Processing math: 64%
Research article

Sharp estimates for the p-adic m-linear n-dimensional Hardy and Hilbert operators on p-adic weighted Morrey space

  • Received: 11 February 2025 Revised: 28 May 2025 Accepted: 13 June 2025 Published: 18 June 2025
  • MSC : Primary 42B25; Secondary 42B20, 47B47, 47H60

  • In this paper, we studied the sharp bounds for the m-linear n-dimensional p-adic integral operator with a kernel on central and noncentral p-adic Morrey spaces with power weight. As an application, the sharp bounds for p-adic Hardy and Hilbert operators on p-adic weighted Morrey spaces were obtained. Finally, we also found the sharp bound for the p-adic Hausdorff operator on p-adic weighted central and noncentral Morrey spaces, which generalizes the previous results.

    Citation: Tingting Xu, Zaiyong Feng, Tianyang He, Xiaona Fan. Sharp estimates for the p-adic m-linear n-dimensional Hardy and Hilbert operators on p-adic weighted Morrey space[J]. AIMS Mathematics, 2025, 10(6): 14012-14031. doi: 10.3934/math.2025630

    Related Papers:

    [1] Tianyang He, Zhiwen Liu, Ting Yu . The Weighted $ \boldsymbol{L}^{\boldsymbol{p}} $ estimates for the fractional Hardy operator and a class of integral operators on the Heisenberg group. AIMS Mathematics, 2025, 10(1): 858-883. doi: 10.3934/math.2025041
    [2] Pham Thi Kim Thuy, Kieu Huu Dung . Hardy–Littlewood maximal operators and Hausdorff operators on $ p $-adic block spaces with variable exponents. AIMS Mathematics, 2024, 9(8): 23060-23087. doi: 10.3934/math.20241121
    [3] Naqash Sarfraz, Muhammad Aslam . Some weighted estimates for the commutators of $p$-adic Hardy operator on two weighted $p$-adic Herz-type spaces. AIMS Mathematics, 2021, 6(9): 9633-9646. doi: 10.3934/math.2021561
    [4] Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad . Boundedness of an intrinsic square function on grand $ p $-adic Herz-Morrey spaces. AIMS Mathematics, 2023, 8(11): 26484-26497. doi: 10.3934/math.20231352
    [5] Yanlong Shi, Xiangxing Tao . Rough fractional integral and its multilinear commutators on $ p $-adic generalized Morrey spaces. AIMS Mathematics, 2023, 8(7): 17012-17026. doi: 10.3934/math.2023868
    [6] Qianjun He, Xiang Li . Necessary and sufficient conditions for boundedness of commutators of maximal function on the $ p $-adic vector spaces. AIMS Mathematics, 2023, 8(6): 14064-14085. doi: 10.3934/math.2023719
    [7] Zhongci Hang, Dunyan Yan, Xiang Li . Mixed radial-angular bounds for Hardy-type operators on Heisenberg group. AIMS Mathematics, 2023, 8(9): 21022-21032. doi: 10.3934/math.20231070
    [8] Ming Liu, Bin Zhang, Xiaobin Yao . Weighted variable Morrey-Herz space estimates for $ m $th order commutators of $ n- $dimensional fractional Hardy operators. AIMS Mathematics, 2023, 8(9): 20063-20079. doi: 10.3934/math.20231022
    [9] Naqash Sarfraz, Muhammad Bilal Riaz, Qasim Ali Malik . Some new characterizations of boundedness of commutators of $p$-adic maximal-type functions on $p$-adic Morrey spaces in terms of Lipschitz spaces. AIMS Mathematics, 2024, 9(7): 19756-19770. doi: 10.3934/math.2024964
    [10] Meichuan Lv, Wenming Li . Sharp bounds for multilinear Hardy operators on central Morrey spaces with power weights. AIMS Mathematics, 2025, 10(6): 14183-14195. doi: 10.3934/math.2025639
  • In this paper, we studied the sharp bounds for the m-linear n-dimensional p-adic integral operator with a kernel on central and noncentral p-adic Morrey spaces with power weight. As an application, the sharp bounds for p-adic Hardy and Hilbert operators on p-adic weighted Morrey spaces were obtained. Finally, we also found the sharp bound for the p-adic Hausdorff operator on p-adic weighted central and noncentral Morrey spaces, which generalizes the previous results.



    In recent years, researchers on mathematical physics have paid increasing attention to p-adic fields, because p-adic numbers are widely used in theoretical and mathematical physics [1,2,22]. For this reason, the harmonic analysis of p-adic fields has attracted significant attention [16,17,18].

    For a prime number p, let Qp be the field of p-adic numbers, which is defined as the completion of the field of rational numbers Q with respect to the non-Archimedean p-adic norm ||p. This norm is defined as follows: |0|p=0. If any non-zero rational number x is represented as x=pγmn, where m and n are integers that are not divisible by p and γ is an integer, then |x|p=pγ. It is not difficult to show that the norm satisfies the following properties:

    |xy|p=|x|p|y|p,|x+y|pmax{|x|p,|y|p},

    and

    ||x|py|p=|x|1p|y|p,d(|x|py)=|x|1pdy,xQnp.

    It follows from the second property that when |x|p|y|p, then |x+y|p=max{|x|p,|y|p}. From the standard p-adic analysis [22], we see that any non-zero p-adic number xQp can be uniquely represented in the canonical series

    x=pγj=0ajpj,γ=γ(x)Z, (1.1)

    where aj are integers, 0ajp1, a00. The series (1.1) converges in the p-adic norm because |ajpj|p=pγ. The space Qnp consists of points x=(x1,x2,...,xn), where xjQp, j=1,2,...,n. The p-adic norm on Qnp is

    |x|p:=max1jn|xj|p.

    Denoted by Bγ={xQnp:|xa|ppγ}, the ball with center at xjQp and radius pγ, γZ. It is clear that Sγ(a)=Bγ(a)Bγ1(a) and

    Bγ(a)=kγSk(a),{xQnp:|xa|p<pγ}=k<γSk(a).

    We set Bγ(0)=Bγ and Sγ(0)=Sγ.

    Since Qnp is a locally compact commutative group under addition, it follows from the standard analysis that there exists a unique Haar measure dx on Qnp (up to positive constant multiple) that is translation invariant. We normalize the measure dx so that

    B0(0)dx=|B0(0)|H=1,

    where |E|H denotes the Haar measure of a measurable subset E of Qnp. From this integral theory, it is easy to obtain that |Bγ(a)|H=pγn and |Sγ(a)|H=pγn(1pn) for any aQnp. For a more complete introduction to p-adic fields, see [19].

    In recent years, p-adic analysis has received a lot of attention due to its application in mathematical physics (cf. [1,2]). There are numerous papers on p-adic analysis, such as [11,12] about Riesz potentials, and [3] about p-adic pseudo-differential equations. The harmonic analysis on p-adic fields has been drawing more and more attention (cf. [14,15,20] and references therein).

    The p-adic m-linear n-dimensional Hardy operator [5] is defined by

    Tp1(f1,...,fm)(x)=1|x|mnp|(y1,...,ym)|p|x|pf1(y1)fm(ym)dy1dym,

    where xQnp{0}. Batbold and Sawano [5] obtained that the norm of Tp1 on p-adic Lebesgue spaces and p-adic Morrey spaces is

    Tp1Lq1(Qp,|x|α1q1/qp)××Lqm(Qp,|x|αmqm/qp)Lq(Qp,|x|αp)=(1p1)mmj=1(1p(1/qj)+(aj/q)1),

    and

    Tp1Lq1,λ1(Qp,|x|β1q1/qp)××Lqm,λm(Qp,|x|βmqm/qp)Lq,λ(Qp,|x|βp)=(1p1)mmi=1(1pδi).

    The p-adic m-linear n-dimensional Hilbert operator [5] is defined by

    Tp2(f1,...,fm)(x)=QnpQnpf1(y1)fm(ym)(|x|np+|y1|np++|ym|np)mdy1dym,

    where xQnp{0}. The p-adic m-linear n-dimensional Hausdorff operator [21] is defined by

    TpΦ(f1,...,fm)(x)=QnpQnpΦ(x/|y1|p,...,x/|ym|p)|y1|np|ym|npf1(y1)fm(ym)dy1dym,

    where xQnp{0}, and Φ is a nonnegative function on Qnp. Chen et al. [6] obtained the norm of the multilinear Hausdorff operator on a p-adic function space.

    Computation of the operator norm of integral operators is a challenging work in harmonic analysis. In 2017, Batbold and Sawano [4] studied one-dimensional m-linear Hilbert-type operators, incuding the sharp bounds for the Hardy-Littlewood-Pólya operator on weighted Morrey spaces. He et al. [13] extended the results in [4] and obtained the sharp bound for the generalized Hardy-Littlewood-Pólya operator on weighted central and noncentral homogenous Morrey spaces. In 2011, Wu and Fu [23] obtained the sharp estimate of the m-linear p-adic Hardy operator on Lebesgue spaces with power weight.

    Inspired by the above, we study a more general operator, which includes the p-adic Hardy and Hilbert operator as a special case. We consider their operator norm on two power weighted p-adic Morrey space and its central version. Finally, we also find the sharp bound for the Hausdorff operator on power weighted central and noncentral Morrey spaces, which generalizes the previous results. Fu and Wu et al.[8,9,10] conducted many related research, which is the basis for our research.

    We present the definition of the weighted p-adic Morrey space Bq,λ(Qnp,ω1,ω2) on Qnp, where ω1, ω2: Qnp(0,) are positive measurable functions.

    Definition 1.1. Let 1<q<, 1q<λ<0, then the weighted p-adic Morrey space Lq,λ(Qnp,ω1,ω2) is the set of all fLqloc(Qnp) for which the norm

    fLq,λ(Qnp,ω1,ω2)=supaQnp,γZ(Bγ(a)ω1(x)dx)λ1q(Bγ(a)|f(x)|qω2(x)dx)1q<. (1.2)

    Definition 1.2. Let 1<q<, 1q<λ<0, Bγ replace with Bγ(0) in the above definition, then the weighted p-adic Morrey space Bq,λ(Qnp,ω1,ω2) is the set of all fLqloc(Qnp) for which the norm

    fBq,λ(Qnp,ω1,ω2)=supγZ(Bγω1(x)dx)λ1q(Bγ|f(x)|qω2(x)dx)1q<. (1.3)

    In this section, we will study the p-adic m-linear n-dimensional integral operator with a kernel. Let K:Qnp××Qnp(0,) be a measurable radial kernel such that K(y1,...,ym)=K(|y1|1p,...,|ym|1p), then satisfies that

    Cp=QnpQnpK(y1,...,ym)mi=1|yi|nλjβjq+α(1+1qj)pdy1dym<, (2.1)

    where λj, βj, qj,q, α are pre-defined indicator and some fixed indicators, j=1,2,...,m. The p-adic m-linear n-dimensional integral operator with a kernel is defined by

    Tp(f1,...,fm)(x)=QnpQnpK(y1,...,ym)f1(|x|1py1)fm(|x|1pym)dy1dym, (2.2)

    where xRn{0} and fj is a measurable radial function on Qnp with j=1,2,...,m. Note that Tp is in fact an integral operator with a homogeneous radial K of degree mn.

    In this paper, we will obatin the sharp bound of the p-adic m-linear n-dimensional integral operator with a kernel on p-adic weighted Morrey space. Finally, by taking a particular kernel K in operator Cp defined by (2.1), then we obtain the sharp bounds of the p-adic Hardy and Hilbert operators.

    Lemma 2.1. Let αR, 1<q<qj<, 1q=1q1++1qm, λ=λ1++λm, β=β1++βm, 1qj<λj<0, 1q<λ<0, yjQnp, if fjLqj,λj(Qnp,|x|αp,|x|qjβj/qp) or Bqj,λj(Qnp,|x|αp,|x|qjβj/qp), where j=1,2,...,m, then we have

    fj(|yj|1px)Lqj,λj(Qnp,|x|αp,|x|qjβj/qp)=|yj|nλjβjq+α(λj+1qj)pfjLqj,λj(Qnp,|x|αp,|x|qjβj/qp), (2.3)

    and

    fj(|yj|1px)Bqj,λj(Qnp,|x|αp,|x|qjβj/qp)=|yj|nλjβjq+α(λj+1qj)pfjBqj,λj(Qnp,|x|αp,|x|qjβj/qp). (2.4)

    For convenience of this paper, we define the dilation index in (2.3) and (2.4) by

    d(λ,q,α,β)=nλβq+α(λ+1q),d(λj,qj,α,qjβjq)=nλjβjq+α(λj+1qj).

    Lemma 2.2. Assume that real parameters q, qj, λ, λj, β, βj with j=1,2,...,m are the same as in Lemma 2.1, α+n>0. Then we have |x|d(λj,qj,α,qjβjq)pBqj,λj(Qnp,|x|αp,|x|qjβjqp). Moreover,

    |x|d(λj,qj,α,qjβjq)pBqj,λj(Qnp,|x|αp,|x|qjβjqp)=(1pn)λj(1p(α+n))λj1qj(1p(qjλj+1)(α+n))1qj. (2.5)

    Lemma 2.3. Assume that real parameters q, qj, λ, λj, β, βj with j=1,2,...,m are the same as in Lemma 2.1, α+n>0. Then we have |x|d(λj,qj,α,qjβjq)pLqj,λj(Qnp,|x|αp,|x|qjβjqp). Moreover,

    |x|d(λj,qj,α,qjβjq)pLqj,λj(Qnp,|x|αp,|x|qjβjqp)=max{1,(1pn)λj(1p(α+n))λj1qj(1p(qjλj+1)(α+n))1qj}. (2.6)

    Theorem 2.1. Let αR, 1<q<qj<, 1q=1q1++1qm, λ=λ1++λm, β=β1++βm, 1qj<λj<0, 1q<λ<0 with j=1,2,...,m, fj be a radial function in Bqj,λj(Qnp,|x|αp,|x|qjβjqp). We obtain

    Tp(f1,...,fm)(x)Bq,λ(Qnp,|x|αp,|x|βp)Cpmj=1fjBqj,λj(Qnp,|x|αp,|x|qjβjqp), (2.7)

    where Cp is the constant defined by (2.1). Moreover, if α+n>0 and qλ=q1λ1==qmλm, then Cp is the sharp constant in (2.7), then

    Tp(f1,...,fm)(x)mj=1Bqj,λj(Qnp,|x|αp,|x|qjβjqp)Bq,λ(Qnp,|x|αp,|x|βp)=Cp.

    Theorem 2.2. Assume that the real parameters q, qj, λ, λj, β, βj with j=1,2,...,m are the same as in Theorem 2.1, fj be a radial function in Lqj,λj(Qnp,|x|αp,|x|qjβjqp). We get

    Tp(f1,...,fm)(x)Lq,λ(Qnp,|x|αp,|x|βp)Cpmj=1fjLqj,λj(Qnp,|x|αp,|x|qjβjqp), (2.8)

    where Cp is the constant defined by (2.1). Moreover, if α+n>0 and qλ=q1λ1==qmλm, then Cp is the sharp constant in (2.8), and we have

    Tp(f1,...,fm)(x)mj=1Lqj,λj(Qnp,|x|αp,|x|qjβjqp)Lq,λ(Qnp,|x|αp,|x|βp)=Cp.

    Corollary 2.1. Assume that the real parameters q, qj, λ, λj, β, βj with j=1,2,...,m are the same as in Theorem 2.1, fj be a radial function in Bqj,λj(Qnp,|x|αp,|x|qjβjqp). Assume also that d(λj,qj,α,qjβjq)+n>0. Then Tp1 is bounded from mj=1Bqj,λj(Qnp,|x|αp,|x|qjβjqp) to Bq,λ(Qnp,|x|αp,|x|βp). Furthermore, if α+n>0, then

    Tp1(f1,...,fm)(x)mj=1Bqj,λj(Qnp,|x|αp,|x|qjβjqp)Bq,λ(Qnp,|x|αp,|x|βp)=(1pn)mmk=1(1pd(λk,qk,α,qkβkq)n). (2.9)

    The weighted Morrey space Lqj,λj(Qnp,|x|αp,|x|qjβjqp) is similar.

    Corollary 2.2. Assume that the real parameters q, qj, λ, λj, β, βj with j=1,2,...,m are the same as in Theorem 2.1, fj be a radial function in Bqj,λj(Qnp,|x|αp,|x|qjβjqp). Assume also that d(λj,qj,α,qjβjq)+n>0 and d(λ,q,α,β)<0. Then Tp2 is bounded from mj=1Bqj,λj(Qnp,|x|αp,|x|qjβjqp) to Bq,λ(Qnp,|x|αp,|x|βp). Furthermore, if α+n>0, then

    Tp2(f1,...,fm)(x)mj=1Bqj,λj(Qnp,|x|αp,|x|qjβjqp)Bq,λ(Qnp,|x|αp,|x|βp)=(1pn)m+k1=+k2=+km=1(1+pk1n++pkmn)mmj=1pkj(d(λj,qj,α,qjβjq)+n)(1pn)m(1pmn)(1pd(λ,q,α,β))mk=1(1pd(λk,qk,α,qkβkq)n)<. (2.10)

    The weighted Morrey space Lqj,λj(Qnp,|x|αp,|x|qjβjqp) is similar.

    Proof of Lemma 2.1. We only prove the scaling in Lqj,λj(Qnp,|x|αp,|x|qjβjqp), as the other case is similar. By computing, we obtain

    fj(|y|1px)Lqj,λj(Qnp,|x|αp,|x|qjβjqp)=supaQnp,γZ(Bγ(a)|x|αpdx)λj1qj(Bγ(a)|fj(|yj|1px)|qj|x|qjβjqdx)1qj=|yj|nqjβjqsupaQnp,γZ(|xa|ppγ|x|αpdx)λj1qj(||yj|pza|ppγ|fj(z)|qj|z|qjβjqdz)1qj=|yj|nλjβjq+α(λj+1qj)supaQnp,γZ(||yj|pza|ppγ|z|αpdz)λj1qj(||yj|pza|ppγ|fj(z)|qj|z|qjβjqdz)1qj=|yj|d(λj,qj,α,qjβjq)supaQnp,γZ(Bγ+logp|yj|p(a/|yj|p)|x|αpdx)λj1qj(Bγ+logp|yj|p(a/|yj|p)|fj(x)|qj|x|qjβjqdx)1qj=|yj|d(λj,qj,α,qjβjq)fjLqj,λj(Qnp,|x|αp,|x|qjβjqp).

    This finishes the proof of Lemma 2.1.

    Next, we will give the proofs of Lemmas 2.2 and 2.3.

    Proof of Lemma 2.2. For the case when α+n>0, let fj(x)=|x|d(λj,qj,α,qjβjq)p for all xQnp{0} and fj(0):=0(j=1,2,...,m). Then for any Bγ=B(0,pγ), we need to show that fjBqj,λjγ(Qnp,|x|αp,|x|qjβjqp). By computing, we have

    fjBqj,λj(Qnp,|x|αp,|x|qjβjqp)=supγZ(Bγ|x|αpdx)λj1qj(Bγ|x|d(λj,qj,α,qjβjq)p|x|qjβjqpdx)1qj=supγZ(γk=Sk|x|αpdx)λj1qj(γk=Sk|x|nλjqj+α(λjqj+1)pdx)1qj=supγZ(γk=pkαSkdx)λj1qj(γk=p(λjqj(α+n)+α)kSkdx)1qj=supγZ(γk=pkα×pkn(1pn))λj1qj(γk=p(λjqj(α+n)+α)k×pkn(1pn))1qj=(1pn)λj(γk=pk(α+n))λj1qj(γk=p(qjλj+1)(α+n)k)1qj.

    Since α+n>0 and 1+qjλj>0, we have

    γk=p(α+n)k=p(α+n)γ(1(p(α+n)))1p(α+n)=p(α+n)γ1p(α+n),
    γk=p(qjλj+1)(α+n)k=p(qjλj+1)(α+n)γ(1(p(qjλj+1)(α+n)))1p(qjλj+1)(α+n)=p(qjλj+1)(α+n)γ1p(qjλj+1)(α+n).

    Notice that (α+n)γ(λj1qj)+1qjγ(qjλj+1)(α+n)=0, so we obtain

    fjBqj,λj(Qnp,|x|αp,|x|qjβjqp)=(1pn)λj(1p(α+n))λj1qj(1p(qjλj+1)(α+n))1qj<. (2.11)

    Using (2.11), we have that fjBqj,λj(Qnp,|x|αp,|x|qjβjqp).

    This finishes the proof of Lemma 2.2.

    Proof of Lemma 2.3. For the case when α+n>0, let fj(x)=|x|d(λj,qj,α,qjβjq)p for all xQnp{0} and fj(0):=0(j=1,2,...,m). Then for any Bγ(a)=B(a,pγ), we need to show that fjLqj,λjγ(Qnp,|x|αp,|x|qjβjqp). We will consider the following two cases:

    (ⅰ) If |a|p>pγ and xBγ(a), since |xa|ppγ, it follows that |x|pmax{|xa|p,|a|p}=|a|p>pγ. Thus, we have

    fjLqj,λj(Qnp,|x|αp,|x|qjβjqp)=supaQnp,γZ(Bγ(a)|x|αpdx)λj1qj(Bγ(a)|x|d(λj,qj,α,qjβjq)qjp|x|qjβjqpdx)1qj=supaQnp,γZ(Bγ(a)|a|αpdx)λj1qj(Bγ(a)|a|nλjqj+α(λjqj+1)pdx)1qj=supaQnp,γZ|a|α(λj1qj)+1qj(nλjqj+α(λjqj+1))p(Bγ(a)dx)λj1qj(Bγ(a)dx)1qj=supaQnp,γZ|a|nλjp|Bγ(a)|λjH=supaQnp,γZ|a|nλjp×pnλjγ(pγ)nλj×pnλjγ=1.

    (ⅱ) If |a|ppγ and xBγ(a), since |xa|ppγ and |a|ppγ, then |x|p=max{|xa|p,|a|p}pγ, so we have xBγ. For xBγ, then |x|ppγ, we have |xa|ppγ and xBγ(a). So we have Bγ(a)=Bγ, thus

    fjLqj,λj(Qnp,|x|αp,|x|qjβjqp)=supaQnp,γZ(Bγ(a)|x|αpdx)λj1qj(Bγ(a)|x|d(λj,qj,α,qjβjq)qjp|x|qjβjqpdx)1qj=supγZ(Bγ|x|αpdx)λj1qj(Bγ|x|nλjqj+α(λjqj+1)pdx)1qj.

    By the argument in the proof of Lemma 2.2, we have that for |a|ppγ, xBγ(a),

    fjLqj,λj(Qnp,|x|αp,|x|qjβjqp)<. (2.12)

    In conclusion, we can see that fjLqj,λj(Qnp,|x|αp,|x|qjβjqp).

    This finishes the proof of Lemma 2.3.

    Proof of Theorem 2.1. First, we claim that the operator Tp(f1,..,fm)(x) and its restriction to the functions g(x)=g(|x|1p) have the same operator norm. In fact, set

    gj(x)=11pn|ξj|p=1fj(|x|1pξj)dξj,xQnp,j=1,...,m.

    Obviously, gj satisfies gj(x)=gj(|x|1p), Tp(g1,...,gm)(x) is equal to

    Tp(g1,...,gm)(x)=QnmpK(y1,...,ym)g1(|x|1py1)gm(|x|1pym)dy1dym=QnmpK(y1,...,ym)mj=1(11pn|ξj|p=1fj(||x|1pyj|1pξj)dξj)dy1dym=1(1pn)mQnmpK(y1,...,ym)mj=1(|ξj|p=1fj(|x|1p|yj|1pξj)dξj)dy1dym=1(1pn)mQnmpK(y1,...,ym)mj=1(|zj|p=|yj|pfj(|x|1pzj)|yj|npdzj)dy1dym=1(1pn)mQnmp|y1|p=|z1|p|ym|p=|zm|pK(|y1|1p,...,|ym|1p)mj=1fj(|x|1pzj)|yj|npdy1dymdzmdz1=1(1pn)mQnmp|t1|p=1|tm|p=1K(|z1|1p,...,|zm|1p)mj=1fj(|x|1pzj)dt1dtmdzmdz1=QnmpK(z1,...,zm)f1(|x|1pz1)fm(|x|1pzm)dz1dzm=Tp(f1,...,fm)(x).

    In the fourth to fifth lines, we let zj=|yj|1pξj. From the fifth to sixth lines, we perform an integral permutation. In the sixth to seventh lines, we set yj=|zj|1ptj. On the other hand, using the Holder's inequality, we conclude

    gjBqj,λj(Qnp,|x|αp,|x|qjβjqp)=supγZ(Bγ|x|αpdx)λj1qj(Bγ|11pn|ξj|=1fj(|x|1pξj)dξj|qj|x|qjβjqpdx)1qj=supγZ(Bγ|x|αpdx)λj1qj11pn(Bγ||ξj|=1fj(|x|1pξj)dξj|qj|x|qjβjqpdx)1qj11pnsupγZ(Bγ|x|αpdx)λj1qj(Bγ|ξj|=1|fj(|x|1pξj)|qjdξj(|ξj|=1dx)qj1|x|qjβjqpdx)1qj=(1pn)1qjsupγZ(Bγ|x|αpdx)λj1qj(Bγ|ξj|=1|fj(|x|1pξj)|qjdξj|x|qjβjqpdx)1qj=(1pn)1qjsupγZ(Bγ|x|αpdx)λj1qj(Bγ|zj|p=|x|p|fj(zj)|qj|x|npdzj|x|qjβjqpdx)1qj=(1pn)1qjsupγZ(Bγ|x|αpdx)λj1qj(Bγ|x|p=|zj|p|x|np|x|qjβjqpdx|fj(zj)|qjdzj)1qj=(1pn)1qjsupγZ(Bγ|x|αpdx)λj1qj(Bγ|tj|=1|zj|np|tj|n|zj|qjβjq|tj|qjβjq|fj(zj)|qj|zj|npdtjdzj)1qj=supγZ(Bγ|x|αpdx)λj1qj(Bγ|fj(zj)|qj|zj|qjβjqdzj)1qj=fjBqj,λj(Qnp,|x|αp,|x|qjβjqp).

    From the third to fourth lines, we apply Hölder's inequality. In the fifth to sixth lines, we let z_j = \left| x \right|_{p}^{-1}\xi _j . From the sixth to seventh lines, we perform an integral permutation. In the seventh to eighth lines, we set x = | z_j |_{p}^{-1}t_j . Therefore, we have

    \frac{\left\| T^p\left( f_1,...,f_m \right) \right\| _{B^{q_j,\lambda _j}\left( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} \right)}}{\prod\limits_{j = 1}^m{\left\| f_j \right\| _{B^{q_j,\lambda _j}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}} )}}}\leqslant \frac{\left\| T^p\left( g_1,...,g_m \right) \right\| _{B^{q_j,\lambda _j}\left( \mathbb{Q} _{p}^{nm},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} \right)}}{\prod\limits_{j = 1}^m{\left\| g_j \right\| _{B^{q_j,\lambda _j}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}} )}}},

    which implies that the operators T^p and their restriction to the function g satisfying g_j\left(x \right) = g_j(\left| x \right|_{p}^{-1}) have the same operator norm in B^{q, \lambda}(\mathbb{Q} _{p}^{n}, \left| x \right|_{p}^{\alpha}, \left| x \right|_{p}^{\beta}) . So without loss of generality, we assume that f_j\in B^{q_j, \lambda _j}(\mathbb{Q} _{p}^{n}, \left| x \right|_{p}^{\alpha}, \left| x \right|_{p}^{\frac{q_j\beta _j}{q}}) with j = 1, 2, ..., m satisfies that f_j\left(x \right) = f_j(\left| x \right|_{p}^{-1}) in the rest of the proof.

    The following sequence is obtained by Minkowski's inequality and Holder's inequality; notice that \frac{1}{q} = \frac{1}{q_j}+\cdots +\frac{1}{q_m} , \lambda = \lambda _1+\cdots +\lambda _m , \beta = \beta _1+\cdots +\beta _m , then \frac{q}{q_j}+\cdots +\frac{q}{q_m} = 1 and f(\left| x \right|_{p}^{-1}y_j) = f(x| y_j |_{p}^{-1}) , thus we have

    \begin{align*} &\left\| T^p\left( f_1,...,f_m \right) \left( x \right) \right\| _{B^{q,\lambda }\left( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} \right)} \\ = &\underset{\gamma > 0}{\mathrm{sup}}\left( \displaystyle {\int}_{B_{\gamma}}{\left| x \right|_{p}^{\alpha}}dx \right) ^{-\lambda -\frac{1}{q}}\left( \displaystyle {\int}_{B_{\gamma}}{\left| \displaystyle {\int}_{\mathbb{Q} _{p}^{mn}}{\left| x \right|_{p}^{\frac{\beta}{q}}K\left( y_1,...y_m \right) f_1( \left| x \right|_{p}^{-1}y_1 ) \cdots f_m( \left| x \right|_{p}^{-1}y_m ) dy_1\cdots dy_m} \right|^qdx} \right) ^{\frac{1}{q}} \\ \leqslant &\underset{\gamma > 0}{\mathrm{sup}}\left( \displaystyle {\int}_{B_{\gamma}}{\left| x \right|_{p}^{\alpha}}dx \right) ^{-\lambda -\frac{1}{q}}\displaystyle {\int}_{\mathbb{Q} _{p}^{mn}}{\left( \displaystyle {\int}_{B_{\gamma}}{\left| x \right|_{p}^{\beta}}|K\left( y_1,...y_m \right) f_1(\left| x \right|_{p}^{-1}y_1)\cdots f_m(\left| x \right|_{p}^{-1}y_m)|^qdx \right) ^{\frac{1}{q}}}dy_1\cdots dy_m \\ = &\underset{\gamma > 0}{\mathrm{sup}}\displaystyle {\int}_{\mathbb{Q} _{p}^{mn}}{K\left( y_1,...,y_m \right)}\left( \displaystyle {\int}_{B_{\gamma}}{\left| x \right|_{p}^{\alpha}}dx \right) ^{-\lambda -\frac{1}{q}}\left( \displaystyle {\int}_{B_{\gamma}}{\left| x \right|_{p}^{\beta}}| f_1( x\left| y_1 \right|_{p}^{-1} ) \cdots f_m( x\left| y_m \right|_{p}^{-1} ) |^qdx \right) ^{\frac{1}{q}}dy_1\cdots dy_m \\ \leqslant& \underset{\gamma > 0}{\mathrm{sup}}\displaystyle {\int}_{\mathbb{Q} _{p}^{mn}}{K\left( y_1,...,y_m \right)}\left( \displaystyle {\int}_{B_{\gamma}}{\left| x \right|_{p}^{\alpha}}dx \right) ^{-\lambda -\frac{1}{q}}\prod\limits_{j = 1}^m{\left( \displaystyle {\int}_{B_{\gamma}}{| f_j( x| y_j |_{p}^{-1}) |^{q_j}\left| x \right|_{p}^{\frac{q_j\beta _j}{q}}}dx \right) ^{\frac{1}{q_j}}}dy_1\cdots dy_m \\ = &\underset{\gamma > 0}{\mathrm{sup}}\displaystyle {\int}_{\mathbb{Q} _{p}^{mn}}{K\left( y_1,...,y_m \right)}\prod\limits_{j = 1}^m{\left( \displaystyle {\int}_{B_{\gamma}}{\left| x \right|_{p}^{\alpha}}dx \right) ^{-\lambda _j-\frac{1}{q_j}}}\prod\limits_{j = 1}^m{\left( \displaystyle {\int}_{B_{\gamma}}{| f_j( x| y_j |_{p}^{-1} )|^{q_j}\left| x \right|_{p}^{\frac{q_j\beta _j}{q}}}dx \right) ^{\frac{1}{q_j}}}dy_1\cdots dy_m \\ \leqslant &\displaystyle {\int}_{\mathbb{Q} _{p}^{mn}}{K\left( y_1,...,y_m \right)}\prod\limits_{j = 1}^m{\left\| f_j( x| y_j |_{p}^{-1} ) \right\| _{B^{q_j,\lambda _j}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}} )}}dy_1\cdots dy_m. \end{align*}

    Using Lemma 2.1, we can deduce that

    \begin{align*} \left\| T^p\!\left( f_1,...,f_m \right) \left( x \right) \right\| _{B^{q_j,\lambda _j}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} )} &\!\leqslant \!\displaystyle {\int}_{\mathbb{Q} _{p}^{mn}}\!{K\left( y_1,...y_m \right) \prod\limits_{j = 1}^m{| y_j |_{p}^{d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} )}}}dy_1\cdots dy_m\!\prod\limits_{j = 1}^m\!{\left\| f_j \right\| _{B^{q_j,\lambda _j}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}} )}} \\ & = C^p\prod\limits_{j = 1}^m{\left\| f_j \right\| _{B^{q_j,\lambda _j}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}} )}}. \end{align*}

    Now, we will show that the operator norm of T^p(f_1, ..., f_m)(x) is equal to C^p . Taking

    f_j = \left| x \right|_{p}^{d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} )},j = 1,2,...,m.

    Since \alpha+n > 0 , using Lemma 2.2, then f_j\in B^{q_j, \lambda _j}(\mathbb{Q} _{p}^{n}, \left| x \right|_{p}^{\alpha}, \left| x \right|_{p}^{\frac{q_j\beta _j}{q}}) , we calculate that

    \begin{align*} T^p\left( f_1,...,f_m \right) \left( x \right) & = \displaystyle {\int}_{\mathbb{Q} _{p}^{mn}}{K\left( y_1,...y_m \right) f_1( \left| x \right|_{p}^{-1}y_1 ) \cdots}f_m( \left| x \right|_{p}^{-1}y_m ) dy_1\cdots dy_m \\ & = \displaystyle {\int}_{\mathbb{Q} _{p}^{mn}}{K\left( y_1,...y_m \right)}\prod\limits_{j = 1}^m{( \left| x \right|_p| y_j |_p )}^{d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} )}dy_1\cdots dy_m \\ & = C^p\prod\limits_{j = 1}^m{\left| x \right|_{p}^{d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} )}} = C^p\left| x \right|_{p}^{d\left( \lambda ,q,\alpha ,\beta \right)}. \end{align*}

    Since \lambda = \lambda _1+\cdots +\lambda _m , \frac{1}{q} = \frac{1}{q_j}+\cdots +\frac{1}{q_m} , q\lambda = q_1\lambda _1 = \cdots = q_m\lambda _m , we have

    \begin{align*} &\left\| T^p\left( f_1,...,f_m \right) \left( x \right) \right\| _{B^{q_j,\lambda _j}\left( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} \right)} \\ = &\underset{\gamma \in \mathbb{Z}}{\mathrm{sup}}\left( \displaystyle {\int}_{B_{\gamma}}{\left| x \right|_{p}^{\alpha}}dx \right) ^{-\lambda -\frac{1}{q}}\left( \displaystyle {\int}_{B_{\gamma}}{| C^p\left| x \right|_{p}^{d\left( \lambda ,q,\alpha ,\beta \right)} |^q\left| x \right|_{p}^{\beta}dx} \right) ^{\frac{1}{q}} \\ = &C^p\underset{\gamma \in \mathbb{Z}}{\mathrm{sup}}\left( \displaystyle {\int}_{B_{\gamma}}{\left| x \right|_{p}^{\alpha}}dx \right) ^{-\lambda-\frac{1}{q}}\left( \displaystyle {\int}_{B_{\gamma}}{\left| x \right|_{p}^{nq\lambda +\alpha \left( q\lambda +1 \right)}dx} \right) ^{\frac{1}{q}} \\ = &C^p\underset{\gamma \in \mathbb{Z}}{\mathrm{sup}}\prod\limits_{j = 1}^m{\left( \displaystyle {\int}_{B_{\gamma}}{| x_j |_{p}^{\alpha}}dx_j \right) ^{-\lambda _j-\frac{1}{q_j}}}\prod\limits_{j = 1}^m{\left( \displaystyle {\int}_{B_{\gamma}}{| x_j |_{p}^{nq_j\lambda _j+\alpha ( q_j\lambda _j+1 )}}dx_j \right) ^{\frac{1}{q_j}}}. \end{align*}

    Notice that (nq_j\lambda _j+\alpha (q_j\lambda _j+1) +n) \frac{1}{q_j}+\left(n+\alpha \right) (-\lambda _j-\frac{1}{q_j}) = 0 , we obtain

    \begin{align*} &\left\| T^p\left( f_1,...,f_m \right) \left( x \right) \right\| _{B^{q_j,\lambda _j}\left( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} \right)} \\ = &C^p\prod\limits_{j = 1}^m{\underset{\gamma _j\in \mathbb{Z}}{\mathrm{sup}}\left( \displaystyle {\int}_{B_0}{| y_j |_{p}^{\alpha}}dy_j \right) ^{-\lambda _j-\frac{1}{q_{j\,\,}}}}\left( \displaystyle {\int}_{B_0}{| y_j |_{p}^{nq_j\lambda _j+\alpha ( q_j\lambda _j+1 )}}dy_j \right) ^{\frac{1}{q_j}} \\ = &C^p\prod\limits_{j = 1}^m{\underset{\gamma _j\in \mathbb{Z}}{\mathrm{sup}}\left( \displaystyle {\int}_{B_{\gamma _j}}{| z_j |_{p}^{\alpha}}dz_j \right) ^{-\lambda _j-\frac{1}{q_{j\,\,}}}}\left( \displaystyle {\int}_{B_{\gamma _j}}{\left| | z_j |_{p}^{d( \lambda _j,q_j,\alpha _j,\frac{q_j\beta _j}{q} )} \right|^{q_j}| z_j |_{p}^{\frac{q_j\beta _j}{q}}}dz_j \right) ^{\frac{1}{q_j}} \\ = &C^p\prod\limits_{j = 1}^m{\left\| f_j \right\| _{B^{q_j,\lambda _j}(\mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}})}}. \end{align*}

    In the first to second lines, we let x_j = p^{-\gamma}y_j . From the second to third lines, we let y_j = z_jp^{\gamma _j} . Through the above steps, we have completed the proof of Theorem 2.1. It is

    \left\| T^p\left( f_1,...,f_m \right) \left( x \right) \right\| _{\prod\nolimits_{j = 1}^m{B^{q_j,\lambda _j}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}} )}\rightarrow B^{q,\lambda}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} )} = C^p.

    Proof of Theorem 2.2. The previous step is similar to the proof of Theorem 2.1, using Lemma 2.3, then f_j\in L^{q_j, \lambda _j}(\mathbb{Q} _{p}^{n}, \left| x \right|_{p}^{\alpha}, \left| x \right|_{p}^{\frac{q_j\beta _j}{q}}) , finaly we obtain that

    \begin{align*} &\left\| T^p\left( f_1,...,f_m \right) \left( x \right) \right\| _{L^{q_j,\lambda _j}\left( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} \right)} \\ = &\underset{a\in \mathbb{Q} _{p}^{n},\gamma \in \mathbb{Z}}{\mathrm{sup}}\left( \displaystyle {\int}_{B_{\gamma}(a)}{\left| x \right|_{p}^{\alpha}}dx \right) ^{-\lambda -\frac{1}{q}}\left( \displaystyle {\int}_{B_{\gamma}(a)}{| C^p\left| x \right|_{p}^{d\left( \lambda ,q,\alpha ,\beta \right)} |^q\left| x \right|_{p}^{\beta}dx} \right) ^{\frac{1}{q}} \\ = &C^p\underset{a\in \mathbb{Q} _{p}^{n},\gamma \in \mathbb{Z}}{\mathrm{sup}}\left( \displaystyle {\int}_{B_{\gamma}(a)}{\left| x \right|_{p}^{\alpha}}dx \right) ^{-\lambda-\frac{1}{q}}\left( \displaystyle {\int}_{B_{\gamma}(a)}{\left| x \right|_{p}^{nq\lambda +\alpha \left( q\lambda +1 \right)}dx} \right) ^{\frac{1}{q}} \\ = &C^p\underset{a\in \mathbb{Q} _{p}^{n},\gamma \in \mathbb{Z}}{\mathrm{sup}}\prod\limits_{j = 1}^m{\left( \displaystyle {\int}_{B_{\gamma}(a)}{| x_j |_{p}^{\alpha}}dx_j \right) ^{-\lambda _j-\frac{1}{q_j}}}\prod\limits_{j = 1}^m{\left( \displaystyle {\int}_{B_{\gamma}(a)}{| x_j |_{p}^{nq_j\lambda _j+\alpha ( q_j\lambda _j+1 )}}dx_j \right) ^{\frac{1}{q_j}}}. \end{align*}

    Notice that (nq_j\lambda _j+\alpha (q_j\lambda _j+1) +n) \frac{1}{q_j}+\left(n+\alpha \right) (-\lambda _j-\frac{1}{q_j}) = 0 , we obtain

    \begin{align*} &\left\| T^p\left( f_1,...,f_m \right) \left( x \right) \right\| _{L^{q_j,\lambda _j}\left( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} \right)} \\ = &C^p\underset{a\in \mathbb{Q} _{p}^{n},\gamma \in \mathbb{Z}}{\mathrm{sup}}\prod\limits_{j = 1}^m{\left( \displaystyle {\int}_{B_{0}(p^{\gamma}a)}{| y_j |_{p}^{\alpha}}dy_j \right) ^{-\lambda _j-\frac{1}{q_j}}}\prod\limits_{j = 1}^m{\left( \displaystyle {\int}_{B_{0}(p^{\gamma}a)}{| y_j |_{p}^{nq_j\lambda _j+\alpha ( q_j\lambda _j+1 )}}dy_j \right) ^{\frac{1}{q_j}}} \\ = &C^p\prod\limits_{j = 1}^m{\underset{a_j\in \mathbb{Q} _{p}^{n}}{\mathrm{sup}}\left( \displaystyle {\int}_{B_0( a_j )}{|y_j|_{p}^{\alpha}dy_j} \right) ^{-\lambda _j-\frac{1}{q_{j\,\,}}}\left( \displaystyle {\int}_{B_0( a_j )}{|y_j|_{p}^{nq_j\lambda _j+\alpha (q_j\lambda _j+1)}dy_j} \right) ^{\frac{1}{q_j}}} \\ = &C^p\prod\limits_{j = 1}^m{\underset{a_j\in \mathbb{Q} _{p}^{n},\gamma _j\in \mathbb{Z}}{\mathrm{sup}}\left( \displaystyle {\int}_{B_{\gamma _j}(p^{-\gamma_j}a_j)}{| z_j |_{p}^{\alpha}}dz_j \right) ^{-\lambda _j-\frac{1}{q_{j\,\,}}}}\left( \displaystyle {\int}_{B_{\gamma _j}(p^{-\gamma_j}a_j)}{\left| | z_j |_{p}^{d( \lambda _j,q_j,\alpha _j,\frac{q_j\beta _j}{q} )} \right|^{q_j}| z_j |_{p}^{\frac{q_j\beta _j}{q}}}dz_j \right) ^{\frac{1}{q_j}} \\ = &C^p\prod\limits_{j = 1}^m{\underset{a_j\in \mathbb{Q} _{p}^{n},\gamma _j\in \mathbb{Z}}{\mathrm{sup}}\left( \displaystyle {\int}_{B_{\gamma _j}(a_j)}{| z_j |_{p}^{\alpha}}dz_j \right) ^{-\lambda _j-\frac{1}{q_{j\,\,}}}}\left( \displaystyle {\int}_{B_{\gamma _j}(a_j)}{\left| | z_j |_{p}^{d( \lambda _j,q_j,\alpha _j,\frac{q_j\beta _j}{q} )} \right|^{q_j}| z_j |_{p}^{\frac{q_j\beta _j}{q}}}dz_j \right) ^{\frac{1}{q_j}} \\ = &C^p\prod\limits_{j = 1}^m{\left\| f_j \right\| _{L^{q_j,\lambda _j}(\mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}})}}. \end{align*}

    In the first to second lines, we let x_j = p^{-\gamma}y_j . From the third to fourth lines, we let y_j = z_jp^{\gamma _j} . Through the above steps, we have completed the proof of Theorem 2.2. It is

    \left\| T^p\left( f_1,...,f_m \right) \left( x \right) \right\| _{\prod\nolimits_{j = 1}^m{L^{q_j,\lambda _j}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}} )}\rightarrow L^{q,\lambda}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} )} = C^p.

    Proof of Corollary 2.1. Next, we will use the methods in [23]. If we take the kernel

    \begin{align} K\left( y_1,...,y_m \right) = \chi _{\{ \left| \left( y_1,...,y_m \right) \right|_p\leqslant 1 \}}\left( y_1,...,y_m \right) \end{align} (2.13)

    in Theorems 2.1 and 2.2, by a change of variables, it is easy to verify that T^p(f_1, ..., f_m)(x) = T_{1}^{p}(f_1, ..., f_m)(x) , then T_{1}^{p}(f_1, ..., f_m)(x) can be denoted by

    T_{1}^{p}(f_1,...,f_m)(x) = \displaystyle {\int}_{\left| \left( y_1,...,y_m \right) \right|_p\leqslant 1}{f_1( \left| x \right|_{p}^{-1}y_1 ) \cdots f_m( \left| x \right|_{p}^{-1}y_m ) dy_1\cdots dy_m},

    respectively, then it is all reduced to calculating

    C_{1}^{p} = \displaystyle {\int}_{\left| \left( y_1,...,y_m \right) \right|_p\leqslant 1}{\prod\limits_{j = 1}^m{| y_j |_{p}^{d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} )}}dy_1\cdots dy_m}.

    To calculate this integral, we divide the integral into m parts. Let

    \begin{align*} &D_1 = \{ \left( y_1,...,y_m \right) \in \mathbb{Q} _{p}^{n}\cdots \mathbb{Q} _{p}^{n}:\left| y_1 \right|_p\leqslant 1,\left| y_k \right|_p\leqslant \left| y_1 \right|_p,1 < k\leqslant m \}, \\ &D_i = \{ \left( y_1,...,y_m \right) \in \mathbb{Q} _{p}^{n}\cdots \mathbb{Q} _{p}^{n}:| y_i |_p\leqslant 1,| y_j |_p < | y_i|_p,\left| y_k \right|_p\leqslant | y_i |_p,1\leqslant j < i < k\leqslant m \}, \\ &D_m = \{ \left( y_1,...,y_m \right) \in \mathbb{Q} _{p}^{n}\cdots \mathbb{Q} _{p}^{n}:\left| y_m \right|_p\leqslant 1,| y_j|_p < \left| y_m \right|_p,1\leqslant j < m \}. \end{align*}

    It is clear that

    \bigcup\limits_{j = 1}^m{D_j = \{ \left( y_1,...,y_m \right) \in \mathbb{Q} _{p}^{n}\cdots \mathbb{Q} _{p}^{n}:\left| \left( y_1,...,y_m \right) \right|_p\leqslant 1 \}},

    and D_i\cap D_j = \varnothing \left(i\ne j \right) . Let

    I_j: = \displaystyle {\int}_{D_j}{\prod\limits_{k = 1}^m{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}dy_1\cdots dy_m}.

    Then

    C_{1}^{p} = \sum\limits_{j = 1}^m{I_j:} = \sum\limits_{j = 1}^m{\displaystyle {\int}_{D_j}{\prod\limits_{k = 1}^m{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}dy_1\cdots dy_m}}.

    Now, let us calculate I_j , j = 1, 2, ..., m . Since d(\lambda _j, q_j, \alpha, \frac{q_j\beta _j}{q}) +n > 0 , then d\left(\lambda, q, \alpha, \beta \right) +mn > 0 , so we have

    \begin{align*} I_1& = \displaystyle {\int}_{D_1}{\prod\limits_{k = 1}^m{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}dy_1\cdots dy_m} \\ & = \displaystyle {\int}_{\left| y_1 \right|_p\leqslant 1}{\displaystyle {\int}_{\left| y_2 \right|_p\leqslant \left| y_1 \right|_p}{\cdots \displaystyle {\int}_{\left| y_m \right|_p\leqslant \left| y_1 \right|_p}{\prod\limits_{k = 1}^m{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}}}dy_m\cdots dy_1} \\ & = \displaystyle {\int}_{\left| y_1 \right|_p\leqslant 1}{\left| y_1 \right|_{p}^{d( \lambda _1,q_1,\alpha ,\frac{q_1\beta _1}{q} )}}\left( \prod\limits_{k = 2}^m{\displaystyle {\int}_{\left| y_k \right|_p\leqslant \left| y_1 \right|_p}{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}dy_k} \right) dy_1 \\ & = \displaystyle {\int}_{\left| y_1 \right|_p\leqslant 1}{\left| y_1 \right|_{p}^{d( \lambda _1,q_1,\alpha ,\frac{q_1\beta _1}{q} )}}\prod\limits_{k = 2}^m{\left( \sum\limits_{i = -\infty}^{\log _p\left| y_1 \right|_p}{\displaystyle {\int}_{S_i}{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q})}}dy_k} \right)}dy_1 \\ & = \displaystyle {\int}_{\left| y_1 \right|_p\leqslant 1}{\left| y_1 \right|_{p}^{d( \lambda _1,q_1,\alpha ,\frac{q_1\beta _1}{q} )}}\prod\limits_{k = 2}^m{\left( \sum\limits_{i = -\infty}^{\log _p\left| y_1 \right|_p}{p^{id( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}\times \displaystyle {\int}_{S_i}{dy_k} \right)}dy_1 \\ & = \frac{\left( 1-p^{-n} \right) ^{m-1}}{\prod\nolimits_{k = 2}^m{\left( 1-p^{-d\left( \lambda _k,q_k,\alpha ,q_k\beta _k/q \right) -n} \right)}}\displaystyle {\int}_{\left| y_1 \right|_p\leqslant 1}{\left| y_1 \right|_{p}^{d\left( \lambda ,q,\alpha ,\beta \right) +\left( m-1 \right) n}}dy_1 \\ & = \frac{\left( 1-p^{-n} \right) ^{m-1}}{\prod\nolimits_{k = 2}^m{\left( 1-p^{-d\left( \lambda _k,q_k,\alpha ,q_k\beta _k/q \right) -n} \right)}}\sum\limits_{i = -\infty}^0{\left( p^{i(d\left( \lambda ,q,\alpha ,\beta \right) +\left( m-1 \right) n)}\displaystyle {\int}_{S_i}{dy_1} \right)} \\ & = \frac{\left( 1-p^{-n} \right) ^m}{\left( 1-p^{-d\left( \lambda ,q,\alpha ,\beta \right) -mn} \right) \prod\nolimits_{k = 2}^m{\left( 1-p^{-d\left( \lambda _k,q_k,\alpha ,q_k\beta _k/q \right) -n} \right)}}. \end{align*}

    Similarly, for i = 2, ..., m-1 , we have

    \begin{align*} I_i& = \displaystyle {\int}_{D_i}{\prod\limits_{k = 1}^m{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}}dy_1\cdots dy_m \\ & = \displaystyle {\int}_{\left| y_i \right|_p\leqslant 1}{| y_i |_{p}^{d( \lambda _i,q_i,\alpha ,\frac{q_i\beta _i}{q} )}}\left( \prod\limits_{j = 1}^{i-1}{\displaystyle {\int}_{| y_j |_p < \left| y_i \right|_p}{| y_j |_{p}^{d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} )}}dy_j} \right) \left( \prod\limits_{k = i+1}^m{\displaystyle {\int}_{\left| y_k \right|_p\leqslant \left| y_i \right|_p}{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}dy_k} \right) dy_i \\ & = \displaystyle {\int}_{\left| y_i \right|_p\leqslant 1}{\left| y_i \right|_{p}^{d( \lambda _i,q_i,\alpha ,\frac{q_i\beta _i}{q} )}}\left( \prod\limits_{j = 1}^{i-1}{\sum\limits_{u = -\infty}^{\log _p\left| y_i \right|_p-1}{\displaystyle {\int}_{S_u}{| y_j |_{p}^{d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} )}}}dy_j} \right) \left( \prod\limits_{k = i+1}^m{\sum\limits_{v = -\infty}^{\log _p\left| y_i \right|_p}{\displaystyle {\int}_{S_v}{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}}dy_k} \right) dy_i \\ & = \left( 1-p^{-n} \right) ^{m-1}\displaystyle {\int}_{\left| y_i \right|_p\leqslant 1}{\left| y_i \right|_{p}^{d( \lambda _i,q_i,\alpha ,\frac{q_i\beta _i}{q} )}}\left( \prod\limits_{j = 1}^{i-1}{\sum\limits_{u = -\infty}^{\log _p\left| y_i \right|_p-1}{p^{u( d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} ) +n )}}} \right) \left( \prod\limits_{k = i+1}^m{\sum\limits_{v = -\infty}^{\log _p\left| y_i \right|_p}{p^{v( d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} ) +n )}}} \right) dy_i \\ & = \frac{\left( 1-p^{-n} \right) ^{m-1}\prod\nolimits_{j = 1}^{i-1}{p^{-d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} ) -n}}}{\prod\nolimits_{1\leqslant k\leqslant m,k\ne i}{( 1-p^{-d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} ) -n} )}}\displaystyle {\int}_{\left| y_i \right|\leqslant 1}{\left| y_i \right|_{p}^{d( \lambda ,q,\alpha ,\beta ) +\left( m-1 \right) n}dy_i} \\ & = \frac{\left( 1-p^{-n} \right) ^{m}\prod\nolimits_{j = 1}^{i-1}{p^{-d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} ) -n}}}{( 1-p^{-d\left( \lambda ,q,\alpha ,\beta \right) -mn} ) \prod\nolimits_{1\leqslant k\leqslant m,k\ne i}{( 1-p^{-d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} ) -n} )}}. \end{align*}

    The case of i = m is similar to the previous step, and we have

    \begin{align*} I_m& = \displaystyle {\int}_{\left| y_m \right|_p\leqslant 1}{\left| y_m \right|^{d( \lambda _m,q_m,\alpha ,\frac{q_m\beta _m}{q} )}}\left( \prod\limits_{j = 1}^{m-1}{\displaystyle {\int}_{| y_j | < \left| y_m \right|_p}{| y_j |^{d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} )}}dy_i} \right) dy_m \\ & = \frac{\left( 1-p^{-n} \right) ^m\prod\nolimits_{j = 1}^{m-1}{p^{-d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q}) -n}}}{\left( 1-p^{-d( \lambda ,q,\alpha ,\beta ) -mn} \right) \prod\nolimits_{j = 1}^{m-1}{( 1-p^{-d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} ) -n} )}}. \end{align*}

    Now, we will calculate their sum, let

    A_m = \frac{\left( 1-p^{-n} \right) ^m}{\left( 1-p^{-d\left( \lambda ,q,\alpha ,\beta \right) -mn} \right) \prod\nolimits_{k = 1}^m{( 1-p^{-d(\lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q})-n})}},\quad-d_k = \sum\limits_{i = 1}^k{-d( \lambda _i,q_i,\alpha ,\frac{q_i\beta _i}{q} )}.

    Notice that -d_m = -d\left(\lambda, q, \alpha, \beta \right) , then

    \begin{align*} C_{1}^{p}& = I_1+\sum\limits_{i = 2}^{m-1}{I_i+I_m} \\ & = A_m\left( (1-p^{-d_1-n})+(p^{-d_1-n}-p^{-d_2-2n})+\cdots +(p^{-d_{m-1}-(m-1)n}-p^{-d_m-mn}) \right) = A_m\left( 1-p^{-d_m-mn} \right) \\ & = \frac{\left( 1-p^{-n} \right) ^m}{\prod\nolimits_{k = 1}^m{(1-p^{-d(\lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q})-n})}}. \end{align*}

    This finishes the proof of Corollary 2.1.

    Proof of Corollary 2.2. If we take the kernel

    \begin{align} K\left( y_1,...,y_m \right) = \frac{1}{( 1+\left| y_1 \right|_{p}^{n}+\cdots +\left| y_m \right|_{p}^{n} ) ^m} \end{align} (2.14)

    in Theorems 2.1 and 2.2, by a change of variables, it is easy to verify that T^p(f_1, ..., f_m)(x) = T_{2}^{p}(f_1, ..., f_m)(x) , then T_{2}^{p}(f_1, ..., f_m)(x) can be denoted by

    T_{2}^{p}(f_1,...,f_m)(x) = \displaystyle {\int}_{\mathbb{Q}_p ^{nm}}{\frac{1}{( 1+\left| y_1 \right|_{p}^{n}+\cdots +\left| y_m \right|_{p}^{n} ) ^m}f_1( \left| x \right|_{p}^{-1}y_1 ) \cdots f_m( \left| x \right|_{p}^{-1}y_m ) dy_1\cdots dy_m},

    respectively, then it is all reduced to calculating

    C_{2}^{p} = \displaystyle {\int}_{\mathbb{Q}_p ^{nm}}{\frac{1}{( 1+\left| y_1 \right|_{p}^{n}+\cdots +\left| y_m \right|_{p}^{n} ) ^m}\prod\limits_{j = 1}^m{| y_j|_{p}^{d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} )}}dy_1\cdots dy_m}.

    After a series of simple operations, we have

    \begin{align*} C_{2}^{p} & = \displaystyle {\int}_{\mathbb{Q} _{p}^{n}}{\cdots \displaystyle {\int}_{\mathbb{Q} _{p}^{n}}{\sum\limits_{k_m = -\infty}^{+\infty}{\displaystyle {\int}_{S_{k_m}}{\frac{1}{( 1+\left| y_1 \right|_{p}^{n}+\cdots +\left| y_m \right|_{p}^{n} ) ^m}}}}}\prod\limits_{j = 1}^m{| y_j |_{p}^{d(\lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q})}}dy_m\cdots dy_1 \\ & = \sum\limits_{k_1 = -\infty}^{+\infty}{\sum\limits_{k_2 = -\infty}^{+\infty}{\cdots}\sum\limits_{k_m = -\infty}^{+\infty}{\displaystyle {\int}_{S_{k_1}}{\cdots \displaystyle {\int}_{S_{k_m}}{\frac{1}{( 1+\left| y_1 \right|_{p}^{n}+\cdots +\left| y_m \right|_{p}^{n} ) ^m}\prod\limits_{j = 1}^m{| y_j |_{p}^{d(\lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q})}}}}}}dy_m\cdots dy_1 \\ & = \sum\limits_{k_1 = -\infty}^{+\infty}{\sum\limits_{k_2 = -\infty}^{+\infty}{\cdots}\sum\limits_{k_m = -\infty}^{+\infty}{\frac{1}{(1+p^{k_1n}+\cdots +p^{k_mn})^m}}}\prod\limits_{j = 1}^m{p^{k_jd(\lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q})}}\displaystyle {\int}_{S_{k_1}}{\cdots \displaystyle {\int}_{S_{k_m}}{dy_m\cdots dy_1}} \\ & = \sum\limits_{k_1 = -\infty}^{+\infty}{\sum\limits_{k_2 = -\infty}^{+\infty}{\cdots}\sum\limits_{k_m = -\infty}^{+\infty}{\frac{1}{(1+p^{k_1n}+\cdots +p^{k_mn})^m}}}\prod\limits_{j = 1}^m{p^{k_jd(\lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q})}}\prod\limits_{j = 1}^m{p^{k_jn}( 1-p^{-n} )} \\ & = ( 1-p^{-n}) ^m\sum\limits_{k_1 = -\infty}^{+\infty}{\sum\limits_{k_2 = -\infty}^{+\infty}{\cdots}\sum\limits_{k_m = -\infty}^{+\infty}{\frac{1}{(1+p^{k_1n}+\cdots +p^{k_mn})^m}}}\prod\limits_{j = 1}^m{p^{k_j(d(\lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q})+n)}}. \end{align*}

    What we want to prove is that the sum of this series is bounded. Because it is a challenging problem to calculate the sum of this series, we can indirectly prove that this series sum is bounded by an inequality. Clearly,

    [ \max ( 1,\left| y_1 \right|_{p}^{n},\cdots ,\left| y_m \right|_{p}^{n}) ] ^m = \underset{1\leqslant j\leqslant m}{\max}\{ 1,| y_j |_{p}^{mn} \} \leqslant ( 1+\left| y_1 \right|_{p}^{n}+\cdots +\left| y_m \right|_{p}^{n}) ^m.

    Then we have

    C_{2}^{p}\leqslant D^p = :\displaystyle {\int}_{\mathbb{Q} _{p}^{nm}}{\frac{1}{[\max\mathrm{(}1,\left| y_1 \right|_{p}^{n},...,\left| y_m \right|_{p}^{n})]^m}\prod\limits_{j = 1}^m{| y_j |_{p}^{d(\lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q})}}dy_1\cdots dy_m}.

    So if we prove that D^p is bounded, it means that C_2^p is bounded. Next, we refer to the methods in [7] to calculate D^p .

    To calculate this integral, we divide the integral into m parts. Let

    \begin{align*} &E_0 = \{ \left( y_1,...,y_m \right) \in \mathbb{Q} _{p}^{n}\times \cdots \times \mathbb{Q} _{p}^{n}:\left| y_k \right|_p\leqslant 1,1\leqslant k\leqslant m\} ; \\ &E_1 = \{ \left( y_1,...,y_m \right) \in \mathbb{Q} _{p}^{n}\times \cdots \times \mathbb{Q} _{p}^{n}:\left| y_1 \right|_p > 1,\left| y_k \right|_p\leqslant \left| y_1 \right|_p,1 < k\leqslant m \} ; \\ &E_i = \{ \left( y_1,...,y_m \right) \in \mathbb{Q} _{p}^{n}\times \cdots \times \mathbb{Q} _{p}^{n}:\left| y_i \right|_p > 1,| y_j |_p < \left| y_i \right|_p,\left| y_k \right|_p\leqslant \left| y_i \right|_p,1\leqslant j < i < k\leqslant m \} ; \\ &E_m = \{ \left( y_1,...,y_m \right) \in \mathbb{Q} _{p}^{n}\times \cdots \times \mathbb{Q} _{p}^{n}:\left| y_m \right|_p > 1,| y_j |_p < \left| y_m \right|_p,1\leqslant j\leqslant m \}. \end{align*}

    Its clear that

    \bigcup\limits_{j = 0}^m{E_j = }\mathbb{Q} _{p}^{n}\times \cdots \times \mathbb{Q} _{p}^{n},

    and E_i\cap E_j = \varnothing \left(i\ne j \right) . Let

    J_j: = \displaystyle {\int}_{E_j}{\frac{1}{[ \max ( 1,\left| y_1 \right|_{p}^{n},...,\left| y_m \right|_{p}^{n} )] ^m}\prod\limits_{k = 1}^m{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}}dy_1\cdots dy_m,

    then we have

    D^{p} = \sum\limits_{j = 1}^m{J_j:} = \sum\limits_{j = 1}^m{\displaystyle {\int}_{E_j}{\frac{1}{[ \max ( 1,\left| y_1 \right|_{p}^{n},...,\left| y_m \right|_{p}^{n} ) ] ^m}\prod\limits_{k = 1}^m{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}dy_1\cdots dy_m}}.

    Now, let us calculate J_j , j = 1, 2, ..., m . Since d(\lambda _j, q_j, \alpha, \frac{q_j\beta _j}{q}) +n > 0 , we have

    \begin{align*} J_0& = \prod\limits_{k = 1}^m{\displaystyle {\int}_{\left| y_k \right|_p\leqslant 1}{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}dy_k = \prod\limits_{k = 1}^m{\left( \sum\limits_{i = -\infty}^0{\displaystyle {\int}_{S_i}{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}dy_k} \right)}} \\ & = \prod\limits_{k = 1}^m{\left( \sum\limits_{i = -\infty}^0{p^{id(\lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q})}p^{in}(1}-p^{-n}) \right)} \\ & = \frac{\left( 1-p^{-n} \right) ^m}{\prod\limits_{k = 1}^m{( 1-p^{-d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} ) -n} )}}. \end{align*}

    For j = 1 , since d\left(\lambda, q, \alpha, \beta \right) < 0 , d(\lambda _1, q_1, \alpha, \frac{q_1\beta _1}{q}) +n > 0 , then we have

    \begin{align*} J_1& = \displaystyle {\int}_{E_1}{\frac{1}{[ \max( 1,\left| y_1 \right|_{p}^{n},...,\left| y_m \right|_{p}^{n} ) ] ^m}\prod\limits_{k = 1}^m{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}}dy_1\cdots dy_m \\ & = \displaystyle {\int}_{\left| y_1 \right|_p > 1}{\left| y_1 \right|_{p}^{d( \lambda _1,q_1,\alpha ,\frac{q_1\beta _1}{q} ) -mn}}\prod\limits_{k = 2}^m{\left( \displaystyle {\int}_{\left| y_k \right|_p\leqslant \left| y_1 \right|_p}{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}dy_k \right) dy_1} \\ & = \frac{\left( 1-p^{-n} \right) ^{m-1}}{\prod\nolimits_{k = 2}^m{( 1-p^{-d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} ) -n} )}}\displaystyle {\int}_{\left| y_1 \right|_p > 1}{\left| y_1 \right|_{p}^{d\left( \lambda ,q,\alpha ,\beta \right) -n}}dy_1 \\ & = B_m\left( \displaystyle {\int}_{\left| y_1 \right|_p < \infty}{\left| y_1 \right|_{p}^{d\left( \lambda ,q,\alpha ,\beta \right) -n}dy_1}-\displaystyle {\int}_{\left| y_1 \right|_p\leqslant 1}{\left| y_1 \right|_{p}^{d\left( \lambda ,q,\alpha ,\beta \right) -n}dy_1} \right) \\ & = B_m\left( \sum\limits_{i = -\infty}^{+\infty}{\displaystyle {\int}_{S_i}{\left| y_1 \right|_{p}^{d( \lambda ,q,\alpha ,\beta ) -n}}dy_1-\sum\limits_{j = -\infty}^0{\displaystyle {\int}_{S_j}{\left| y_1 \right|_{p}^{d\left( \lambda ,q,\alpha ,\beta \right) -n}}dy_1}} \right) \\ & = B_m\sum\limits_{j = 1}^{+\infty}{\displaystyle {\int}_{S_j}{\left| y_1 \right|_{p}^{d\left( \lambda ,q,\alpha ,\beta \right) -n}}dy_1} = \frac{\left( 1-p^{-n} \right) ^mp^{d\left( \lambda ,q,\alpha ,\beta \right)}}{\left( 1-p^{d\left( \lambda ,q,\alpha ,\beta \right)} \right) \prod\nolimits_{k = 2}^m{(1-p^{-d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} ) -n})}}, \end{align*}

    where

    B_m = \frac{\left( 1-p^{-n} \right) ^{m-1}}{\prod\nolimits_{k = 2}^m{\left( 1-p^{-d\left( \lambda _k,q_k,\alpha ,q_k\beta _k/q \right) -n} \right)}}.

    Similarly for i = 2, ..., m-1 , we have

    \begin{align*} J_i& = \displaystyle {\int}_{\left| y_i \right|_p > 1}{\left| y_i \right|_{p}^{d( \lambda _i,q_i,\alpha ,\frac{q_i\beta _i}{q} ) -mn}}\left( \prod\limits_{j = 1}^{i-1}{\displaystyle {\int}_{| y_j |_p < \left| y_i \right|_p}{| y_j |_{p}^{d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} )}}dy_j} \right) \left( \prod\limits_{k = i+1}^m{\displaystyle {\int}_{\left| y_k \right|_p\leqslant \left| y_i \right|_p}{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}dy_k} \right)dy_i \\ & = \frac{\left( 1-p^{-n} \right) ^{m-1}\prod\nolimits_{j = 1}^{i-1}{p^{-d( \lambda _j,q_j,\alpha ,\frac{q_j\beta j}{q} ) -n}}}{\prod\nolimits_{1\leqslant k\leqslant m,k\ne i}{( 1-p^{-d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} ) -n} )}}\displaystyle {\int}_{\left| y_i \right|_p > 1}{\left| y_i \right|_{p}^{d\left( \lambda ,q,\alpha ,\beta \right) -n}}dy_i \\ & = \frac{p^{d(\lambda ,q,\alpha ,\beta )}\left( 1-p^{-n} \right) ^m\prod\nolimits_{j = 1}^{i-1}{p^{-d(\lambda _j,q_j,\alpha ,\frac{q_j\beta j}{q})-n}}}{(1-p^{d\left( \lambda ,q,\alpha ,\beta \right)})\prod\nolimits_{1\leqslant k\leqslant m,k\ne i}{(1-p^{-d(\lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q})-n})}}. \end{align*}

    When i = m , similarly to the previous step, we show that

    \begin{align*} J_m& = \displaystyle {\int}_{\left| y_m \right|_p}{\left| y_m \right|^{d( \lambda _m,q_m,\alpha ,\frac{q_m\beta _m}{q} ) -mn}\left( \prod\limits_{j = 1}^{i-1}{\displaystyle {\int}_{| y_j |_p < | y_i |_p}{\left| y_i \right|_{p}^{d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} )}}dy_j} \right)} \left( \prod\limits_{k = i+1}^m{\displaystyle {\int}_{\left| y_k \right|_p\leqslant \left| y_i \right|_p}{\left| y_k \right|_{p}^{d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} )}}dy_k} \right)dy_m \\ & = \frac{p^{d(\lambda ,q,\alpha ,\beta )}\left( 1-p^{-n} \right) ^m\prod\nolimits_{j = 1}^{m-1}{p^{-d(\lambda _j,q_j,\alpha ,\frac{q_j\beta j}{q})-n}}}{\left( 1-p^{d\left( \lambda ,q,\alpha ,\beta \right)} \right) \prod\nolimits_{k = 1}^{m-1}{(1-p^{-d(\lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q})-n})}}. \end{align*}

    Now, we will calculate their sum, let

    D_m = \frac{\left( 1-p^{-n} \right) ^mp^{d(\lambda ,q,\alpha ,\beta )}}{\left( 1-p^{d(\lambda ,q,\alpha ,\beta )} \right) \prod\nolimits_{k = 1}^m{(1-p^{-d(\lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q})-n})}},\quad and\quad -d_k = \sum\limits_{i = 1}^k{-d(\lambda _i,q_i,\alpha ,\frac{q_i\beta _i}{q})}.

    Notice that -d_m = -d\left(\lambda, q, \alpha, \beta \right) , then

    \begin{align*} D^{p}& = J_0+J_1+\sum\limits_{i = 2}^{m-1}{J_i}+J_m \\ & = D_m\left( \frac{1-p^{d\left( \lambda ,q,\alpha ,\beta \right)}}{p^{d\left( \lambda ,q,\alpha ,\beta \right)}}+( 1-p^{-d_1-n}) +( p^{-d_1-n}-p^{-d_2-2n} ) +\cdots +( p^{-d_{m-1}-( m-1 ) n}-p^{-d_m-mn} ) \right) \\ & = D_m\left( \frac{1-p^{d_m}}{p^{d_m}}+1-p^{-d_m-mn} \right) = D_mp^{-d_m}\left( 1-p^{-mn} \right) \\ & = \frac{\left( 1-p^{-n} \right) ^m\left( 1-p^{-mn} \right)}{\left( 1-p^{d\left( \lambda ,q,\alpha ,\beta \right)} \right) \prod\nolimits_{k = 1}^m{( 1-p^{-d(\lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q})-n} )}} < \infty. \end{align*}

    In conclusion, we prove that D^p is bounded, which also means that C_2^p is bounded, that is

    ( 1-p^{-n}) ^m\sum\limits_{k_1 = -\infty}^{+\infty}{\sum\limits_{k_2 = -\infty}^{+\infty}{\cdots}\sum\limits_{k_m = -\infty}^{+\infty}{\frac{1}{(1+p^{k_1n}+\cdots +p^{k_mn})^m}}}\prod\limits_{j = 1}^m{p^{k_j(d(\lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q})+n)}} < \infty.

    Our results also show that D^p is Hilbert's bound. This finishes the proof of Corollary 2.2.

    In this section, we will use the previous results to give the sharp bound for the p -adic m -linear n -dimensional Hausdorff operator on p -adic weighted Morrey spaces.

    Corollary 3.1. Assume that the real parameters q , q_j , \lambda , \lambda_j , \beta , and \beta_j with j = 1, 2, ..., m are the same as in Theorem 2.1, and a nonnegative function \Phi on \mathbb{R} ^n satisfies

    \begin{align} C_{\Phi}^{p} = \displaystyle {\int}_{\mathbb{Q} _{p}^{n}}{\cdots}\displaystyle {\int}_{\mathbb{Q} _{p}^{n}}{\frac{\Phi \left( y_1,...,y_m \right)}{\left| y_1 \right|_{p}^{n}\cdots \left| y_m \right|_{p}^{n}}\prod\limits_{j = 1}^m{| y_j |^{d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} )}}}dy_1\cdots dy_m < \infty, \end{align} (3.1)

    then T_{\Phi}^{p} is bounded from \prod_{j = 1}^m{B^{q_j, \lambda _j}(\mathbb{Q} _{p}^{n}, \left| x \right|_{p}^{\alpha}, \left| x \right|_{p}^{\frac{q_j\beta _j}{q}})} to B^{q, \lambda}(\mathbb{Q} _{p}^{n}, \left| x \right|_{p}^{\alpha}, \left| x \right|_{p}^{\beta}). Furthermore, if \alpha+n > 0 , then

    \left\| T_{\Phi}^{p}\left( f_1,...,f_m \right) \left( x \right) \right\| _{\prod\nolimits_{j = 1}^m{B^{q_j,\lambda _j}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}} )}\rightarrow B^{q,\lambda}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} )} = C_{\Phi}^{p}.

    The weighted Morrey space L^{q_j, \lambda _j}(\mathbb{Q} _{p}^{n}, \left| x \right|_{p}^{\alpha}, \left| x \right|_{p}^{\frac{q_j\beta _j}{q}}) is similar.

    Proof of Corollary 3.1. By a change of variables, the p -adic m -linear n -dimensional Hausdorff operator becomes

    T_{\Phi}^{p} = \displaystyle {\int}_{\mathbb{Q} _{p}^{n}}{\cdots}\displaystyle {\int}_{\mathbb{Q} _{p}^{n}}{\frac{\Phi \left( y_1,...,y_m \right)}{\left| y_1 \right|_{p}^{n}\cdots \left| y_m \right|_{p}^{n}}f_1( x\left| y_1 \right|_{p}^{-1} )}\cdots f_m( x\left| y_m \right|_{p}^{-1} ) dy_1\cdots dy_m.

    According to the proof of Theorem 2.1 and Lemma 2.2, notice that there is no need to let f_j be a radial function, and we have

    \left\| T_{\Phi}^{p}\left( f_1,...,f_m \right) \left( x \right) \right\| _{\prod\nolimits_{j = 1}^m{B^{q_j,\lambda _j}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}} )}\rightarrow B^{q,\lambda}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} )} = C_{\Phi}^{p} < \infty.

    The weighted Morrey space L^{q_j, \lambda _j}(\mathbb{Q} _{p}^{n}, \left| x \right|_{p}^{\alpha}, \left| x \right|_{p}^{\frac{q_j\beta _j}{q}}) is similar, so we omit the details. This finishes the proof of Corollary 3.1.

    First, the m -linear n -dimensional integral operator with a kernel has a sharp estimate. The sharp estimate on central and noncentral p -adic Morrey spaces with power weighted is given by

    \begin{align*} &\left\| T^p\left( f_1,...,f_m \right) \left( x \right) \right\| _{\prod\nolimits_{j = 1}^m{B^{q_j,\lambda _j}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}} )}\rightarrow B^{q,\lambda}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} )}\\ = &\left\| T^p\left( f_1,...,f_m \right) \left( x \right) \right\| _{\prod\nolimits_{j = 1}^m{L^{q_j,\lambda _j}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}} )}\rightarrow L^{q,\lambda}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} )}\\ = &\displaystyle {\int}_{\mathbb{Q} _{p}^{n}}{\cdots \displaystyle {\int}_{\mathbb{Q} _{p}^{n}}{K\left( y_1,...,y_m \right) \prod\limits_{i = 1}^m{\left| y_i \right|_{p}^{n\lambda _j-\frac{\beta _j}{q}+\alpha (1+\frac{1}{q_j})}}}}dy_1\cdots dy_m: = C^p, \end{align*}

    where the kernel K(y_1, .., y_m) satisfies C^p < \infty .

    Second, as an application, we derive the sharp bounds for the m -linear n -dimensional Hardy operator and Hilbert operators on weighted Morrey spaces, that is

    \begin{align*} \left\| T_{1}^{p}\left( f_1,...,f_m \right) \left( x \right) \right\| _{\prod\nolimits_{j = 1}^m{B^{q_j,\lambda _j}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}} )}\rightarrow B^{q,\lambda}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} )} = \frac{\left( 1-p^{-n} \right) ^m}{\prod\nolimits_{k = 1}^m{( 1-p^{-d( \lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q} ) -n} )}}, \end{align*}

    and

    \begin{equation*} \begin{aligned} &\left\| T_{2}^{p}\left( f_1,...,f_m \right) \left( x \right) \right\| _{\prod\nolimits_{j = 1}^m{B^{q_j,\lambda _j}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}} )}\rightarrow B^{q,\lambda}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} )} \\ = &(1-p^{-n})^m\sum\limits_{k_1 = -\infty}^{+\infty}{\sum\limits_{k_2 = -\infty}^{+\infty}{\cdots}\sum\limits_{k_m = -\infty}^{+\infty}{\frac{1}{(1+p^{k_1n}+\cdots +p^{k_mn})^m}}}\prod\limits_{j = 1}^m{p^{k_j(d(\lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q})+n)}} \\ \leqslant& \frac{\left( 1-p^{-n} \right) ^m\left( 1-p^{-mn} \right)}{(1-p^{d\left( \lambda ,q,\alpha ,\beta \right)})\prod\nolimits_{k = 1}^m{(1-p^{-d(\lambda _k,q_k,\alpha ,\frac{q_k\beta _k}{q})-n})}} < \infty. \end{aligned} \end{equation*}

    Finally, based on the previous result, we also find the estimate for the Hausdorff operator on weighted Morrey spaces:

    \begin{align*} \left\| T_{\Phi}^{p}\!\left( f_1,\!...,\!f_m \right)\! \left( x \right) \right\|\! _{\prod\nolimits_{j = 1}^m\!\!{B^{q_j,\lambda _j}\!( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\frac{q_j\beta _j}{q}} \!)}\!\rightarrow \! B^{q,\lambda}( \mathbb{Q} _{p}^{n},\left| x \right|_{p}^{\alpha},\left| x \right|_{p}^{\beta} )}\!\displaystyle {\int}_{\mathbb{Q} _{p}^{n}}\!\!{\cdots}\!\!\displaystyle {\int}_{\mathbb{Q} _{p}^{n}}\!\!{\frac{\Phi \!\left( y_1,\!...,\!y_m \right)}{\left| y_1 \right|_{p}^{n}\!\cdots\! \left| y_m \right|_{p}^{n}}\!\prod\limits_{j = 1}^m\!{| y_j |^{d( \lambda _j,q_j,\alpha ,\frac{q_j\beta _j}{q} )}}}dy_1\!\cdots\! dy_m\!: = \!C_{\Phi}^{p}, \end{align*}

    where the nonnegative function \Phi on \mathbb{R} ^n satisfies C_{\Phi}^{p} < \infty .

    Tingting Xu: Conceptualization, methodology; Zaiyong Feng: Writing-original draft; Tianyang He: Writing-review and editing, validation, methodology; Xiaona Fan: Theoretical derivation, proof verification. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work is supported by Foundation of the Natural Science Foundation of China under Grant No. 12271262. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

    The authors declare that they have no conflict of interest.



    [1] A. V. Avetisov, A. H. Bikulov, S. V. Kozyrev, V. A. Osipov, p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes, J. Phys. A: Math. Gen., 35 (2002), 177. https://doi.org/10.1088/0305-4470/35/2/301 doi: 10.1088/0305-4470/35/2/301
    [2] S. Albeverio, W. Karwoski, A random walk on p-adics: the generator and its spectrum, Stoch. Proc. Appl., 53 (1994), 1–22. https://doi.org/10.1016/0304-4149(94)90054-x doi: 10.1016/0304-4149(94)90054-x
    [3] S. Albeverio, A. Y. Khrennikov, V. M. Shelkovich, Harmonic analysis in the p-adic Lizorkin spaces: fractional operators, pseudo-differential equations, p-adic wavelets, Tauberian theorems, J. Fourier Anal. Appl., 12 (2006), 393–425. https://doi.org/10.1007/s00041-006-6014-0 doi: 10.1007/s00041-006-6014-0
    [4] T. Batblod, Y. Sawano, Sharp bounds for m-linear Hilbert-type operators on the weighted Morrey spaces, Math. Inequal. Appl., 20 (2017), 263–283. https://doi.org/10.7153/mia-20-20 doi: 10.7153/mia-20-20
    [5] T. Batbold, Y. Sawano, G. Tumendemberel, Sharp bounds for certain m-linear integral operators on p-adic function spaces, Filomat, 36 (2022), 801–812. https://doi.org/10.2298/fil2203801b doi: 10.2298/fil2203801b
    [6] J. C. Chen, D. S. Fan, C. J. Zhang, Multilinear Hausdorff operators and their best constants, Acta. Math. Sin.-English Ser., 28 (2012), 1521–1530. https://doi.org/10.1007/s10114-012-1455-7 doi: 10.1007/s10114-012-1455-7
    [7] Y. Deng, D. Yan, M. Wei, Sharp estimates for m linear p-adic Hardy and Hardy-Littlewood-Pólya operators on p-adic central Morrey spaces, J. Math. Inequal., 15 (2021), 1447–1458. https://doi.org/10.7153/jmi-2021-15-99 doi: 10.7153/jmi-2021-15-99
    [8] Z. Fu, S. Gong, S. Lu, W. Yuan, Weighted multilinear Hardy operators and commutators, Forum Math., 27 (2015), 2825–2851. https://doi.org/10.1515/forum-2013-0064 doi: 10.1515/forum-2013-0064
    [9] Z. Fu, R. Gong, E. Pozzi, Q. Wu, Cauchy-Szegö commutators on weighted Morrey spaces, Math. Nachr., 296 (2023), 1859–1885. https://doi.org/10.1002/mana.202000139 doi: 10.1002/mana.202000139
    [10] Z. Fu, S. Lu, Y. Pan, S. Shi, Some one-sided estimates for oscillatory singular integrals, Nonlinear Anal.-Theor., 108 (2014), 144–160. https://doi.org/10.1016/j.na.2014.05.016 doi: 10.1016/j.na.2014.05.016
    [11] S. Haran, Riesz potentials and explicit sums in arithmetic, Invent. Math., 101 (1990), 697–703. https://doi.org/10.1007/bf01231521 doi: 10.1007/bf01231521
    [12] S. Haran, Analytic potential theory over the p-adics, Ann. I. Fourier, 43 (1993), 905–944. https://doi.org/10.5802/aif.1361 doi: 10.5802/aif.1361
    [13] Q. He, M. Wei, D. Yan, Sharp bound for generalized m-linear n-dimensional Hardy-Littlewood-Pólya operator, Anal. Theory Appl., 39 (2023), 28–41. https://doi.org/10.4208/ata.OA-2020-0039 doi: 10.4208/ata.OA-2020-0039
    [14] A. Khrennikov, p-adic valued distributions in mathematical physics, Dordrecht: Springer, 1994. https://doi.org/10.1007/978-94-015-8356-5
    [15] A. Khrennikov, Non-Archimedean analysis: quantum paradoxes, dynamical systems and biological models, Dordrecht: Springer, 1997. https://doi.org/10.1007/978-94-009-1483-4
    [16] Y. C. Kim, Weak type estimates of square functions associated with quasiradial Bochner-Riesz means on certain Hardy spaces, J. Math. Anal. Appl., 339 (2008), 266–280. https://doi.org/10.1016/j.jmaa.2007.06.050 doi: 10.1016/j.jmaa.2007.06.050
    [17] Y. C. Kim, Carleson measures and the BMO space on the p-adic vector space, Math. Nachr., 282 (2009), 1278–1304. https://doi.org/10.1002/mana.200610806 doi: 10.1002/mana.200610806
    [18] K. S. Rim, J. Lee, Estimate of weighted Hardy-Littlewood averages on the p-adic vector space, J. Math. Anal. Appl., 324 (2006), 1470–1477. https://doi.org/10.1016/j.jmaa.2006.01.038 doi: 10.1016/j.jmaa.2006.01.038
    [19] M. H. Taibleson, Fourier analysis on local fields, Princeton: Princeton University Press, 1975.
    [20] V. S. Varadarajan, Path integrals for a class of p-adic Schrödinger equations, Lett. Math. Phys., 39 (1997), 97–106. https://doi.org/10.1023/A:1007364631796 doi: 10.1023/A:1007364631796
    [21] D. D. Van, N. T. Hong, Multilinear Hausdorff operator on p-adic functional spaces and its applications, Anal. Math. Phys., 12 (2022), 86. https://doi.org/10.1007/s13324-022-00696-4 doi: 10.1007/s13324-022-00696-4
    [22] V. S. Vladimiron, I. V. Volovich, E. I. Zelenov, p-adic analysis and mathematical physics, Singapore: World Scientific, 1992. https://doi.org/10.1142/1581
    [23] Q. Y. Wu, Z. W. Fu, Sharp estimates of m-linear p-adic Hardy and Hardy-Littlewood-Pólya operators, J. Appl. Math., 2011 (2011), 472176. https://doi.org/10.1155/2011/472176 doi: 10.1155/2011/472176
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(109) PDF downloads(8) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog