In this paper, we establish the boundedness of rough p-adic fractional integral operators on p-adic generalized Morrey spaces, as well as the boundedness of multilinear commutators generated by rough p-adic fractional integral operator and p-adic generalized Campanato functions. Moreover, the boundedness in classical Morrey is given as corollaries.
Citation: Yanlong Shi, Xiangxing Tao. Rough fractional integral and its multilinear commutators on p-adic generalized Morrey spaces[J]. AIMS Mathematics, 2023, 8(7): 17012-17026. doi: 10.3934/math.2023868
[1] | Naqash Sarfraz, Muhammad Bilal Riaz, Qasim Ali Malik . Some new characterizations of boundedness of commutators of $p$-adic maximal-type functions on $p$-adic Morrey spaces in terms of Lipschitz spaces. AIMS Mathematics, 2024, 9(7): 19756-19770. doi: 10.3934/math.2024964 |
[2] | Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad . Boundedness of an intrinsic square function on grand $ p $-adic Herz-Morrey spaces. AIMS Mathematics, 2023, 8(11): 26484-26497. doi: 10.3934/math.20231352 |
[3] | Pham Thi Kim Thuy, Kieu Huu Dung . Hardy–Littlewood maximal operators and Hausdorff operators on $ p $-adic block spaces with variable exponents. AIMS Mathematics, 2024, 9(8): 23060-23087. doi: 10.3934/math.20241121 |
[4] | Naqash Sarfraz, Muhammad Aslam . Some weighted estimates for the commutators of $p$-adic Hardy operator on two weighted $p$-adic Herz-type spaces. AIMS Mathematics, 2021, 6(9): 9633-9646. doi: 10.3934/math.2021561 |
[5] | Qianjun He, Xiang Li . Necessary and sufficient conditions for boundedness of commutators of maximal function on the $ p $-adic vector spaces. AIMS Mathematics, 2023, 8(6): 14064-14085. doi: 10.3934/math.2023719 |
[6] | Heng Yang, Jiang Zhou . Compactness of commutators of fractional integral operators on ball Banach function spaces. AIMS Mathematics, 2024, 9(2): 3126-3149. doi: 10.3934/math.2024152 |
[7] | Javeria Younas, Amjad Hussain, Hadil Alhazmi, A. F. Aljohani, Ilyas Khan . BMO estimates for commutators of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces. AIMS Mathematics, 2024, 9(9): 23434-23448. doi: 10.3934/math.20241139 |
[8] | Wanjing Zhang, Suixin He, Jing Zhang . Boundedness of sublinear operators on weighted grand Herz-Morrey spaces. AIMS Mathematics, 2023, 8(8): 17381-17401. doi: 10.3934/math.2023888 |
[9] | Chenchen Niu, Hongbin Wang . $ N $-dimensional fractional Hardy operators with rough kernels on central Morrey spaces with variable exponents. AIMS Mathematics, 2023, 8(5): 10379-10394. doi: 10.3934/math.2023525 |
[10] | Muhammad Asim, Ghada AlNemer . Boundedness on variable exponent Morrey-Herz space for fractional multilinear Hardy operators. AIMS Mathematics, 2025, 10(1): 117-136. doi: 10.3934/math.2025007 |
In this paper, we establish the boundedness of rough p-adic fractional integral operators on p-adic generalized Morrey spaces, as well as the boundedness of multilinear commutators generated by rough p-adic fractional integral operator and p-adic generalized Campanato functions. Moreover, the boundedness in classical Morrey is given as corollaries.
In the past few decades, p-adic analysis has gathered a lot of attention by its applications in many aspects of mathematical physics, such as quantum mechanics, the probability theory and the dynamical systems [1]. Significantly, the geometry of the field of p-adic numbers is surprisingly unlike the geometry of the real numbers field R, in particular the Archimedean axiom is not true in the field of p-adic numbers[2]. Therefore, p-adic analysis has also gained impeccable attraction in harmonic analysis [3,4,5,6,7].
In p-adic harmonic analysis, fractional calculus is a key area because of its heap of applications in engineering science and technology, see for instance [8,9]. Also, fractional integral operators (Riesz potentials) are significant in the mathematical analysis as they construct and formulate inequalities which have several applications in scientific areas that can be found in the existing literature [10,11]. The boundedness criteria of fractional integral operators on different functional spaces is a key area not only in harmonic analysis but also in partial differential equations, differentiation theory and potential theory [12,13]. In this connection, the fractional integral operator in p-adic analysis is defined by
Tpβf(x)=1−p−β1−pβ−n∫Qnpf(y)|x−y|n−βpdy,0<β<n. |
Here, Qnp consists of all points x=(x1,⋯,xn) for n∈N, where xj∈Qp(j=1,⋯,n) and Qp is the field of p-adic numbers.
When n=1, Haran[3,4] not only obtained the explicit formula of the fractional integral operator Tpβ on Qp but also developed the analytical potential theory on Qnp. Taibleson [2] gave the fundamental analytic properties of Tpβ on local fields, including Qnp, as well as the classical Hardy-Littlewood-Sobolev theorem (also see [5]). Moreover, Volosivets [6,7] showed that Tpβ is bounded on radial Morrey spaces. In 2015, Wu and Fu [14] established Hardy-Littlewood-Sobolev inequalities on p-adic central Morrey spaces and λ-central BMO estimates for commutators of Tpβ. In 2018, Mo et al. [15] showed the boundedness of Tpβ on p-adic generalized Morrey spaces, as well as the boundedness of multilinear commutators generated by Tpβ and generalized Campanato functions. In 2022, both Shi et al. [16] and Sarfraz et al. [17] studied the boundedness of Tpβ and its commutators on Morrey-Herz spaces. At the same time, Sarfraz and Jarad [18] considered the roughness of the operator Tpβ, they introduced rough fractional integral operator Tpβ,Ω. In the form, Tpβ,Ω has the following integral expression
Tpβ,Ωf(x)=∫QnpΩ(|y|py)f(y)|x−y|n−βpdy, | (1.1) |
for suitable measurable mappings f:Qnp→R and Ω:S0(0)→R. When f∈Lq(Qnp), 1≤q<∞, by the same way in the book [2], Sarfraz and Jarad [18] showed the boundedness of Tpβ,Ω on Lebesgue spaces (see Lemma 2.2 in Section 2). Furthermore, they obtained the boundedness of Tpβ,Ω on p-adic central Morrey spaces, as well as the λ-central BMO estimates for commutator Tp,bβ,Ω defined by
Tp,bβ,Ωf(x)=∫Qnp(b(x)−b(y))Ω(|y|py)f(y)|x−y|n−βpdy. |
In [19], Sarfraz and Aslam showed the boundedness of Tpβ,Ω and Tp,bβ,Ω on p-adic Herz spaces.
We observe above works, the boundedness of Tpβ,Ω on generalized Morrey spaces are remains open. Therefore, in this paper, we are going to devote to the boundedness of Tpβ,Ω on p-adic generalized Morrey spaces. Moreover, let b =(b1,b2,⋯,bm) with bi∈Lloc(Qnp) for 1≤i≤m, m∈N, we will consider multilinear commutator defined by
Tp,bβ,Ωf(x)=∫Qnpm∏i=1(bi(x)−bi(y))Ω(|y|py)f(y)|x−y|n−βpdy, |
and investigate the boundedness of Tp,bβ,Ω on p-adic generalized Morrey spaces with symbols in Campanato spaces. It should be emphasized that our results are new and cover some existing results of Tpβ and Tpβ,Ω.
Our paper is organized as follows. In Section 2, we present some notations and preliminaries. In Section 3, we present our main results. In Section 4, we will give the proof of main results. Throughout this paper, q′=q/(q−1) for 1<q<∞ and q′=∞ when q=1, the letter C will be used to denote various constants, .
We begin this section with recalling some preliminaries of p-adic analysis pertaining to our work. For a prime number p, let Qp be the field of p-adic numbers defined as the completion of the field of rational numbers Q with respect to non-Archimedean p-adic normal |⋅|p. This normal |⋅|p is defined as follows: if x=0, |0|p=0; if x≠0 is an arbitrary rational number with the unique representation x=pγm/n, where m, n are not divisible by p, γ=γ(x)∈Z, then |x|p=p−γ. It's not hard to see that the norm satisfies the following properties:
(i)|x|p≥0, ∀x∈Qp and |x|p=0⇔x=0;
(ii) |xy|p=|x|p|y|p, ∀x,y∈Qp;
(iii) |x+y|p≤max(|x|p,|y|p), ∀x,y∈Qp and when |x|p≠|y|p, we have |x+y|p=max(|x|p,|y|p).
It is also well known that any non-zero p-adic number x∈Qp can be uniquely represented in the canonical series
x=pγ(x0+x1p+x2p2+⋯), | (2.1) |
where γ=γ(x)∈Z, xk∈{0,1,⋯,p−1}, x0≠0, k=0,1,⋯. The series (2.1) converges in the p-adic norm because |xkpk|p=p−k.
The p-adic norm of Qnp=Q×Q×⋯×Q is defined by
|x|p=max1≤j≤n|xj|p,x=(x1,⋯,xn)∈Qnp. | (2.2) |
Denote by
Bγ(a)={x∈Qnp:|x−a|p≤pγ}, |
the ball of radius pγ with center at a∈Qnp and write B={Bγ(a):a∈Qnp,γ∈Z}. If let
Sγ(a)=Bγ(a)∖Bγ−1(a)={x∈Qnp:|x−a|p=pγ}, |
the sphere of radius pγ with center at a∈Qnp, it is easy to see that
Bγ(a)=⋃k≤γSk(a). |
Since the space Qnp is a locally compact commutative group under addition, there exists the Haar measure dx on the additive group of Qnp normalized by ∫B0dx=|B0|=1, where B0:=B0(0) and |E| denotes the Haar measure of a measurable set E⊂Qnp. Then by a simple calculation, the Haar measures of any balls and spheres can be obtained. Especially, we frequently use
|Bγ(a)|=pnγ,|Sγ(a)|=pnγ(1−p−n),∀a∈Qnp. |
For a more complete introduction to the p-adic analysis, we refer the readers to [2] and the references therein.
Now, let us give the definitions of generalized Morrey spaces and generalized Campanato spaces on the p-adic number field as follows.
Definition 2.1. [15] Let 1≤q<∞, Bγ(a) be a ball in Qnp and ω(x) be a non-negative measurable function in Qnp. A function f∈Lqloc(Qnp) is said to belong to the generalized Morrey space Lq,ω(Qnp), if
‖f‖Lq,ω(Qnp)=supγ∈Z,a∈Qnp1ω(Bγ(a))(1|Bγ(a)|H∫B|f(y)|qdy)1/q<∞, |
where ω(Bγ(a))=∫Bγ(a)ω(x)dx.
Notice that if let ω(Bγ(a))=|Bγ(a)|λ, then Lq,ω(Qnp) is the classical Morrey spaces Mλp(Qnp). Moreover, if let λ∈R and Bγ(a)=Bγ(0), then Lq,ω(Qnp) is the central Morrey spaces ˙Bq,λ(Qnp) (see [14,18]) defined by
‖f‖˙Bq,λ(Qnp)=supγ∈Z(1|Bγ(0)|1+λqH∫Bγ(0)|f(y)|qdy)1/q<∞. |
Definition 2.2. [15] Let 1≤q<∞, Bγ(a) be a ball in Qnp and ω(x) be a non-negative measurable function in Qnp. A function f∈Lqloc(Qnp) is said to belong to the generalized Campanato space Lq,ω(Qnp), if
‖f‖Lq,ω(Qnp)=supγ∈Z,a∈Qnp1ω(Bγ(a))(1|Bγ(a)|H∫B|f(y)−fBγ(a)|qdy)1/q<∞, |
wherefBγ(a)=1|Bγ(a)|H∫Bγ(a)f(x)dx.
We invoke the following result.
Lemma 2.1. [15,20] Let 1≤q<∞ and ω be a non-negative measurable function. Suppose that b∈Lq,ω(Qnp), then
|bBk(a)−bBj(a)|≤|k−j|‖b‖Lq,ω(Qnp)max{ω(Bk(a)),ω(Bj(a))} |
for any j,k∈Z and any fixed a∈Qnp. Thus, for j>k, we have
(∫Bj(a)|b(y)−bBk(a)|q)1/q≤(j+1−k)|Bj(a)|1/qHω(Bj(a))‖b‖Lq,ω(Qnp). |
In addition, for λ<1/n, if let Bγ(a)=|Bγ(a)|λ in Definition 2.2, then Lq,ω(Qnp)=BMOq,λ(Qnp). Moreover, let Bγ(a)=Bγ(0), then Lq,ω(Qnp) is the λ-central BMO space CBMOq,λ(Qnp) (see [14,18]) defined by
‖f‖CBMOq,λ(Qnp)=supγ∈Z(1|Bγ(0)|1+λqH∫Bγ(0)|f(y)−fBγ(0)|qdy)1/q<∞. |
Furthermore, when λ=0, the particular case of CBMOq,λ(Qnp) is CBMOq(Qnp) defined in [21].
Now, we present two desired lemmas which will be used in the proof of our main results.
Lemma 2.2. [18] Let 0<β<n, 1≤q<r<∞, 1/r=1/q−β/n, Ω∈Lq′(S0(0)) and f∈Lq(Qnp).
(i) If q>1, then
‖Tpβ,Ωf‖Lr(Qnp)≤C‖f‖Lq(Qnp). |
(ii) If q=1, for any σ>0, then
|{x∈Qnp:|Tpβ,Ωf(x)|>σ}|H≤C(‖f‖L1(Qnp)σ)r. |
Lemma 2.3. Let 0<β<n, 1≤q<r<∞, 1/r=1/q−β/n, Ω∈Lq′(S0(0)), f∈Lq,ν(Qnp) and ν is a non-negative measurable functionin Qnp. For any Bγ(a)∈B, then
∫Bcγ(a)|Ω(|y|py)||f(y)||x−y|n−βpdy≤C‖f‖Lq,ν(Qnp)∞∑k=γ+1pkβν(Bk(a)),x∈Bγ(a). |
Proof. For any x∈Bγ(a), we have |x−a|p≤pγ. For any y satisfying pk−1<|y−a|p≤pk for some k≥γ+1, the property (ii) of |⋅|p shows that pk−1<|y−a|p≤max(|x−y|p,|x−a|p), the inequality |x−a|p≤pγ≤pk−1 guarantees that |x−y|p>pk−1. Consequently, by Hölder's inequality, we have
∫Bcγ(a)|Ω(|y|py)||f(y)||x−y|n−βpdy=∫|y−a|p>pγ|Ω(|y|py)||f(y)||x−y|n−βpdy≤∞∑k=γ+1∫pk≥|y−a|p>pk−1|Ω(|y|py)||f(y)||x−y|n−βpdy≤C∞∑k=γ+1p−k(n−β)∫Sk(a)|Ω(|y|py)f(y)|dy≤C∞∑k=γ+1p−k(n−β)(∫Sk(a)|Ω(|y|py)|q′dy)1/q′(∫Sk(a)|f(y)|qdy)1/q≤C∞∑k=γ+1p−k(n−β)(∫Sk(a)|Ω(|y|py)|q′dy)1/q′(∫Bk(a)|f(y)|qdy)1/q. |
Let nonzero y∈Qnp has a form y=(y1,⋯,yn), applying (2.1), we proceed as
yi=pγi(α0,i+α1,ip+α2,ip2+⋯),i=1,⋯,n. |
Then there exists i0∈{1,⋯,n} such that |yi0|p=p−γi0≥p−γi=|yi|p, whenever yi≠0. Using (2.2), we obtain |y|p=p−γi0. It follows that
||y|py|p=|p−γi0y|p=max1≤i≤n,yi≠0pγi0−γi=pγi0−γi0=1. |
Thus, for every nonzero y∈Qnp, the vector |y|py belongs to sphere S0(0)={y∈Qnp:|y|p=1}. Notice that Ω∈Lq′(S0(0)), then
∫Sk|Ω(|y|py)|q′dy=∫|x|p=1|Ω(z)|q′pkndz≤Cpkn. |
Hence, we obtain
∫Bcγ(a)|Ω(|y|py)||f(y)||x−y|n−βpdy≤C∞∑k=γ+1p−k(n−β)+kn/q′(∫Bk(a)|f(y)|qdy)1/q≤C∞∑k=γ+1p−k(n−β)+kn/q′ν(Bk(a))|Bk(a)|1/qH‖f‖Lq,ν(Qnp)≤C‖f‖Lq,ν(Qnp)∞∑k=γ+1pkβν(Bk(a)). |
Lemma 2.3 is proved.
Before giving the main results in this paper, according to the idea of the article [22], we will first state how to define the action of Tpβ,Ω on generalized Morrey spaces.
Definition 3.1. Let 0<β<n, 1≤q<∞, Ω∈Lq′(S0(0)), Tpβ,Ω be a fractional integral operator defined by (1.1), ν be a non-negative measurable function such that
supγ∈Z,a∈Qnp∞∑k=γ+1pkβν(Bk(a))<∞. | (3.1) |
For any f∈Lq,ν(Qnp) and any fixed Bγ(a)∈B, define
Tpβ,Ωf(x)=Tpβ,Ω(fχBγ(a))(x)+Tpβ,Ω(fχBcγ(a))(x),x∈Bγ(a). |
Remark 3.1. For any Bγ(a)∈B and f∈Lq,ν(Qnp), write f=fχBγ(a)+fχBcγ(a). We can see that the definition of Lq,ν(Qnp) assures that fχBγ(a)∈Lq(Qnp), so Lemma 2.3 guarantees that Tpβ,Ω(fχBγ(a)) is well defined. Besides that, if ν satisfies (3.1), Lemma 2.3 implies
∫Bcγ(a)|Ω(|y|py)||f(y)||x−y|n−βpdy<∞ |
for x∈Bγ(a). That is, Tpβ,Ω(fχBcγ(a)) is well defined when ν satisfies (3.1). Consequently, the linearity of Tpβ,Ω on Lq(Qnp) yields
Tpβ,Ω(fχBγ(a))(x)+Tpβ,Ω(fχBcγ(a))(x)=Tpβ,Ωf(x) |
for f∈Lq,ν(Qnp) and x∈Bγ(a)∈B.
Now we give the boundedness result of Tpβ,Ω on generalized Morrey spaces in the following.
Theorem 3.1. Let 0<β<n, 1≤q<r<∞, 1/r=1/q−β/n, Ω∈Lq′(S0(0)) and f∈Lq,ν(Qnp). Suppose that ω and ν are non-negative measurable functions such that
supγ∈Z,a∈Qnp∞∑k=γν(Bk(a))ω(Bγ(a))pkβ<∞. | (3.2) |
(i) If q>1, then
‖Tpβ,Ωf‖Lr,ω(Qnp)≤C‖f‖Lq,ν(Qnp). |
(ii) If q=1, for any σ>0, γ∈Z and a∈Qnp, then
|{x∈Bγ(a):|Tpβ,Ωf(x)|>σ}|Hω(Bγ(a))r|Bγ(a)|H≤C(‖f‖L1,ν(Qnp)σ)r. |
Remark 3.2. Notice that ν satisfy (3.1) if ω and ν satisfy (3.2). That is, (3.2) assures that Tpβ,Ω is well defined on Lq,ν(Qnp).
Significantly, our results not only extend Theorem 1 in [18] to generalized Morrey spaces, but also extend Theorem 3.1 in [15] to rough p-adic fractional integral operator. At the same time, for λ<−β/n and μ=λ+β/n, if we take ω(Bγ(a))=|Bγ(a)|μH, ν(Bγ(a))=|Bγ(a)|λH for any fixed Bγ(a), it is easy to check that ω and ν satisfy (3.2). Hence, by Theorem 3.1, we can obtain the following corollary.
Corollary 3.1. Let 0<β<n, 1≤q<r<∞, 1/r=1/q−β/n, λ+β/n<0, μ=λ+β/n, Ω∈Lq′(S0(0)) and f∈Mλq(Qnp).
(i)If q>1, then
‖Tpβ,Ωf‖Mμr(Qnp)≤C‖f‖Mλq(Qnp). |
(ii)If q=1, for any σ>0, γ∈Z and a∈Qnp, then
|{x∈Bγ(a):|Tpβ,Ωf(x)|>σ}|H|Bγ(a)|1+rμH≤C(‖f‖Mλ1(Qnp)σ)r. |
Our second main result is the boundedness of multilinear commutators generated by rough p-adic fractional integral operator and p-adic generalized Campanato functions.
Theorem 3.2. Let m∈N, 0<β<n, 1<q,q1,⋯,qm<∞, r>n/(n−β), 1/r=1/q1+⋯+1/qm+1/q−β/n and Ω∈Lq′(S0(0)). Suppose that ω, ν and νi (i=1,2,⋯,m) are non-negative measurable functions, and satisfy
supγ∈Z,a∈Qnpν(Bγ(a))m∏i=1νi(Bγ(a))ω(Bγ(a))pγβ<∞ | (3.3) |
and
supγ∈Z,a∈Qnp∞∑k=γ+1ν(Bk(a))m∏i=1νi(Bk(a))ω(Bγ(a))(k−γ+1)mpγβ<∞, | (3.4) |
for any γ∈Z and a∈Qnp. If bi∈Lqi,νi(Qnp), f∈Lq,ν(Qnp), then
‖Tp,bβ,Ωf‖Lr,ω(Qnp)≤Cm∏i=1‖bi‖Lqi,νi(Qnp)‖f‖Lq,ν(Qnp). |
For 0≤λ1,λ2,⋯,λm<1/n, λ+Σλi+β/n<0 and μ=λ+Σλi+β/n, if we take ω(Bγ(a))=|Bγ(a)|μH, ν(Bγ(a))=|Bγ(a)|λH and νi(Bγ(a))=|Bγ(a)|λiH for any Bγ(a), it is not difficult to check that ω, ν and νi satisfy (3.3) and (3.4). Hence, Theorem 3.2 implies the following corollary.
Corollary 3.2. Let m∈N, 0<β<n, 1<q,q1,⋯,qm<∞, r>n/(n−β), 1/r=1/q1+⋯+1/qm+1/q−β/n and Ω∈Lq′(S0(0)). Suppose that 0≤λ1,λ2,⋯,λm<1/n, λ+Σλi+β/n<0, μ=λ+Σλi+β/n. If bi∈BMOqi,λi(Qnp), f∈Mλq(Qnp), then
‖Tp,bβ,Ωf‖Mμr(Qnp)≤Cm∏i=1‖bi‖BMOqi,λi(Qnp)‖f‖Mλq(Qnp). |
If we let bi∈CBMOqi,λi(Qnp), by Corollary 3.2, we will obtain the follwing boundedness of Tp,bβ,Ω on central Morrey spaces.
Corollary 3.3. Let m∈N, 0<β<n, 1<q,q1,⋯,qm<∞, r>n/(n−β), 1/r=1/q1+⋯+1/qm+1/q−β/n and Ω∈Lq′(S0(0)). Suppose that 0≤λ1,λ2,⋯,λm<1/n, λ+Σλi+β/n<0, μ=λ+Σλi+β/n. If bi∈CBMOqi,λi(Qnp), f∈˙Bq,λ(Qnp), then
‖Tp,bβ,Ωf‖˙Br,μ(Qnp)≤Cm∏i=1‖bi‖CBMOqi,λi(Qnp)‖f‖˙Bq,λ(Qnp). |
Here we point out that Corollary 3.3 extends Theorem 2 in [18] to the multilinear case.
The proof of Theorem 3.1. As non-negative measurable functions ω and ν satisfy (3.2), ν fulfills (3.1), so Definition 3.1 assures that Tpβ,Ω is well defined on Lq,ν(Qnp). For f∈Lq,ν(Qnp) and any fixed Bγ(a)∈B, it follows that
Tpβ,Ωf(x)=Tpβ,Ω(fχBγ(a))(x)+Tpβ,Ω(fχBcγ(a))(x),x∈Bγ(a). |
Consequently, we only need to estimate Tpβ,Ω(fχBγ(a))(x) and Tpβ,Ω(fχBcγ(a))(x) respectively.
(i) If q>1, for fixed Bγ(a), we have
1ω(Bγ(a))(1|Bγ(a)|H∫Bγ(a)|Tpβ,Ωf(x)|rdx)1/r≤1ω(Bγ(a))(1|Bγ(a)|H∫Bγ(a)|Tpβ,Ω(fχBγ(a))(x)|rdx)1/r+1ω(Bγ(a))(1|Bγ(a)|H∫Bγ(a)|Tpβ,Ω(fBcγ(a))(x)|rdx)1/r=:I+II. |
For I, by the Lr-boundedness of Tpβ,Ω (see Lemma 2.2) and (3.2), it follows that
I=1ω(Bγ(a))(1|Bγ(a)|H∫Bγ(a)|Tpβ,Ω(fχBγ(a))(x)|rdx)1/r≤1ω(Bγ(a))1|Bγ(a)|1/rH(∫Bγ(a)|f(x)|qdx)1/q≤ν(Bγ(a))ω(Bγ(a))|Bγ(a)|1/qH|Bγ(a)|1/rH1ν(Bγ(a))(1|Bγ(a)|H∫Bγ(a)|f(x)|qdx)1/q≤ν(Bγ(a))ω(Bγ(a))pγβ‖f‖Lq,ν(Qnp)≤‖f‖Lq,ν(Qnp). |
For II, Lemma 2.3 yields that
II=1ω(Bγ(a))(1|Bγ(a)|H∫Bγ(a)|Tpβ,Ω(fBcγ(a))(x)|rdx)1/r≤‖f‖Lq,ν(Qnp)∞∑k=γ+1pkβν(Bk(a))ω(Bγ(a))≤‖f‖Lq,ν(Qnp). |
Consequently, combining the estimation of I and II, we have
1ω(Bγ(a))(1|Bγ(a)|H∫Bγ(a)|Tpβ,Ωf(x)|rdx)1/r≤‖f‖Lq,ν(Qnp), |
which implies the desired inequality ‖Tpβ,Ωf‖Lr,ω(Qnp)≤C‖f‖Lq,ν(Qnp).
(ii) If q=1, for fixed Bγ(a) and Tpβ,Ω(fχBγ(a))(x), by the weak Lr-boundedness of Tpβ,Ω (see Lemma 2.2) and (3.2), we get
|{x∈Bγ(a):|Tpβ,Ω(fχBγ(a))(x)|>σ/2}|H≤C(2‖fχBγ(a)‖L1(Qnp)σ)r=Cσrω(Bγ(a))r|Bγ(a)|H(ν(Bγ(a))ω(Bγ(a))|Bγ(a)|H|Bγ(a)|1/rH)r(1ν(Bγ(a))1|Bγ(a)|H∫Bγ(a)|f(x)|dx)r≤Cω(Bγ(a))r|Bγ(a)|H(ν(Bγ(a))ω(Bγ(a))pγβ)r(‖f‖L1,ν(Qnp)σ)r≤Cω(Bγ(a))r|Bγ(a)|H(‖f‖L1,ν(Qnp)σ)r. |
For Tpβ,Ω(fχBcγ(a))(x), by Chebychev's inequality, Lemma 2.3 and (3.2), we have
|{x∈Bγ(a):|Tpβ,Ω(fχBcγ(a))(x)|>σ/2}|H≤Cσr∫Bγ(a)|Tpβ,Ω(fχBcγ(a))(x)|rdx≤Cσr∫Bγ(a)|∫Bcγ(a)|Ω(|y|py)||f(y)||x−y|n−βpdy|rdx≤Cσr|Bγ(a)|H‖f‖rL1,ν(Qnp)(∞∑k=γ+1pkβν(Bk(a)))r≤Cσrω(Bγ(a))r|Bγ(a)|H‖f‖rL1,ν(Qnp)(∞∑k=γ+1pkβν(Bk(a))ω(Bγ(a)))r≤Cω(Bγ(a))r|Bγ(a)|H(‖f‖L1,ν(Qnp)σ)r. |
Thus, we obtain
|{x∈Bγ(a):|Tpβ,Ωf(x)|>σ}|H≤|{x∈Bγ(a):|Tpβ,Ω(fχBγ(a))(x)|>σ/2}|H+|{x∈Bγ(a):|Tpβ,Ω(fχBcγ(a))(x)|>σ/2}|H≤Cω(Bγ(a))r|Bγ(a)|H(‖f‖L1,ν(Qnp)σ)r. |
Ultimately,
|{x∈Bγ(a):|Tpβ,Ωf(x)|>σ}|Hω(Bγ(a))r|Bγ(a)|H≤C(‖f‖L1,ν(Qnp)σ)r, |
for any σ>0, γ∈Z and a∈Qnp. This completes the proof of Theorem 3.1.
The proof of Theorem 3.2. In order to simplify the proving process, for a positive integer m and 0≤i≤m, we denote by Cmi the family of all finite subsets θ={θ1,θ2,⋯,θi} of {1,2,⋯,m} of i different elements, let θc={1,2,⋯,m}∖θ for any θ∈Cmi. For b=(b1,b2,⋯,bm) and θ={θ1,θ2,⋯,θi}∈Cmi, set bθ=(bθ1,bθ2,⋯,bθi) and the product bθ=bθ1bθ2⋯bθi. With this notation, we write
(b(x)−bBγ)θ=(bθ1(x)−bθ1Bγ)⋯(bθi(x)−bθiBγ), |
(bBk−bBγ)θ=(bθ1Bk−bθ1Bγ)⋯(bθiBk−bθiBγ), |
and
‖bθ‖Lˉq,ˉν=‖bθ1‖Lˉq1,ˉν1⋯‖bθi‖Lˉqi,ˉνi, |
where 1/ˉq=1/ˉq1+⋯+1/ˉqi and ˉν(Bγ(a))=ˉν1(Bγ(a))⋯ˉνi(Bγ(a)) for any ball Bγ(a). Especially, when i=m, θ={1,2,⋯,m} and θc=∅, we have bθ=b, hence
(b(x)−bBγ)θ=(b1(x)−b1Bγ)⋯(bm(x)−bmBγ),(b(x)−bBγ)θc=1. |
When i=0, θ=∅ and θc={1,2,⋯,m}, we havebθc=b, hence
(b(x)−bBγ)θ=1,(b(x)−bBγ)θc=(b1(x)−b1Bγ)⋯(bm(x)−bmBγ). |
We write bi(x)−bi(y)=(bi(x)−biBγ)+(bi(y)−biBγ) for i=1,2,⋯,m, then
Tp,bβ,Ωf(x)=∫Qnpm∏i=1(bi(x)−bi(y))Ω(|y|py)f(y)|x−y|n−βpdy=∫QnpΩ(|y|py)f(y)|x−y|n−βpm∏i=1[(bi(x)−biBγ)+(bi(y)−biBγ)]dy=m∏i=1(bi(x)−biBγ)Tpβ,Ωf(x)+(−1)mTpβ,Ω(m∏i=1(bi−biBγ)f)(x)+m−1∑i=1∑θ∈Cmi(−1)m−i(b(x)−bBγ)θ∫QnpΩ(|y|py)f(y)|x−y|n−βp(b(y)−bBγ)θcdy=m∏i=1(bi(x)−biBγ)Tpβ,Ωf(x)+(−1)mTpβ,Ω(m∏i=1(bi−biBγ)f)(x)+m−1∑i=1∑θ∈Cmi(−1)m−i(b(x)−bBγ)θTpβ,Ω((b−bBγ)θcf)(x)=m∑i=0∑θ∈Cmi(−1)m−i(b(x)−bBγ)θTpβ,Ω((b−bBγ)θcf)(x). |
For f∈Lq,ν(Qnp), q>1, let f=fχBγ(a)+fχBcγ(a)=:f1+f2, then we get
1ω(Bγ(a))(1|Bγ(a)|H∫Bγ(a)|Tp,bβ,Ωf(x)|rdx)1/r≤1ω(Bγ(a))|Bγ(a)|1/rH(∫Bγ(a)|m∑i=0∑θ∈Cmi(b(x)−bBγ)θTpβ,Ω((b−bBγ)θcf1)(x)|rdx)1/r+1ω(Bγ(a))|Bγ(a)|1/rH(∫Bγ(a)|m∑i=0∑θ∈Cmi(b(x)−bBγ)θTpβ,Ω((b−bBγ)θcf2)(x)|rdx)1/r=:J1+J2. |
To facilitate estimates J1 and J2, set
1/s=∑θi∈θ1/qi,1/h=∑θi∈θc1/qi,1/g=1/h+1/q,1/t=1/g−β/n |
and
ν′(Bγ(a))=∏θi∈θνi(Bγ(a)),ν″(Bγ(a))=∏θi∈θcνi(Bγ(a)) |
then 1/r=1/s+1/t and g>1.
First, using Minkowski's inequality, Hölder's inequality and Lt-boundedness of Tpβ,Ω, we obtain
(∫Bγ(a)|m∑i=0∑θ∈Cmi(b(x)−bBγ)θTpβ,Ω((b−bBγ)θcf1)(x)|rdx)1/r≤Cm∑i=0∑θ∈Cmi(∫Bγ(a)|(b(x)−bBγ)θTpβ,Ω((b−bBγ)θcf1)(x)|rdx)1/r≤Cm∑i=0∑θ∈Cmi(∫Bγ(a)|(b(x)−bBγ)θ|sdx)1/s(∫Bγ(a)|Tpβ,Ω((b−bBγ)θcf1)(x)|tdx)1/t≤Cm∑i=0∑θ∈Cmi(∫Bγ(a)|(b(x)−bBγ)θ|sdx)1/s(∫Bγ(a)|(b(x)−bBγ)θcf1(x)|gdx)1/g≤Cm∑i=0∑θ∈Cmi(∫Bγ(a)|(b(x)−bBγ)θ|sdx)1/s(∫Bγ(a)|(b(x)−bBγ)θc|hdx)1/h(∫Bγ(a)|f(x)|qdx)1/q≤Cν(Bγ(a))|Bγ(a)|1/qH‖f‖Lq,ν(Qnp)m∑i=0∑θ∈Cmiν′(Bγ(a))|Bγ(a)|1/sH‖bθ‖Ls,ν′ν″(Bγ(a))|Bγ(a)|1/hH‖bθc‖Lh,ν″≤ν(Bγ(a))|Bγ(a)|1/qH‖f‖Lq,ν(Qnp)m∏i=1‖bi‖Lqi,νi(Qnp)νi(Bγ(a))|Bγ(a)|1/qiH. |
Then, it is not difficult for us to get
J1≤Cν(Bγ(a))|Bγ(a)|1/qH‖f‖Lq,ν(Qnp)ω(Bγ(a))|Bγ(a)|1/rHm∏i=1‖bi‖Lqi,νi(Qnp)νi(Bγ(a))|Bγ(a)|1/qiH≤Cpγβν(Bγ(a))‖f‖Lq,ν(Qnp)ω(Bγ(a))m∏i=1‖bi‖Lqi,νi(Qnp)νi(Bγ(a))≤Cm∏i=1‖bi‖Lqi,νi(Qnp)‖f‖Lq,ν(Qnp)ν(Bγ(a))m∏i=1νi(Bγ(a))ω(Bγ(a))pγβ≤Cm∏i=1‖bi‖Lqi,νi(Qnp)‖f‖Lq,ν(Qnp). |
Second, we will turn to the estimation of J2. Given x∈Bγ(a), by Hölder's inequality, Minkowski's inequality and Lemma 2.1, we have
|Tpβ,Ω((b−bBγ)θcf2)(x)|=∫Bcγ(a)|Ω(|y|py)||f(y)||(b(y)−bBγ)θc||x−y|n−βpdy=∞∑k=γ+1p−k(n−β)∫Sk(a)|Ω(|y|py)||f(y)||(b(y)−bBγ)θc|dy≤∞∑k=γ+1p−k(n−β)(∫Sk(a)|Ω(|y|py)|q′dy)1/q′(∫Sk(a)|f(y)|qdy)1/q×(∫Sk(a)|(b(y)−bBγ)θc|hdy)1/h|Sk(a)|−1/hH≤∞∑k=γ+1p−k(n−β)−kn/h+kn/q′ν(Bk(a))|Bk(a)|1/qH‖f‖Lq,ν(Qnp)×[(∫Bk(a)|(b(y)−bBk)θc|hdy)1/h+(∫Bk(a)|(bBk−bBγ)θc|hdy)1/h]≤‖f‖Lq,ν(Qnp)∞∑k=γ+1pkβ−kn/hν(Bk(a))‖bθc‖Lh,ν″|Bk(a)|1/hHν″(Bk(a))(k−γ+1)m−i≤‖f‖Lq,ν(Qnp)∞∑k=γ+1pkβν(Bk(a))‖bθc‖Lh,ν″ν″(Bk(a))(k−γ+1)m. |
Then, it follows that
J2=1ω(Bγ(a))|Bγ(a)|1/rH(∫Bγ(a)|m∑i=0∑θ∈Cmi(b(x)−bBγ)θTpβ,Ω((b−bBγ)θcf2)(x)|rdx)1/r≤Cω(Bγ(a))|Bγ(a)|1/rHm∑i=0∑θ∈Cmi(∫Bγ(a)|(b(x)−bBγ)θ|sdx)1/s(∫Bγ(a)|Tpβ,Ω((b−bBγ)θcf2)(x)|tdx)1/t≤Cω(Bγ(a))|Bγ(a)|1/rHm∑i=0∑θ∈Cmiν′(Bγ(a))|Bγ(a)|1/sH‖bθ‖Ls,ν′‖f‖Lq,ν(Qnp)|Bγ(a)|1/tH×∞∑k=γ+1pkβν(Bk(a))‖bθc‖Lh,ν″ν″(Bk(a))(k−γ+1)m≤C‖f‖Lq,ν(Qnp)ω(Bγ(a))∞∑k=γ+1ν(Bk(a))(k−γ+1)mpkβm∑i=0∑θ∈Cmiν′(Bγ(a))‖bθ‖Ls,ν′ν″(Bk(a))‖bθc‖Lh,ν″≤C‖f‖Lq,ν(Qnp)ω(Bγ(a))∞∑k=γ+1ν(Bk(a))(k−γ+1)mpkβm∏i=1‖bi‖Lqi,νi(Qnp)νi(Bk(a))≤Cm∏i=1‖bi‖Lqi,νi(Qnp)‖f‖Lq,ν(Qnp)∞∑k=γ+1ν(Bk(a))m∏i=1νi(Bk(a))ω(Bγ(a))(k−γ+1)mpkβ≤Cm∏i=1‖bi‖Lqi,νi(Qnp)‖f‖Lq,ν(Qnp). |
At last, combining the estimation of J1 and J2, we obtain
1ω(Bγ(a))(1|Bγ(a)|H∫Bγ(a)|Tp,bβ,Ωf(x)|rdx)1/r≤Cm∏i=1‖bi‖Lqi,νi(Qnp)‖f‖Lq,ν(Qnp) |
for any Bγ(a)⊂Qnp and f∈Lq,ν(Qnp)(q>1), and the proof of Theorem 3.2 is finished.
In this article, the boundedness of the rough p-adic fractional integral operator on p-adic generalized Morrey spaces is studied. In addition, the boundedness for multilinear commutators generated by rough p-adic fractional integral operator and p-adic generalized Campanato functions is also obtained. Moreover, the boundedness in classical Morrey is given as corollaries.
We would like to thank the editors and reviewers for their helpful suggestions.
This research is partially supported by Teacher Professional Development Program of Domestic University Visiting Scholar in Zhejiang Province under grant No. FX2022076 and National Natural Science Foundation of China under grant No. 12271483.
The authors declare that they have no conflict of interest.
[1] | A. Khrennikov, p-Adic valued distributions in mathematical physicss, Springer Science & Business Media, 1994. https://doi.org/10.1007/978-94-015-8356-5 |
[2] | M. Taibleson, Fourier analysis on local fields, Princeton University Press, 1975. |
[3] |
S. Haran, Riesz potentials and explicit sums in arithmetic, Invent. Math., 101 (1990), 697–703. https://doi.org/10.1007/BF01231521 doi: 10.1007/BF01231521
![]() |
[4] |
S. Haran, Analytic potential theory over the p-adics, Ann. I. Fourier, 43 (1993), 905–944. https://doi.org/10.5802/aif.1361 doi: 10.5802/aif.1361
![]() |
[5] |
Y. Kim, A simple proof of the p-adic version of the Sobolev embedding theorem, Commun. Korean Math. S., 25 (2010), 27–36. https://doi.org/10.4134/CKMS.2010.25.1.027 doi: 10.4134/CKMS.2010.25.1.027
![]() |
[6] |
S. Volosivets, Maximal function and Reisz potential on p-adic linear spaces, p-Adic Num. Ultrametr. Anal. Appl., 5 (2013), 226–234. https://doi.org/10.1134/S2070046613030059 doi: 10.1134/S2070046613030059
![]() |
[7] |
S. Volosivets, Generalized fractional integrals in p-adic Morrey and Herz spaces, p-Adic Num. Ultrametr. Anal. Appl., 91 (2017), 53–61. https://doi.org/10.1134/S2070046617010058 doi: 10.1134/S2070046617010058
![]() |
[8] |
T. Abdeljawad, S. Rashid, H. Khan, Y. Chu, On new fractional integral inequalities for p-convexity within interval-valued functions, Adv. Differ. Equ., 2020 (2020), 330. https://doi.org/10.1186/s13662-020-02782-y doi: 10.1186/s13662-020-02782-y
![]() |
[9] |
M. Bohner, O.Tunc, C. Tunc, Qualitative analysis of caputo fractional integro-differential equations with constant delays, Comp. Appl. Math., 40 (2021), 214. https://doi.org/10.1007/s40314-021-01595-3 doi: 10.1007/s40314-021-01595-3
![]() |
[10] |
I. Iscan, S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput., 238 (2014), 237–244. https://doi.org/10.1016/j.amc.2014.04.020 doi: 10.1016/j.amc.2014.04.020
![]() |
[11] |
A. Khrennikov, V. Shelkovich, Non-Haar p-adic wavelets and their application to pseudo-differential operators and equations, Appl. Comput. Harmon. A., 28 (2014), 1–23. https://doi.org/10.1016/j.acha.2009.05.007 doi: 10.1016/j.acha.2009.05.007
![]() |
[12] | L. Grafakos, Modern Fourier analysis, New York: Springer, 2009. https://doi.org/10.1007/978-0-387-09434-2 |
[13] |
Y. Cao, J. Zhou, Morrey spaces for nonhomogeneous metric measure spaces, Abstr. Appl. Anal., 2013 (2013), 196459. https://doi.org/10.1155/2013/196459 doi: 10.1155/2013/196459
![]() |
[14] |
Q. Wu, Z. Fu, Hardy-Littlewood-Sobolev inequalities on p-adic central Morrey spaces, J. Funct. Space., 2015 (2015), 419532. https://doi.org/10.1155/2015/419532 doi: 10.1155/2015/419532
![]() |
[15] |
H. Mo, X. Wang, R. Ma, Commutator of Riesz potential in p-adic generalized Morrey spaces, Front. Math. China, 13 (2018), 633–645. https://doi.org/10.1007/s11464-018-0696-x doi: 10.1007/s11464-018-0696-x
![]() |
[16] |
Y. L. Shi, Y. F. Shi, S. Chen, p-Adic Riesz potential and its commutators on Morrey-Herz spaces, J. Funct. Space., 2022 (2022), 7227544. https://doi.org/10.1155/2022/7227544 doi: 10.1155/2022/7227544
![]() |
[17] |
N. Sarfraz, M. Aslam, M. Zaman, F. Jarad, Estimates for p-adic fractional integral operator and its commutators on p-adic Morrey-Herz spaces, J. Inequal. Appl., 2022 (2022), 92. https://doi.org/10.1186/s13660-022-02829-6 doi: 10.1186/s13660-022-02829-6
![]() |
[18] |
N. Sarfraz, F. Jarad, Estimates for a Rough fractional integral operator and its commutators on p-adic central Morrey spaces, Fractal. Fract., 6 (2022), 117. https://doi.org/10.3390/fractalfract6020117 doi: 10.3390/fractalfract6020117
![]() |
[19] |
N. Sarfraz, M. Aslam, Some estimates for p-adic fractional integral operator and its commutators on p-adic Herz spaces with rough kernels, Fract. Calc. Appl. Anal., 25 (2022), 1734–1755. https://doi.org/10.1007/s13540-022-00064-w doi: 10.1007/s13540-022-00064-w
![]() |
[20] |
H. Mo, Z. Han, L. Yang, J. Wang, p-adic singular integrals and their commutators in generalized Morrey spaces, J. Inequal. Appl., 2019 (2019), 65. https://doi.org/10.1186/s13660-019-2009-7 doi: 10.1186/s13660-019-2009-7
![]() |
[21] |
Z. Fu, Q. Wu, S. Lu, Sharp estimates of p-adic hardy and Hardy-Littlewood-Pólya operators, Acta. Math. Sin., 29 (2013), 137–150. https://doi.org/10.1007/s10114-012-0695-x doi: 10.1007/s10114-012-0695-x
![]() |
[22] |
K. P. Ho, Definability of singular integral operators on Morrey-Banach spaces, J. Math. Soc. Japan, 72 (2020), 155–170. https://doi.org/10.2969/jmsj/81208120 doi: 10.2969/jmsj/81208120
![]() |