Analytic potential theory over the p-adics, Ann. I. Fourier, 43 (1993), 905–944. https://doi.org/10.5802/aif.1361 doi: 10.5802/aif.1361
![]() |
[13] |
Q. He, M. Wei, D. Yan, Sharp bound for generalized m-linear n-dimensional Hardy-Littlewood-Pólya operator, Anal. Theory Appl., 39 (2023), 28–41. https://doi.org/10.4208/ata.OA-2020-0039 doi: 10.4208/ata.OA-2020-0039
![]() |
[14] | A. Khrennikov, p-adic valued distributions in mathematical physics, Dordrecht: Springer, 1994. https://doi.org/10.1007/978-94-015-8356-5 |
[15] | A. Khrennikov, Non-Archimedean analysis: quantum paradoxes, dynamical systems and biological models, Dordrecht: Springer, 1997. https://doi.org/10.1007/978-94-009-1483-4 |
[16] |
Y. C. Kim, Weak type estimates of square functions associated with quasiradial Bochner-Riesz means on certain Hardy spaces, J. Math. Anal. Appl., 339 (2008), 266–280. https://doi.org/10.1016/j.jmaa.2007.06.050 doi: 10.1016/j.jmaa.2007.06.050
![]() |
[17] |
Y. C. Kim, Carleson measures and the BMO space on the p-adic vector space, Math. Nachr., 282 (2009), 1278–1304. https://doi.org/10.1002/mana.200610806 doi: 10.1002/mana.200610806
![]() |
[18] |
K. S. Rim, J. Lee, Estimate of weighted Hardy-Littlewood averages on the p-adic vector space, J. Math. Anal. Appl., 324 (2006), 1470–1477. https://doi.org/10.1016/j.jmaa.2006.01.038 doi: 10.1016/j.jmaa.2006.01.038
![]() |
[19] | M. H. Taibleson, Fourier analysis on local fields, Princeton: Princeton University Press, 1975. |
[20] |
V. S. Varadarajan, Path integrals for a class of p-adic Schrödinger equations, Lett. Math. Phys., 39 (1997), 97–106. https://doi.org/10.1023/A:1007364631796 doi: 10.1023/A:1007364631796
![]() |
[21] |
D. D. Van, N. T. Hong, Multilinear Hausdorff operator on p-adic functional spaces and its applications, Anal. Math. Phys., 12 (2022), 86. https://doi.org/10.1007/s13324-022-00696-4 doi: 10.1007/s13324-022-00696-4
![]() |
[22] | V. S. Vladimiron, I. V. Volovich, E. I. Zelenov, p-adic analysis and mathematical physics, Singapore: World Scientific, 1992. https://doi.org/10.1142/1581 |
[23] |
Q. Y. Wu, Z. W. Fu, Sharp estimates of m-linear p-adic Hardy and Hardy-Littlewood-Pólya operators, J. Appl. Math., 2011 (2011), 472176. https://doi.org/10.1155/2011/472176 doi: 10.1155/2011/472176
![]() |