Loading [MathJax]/jax/output/SVG/jax.js
Research article

Rough fractional integral and its multilinear commutators on p-adic generalized Morrey spaces

  • Received: 22 December 2022 Revised: 23 April 2023 Accepted: 02 May 2023 Published: 16 May 2023
  • MSC : 42B20, 42B25, 42B35

  • In this paper, we establish the boundedness of rough p-adic fractional integral operators on p-adic generalized Morrey spaces, as well as the boundedness of multilinear commutators generated by rough p-adic fractional integral operator and p-adic generalized Campanato functions. Moreover, the boundedness in classical Morrey is given as corollaries.

    Citation: Yanlong Shi, Xiangxing Tao. Rough fractional integral and its multilinear commutators on p-adic generalized Morrey spaces[J]. AIMS Mathematics, 2023, 8(7): 17012-17026. doi: 10.3934/math.2023868

    Related Papers:

    [1] Naqash Sarfraz, Muhammad Bilal Riaz, Qasim Ali Malik . Some new characterizations of boundedness of commutators of $p$-adic maximal-type functions on $p$-adic Morrey spaces in terms of Lipschitz spaces. AIMS Mathematics, 2024, 9(7): 19756-19770. doi: 10.3934/math.2024964
    [2] Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad . Boundedness of an intrinsic square function on grand $ p $-adic Herz-Morrey spaces. AIMS Mathematics, 2023, 8(11): 26484-26497. doi: 10.3934/math.20231352
    [3] Pham Thi Kim Thuy, Kieu Huu Dung . Hardy–Littlewood maximal operators and Hausdorff operators on $ p $-adic block spaces with variable exponents. AIMS Mathematics, 2024, 9(8): 23060-23087. doi: 10.3934/math.20241121
    [4] Naqash Sarfraz, Muhammad Aslam . Some weighted estimates for the commutators of $p$-adic Hardy operator on two weighted $p$-adic Herz-type spaces. AIMS Mathematics, 2021, 6(9): 9633-9646. doi: 10.3934/math.2021561
    [5] Qianjun He, Xiang Li . Necessary and sufficient conditions for boundedness of commutators of maximal function on the $ p $-adic vector spaces. AIMS Mathematics, 2023, 8(6): 14064-14085. doi: 10.3934/math.2023719
    [6] Heng Yang, Jiang Zhou . Compactness of commutators of fractional integral operators on ball Banach function spaces. AIMS Mathematics, 2024, 9(2): 3126-3149. doi: 10.3934/math.2024152
    [7] Javeria Younas, Amjad Hussain, Hadil Alhazmi, A. F. Aljohani, Ilyas Khan . BMO estimates for commutators of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces. AIMS Mathematics, 2024, 9(9): 23434-23448. doi: 10.3934/math.20241139
    [8] Wanjing Zhang, Suixin He, Jing Zhang . Boundedness of sublinear operators on weighted grand Herz-Morrey spaces. AIMS Mathematics, 2023, 8(8): 17381-17401. doi: 10.3934/math.2023888
    [9] Chenchen Niu, Hongbin Wang . $ N $-dimensional fractional Hardy operators with rough kernels on central Morrey spaces with variable exponents. AIMS Mathematics, 2023, 8(5): 10379-10394. doi: 10.3934/math.2023525
    [10] Muhammad Asim, Ghada AlNemer . Boundedness on variable exponent Morrey-Herz space for fractional multilinear Hardy operators. AIMS Mathematics, 2025, 10(1): 117-136. doi: 10.3934/math.2025007
  • In this paper, we establish the boundedness of rough p-adic fractional integral operators on p-adic generalized Morrey spaces, as well as the boundedness of multilinear commutators generated by rough p-adic fractional integral operator and p-adic generalized Campanato functions. Moreover, the boundedness in classical Morrey is given as corollaries.



    In the past few decades, p-adic analysis has gathered a lot of attention by its applications in many aspects of mathematical physics, such as quantum mechanics, the probability theory and the dynamical systems [1]. Significantly, the geometry of the field of p-adic numbers is surprisingly unlike the geometry of the real numbers field R, in particular the Archimedean axiom is not true in the field of p-adic numbers[2]. Therefore, p-adic analysis has also gained impeccable attraction in harmonic analysis [3,4,5,6,7].

    In p-adic harmonic analysis, fractional calculus is a key area because of its heap of applications in engineering science and technology, see for instance [8,9]. Also, fractional integral operators (Riesz potentials) are significant in the mathematical analysis as they construct and formulate inequalities which have several applications in scientific areas that can be found in the existing literature [10,11]. The boundedness criteria of fractional integral operators on different functional spaces is a key area not only in harmonic analysis but also in partial differential equations, differentiation theory and potential theory [12,13]. In this connection, the fractional integral operator in p-adic analysis is defined by

    Tpβf(x)=1pβ1pβnQnpf(y)|xy|nβpdy,0<β<n.

    Here, Qnp consists of all points x=(x1,,xn) for nN, where xjQp(j=1,,n) and Qp is the field of p-adic numbers.

    When n=1, Haran[3,4] not only obtained the explicit formula of the fractional integral operator Tpβ on Qp but also developed the analytical potential theory on Qnp. Taibleson [2] gave the fundamental analytic properties of Tpβ on local fields, including Qnp, as well as the classical Hardy-Littlewood-Sobolev theorem (also see [5]). Moreover, Volosivets [6,7] showed that Tpβ is bounded on radial Morrey spaces. In 2015, Wu and Fu [14] established Hardy-Littlewood-Sobolev inequalities on p-adic central Morrey spaces and λ-central BMO estimates for commutators of Tpβ. In 2018, Mo et al. [15] showed the boundedness of Tpβ on p-adic generalized Morrey spaces, as well as the boundedness of multilinear commutators generated by Tpβ and generalized Campanato functions. In 2022, both Shi et al. [16] and Sarfraz et al. [17] studied the boundedness of Tpβ and its commutators on Morrey-Herz spaces. At the same time, Sarfraz and Jarad [18] considered the roughness of the operator Tpβ, they introduced rough fractional integral operator Tpβ,Ω. In the form, Tpβ,Ω has the following integral expression

    Tpβ,Ωf(x)=QnpΩ(|y|py)f(y)|xy|nβpdy, (1.1)

    for suitable measurable mappings f:QnpR and Ω:S0(0)R. When fLq(Qnp), 1q<, by the same way in the book [2], Sarfraz and Jarad [18] showed the boundedness of Tpβ,Ω on Lebesgue spaces (see Lemma 2.2 in Section 2). Furthermore, they obtained the boundedness of Tpβ,Ω on p-adic central Morrey spaces, as well as the λ-central BMO estimates for commutator Tp,bβ,Ω defined by

    Tp,bβ,Ωf(x)=Qnp(b(x)b(y))Ω(|y|py)f(y)|xy|nβpdy.

    In [19], Sarfraz and Aslam showed the boundedness of Tpβ,Ω and Tp,bβ,Ω on p-adic Herz spaces.

    We observe above works, the boundedness of Tpβ,Ω on generalized Morrey spaces are remains open. Therefore, in this paper, we are going to devote to the boundedness of Tpβ,Ω on p-adic generalized Morrey spaces. Moreover, let b =(b1,b2,,bm) with biLloc(Qnp) for 1im, mN, we will consider multilinear commutator defined by

    Tp,bβ,Ωf(x)=Qnpmi=1(bi(x)bi(y))Ω(|y|py)f(y)|xy|nβpdy,

    and investigate the boundedness of Tp,bβ,Ω on p-adic generalized Morrey spaces with symbols in Campanato spaces. It should be emphasized that our results are new and cover some existing results of Tpβ and Tpβ,Ω.

    Our paper is organized as follows. In Section 2, we present some notations and preliminaries. In Section 3, we present our main results. In Section 4, we will give the proof of main results. Throughout this paper, q=q/(q1) for 1<q< and q= when q=1, the letter C will be used to denote various constants, .

    We begin this section with recalling some preliminaries of p-adic analysis pertaining to our work. For a prime number p, let Qp be the field of p-adic numbers defined as the completion of the field of rational numbers Q with respect to non-Archimedean p-adic normal ||p. This normal ||p is defined as follows: if x=0, |0|p=0; if x0 is an arbitrary rational number with the unique representation x=pγm/n, where m, n are not divisible by p, γ=γ(x)Z, then |x|p=pγ. It's not hard to see that the norm satisfies the following properties:

    (i)|x|p0, xQp and |x|p=0x=0;

    (ii) |xy|p=|x|p|y|p, x,yQp;

    (iii) |x+y|pmax(|x|p,|y|p), x,yQp and when |x|p|y|p, we have |x+y|p=max(|x|p,|y|p).

    It is also well known that any non-zero p-adic number xQp can be uniquely represented in the canonical series

    x=pγ(x0+x1p+x2p2+), (2.1)

    where γ=γ(x)Z, xk{0,1,,p1}, x00, k=0,1,. The series (2.1) converges in the p-adic norm because |xkpk|p=pk.

    The p-adic norm of Qnp=Q×Q××Q is defined by

    |x|p=max1jn|xj|p,x=(x1,,xn)Qnp. (2.2)

    Denote by

    Bγ(a)={xQnp:|xa|ppγ},

    the ball of radius pγ with center at aQnp and write B={Bγ(a):aQnp,γZ}. If let

    Sγ(a)=Bγ(a)Bγ1(a)={xQnp:|xa|p=pγ},

    the sphere of radius pγ with center at aQnp, it is easy to see that

    Bγ(a)=kγSk(a).

    Since the space Qnp is a locally compact commutative group under addition, there exists the Haar measure dx on the additive group of Qnp normalized by B0dx=|B0|=1, where B0:=B0(0) and |E| denotes the Haar measure of a measurable set EQnp. Then by a simple calculation, the Haar measures of any balls and spheres can be obtained. Especially, we frequently use

    |Bγ(a)|=pnγ,|Sγ(a)|=pnγ(1pn),aQnp.

    For a more complete introduction to the p-adic analysis, we refer the readers to [2] and the references therein.

    Now, let us give the definitions of generalized Morrey spaces and generalized Campanato spaces on the p-adic number field as follows.

    Definition 2.1. [15] Let 1q<, Bγ(a) be a ball in Qnp and ω(x) be a non-negative measurable function in Qnp. A function fLqloc(Qnp) is said to belong to the generalized Morrey space Lq,ω(Qnp), if

    fLq,ω(Qnp)=supγZ,aQnp1ω(Bγ(a))(1|Bγ(a)|HB|f(y)|qdy)1/q<,

    where ω(Bγ(a))=Bγ(a)ω(x)dx.

    Notice that if let ω(Bγ(a))=|Bγ(a)|λ, then Lq,ω(Qnp) is the classical Morrey spaces Mλp(Qnp). Moreover, if let λR and Bγ(a)=Bγ(0), then Lq,ω(Qnp) is the central Morrey spaces ˙Bq,λ(Qnp) (see [14,18]) defined by

    f˙Bq,λ(Qnp)=supγZ(1|Bγ(0)|1+λqHBγ(0)|f(y)|qdy)1/q<.

    Definition 2.2. [15] Let 1q<, Bγ(a) be a ball in Qnp and ω(x) be a non-negative measurable function in Qnp. A function fLqloc(Qnp) is said to belong to the generalized Campanato space Lq,ω(Qnp), if

    fLq,ω(Qnp)=supγZ,aQnp1ω(Bγ(a))(1|Bγ(a)|HB|f(y)fBγ(a)|qdy)1/q<,

    wherefBγ(a)=1|Bγ(a)|HBγ(a)f(x)dx.

    We invoke the following result.

    Lemma 2.1. [15,20] Let 1q< and ω be a non-negative measurable function. Suppose that bLq,ω(Qnp), then

    |bBk(a)bBj(a)||kj|bLq,ω(Qnp)max{ω(Bk(a)),ω(Bj(a))}

    for any j,kZ and any fixed aQnp. Thus, for j>k, we have

    (Bj(a)|b(y)bBk(a)|q)1/q(j+1k)|Bj(a)|1/qHω(Bj(a))bLq,ω(Qnp).

    In addition, for λ<1/n, if let Bγ(a)=|Bγ(a)|λ in Definition 2.2, then Lq,ω(Qnp)=BMOq,λ(Qnp). Moreover, let Bγ(a)=Bγ(0), then Lq,ω(Qnp) is the λ-central BMO space CBMOq,λ(Qnp) (see [14,18]) defined by

    fCBMOq,λ(Qnp)=supγZ(1|Bγ(0)|1+λqHBγ(0)|f(y)fBγ(0)|qdy)1/q<.

    Furthermore, when λ=0, the particular case of CBMOq,λ(Qnp) is CBMOq(Qnp) defined in [21].

    Now, we present two desired lemmas which will be used in the proof of our main results.

    Lemma 2.2. [18] Let 0<β<n, 1q<r<, 1/r=1/qβ/n, ΩLq(S0(0)) and fLq(Qnp).

    (i) If q>1, then

    Tpβ,ΩfLr(Qnp)CfLq(Qnp).

    (ii) If q=1, for any σ>0, then

    |{xQnp:|Tpβ,Ωf(x)|>σ}|HC(fL1(Qnp)σ)r.

    Lemma 2.3. Let 0<β<n, 1q<r<, 1/r=1/qβ/n, ΩLq(S0(0)), fLq,ν(Qnp) and ν is a non-negative measurable functionin Qnp. For any Bγ(a)B, then

    Bcγ(a)|Ω(|y|py)||f(y)||xy|nβpdyCfLq,ν(Qnp)k=γ+1pkβν(Bk(a)),xBγ(a).

    Proof. For any xBγ(a), we have |xa|ppγ. For any y satisfying pk1<|ya|ppk for some kγ+1, the property (ii) of ||p shows that pk1<|ya|pmax(|xy|p,|xa|p), the inequality |xa|ppγpk1 guarantees that |xy|p>pk1. Consequently, by Hölder's inequality, we have

    Bcγ(a)|Ω(|y|py)||f(y)||xy|nβpdy=|ya|p>pγ|Ω(|y|py)||f(y)||xy|nβpdyk=γ+1pk|ya|p>pk1|Ω(|y|py)||f(y)||xy|nβpdyCk=γ+1pk(nβ)Sk(a)|Ω(|y|py)f(y)|dyCk=γ+1pk(nβ)(Sk(a)|Ω(|y|py)|qdy)1/q(Sk(a)|f(y)|qdy)1/qCk=γ+1pk(nβ)(Sk(a)|Ω(|y|py)|qdy)1/q(Bk(a)|f(y)|qdy)1/q.

    Let nonzero yQnp has a form y=(y1,,yn), applying (2.1), we proceed as

    yi=pγi(α0,i+α1,ip+α2,ip2+),i=1,,n.

    Then there exists i0{1,,n} such that |yi0|p=pγi0pγi=|yi|p, whenever yi0. Using (2.2), we obtain |y|p=pγi0. It follows that

    ||y|py|p=|pγi0y|p=max1in,yi0pγi0γi=pγi0γi0=1.

    Thus, for every nonzero yQnp, the vector |y|py belongs to sphere S0(0)={yQnp:|y|p=1}. Notice that ΩLq(S0(0)), then

    Sk|Ω(|y|py)|qdy=|x|p=1|Ω(z)|qpkndzCpkn.

    Hence, we obtain

    Bcγ(a)|Ω(|y|py)||f(y)||xy|nβpdyCk=γ+1pk(nβ)+kn/q(Bk(a)|f(y)|qdy)1/qCk=γ+1pk(nβ)+kn/qν(Bk(a))|Bk(a)|1/qHfLq,ν(Qnp)CfLq,ν(Qnp)k=γ+1pkβν(Bk(a)).

    Lemma 2.3 is proved.

    Before giving the main results in this paper, according to the idea of the article [22], we will first state how to define the action of Tpβ,Ω on generalized Morrey spaces.

    Definition 3.1. Let 0<β<n, 1q<, ΩLq(S0(0)), Tpβ,Ω be a fractional integral operator defined by (1.1), ν be a non-negative measurable function such that

    supγZ,aQnpk=γ+1pkβν(Bk(a))<. (3.1)

    For any fLq,ν(Qnp) and any fixed Bγ(a)B, define

    Tpβ,Ωf(x)=Tpβ,Ω(fχBγ(a))(x)+Tpβ,Ω(fχBcγ(a))(x),xBγ(a).

    Remark 3.1. For any Bγ(a)B and fLq,ν(Qnp), write f=fχBγ(a)+fχBcγ(a). We can see that the definition of Lq,ν(Qnp) assures that fχBγ(a)Lq(Qnp), so Lemma 2.3 guarantees that Tpβ,Ω(fχBγ(a)) is well defined. Besides that, if ν satisfies (3.1), Lemma 2.3 implies

    Bcγ(a)|Ω(|y|py)||f(y)||xy|nβpdy<

    for xBγ(a). That is, Tpβ,Ω(fχBcγ(a)) is well defined when ν satisfies (3.1). Consequently, the linearity of Tpβ,Ω on Lq(Qnp) yields

    Tpβ,Ω(fχBγ(a))(x)+Tpβ,Ω(fχBcγ(a))(x)=Tpβ,Ωf(x)

    for fLq,ν(Qnp) and xBγ(a)B.

    Now we give the boundedness result of Tpβ,Ω on generalized Morrey spaces in the following.

    Theorem 3.1. Let 0<β<n, 1q<r<, 1/r=1/qβ/n, ΩLq(S0(0)) and fLq,ν(Qnp). Suppose that ω and ν are non-negative measurable functions such that

    supγZ,aQnpk=γν(Bk(a))ω(Bγ(a))pkβ<. (3.2)

    (i) If q>1, then

    Tpβ,ΩfLr,ω(Qnp)CfLq,ν(Qnp).

    (ii) If q=1, for any σ>0, γZ and aQnp, then

    |{xBγ(a):|Tpβ,Ωf(x)|>σ}|Hω(Bγ(a))r|Bγ(a)|HC(fL1,ν(Qnp)σ)r.

    Remark 3.2. Notice that ν satisfy (3.1) if ω and ν satisfy (3.2). That is, (3.2) assures that Tpβ,Ω is well defined on Lq,ν(Qnp).

    Significantly, our results not only extend Theorem 1 in [18] to generalized Morrey spaces, but also extend Theorem 3.1 in [15] to rough p-adic fractional integral operator. At the same time, for λ<β/n and μ=λ+β/n, if we take ω(Bγ(a))=|Bγ(a)|μH, ν(Bγ(a))=|Bγ(a)|λH for any fixed Bγ(a), it is easy to check that ω and ν satisfy (3.2). Hence, by Theorem 3.1, we can obtain the following corollary.

    Corollary 3.1. Let 0<β<n, 1q<r<, 1/r=1/qβ/n, λ+β/n<0, μ=λ+β/n, ΩLq(S0(0)) and fMλq(Qnp).

    (i)If q>1, then

    Tpβ,ΩfMμr(Qnp)CfMλq(Qnp).

    (ii)If q=1, for any σ>0, γZ and aQnp, then

    |{xBγ(a):|Tpβ,Ωf(x)|>σ}|H|Bγ(a)|1+rμHC(fMλ1(Qnp)σ)r.

    Our second main result is the boundedness of multilinear commutators generated by rough p-adic fractional integral operator and p-adic generalized Campanato functions.

    Theorem 3.2. Let mN, 0<β<n, 1<q,q1,,qm<, r>n/(nβ), 1/r=1/q1++1/qm+1/qβ/n and ΩLq(S0(0)). Suppose that ω, ν and νi (i=1,2,,m) are non-negative measurable functions, and satisfy

    supγZ,aQnpν(Bγ(a))mi=1νi(Bγ(a))ω(Bγ(a))pγβ< (3.3)

    and

    supγZ,aQnpk=γ+1ν(Bk(a))mi=1νi(Bk(a))ω(Bγ(a))(kγ+1)mpγβ<, (3.4)

    for any γZ and aQnp. If biLqi,νi(Qnp), fLq,ν(Qnp), then

    Tp,bβ,ΩfLr,ω(Qnp)Cmi=1biLqi,νi(Qnp)fLq,ν(Qnp).

    For 0λ1,λ2,,λm<1/n, λ+Σλi+β/n<0 and μ=λ+Σλi+β/n, if we take ω(Bγ(a))=|Bγ(a)|μH, ν(Bγ(a))=|Bγ(a)|λH and νi(Bγ(a))=|Bγ(a)|λiH for any Bγ(a), it is not difficult to check that ω, ν and νi satisfy (3.3) and (3.4). Hence, Theorem 3.2 implies the following corollary.

    Corollary 3.2. Let mN, 0<β<n, 1<q,q1,,qm<, r>n/(nβ), 1/r=1/q1++1/qm+1/qβ/n and ΩLq(S0(0)). Suppose that 0λ1,λ2,,λm<1/n, λ+Σλi+β/n<0, μ=λ+Σλi+β/n. If biBMOqi,λi(Qnp), fMλq(Qnp), then

    Tp,bβ,ΩfMμr(Qnp)Cmi=1biBMOqi,λi(Qnp)fMλq(Qnp).

    If we let biCBMOqi,λi(Qnp), by Corollary 3.2, we will obtain the follwing boundedness of Tp,bβ,Ω on central Morrey spaces.

    Corollary 3.3. Let mN, 0<β<n, 1<q,q1,,qm<, r>n/(nβ), 1/r=1/q1++1/qm+1/qβ/n and ΩLq(S0(0)). Suppose that 0λ1,λ2,,λm<1/n, λ+Σλi+β/n<0, μ=λ+Σλi+β/n. If biCBMOqi,λi(Qnp), f˙Bq,λ(Qnp), then

    Tp,bβ,Ωf˙Br,μ(Qnp)Cmi=1biCBMOqi,λi(Qnp)f˙Bq,λ(Qnp).

    Here we point out that Corollary 3.3 extends Theorem 2 in [18] to the multilinear case.

    The proof of Theorem 3.1. As non-negative measurable functions ω and ν satisfy (3.2), ν fulfills (3.1), so Definition 3.1 assures that Tpβ,Ω is well defined on Lq,ν(Qnp). For fLq,ν(Qnp) and any fixed Bγ(a)B, it follows that

    Tpβ,Ωf(x)=Tpβ,Ω(fχBγ(a))(x)+Tpβ,Ω(fχBcγ(a))(x),xBγ(a).

    Consequently, we only need to estimate Tpβ,Ω(fχBγ(a))(x) and Tpβ,Ω(fχBcγ(a))(x) respectively.

    (i) If q>1, for fixed Bγ(a), we have

    1ω(Bγ(a))(1|Bγ(a)|HBγ(a)|Tpβ,Ωf(x)|rdx)1/r1ω(Bγ(a))(1|Bγ(a)|HBγ(a)|Tpβ,Ω(fχBγ(a))(x)|rdx)1/r+1ω(Bγ(a))(1|Bγ(a)|HBγ(a)|Tpβ,Ω(fBcγ(a))(x)|rdx)1/r=:I+II.

    For I, by the Lr-boundedness of Tpβ,Ω (see Lemma 2.2) and (3.2), it follows that

    I=1ω(Bγ(a))(1|Bγ(a)|HBγ(a)|Tpβ,Ω(fχBγ(a))(x)|rdx)1/r1ω(Bγ(a))1|Bγ(a)|1/rH(Bγ(a)|f(x)|qdx)1/qν(Bγ(a))ω(Bγ(a))|Bγ(a)|1/qH|Bγ(a)|1/rH1ν(Bγ(a))(1|Bγ(a)|HBγ(a)|f(x)|qdx)1/qν(Bγ(a))ω(Bγ(a))pγβfLq,ν(Qnp)fLq,ν(Qnp).

    For II, Lemma 2.3 yields that

    II=1ω(Bγ(a))(1|Bγ(a)|HBγ(a)|Tpβ,Ω(fBcγ(a))(x)|rdx)1/rfLq,ν(Qnp)k=γ+1pkβν(Bk(a))ω(Bγ(a))fLq,ν(Qnp).

    Consequently, combining the estimation of I and II, we have

    1ω(Bγ(a))(1|Bγ(a)|HBγ(a)|Tpβ,Ωf(x)|rdx)1/rfLq,ν(Qnp),

    which implies the desired inequality Tpβ,ΩfLr,ω(Qnp)CfLq,ν(Qnp).

    (ii) If q=1, for fixed Bγ(a) and Tpβ,Ω(fχBγ(a))(x), by the weak Lr-boundedness of Tpβ,Ω (see Lemma 2.2) and (3.2), we get

    |{xBγ(a):|Tpβ,Ω(fχBγ(a))(x)|>σ/2}|HC(2fχBγ(a)L1(Qnp)σ)r=Cσrω(Bγ(a))r|Bγ(a)|H(ν(Bγ(a))ω(Bγ(a))|Bγ(a)|H|Bγ(a)|1/rH)r(1ν(Bγ(a))1|Bγ(a)|HBγ(a)|f(x)|dx)rCω(Bγ(a))r|Bγ(a)|H(ν(Bγ(a))ω(Bγ(a))pγβ)r(fL1,ν(Qnp)σ)rCω(Bγ(a))r|Bγ(a)|H(fL1,ν(Qnp)σ)r.

    For Tpβ,Ω(fχBcγ(a))(x), by Chebychev's inequality, Lemma 2.3 and (3.2), we have

    |{xBγ(a):|Tpβ,Ω(fχBcγ(a))(x)|>σ/2}|HCσrBγ(a)|Tpβ,Ω(fχBcγ(a))(x)|rdxCσrBγ(a)|Bcγ(a)|Ω(|y|py)||f(y)||xy|nβpdy|rdxCσr|Bγ(a)|HfrL1,ν(Qnp)(k=γ+1pkβν(Bk(a)))rCσrω(Bγ(a))r|Bγ(a)|HfrL1,ν(Qnp)(k=γ+1pkβν(Bk(a))ω(Bγ(a)))rCω(Bγ(a))r|Bγ(a)|H(fL1,ν(Qnp)σ)r.

    Thus, we obtain

    |{xBγ(a):|Tpβ,Ωf(x)|>σ}|H|{xBγ(a):|Tpβ,Ω(fχBγ(a))(x)|>σ/2}|H+|{xBγ(a):|Tpβ,Ω(fχBcγ(a))(x)|>σ/2}|HCω(Bγ(a))r|Bγ(a)|H(fL1,ν(Qnp)σ)r.

    Ultimately,

    |{xBγ(a):|Tpβ,Ωf(x)|>σ}|Hω(Bγ(a))r|Bγ(a)|HC(fL1,ν(Qnp)σ)r,

    for any σ>0, γZ and aQnp. This completes the proof of Theorem 3.1.

    The proof of Theorem 3.2. In order to simplify the proving process, for a positive integer m and 0im, we denote by Cmi the family of all finite subsets θ={θ1,θ2,,θi} of {1,2,,m} of i different elements, let θc={1,2,,m}θ for any θCmi. For b=(b1,b2,,bm) and θ={θ1,θ2,,θi}Cmi, set bθ=(bθ1,bθ2,,bθi) and the product bθ=bθ1bθ2bθi. With this notation, we write

    (b(x)bBγ)θ=(bθ1(x)bθ1Bγ)(bθi(x)bθiBγ),
    (bBkbBγ)θ=(bθ1Bkbθ1Bγ)(bθiBkbθiBγ),

    and

    bθLˉq,ˉν=bθ1Lˉq1,ˉν1bθiLˉqi,ˉνi,

    where 1/ˉq=1/ˉq1++1/ˉqi and ˉν(Bγ(a))=ˉν1(Bγ(a))ˉνi(Bγ(a)) for any ball Bγ(a). Especially, when i=m, θ={1,2,,m} and θc=, we have bθ=b, hence

    (b(x)bBγ)θ=(b1(x)b1Bγ)(bm(x)bmBγ),(b(x)bBγ)θc=1.

    When i=0, θ= and θc={1,2,,m}, we havebθc=b, hence

    (b(x)bBγ)θ=1,(b(x)bBγ)θc=(b1(x)b1Bγ)(bm(x)bmBγ).

    We write bi(x)bi(y)=(bi(x)biBγ)+(bi(y)biBγ) for i=1,2,,m, then

    Tp,bβ,Ωf(x)=Qnpmi=1(bi(x)bi(y))Ω(|y|py)f(y)|xy|nβpdy=QnpΩ(|y|py)f(y)|xy|nβpmi=1[(bi(x)biBγ)+(bi(y)biBγ)]dy=mi=1(bi(x)biBγ)Tpβ,Ωf(x)+(1)mTpβ,Ω(mi=1(bibiBγ)f)(x)+m1i=1θCmi(1)mi(b(x)bBγ)θQnpΩ(|y|py)f(y)|xy|nβp(b(y)bBγ)θcdy=mi=1(bi(x)biBγ)Tpβ,Ωf(x)+(1)mTpβ,Ω(mi=1(bibiBγ)f)(x)+m1i=1θCmi(1)mi(b(x)bBγ)θTpβ,Ω((bbBγ)θcf)(x)=mi=0θCmi(1)mi(b(x)bBγ)θTpβ,Ω((bbBγ)θcf)(x).

    For fLq,ν(Qnp), q>1, let f=fχBγ(a)+fχBcγ(a)=:f1+f2, then we get

    1ω(Bγ(a))(1|Bγ(a)|HBγ(a)|Tp,bβ,Ωf(x)|rdx)1/r1ω(Bγ(a))|Bγ(a)|1/rH(Bγ(a)|mi=0θCmi(b(x)bBγ)θTpβ,Ω((bbBγ)θcf1)(x)|rdx)1/r+1ω(Bγ(a))|Bγ(a)|1/rH(Bγ(a)|mi=0θCmi(b(x)bBγ)θTpβ,Ω((bbBγ)θcf2)(x)|rdx)1/r=:J1+J2.

    To facilitate estimates J1 and J2, set

    1/s=θiθ1/qi,1/h=θiθc1/qi,1/g=1/h+1/q,1/t=1/gβ/n

    and

    ν(Bγ(a))=θiθνi(Bγ(a)),ν(Bγ(a))=θiθcνi(Bγ(a))

    then 1/r=1/s+1/t and g>1.

    First, using Minkowski's inequality, Hölder's inequality and Lt-boundedness of Tpβ,Ω, we obtain

    (Bγ(a)|mi=0θCmi(b(x)bBγ)θTpβ,Ω((bbBγ)θcf1)(x)|rdx)1/rCmi=0θCmi(Bγ(a)|(b(x)bBγ)θTpβ,Ω((bbBγ)θcf1)(x)|rdx)1/rCmi=0θCmi(Bγ(a)|(b(x)bBγ)θ|sdx)1/s(Bγ(a)|Tpβ,Ω((bbBγ)θcf1)(x)|tdx)1/tCmi=0θCmi(Bγ(a)|(b(x)bBγ)θ|sdx)1/s(Bγ(a)|(b(x)bBγ)θcf1(x)|gdx)1/gCmi=0θCmi(Bγ(a)|(b(x)bBγ)θ|sdx)1/s(Bγ(a)|(b(x)bBγ)θc|hdx)1/h(Bγ(a)|f(x)|qdx)1/qCν(Bγ(a))|Bγ(a)|1/qHfLq,ν(Qnp)mi=0θCmiν(Bγ(a))|Bγ(a)|1/sHbθLs,νν(Bγ(a))|Bγ(a)|1/hHbθcLh,νν(Bγ(a))|Bγ(a)|1/qHfLq,ν(Qnp)mi=1biLqi,νi(Qnp)νi(Bγ(a))|Bγ(a)|1/qiH.

    Then, it is not difficult for us to get

    J1Cν(Bγ(a))|Bγ(a)|1/qHfLq,ν(Qnp)ω(Bγ(a))|Bγ(a)|1/rHmi=1biLqi,νi(Qnp)νi(Bγ(a))|Bγ(a)|1/qiHCpγβν(Bγ(a))fLq,ν(Qnp)ω(Bγ(a))mi=1biLqi,νi(Qnp)νi(Bγ(a))Cmi=1biLqi,νi(Qnp)fLq,ν(Qnp)ν(Bγ(a))mi=1νi(Bγ(a))ω(Bγ(a))pγβCmi=1biLqi,νi(Qnp)fLq,ν(Qnp).

    Second, we will turn to the estimation of J2. Given xBγ(a), by Hölder's inequality, Minkowski's inequality and Lemma 2.1, we have

    |Tpβ,Ω((bbBγ)θcf2)(x)|=Bcγ(a)|Ω(|y|py)||f(y)||(b(y)bBγ)θc||xy|nβpdy=k=γ+1pk(nβ)Sk(a)|Ω(|y|py)||f(y)||(b(y)bBγ)θc|dyk=γ+1pk(nβ)(Sk(a)|Ω(|y|py)|qdy)1/q(Sk(a)|f(y)|qdy)1/q×(Sk(a)|(b(y)bBγ)θc|hdy)1/h|Sk(a)|1/hHk=γ+1pk(nβ)kn/h+kn/qν(Bk(a))|Bk(a)|1/qHfLq,ν(Qnp)×[(Bk(a)|(b(y)bBk)θc|hdy)1/h+(Bk(a)|(bBkbBγ)θc|hdy)1/h]fLq,ν(Qnp)k=γ+1pkβkn/hν(Bk(a))bθcLh,ν|Bk(a)|1/hHν(Bk(a))(kγ+1)mifLq,ν(Qnp)k=γ+1pkβν(Bk(a))bθcLh,νν(Bk(a))(kγ+1)m.

    Then, it follows that

    J2=1ω(Bγ(a))|Bγ(a)|1/rH(Bγ(a)|mi=0θCmi(b(x)bBγ)θTpβ,Ω((bbBγ)θcf2)(x)|rdx)1/rCω(Bγ(a))|Bγ(a)|1/rHmi=0θCmi(Bγ(a)|(b(x)bBγ)θ|sdx)1/s(Bγ(a)|Tpβ,Ω((bbBγ)θcf2)(x)|tdx)1/tCω(Bγ(a))|Bγ(a)|1/rHmi=0θCmiν(Bγ(a))|Bγ(a)|1/sHbθLs,νfLq,ν(Qnp)|Bγ(a)|1/tH×k=γ+1pkβν(Bk(a))bθcLh,νν(Bk(a))(kγ+1)mCfLq,ν(Qnp)ω(Bγ(a))k=γ+1ν(Bk(a))(kγ+1)mpkβmi=0θCmiν(Bγ(a))bθLs,νν(Bk(a))bθcLh,νCfLq,ν(Qnp)ω(Bγ(a))k=γ+1ν(Bk(a))(kγ+1)mpkβmi=1biLqi,νi(Qnp)νi(Bk(a))Cmi=1biLqi,νi(Qnp)fLq,ν(Qnp)k=γ+1ν(Bk(a))mi=1νi(Bk(a))ω(Bγ(a))(kγ+1)mpkβCmi=1biLqi,νi(Qnp)fLq,ν(Qnp).

    At last, combining the estimation of J1 and J2, we obtain

    1ω(Bγ(a))(1|Bγ(a)|HBγ(a)|Tp,bβ,Ωf(x)|rdx)1/rCmi=1biLqi,νi(Qnp)fLq,ν(Qnp)

    for any Bγ(a)Qnp and fLq,ν(Qnp)(q>1), and the proof of Theorem 3.2 is finished.

    In this article, the boundedness of the rough p-adic fractional integral operator on p-adic generalized Morrey spaces is studied. In addition, the boundedness for multilinear commutators generated by rough p-adic fractional integral operator and p-adic generalized Campanato functions is also obtained. Moreover, the boundedness in classical Morrey is given as corollaries.

    We would like to thank the editors and reviewers for their helpful suggestions.

    This research is partially supported by Teacher Professional Development Program of Domestic University Visiting Scholar in Zhejiang Province under grant No. FX2022076 and National Natural Science Foundation of China under grant No. 12271483.

    The authors declare that they have no conflict of interest.



    [1] A. Khrennikov, p-Adic valued distributions in mathematical physicss, Springer Science & Business Media, 1994. https://doi.org/10.1007/978-94-015-8356-5
    [2] M. Taibleson, Fourier analysis on local fields, Princeton University Press, 1975.
    [3] S. Haran, Riesz potentials and explicit sums in arithmetic, Invent. Math., 101 (1990), 697–703. https://doi.org/10.1007/BF01231521 doi: 10.1007/BF01231521
    [4] S. Haran, Analytic potential theory over the p-adics, Ann. I. Fourier, 43 (1993), 905–944. https://doi.org/10.5802/aif.1361 doi: 10.5802/aif.1361
    [5] Y. Kim, A simple proof of the p-adic version of the Sobolev embedding theorem, Commun. Korean Math. S., 25 (2010), 27–36. https://doi.org/10.4134/CKMS.2010.25.1.027 doi: 10.4134/CKMS.2010.25.1.027
    [6] S. Volosivets, Maximal function and Reisz potential on p-adic linear spaces, p-Adic Num. Ultrametr. Anal. Appl., 5 (2013), 226–234. https://doi.org/10.1134/S2070046613030059 doi: 10.1134/S2070046613030059
    [7] S. Volosivets, Generalized fractional integrals in p-adic Morrey and Herz spaces, p-Adic Num. Ultrametr. Anal. Appl., 91 (2017), 53–61. https://doi.org/10.1134/S2070046617010058 doi: 10.1134/S2070046617010058
    [8] T. Abdeljawad, S. Rashid, H. Khan, Y. Chu, On new fractional integral inequalities for p-convexity within interval-valued functions, Adv. Differ. Equ., 2020 (2020), 330. https://doi.org/10.1186/s13662-020-02782-y doi: 10.1186/s13662-020-02782-y
    [9] M. Bohner, O.Tunc, C. Tunc, Qualitative analysis of caputo fractional integro-differential equations with constant delays, Comp. Appl. Math., 40 (2021), 214. https://doi.org/10.1007/s40314-021-01595-3 doi: 10.1007/s40314-021-01595-3
    [10] I. Iscan, S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput., 238 (2014), 237–244. https://doi.org/10.1016/j.amc.2014.04.020 doi: 10.1016/j.amc.2014.04.020
    [11] A. Khrennikov, V. Shelkovich, Non-Haar p-adic wavelets and their application to pseudo-differential operators and equations, Appl. Comput. Harmon. A., 28 (2014), 1–23. https://doi.org/10.1016/j.acha.2009.05.007 doi: 10.1016/j.acha.2009.05.007
    [12] L. Grafakos, Modern Fourier analysis, New York: Springer, 2009. https://doi.org/10.1007/978-0-387-09434-2
    [13] Y. Cao, J. Zhou, Morrey spaces for nonhomogeneous metric measure spaces, Abstr. Appl. Anal., 2013 (2013), 196459. https://doi.org/10.1155/2013/196459 doi: 10.1155/2013/196459
    [14] Q. Wu, Z. Fu, Hardy-Littlewood-Sobolev inequalities on p-adic central Morrey spaces, J. Funct. Space., 2015 (2015), 419532. https://doi.org/10.1155/2015/419532 doi: 10.1155/2015/419532
    [15] H. Mo, X. Wang, R. Ma, Commutator of Riesz potential in p-adic generalized Morrey spaces, Front. Math. China, 13 (2018), 633–645. https://doi.org/10.1007/s11464-018-0696-x doi: 10.1007/s11464-018-0696-x
    [16] Y. L. Shi, Y. F. Shi, S. Chen, p-Adic Riesz potential and its commutators on Morrey-Herz spaces, J. Funct. Space., 2022 (2022), 7227544. https://doi.org/10.1155/2022/7227544 doi: 10.1155/2022/7227544
    [17] N. Sarfraz, M. Aslam, M. Zaman, F. Jarad, Estimates for p-adic fractional integral operator and its commutators on p-adic Morrey-Herz spaces, J. Inequal. Appl., 2022 (2022), 92. https://doi.org/10.1186/s13660-022-02829-6 doi: 10.1186/s13660-022-02829-6
    [18] N. Sarfraz, F. Jarad, Estimates for a Rough fractional integral operator and its commutators on p-adic central Morrey spaces, Fractal. Fract., 6 (2022), 117. https://doi.org/10.3390/fractalfract6020117 doi: 10.3390/fractalfract6020117
    [19] N. Sarfraz, M. Aslam, Some estimates for p-adic fractional integral operator and its commutators on p-adic Herz spaces with rough kernels, Fract. Calc. Appl. Anal., 25 (2022), 1734–1755. https://doi.org/10.1007/s13540-022-00064-w doi: 10.1007/s13540-022-00064-w
    [20] H. Mo, Z. Han, L. Yang, J. Wang, p-adic singular integrals and their commutators in generalized Morrey spaces, J. Inequal. Appl., 2019 (2019), 65. https://doi.org/10.1186/s13660-019-2009-7 doi: 10.1186/s13660-019-2009-7
    [21] Z. Fu, Q. Wu, S. Lu, Sharp estimates of p-adic hardy and Hardy-Littlewood-Pólya operators, Acta. Math. Sin., 29 (2013), 137–150. https://doi.org/10.1007/s10114-012-0695-x doi: 10.1007/s10114-012-0695-x
    [22] K. P. Ho, Definability of singular integral operators on Morrey-Banach spaces, J. Math. Soc. Japan, 72 (2020), 155–170. https://doi.org/10.2969/jmsj/81208120 doi: 10.2969/jmsj/81208120
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1355) PDF downloads(41) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog