Processing math: 56%
Research article

The Weighted Lp estimates for the fractional Hardy operator and a class of integral operators on the Heisenberg group

  • Received: 03 October 2024 Revised: 06 January 2025 Accepted: 10 January 2025 Published: 15 January 2025
  • MSC : Primary 42B25; Secondary 42B20, 47H60, 47B47

  • In the setting of a Heisenberg group, we first studied the sharp weak estimate for the n-dimensional fractional Hardy operator from Lp to Lq,. Next, we studied the sharp bounds for the m-linear n-dimensional integral operator with a kernel on weighted Lebesgue spaces. As an application, the sharp bounds for Hardy, Hardy-Littlewood-Pólya, and Hilbert operators on weighted Lebesgue spaces were obtained. Finally, according to the previous steps, we also found the estimate for the Hausdorff operator on weighted Lp spaces.

    Citation: Tianyang He, Zhiwen Liu, Ting Yu. The Weighted Lp estimates for the fractional Hardy operator and a class of integral operators on the Heisenberg group[J]. AIMS Mathematics, 2025, 10(1): 858-883. doi: 10.3934/math.2025041

    Related Papers:

    [1] Zhongci Hang, Dunyan Yan, Xiang Li . Mixed radial-angular bounds for Hardy-type operators on Heisenberg group. AIMS Mathematics, 2023, 8(9): 21022-21032. doi: 10.3934/math.20231070
    [2] Dazhao Chen . Endpoint estimates for multilinear fractional singular integral operators on Herz and Herz type Hardy spaces. AIMS Mathematics, 2021, 6(5): 4989-4999. doi: 10.3934/math.2021293
    [3] Pham Thi Kim Thuy, Kieu Huu Dung . Hardy–Littlewood maximal operators and Hausdorff operators on $ p $-adic block spaces with variable exponents. AIMS Mathematics, 2024, 9(8): 23060-23087. doi: 10.3934/math.20241121
    [4] Ming Liu, Bin Zhang, Xiaobin Yao . Weighted variable Morrey-Herz space estimates for $ m $th order commutators of $ n- $dimensional fractional Hardy operators. AIMS Mathematics, 2023, 8(9): 20063-20079. doi: 10.3934/math.20231022
    [5] Suixin He, Shuangping Tao . Boundedness of some operators on grand generalized Morrey spaces over non-homogeneous spaces. AIMS Mathematics, 2022, 7(1): 1000-1014. doi: 10.3934/math.2022060
    [6] Heng Yang, Jiang Zhou . Compactness of commutators of fractional integral operators on ball Banach function spaces. AIMS Mathematics, 2024, 9(2): 3126-3149. doi: 10.3934/math.2024152
    [7] Chenchen Niu, Hongbin Wang . $ N $-dimensional fractional Hardy operators with rough kernels on central Morrey spaces with variable exponents. AIMS Mathematics, 2023, 8(5): 10379-10394. doi: 10.3934/math.2023525
    [8] Badriya Al-Azri, Ahmad Al-Salman . Weighted $ L^{p} $ norms of Marcinkiewicz functions on product domains along surfaces. AIMS Mathematics, 2024, 9(4): 8386-8405. doi: 10.3934/math.2024408
    [9] Muhammad Asim, Ghada AlNemer . Analytical findings on bilinear fractional Hardy operators in weighted central Morrey spaces with variable exponents. AIMS Mathematics, 2025, 10(5): 10431-10451. doi: 10.3934/math.2025475
    [10] Jie Sun, Jiamei Chen . Weighted estimates for commutators associated to singular integral operator satisfying a variant of Hörmander's condition. AIMS Mathematics, 2023, 8(11): 25714-25728. doi: 10.3934/math.20231311
  • In the setting of a Heisenberg group, we first studied the sharp weak estimate for the n-dimensional fractional Hardy operator from Lp to Lq,. Next, we studied the sharp bounds for the m-linear n-dimensional integral operator with a kernel on weighted Lebesgue spaces. As an application, the sharp bounds for Hardy, Hardy-Littlewood-Pólya, and Hilbert operators on weighted Lebesgue spaces were obtained. Finally, according to the previous steps, we also found the estimate for the Hausdorff operator on weighted Lp spaces.



    It is well-known that averaging operators play an important role in harmonic analysis. It is often desirable to obtain sharp norm estimates for them in different function spaces. Our starting point is the Hardy operator and its duality form:

    Hf(x)=1xx0f(t)dt,Hf(x)=xf(t)tdt,

    where x>0. Hardy [11] established the well-known Hardy integral inequalities

    0|Hf(x)|pdx(pp1)p0|f(x)|pdx,p>1,

    and

    0|Hf(x)|pdx(pp1)p0|f(x)|pdx,p>1,

    where p=p/(p1). He proved that the constant p/(p1) is sharp. The corresponding higher-dimensional Hardy operator was introduced by Faris [1] in his study of quantum mechanics. Christ and Grafakos [4] gave the following equivalent definition of n-dimensional Hardy operators:

    Hnf(x)=1|x|n|y|<|x|f(y)dy,

    where xRn{θ}, and θ is the origin in Rn. They showed that

    HnLp(Rn)Lp(Rn)=pp1ωnn,1<p<.

    Here ωn is the superficial area of the unit ball in Rn. The Lebesgue spaces with power weights are another kind of function space to consider the sharp estimates of the Hardy operator. The method in [4] is invalid in this case. Fu et al. [7], by the method of rotation, established the following estimate:

    HnLp|x|β(Rn)Lp|x|β(Rn)=ωnnpβp.

    For more information about the Hardy operator, we refer to the reader to [14].

    Meanwhile, the fractional Hardy operator is also very interesting since it is a useful tool to study the embedding properties of function spaces. Mizuta et al. [15] showed that the optimal bound of the fractional Hardy operator implies the sharp embedding properties of function spaces. There is much literature on function spaces. Let f be a locally integrable function on Rn. Then the n-dimensional fractional Hardy operator and its duality form are

    Hαf(x)=1|x|nα|y|<|x|f(y)dy,Hαf(x)=|y|>|x|1|y|nαf(y)dy,

    where 0<α<n, xRn{0}. If α = 0, the fractional Hardy operator is the classic Hardy operator. There is much literature on the boundness of these operators [9,13,21,22]. Among them, Lu et al. [21] obtained the following estimates. Suppose

    0<α<n,1<pnα,1p1q=αn.

    Then

    HαfLq(Rn)CfLp(Rn),

    where

    (pq)1/q(pp1)1/q(qq1)11/q(1pq)1/p1/q(ωnn)1α/nC(pp1)p/q(ωnn)1α/n.

    If p=1, then

    HαL1(Rn)Ln/(nα),(Rn)=(ωnn)1αn.

    The optimal LpLq estimate was later obtained in [22]:

    HαLp(Rn)Lq(Rn)=(pq)1/q(nqαB(nqα,nqα))α/n(ωnn)1αn,

    where

    p=pp1,q=qq1,

    and B(,) is the beta function defined by

    B(z,ω)=10tz1(1t)ω1dt,

    where z and ω are complex numbers with positive real parts. Comparing with the complicated bounds in the power weighted spaces, the sharp weak bounds for Hα and Hα seem easier to understand. Gao and Zhao [9] set up

    HαL1(Rn)Ln/(nα),(Rn)=(ωnn)1αn,HαLp(Rn)Lq,(Rn)=(ωnn)1q+1p(qp)1/p.

    It is then a nature problem to obtain the operator norms of Hα and its dual operator Hα in corresponding power weighted spaces. For the latter, Gao et al. [8] set up

    HαL1|x|ρ(Rn)L(n+β)/(nα+ρ),|x|β(Rn)=(ωnn+β)(nα+ρ)/(n+β),

    and

    HαLp|x|ρ(Rn)Lq,|x|β(Rn)=(ωnn+β)1q+1p(qp)1/p.

    Then Yu et al. [20] set up

    HαLp|x|ρ(Rn)Lq,|x|β(Rn)=(ωnn+β)1/q(ωnnρp1)1/p,

    and

    HαL1(Rn)L(n+β)/(nα),|x|β(Rn)=(ωnn+β)(nα)/(n+β).

    Inspired by them, we will study the sharp weak bound for the fractional Hardy operator on the Heisenberg group, which plays an important role in several branches of mathematics. Now, allow us to introduce some basic knowledge about the Heisenberg group which will be used later.

    The Heisenberg group is a very typical non-commutative group, and research on up-modulation and analytic problems is an extension of Euclidean space upharmonic and analytical problems, which is an important part of non-commutative harmonic analysis [6,18]. Harmonic analysis on the Heisenberg group has been drawing more and more attention, see[5,23].

    Let us introduce some basic knowledge about the Heisenberg group. The Heisenberg group Hn is a non-commutative nilpotent Lie group, with the underlying manifold R2n×R and the group law.

    Let

    x=(x1,,x2n,x2n+1),y=(y1,,y2n,y2n+1),

    and then

    x×y=(x1+y1,,x2n+y2n,x2n+1+y2n+1+2nj=1(yjxn+jxjyn+j).

    The Heisenberg group Hn is a homogeneous group with dilations

    δr(x1,x2,,x2n,x2n+1)=(rx1,rx2,,rx2n,r2x2n+1),r>0.

    The Haar measure on Hn coincides with the usual Lebesgue measure on R2n+1. We denote any measurable set EHn by |E|, and then

    |δr(E)|=rQ|E|,d(δrx)=rQdx,

    where Q=2n+2 is called the homogeneous dimension of Hn.

    The Heisenberg distance derived from the norm

    |x|h=[(2ni=1x2i)2+x22n+1]1/4,

    where x=(x1,x2,,x2n,x2n+1), is given by

    d(p,q)=d(q1p,0)=|q1p|h.

    This distance d is left-invariant, meaning that d(p,q) remains constant when both p and q are left shifted by some fixed vector on Hn. Furthermore, d satisfies the trigonometric inequality defined by [12]:

    d(p,q)d(p,x)+d(x,q),p,x,qHn.

    For r>0 and xHn, the ball and sphere with center x and radius r on Hn are given by

    B(x,r)={yHn:d(x,y)<r},

    and

    S(x,r)={yHn:d(x,y)=r}.

    Then we obtain

    |B(x,r)|=|B(0,r)|=ΩQrQ,

    where

    ΩQ=2πn+12Γ(n/2)(n+1)Γ(n)Γ((n+1)/2)

    represents the volume of the unit sphere B(0,1) on Hn, and ωQ=QΩQ. The reader is referred to [16,18] for more details.

    Except for the fractional Hardy operator, we also study the sharp bounds for some m-linear n-dimensional integral operators on the Heisenberg group. In 2017, Batbold and Sawano [3] studied one-dimensional m-linear Hilbert-type operators that include the Hardy-Littlewood-Pólya operator on weighted Morrey spaces, and they obtained the sharp bounds. He et al. [10] extended the results in [3] and obtained the sharp bound for the generalized Hardy-Littlewood-Pólya operator on weighted central and noncentral homogenous Morrey spaces. He set up

    T(f1,,fm)Lq,λ(Rn,|x|α,|x|γ)Cmmj=1fjLqj,λ(Rn,|x|α,|x|qjγjq),

    where

    Cm=RnmK(y1,,ym)mi=1|yi|d(λi,qi,α,qiγiq)dy1dym<.

    In 2011, Wu and Fu [19] got the sharp estimate of the m-linear p-adic Hardy operator on Lebesgue spaces with power weights. Zhang et al. [25] obtained the sharp estimate for the m-linear n-dimensional Hausdorff operator on the weighted Morrey space.

    Inspired by the above, on the Heisenberg group, we first study the sharp weak estimate for the n-dimensional fractional Hardy operator from Lp to Lq,. Second, we study a more general operator which includes Hardy, Hardy-Littlewood-Pólya, and Hilbert operators as a special case and consider their operator norm on weighted Lebesgue space. Finally, we also find the sharp bound for the Hausdorff operator on Lebesgue space, which generalizes the previous results.

    To get the main conclusion, it is necessary to introduce some fundamental knowledge and definitions. In the setting of the Heisenberg group, these operators and spaces are the fractional Hardy operator, m-linear n-dimensional Hardy operator, m-linear n-dimensional Hardy-Littlewood-Pólya operator, m-linear n-dimensional Hilbert operator, m-linear n-dimensional Hausdorff operator, and weighted Lp and Lq,.

    Definition 1.1. Let f be nonnegative locally integrable functions on Hn and Q=2n+1, 0<α<Q. The n-dimensional fractional Hardy operator is defined by

    Hαf(x)=1|x|Qαh|y|h<|x|hf(y)dy, (1.1)

    where xHn{0}.

    Definition 1.2. Let m be a positive integer and f1,,fm be nonnegative locally integrable functions on Hn. The m-linear n-dimensional Hardy operator is defined by

    Hh1(f1,...,fm)(x)=1|x|mQh|(y1,...,ym)|h|x|hf1(y1)fm(ym)dy1dym, (1.2)

    where xHn{0}.

    Definition 1.3. Let m be a positive integer and f1,,fm be nonnegative locally integrable functions on Hn. The m-linear n-dimensional Hardy-Littlewood-Pólya operator is defined by

    Hh2(f1,...,fm)(x)=HnHnf1(y1)fm(ym)[max(|x|Qh,|y1|Qh,...,|ym|Qh)]mdy1dym, (1.3)

    where xHn{0}.

    Definition 1.4. Let m be a positive integer and f1,,fm be nonnegative locally integrable functions on Hn. The m-linear n-dimensional Hilbert operator is defined by

    Hh3(f1,...,fm)(x)=HnHnf1(y1)fm(ym)(|x|Qh+|y1|Qh++|ym|Qh)mdy1dym, (1.4)

    where xHn{0}.

    Definition 1.5. Let m be a positive integer, f1,,fm be nonnegative locally integrable functions on Hn, and Φ be a nonnegative function on the Heisenberg group. The m-linear n-dimensional Hausdorff operator is defined by

    HhΦ(f1,...,fm)(x)=HnHnΦ(δ|y1|1hx,...,δ|ym|1hx)|y1|Qh|ym|Qhf1(y1)fm(ym)dy1dym, (1.5)

    where xHn{0}.

    Definition 1.6. Let 1p<. The Lebesgue space on the Heisenberg Lp(Hn) is defined by

    Lp(Hn)={fLploc:fLp(Hn)<},

    where

    fLp(Hn)=(Hn|f(x)|pdx)1/p. (1.6)

    Definition 1.7. Let ω:Hn(0,) be a positive measurable function, 1p<. The weighted Lebesgue space on the Heisenberg Lp(Hn,ω) is defined by

    Lp(Hn,ω)={fLploc:fLp(Hn,ω)<},

    where

    fLp(Hn,ω)=(Hn|f(x)|pω(x)dx)1/p. (1.7)

    Definition 1.8. Let ω:Hn(0,) be a positive measurable function, 1p<. The weighted weak Lebesgue space on the Heisenberg Lp(Hn,ω) is defined by

    Lq,(Hn,ω)={fLploc:fLq,(Hn,ω)<},

    where

    fLq,(Hn,ω)=supλ>0λ(Hnχ{x:f(x)>λ}(x)ω(x)dx)1/q. (1.8)

    Next, we will provide the main results of this article.

    In this section, we will study the weighted Lp estimate for the fractional Hardy operator on the Heisenberg group. For the n-dimensional fractional Hardy operator, our results have a restricted condition: β=0 when p=1 and β>0 when p>1. Removing this restrictive condition requires a more complicated argument, and it will be presented in a future paper.

    Theorem 2.1. Let 1<p<, 1q<, β<Q(p1), Q+γ>0, and 0α<βp1.

    If

    γ+Qq+α=β+Qp,

    then

    HαLp(Hn,|x|βh)Lq,(Hn,|x|γh)=(ωQQ+γ)1q(ωQ(p1)pQQβ)1p. (2.1)

    Theorem 2.2. Let Q+β>0 and 0<α<Q. Then

    HαL1(Hn)L(Q+β)/(Qα),(Hn,|x|γh)=(ωQQ+β)(Qα)/(Q+β). (2.2)

    Proof of Theorem 2.1. Noticing Qβp1>QQ(p1)p1=0, by H¨older's inequality, we have

    |Hαf(x)|=|1|x|Qαh|y|h<|x|hf(y)dy|=|1|x|Qαh|y|h<|x|h|y|βphf(y)|y|βphdy|1|x|Qαh(|y|h<|x|h|y|βpphdy)1p(|y|h<|x|h|f(y)|p|y|βhdy)1p1|x|Qαh(ωQ|x|h0rβp×pp1+Q1dr)1p(Hn|f(y)|p|y|βhdy)1p=|x|αQh×(ωQ×|x|Qβp1hQβp1)1pfLp(Hn,|x|βh)=(ωQ(p1)pQQβ)1pfLp(Hn,|x|βh)|x|Qpβp+αh=Cp,Q,β,f|x|Qpβp+αh,

    where

    Cp,Q,β,f=(ωQ(p1)pQQβ)1pfLp(Hn,|x|βh).

    Noticing |Hαf(x)|Cp,Q,β,f|x|Qpβp+αh, we have {x:|Hαf(x)|>λ}{x:Cp,Q,β,f|x|Qpβp+αh>λ}.

    Since

    Q+γ>0andγ+Qq+α=β+Qp,

    we have

    HαfLq,(Hn,|x|γh)=supλ>0λ(Hnχ{x:|Hαf(x)|>λ}(x)|x|γhdx)1qsupλ>0λ(Hnχ{x:Cp,Q,β,f|x|Qpβp+αh>λ}(x)|x|γhdx)1q=supλ>0λ(B(0,(Cp,Q,β,fλ)qQ+γ)|x|γhdx)1q=supλ>0λ(ωQ(Cp,Q,β,fλ)qQ+r0rQ1+γdr)1q=supλ>0λ(ωQ×(Cp,Q,β,f/λ)qQ+γ)1q=supλ>0Cp,Q,β,f×(ωQQ+γ)1q=(ωQQ+γ)1q×(ωQ(p1)pQQβ)1pfLp(Hn,|x|βh).

    Thus

    HαLp(Hn,|x|βh)Lq,(Hn,|x|γh)(ωQQ+γ)1q(ωQ(p1)pQQβ)1p.

    On the other hand, let

    f0(x)=|x|βp1hχ{x:|x|h1}(x).

    Noticing Q+β(1pp1)=Qβp1>0, we have

    f0Lp(Hn,|x|βh)=(Hn||x|βp1hχ{x:|x|h1}(x)|p|x|βhdx)1p=(|x|h1|x|βpp1h|x|βhdx)1p=(ωQ10rβpβp1+Q1dr)1p=(ωQ(p1)pQQβ)1p<.

    So we have proved that f0Lp(Hn,|x|βh). Then we calculate Hα(f0)(x).

    Hα(f0)(x)=1|x|Qαh|y|h<|x|h|y|βp1hχ{y:|y|h1}(y)dy=1|x|Qαh{|y|h<|x|h|y|βp1hdy,|x|h1|y|h1|y|βp1hdy,|x|h>1=ωQ|x|Qαh{|x|h0rQ1βp1dr,r110rQ1βp1dr,r>1=ωQ(p1)pQQβ{|x|αβp1h,|x|h1|x|αQh,|x|h>1.

    Denote Cp,Q,β=ωQ(p1)pQQβ and

    {x:|Hα(f0)(x)|>λ}={|x|h1:Cp,Q,β|x|αβp1h>λ}{|x|h>1:Cp,Q,β|x|αQh>λ}.

    When 0<λ<Cp,Q,β, noticing α<βp1 and β<Q(p1), we have α<Q and

    {x:|Hα(f0)(x)|>λ}={|x|h1}{|x|h>1:|x|h(Cp,Q,βλ)1Qα}={x:|x|h<(Cp,Q,βλ)1Qα}.

    When λCp,Q,β, noticing α<βp1 and β<Q(p1), we have α<Q and

    {x:|Hα(f0)(x)|>λ}={x:|x|h<(Cp,Q,βλ)1βp1α}.

    Based on the above analysis, we have

    Hα(f0)Lq,(Hn,|x|γh)=max{sup0<λ<Cp,Q,βλ(Hnχ{x:|Hα(f0)(x)|>λ}(x)|x|γhdx)1q,supCp,Q,βλλ(Hnχ{x:|Hα(f0)(x)|>λ}(x)|x|γhdx)1q}=:max{M1,M2}.

    Now we first calculate M1. Since

    f0Lp(Hn,|x|βh)=(ωQ(p1)pQQβ)1p,γ>Q,

    and

    1Q+γ(Qα)q=11Qα(β+Qpα)=Q(p1)βp(Qα)>0,

    we have

    M1=sup0<λ<Cp,Q,βλ(Hnχ{x:|Hα(f0)(x)|>λ}(x)|x|γhdx)1q=sup0<λ<Cp,Q,βλ(|x|h<(Cp,Q,βλ)1Qα|x|γhdx)1q=sup0<λ<Cp,Q,β(ωQQ+γ)1q(Cp,Q,β)Q+γ(Qα)qλ1Q+γ(Qα)q=(ωQQ+γ)1qCp,Q,β=(ωQQ+γ)1q×(ωQ(p1)pQQβ)1p+1p=(ωQQ+γ)1q(ωQ(p1)pQQβ)1pf0Lp(Hn,|x|βh).

    Then we calculate M2, noticing f0Lp(Hn,|x|βh)=(ωQ(p1)pQQβ)1p, γ>Q, and

    1Q+γ(βp1α)q=11βp1α(β+Qpα)=βQ(p1)p(βp1α)(p1)<0,

    and we have

    M2=supCp,Q,βλλ(Hnχ{x:|Hα(f0)(x)|>λ}(x)|x|γhdx)1q=supCp,Q,βλλ(|x|h<(Cp,Q,βλ)1βp1α|x|γhdx)1q=supCp,Q,βλ(ωQQ+r)1q(Cp,Q,β)Q+γ(βp1α)λ1Q+γ(βp1α)=(ωQQ+γ)1qCp,Q,β=(ωQQ+r)1q×(ωQ(p1)pQQβ)1p+1p=(ωQQ+γ)1q(ωQ(p1)pQQβ)1pf0Lp(Hn,|x|βh).

    Its easy to see that M1=M2, and then

    HαLp(Hn,|x|βh)HαLp,(Hn,|x|γh)=(ωQQ+γ)1q(ωQ(p1)pQQβ)1p.

    This finishes the proof of Theorem 2.1.

    Proof of Theorem 2.2. It is easy to see that

    |Hαf(x)|=|1|x|Qah|y|h<|x|hf(y)dy||1|x|QahHnf(y)dy|=|x|αQhfL1(Hn).

    Notice |Hαf(x)||x|αQhfL1(Hn), and we have {x:|Hαf(x)|>λ}{x:|x|αQhfL1(Hn)>λ}. Since Qα>0 and Q+γ>0, we have

    HαfL(Q+γ)/(Qα),(Hn,|x|γh)=supλ>0λ(Hnχ{x:|Hαf(x)|>λ}(x)|x|γhdx)QαQ+γsupλ>0λ(Hnχ{x:|x|αQhfL1(Hn)>λ}(x)|x|γhdx)QαQ+γ=supλ>0λ(|x|h<(fL1(Hn)/λ)1Qα|x|γhdx)QαQ+γ=supλ>0λ(ωQ(fL1(Hn)/λ)1Qα0rQ1+γdr)QαQ+γ=(ωQQ+γ)QαQ+γfL1(Hn).

    Thus

    Hαf(x)L(Q+γ)/(Qα),(Hn,|x|γh)(ωQQ+γ)QαQ+γfL1(Hn).

    On the other hand, let f0(x)=χ{x:|x|h1}(x). Then we have

    f0L1(Hn)=Hnχ{x:|x|h1}(x)dx=ωQQ<,

    and so f0L1(Hn) and

    Hα(f0)(x)=1|x|Qah|y|h<|x|hχ{y:|y|h1}(y)dy=1|x|Qah{|y|h<|x|hdy,|x|h1|y|h1dy,|x|h>1=ωQQ{|x|αh,|x|h1|x|αQh,|x|h>1.

    Denote CQ=ωQQ and

    {x:|Hα(f0)(x)|>λ}={|x|h1:|x|αhCQ>λ}{|x|h>1:|x|αQhCQ>λ}.

    When λCQ, noticing 0<α<Q, we have {x:|Hα(f0)(x)|>λ}=.

    When 0<λ<CQ, noticing 0<α<Q, we have

    {x:|Hα(f0)(x)|>λ}={x:(λCQ)1α<|x|h<(CQλ)1Qα}.

    We have

    Hα(f0)(x)L(Q+γ)/(Qα),(Hn,|x|γh)=max{sup0<λ<CQλ(Hnχ{x:|Hαf0(x)|>λ}(x)|x|γhdx)QαQ+γ,supλCQλ(Hnχ{x:|Hαf0(x)|>λ}(x)|x|γhdx)QαQ+γ}=:max{M3,M4}.

    When λCQ, then {x:|Hαf0(x)|>λ}=, and we have M4=0. Then, we only need to calculate M3. In addition, noticing

    Q+β>0,0<α<Q,f0L1(Hn)=ωQQ,

    we have

    M3=sup0<λ<CQλ(Hnχ{x:|Hαf0(x)|>λ}(x)|x|γhdx)QαQ+γ=sup0<λ<CQλ((λCQ)1α<|x|h<(CQλ)1Qα|x|γhdx)QαQ+γ=sup0<λ<CQλ(ωQ(CQλ)1Qα(λCQ)1αrQ1+γdr)QαQ+γ=sup0<λ<CQ(ωQQ+γ)QαQ+γ(CQ+γQαQλQ+γα+Q+γQαCQ+γαQ)QαQ+γ=(ωQQ+γ)QαQ+γCQ=(ωQQ+γ)QαQ+γf0L1(Hn).

    Then

    HαL1(Hn)L(Q+γ)/(Qα),(Hn,|x|γh)=(ωQQ+γ)QαQ+γ.

    This finishes the proof of Theorem 2.2. Notices that Theorem 2.2 no longer holds when α=0.

    In this section, we will study the m-linear n-dimensional integral operator with a kernel on the Heisenberg group. Let K:Hn××Hn(0,) be a measurable radial kernel such that K(y1,...,ym)=K(|y1|h,...,|ym|h), satisfying

    Ch=HnHnK(y1,...,ym)mi=1|yi|αjqQqjhdy1dym<, (3.1)

    where αj, qj, q, and Q are the pre-defined indicator and some fixed indices, j=1,2,...,m. The m-linear n-dimensional integral operator with a kernel is defined by

    Hh(f1,...,fm)(x)=HnHnK(y1,...,ym)f1(δ|x|hy1)fm(δ|x|hym)dy1dym, (3.2)

    where xRn{0} and fj is a measurable radial function on Hn with j=1,2,...,m. Note that Hh is in fact an integral operator having a homogeneous radial K of degree mn.

    In this paper, we will give the weighted Lp estimate for the m-linear n-dimensional integral operator with a kernel on the Heisenberg group.

    Theorem 3.1. Let mN, 1<q<, 1q=1q1++1qm, α=α1++αm, 1<qj< with j=1,...,m, and fj be a radial function in Lqj(Hn,|x|qjαjqh). Assume that the kernel K is the constant defined by (3.1).

    Then

    HhLq1(Hn,|x|q1α1qh)××Lqm(Hn,|x|qmαmqh)Lq(Hn,|x|αh)=Ch. (3.3)

    Proof. Consider that

    g_j\left( x \right) = \frac{1}{\omega _Q}\int_{\left| \xi _j \right|_{h = 1}}{f_j(\delta _{\left| x \right|_h}\xi _j)}d\xi _j, \quad x\in \mathbb{H} ^n, \quad j = 1, ..., m.

    Obviously, g_j satisfies g_j\left(x \right) = g_j\left(\left| x \right|_h \right) , and \mathcal{H} ^h\left(f_1, ..., f_m \right) \left(x \right) is equal to

    \begin{align*} &\mathcal{H} ^h\left( g_1, ..., g_m \right) \left( x \right) \\ & = \int_{\mathbb{H} ^{mn}}{K\left( y_1, ..., y_m \right) g_1(\delta _{| x |_h}y_1)\cdots g_m(\delta _{| x |_h}y_m)dy_1\cdots dy_m} \\ & = \int_{\mathbb{H} ^{mn}}{K\left( y_1, ..., y_m \right)}\prod\limits_{j = 1}^m{\left( \frac{1}{\omega _Q}\int_{| \xi _j |_h = 1}{f_j(\delta _{\left| x \right|_h| y_j |_h}\xi _j)}d\xi _j \right)}dy_1\cdots dy_m \\ & = \frac{1}{\omega _{Q}^{m}}\int_{\mathbb{H} ^{mn}}{K\left( y_1, ..., y_m \right)}\prod\limits_{j = 1}^m{\left( \int_{| \xi _j |_h = 1}{f_j(\delta _{\left| x \right|_h}\left( \delta _{| y_j |_h}\xi _j \right) )}d\xi _j \right)}dy_1\cdots dy_m \\ & = \frac{1}{\omega _{Q}^{m}}\int_{\mathbb{H} ^{mn}}{K\left( y_1, ..., y_m \right)}\prod\limits_{j = 1}^m{\left( \int_{| z_j |_h = | y_j |_h}{f_j(\delta _{\left| x \right|_h}z_j)| y_j |_{h}^{-Q}}dz_j \right)}dy_1\cdots dy_m \\ & = \frac{1}{\omega _{Q}^{m}}\int_{\mathbb{H} ^{mn}}{\int_{\left| y_1 \right|_h = \left| z_1 \right|_h}{\cdots \int_{\left| y_m \right|_h = \left| z_m \right|_h}{K(\left| y_1 \right|_h, ..., \left| y_m \right|_h)}}}\prod\limits_{j = 1}^m{f_j(\delta _{\left| x \right|_h}z_j)| y_j |_{h}^{-Q}}dy_1\cdots dy_mdz_m\cdots dz_1 \\ & = \frac{1}{\omega _{Q}^{m}}\int_{\mathbb{H} ^{mn}}{\int_{|t_1|_h = 1}{\cdots \int_{|t_m|_h = 1}{K(|z_1|_h, ..., |z_m|_h)}}}\prod\limits_{j = 1}^m{f_j(\delta _{\left| x \right|_h}z_j)}dt_1\cdots dt_mdz_m\cdots dz_1 \\ & = \int_{\mathbb{H} ^{mn}}{K(z_1, ..., z_m)}f_1(\delta _{\left| x \right|_h}z_1)\cdots f_m(\delta _{\left| x \right|_h}z_m)dz_1\cdots dz_m = \mathcal{H} ^h(f_1, ..., f_m)(x). \end{align*}

    In the fourth to fifth lines, we let z_j = \delta _{| y_j |_h}\xi _j . From the fifth to sixth lines, we perform an integral permutation. In the sixth to seventh lines, we set y_j = \delta _{| z_j |_h}t_j . On the other hand, by applying Hölder's inequality, we conclude that

    \begin{align*} \left\| g_j \right\| _{L^{q_j}( \mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_j\alpha _j}{q}} )} & = \left( \int_{\mathbb{H} ^n}{\left| \frac{1}{\omega _Q}\int_{| \xi _j |_h = 1}{f_j(\delta _{\left| x \right|_h}\xi _j)}d\xi _j \right|^{q_j}\left| x \right|_{h}^{\frac{q_j\alpha _j}{q}}dx} \right) ^{\frac{1}{q_j}} \\ & = \frac{1}{\omega _Q}\left( \int_{\mathbb{H} ^n}{\left| \int_{| \xi _j |_h = 1}{f_j(\delta _{\left| x \right|_h}\xi _j)}d\xi _j \right|^{q_j}\left| x \right|_{h}^{\frac{q_j\alpha _j}{q}}dx} \right) ^{\frac{1}{q_j}} \\ &\leqslant \frac{1}{\omega _Q}\left( \int_{\mathbb{H} ^n}{\int_{| \xi _j |_h = 1}{|f_j(\delta _{\left| x \right|_h}\xi _j)|^{q_j}}d\xi _j}\left( \int_{| \xi _j |_h = 1}{dx} \right) ^{q_j-1}| x |_{h}^{\frac{q_j\alpha _j}{q}}dx \right) ^{\frac{1}{q_j}} \\ & = {\omega _Q}^{-\frac{1}{q_j}}\left( \int_{\mathbb{H} ^n}{\int_{| \xi _j |_h = 1}{|f_j(\delta _{\left| x \right|_h}\xi _j)|^{q_j}}d\xi _j}\left| x \right|_{h}^{\frac{q_j\alpha _j}{q}}dx \right) ^{\frac{1}{q_j}} \\ & = {\omega _Q}^{-\frac{1}{q_j}}\left( \int_{\mathbb{H} ^n}{\int_{| z_j |_h = \left| x \right|_h}{| f_j( z_j ) |^{q_j}}\left| x \right|_{p}^{-Q}dz_j}\left| x \right|_{h}^{\frac{q_j\alpha _j}{q}}dx \right) ^{\frac{1}{q_j}} \\ & = {\omega _Q}^{-\frac{1}{q_j}}\left( \int_{\mathbb{H} ^n}{\int_{\left| x \right|_h = | z_j |_h}{\left| x \right|_{h}^{-n}\left| x \right|_{h}^{\frac{q_j\alpha _j}{q}}dx| f_j( z_j ) |^{q_j}}dz_j} \right) ^{\frac{1}{q_j}} \\ & = {\omega _Q}^{-\frac{1}{q_j}}\left( \int_{\mathbb{H} ^n}{\int_{| t_j |_h = 1}{| z_j |_{h}^{-Q}| t_j |_{h}^{-Q}| z_j |_{h}^{\frac{q_j\alpha _j}{q}}| t_j |_{h}^{\frac{q_j\alpha _j}{q}}}| f_j( z_j ) |^{q_j}| z_j |_{h}^{Q}dt_jdz_j} \right) ^{\frac{1}{q_j}} \\ & = \left( \int_{\mathbb{H} ^n}{| f_j( z_j ) |^{q_j}| z_j |_{h}^{\frac{q_j\alpha _j}{q}}}dz_j \right) ^{\frac{1}{q_j}} = \left\| f_j \right\| _{L^{q_j}(\mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_j\alpha _j}{q}})}. \end{align*}

    From the second to third lines, we apply Hölder's inequality. In the fourth to fifth lines, we let z_j = \delta _{\left| x \right|_h}\xi _j . From the fifth to sixth lines, we perform an integral permutation. In the sixth to seventh lines, we set x = \delta _{| z_j |_h}t_j . Therefore we have

    \frac{\left\| \mathcal{H} ^h\left( f_1, ..., f_m \right) \right\| _{L^q(\mathbb{H} ^n, \left| x \right|_{h}^{\alpha})}}{\prod _{j = 1}^m{\left\| f_j \right\| _{L^{q_{\boldsymbol{j}}}(\mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_{\boldsymbol{j}}\alpha _{\boldsymbol{j}}}{q}})}}}\leqslant \frac{\left\| \mathcal{H} ^h\left( g_1, ..., g_m \right) \right\| _{L^q(\mathbb{H} ^n, \left| x \right|_{h}^{\alpha})}}{\prod _{j = 1}^m{\left\| g_j \right\| _{L^{q_{\boldsymbol{j}}}(\mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_{\boldsymbol{j}}\alpha _{\boldsymbol{j}}}{q}})}}},

    which implies that the operator \mathcal{H} ^h and its restriction to the function g satisfying g_j\left(x \right) = g_j(\left| x \right|_h) have the same operator norm in L^q(\mathbb{H} ^n, \left| x \right|_{h}^{\alpha}) . So without loss of generality, we assume that f_j\in L^{q_{\boldsymbol{j}}}(\mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_{\boldsymbol{j}}\alpha _{\boldsymbol{j}}}{q}}) with j = 1, 2, ..., m satisfies that f_j\left(x \right) = f_j(\left| x \right|_h) in the rest of the proof. Let q^{\prime} is the conjugate number of q and g\in L^{q^{\prime}}(\mathbb{H} ^n, \left| x \right|_{h}^{\alpha}) . Using duality and Holder's inequality, and making a change of variables, we obtain the following sequence of inequalities:

    \begin{align*} &\left| \left < \mathcal{H} ^h\left( f_1, ... , f_m \right) , g \right > \right|\, \, \\ &\leqslant \int_{\mathbb{H} ^{mn}}{\left| K\left( y_1, ..., y_m \right) \right|}\int_{\mathbb{H} ^n}{\left| g\left( x \right) \right|}\left| f_1( \delta _{|x|_h}y_1 ) \right|\cdots \left| f_m( \delta _{|x|_h}y_m ) \right||x|_{h}^{\alpha}dxdy_1\cdots dy_m \\ & = \int_{\mathbb{H} ^{mn}}{\left| K\left( y_1, ... , y_m \right) \right|}\int_{\mathbb{H} ^n}{\left| g\left( x \right) \right|}|x|_{h}^{\frac{\alpha}{q^{\prime}}}| f_1( \delta _{|x|_h}y_1) |\cdots | f_m( \delta _{|x|_h}y_m ) ||x|_{h}^{\frac{\alpha}{q}}dxdy_1\cdots dy_m \\ &\leqslant \int_{\mathbb{H} ^{mn}}{\left| K\left( y_1, ... , y_m \right) \right|}\left( \int_{\mathbb{H} ^n}{\left| g\left( x \right) \right|^{q^{\prime}}}|x|_{h}^{\alpha}dx \right) ^{\frac{1}{q^{\prime}}}\left( \int_{\mathbb{H} ^n}{\left( | f_1( \delta _{|x|_h}y_1) |\cdots | f_m( \delta _{|x|_h}y_m)||x|_{h}^{\frac{\alpha}{q}} \right) ^qdx} \right) ^{\frac{1}{q}}dy_1\cdots dy_m \\ &\leqslant \left\| g \right\| _{L^{q^{\prime}}\left( \mathbb{H} ^n, \left| x \right|_{h}^{\alpha} \right)}\int_{\mathbb{H} ^{mn}}{\left| K\left( y_1, ..., y_m \right) \right|}\prod\limits_{j = 1}^m{\left( \int_{\mathbb{H} ^n}{\left| f_j( \delta _{|y_j|_h}x ) \right|^{q_j}|x|_{h}^{\frac{q_j\alpha _j}{q}}dx} \right) ^{\frac{1}{q_j}}}dy_1\cdots dy_m \\ & = \left\| g \right\| _{L^{q^{\prime}}\left( \mathbb{H} ^n, \left| x \right|_{h}^{\alpha} \right)}\int_{\mathbb{H} ^{mn}}{\left| K\left( y_1, ..., y_m \right) \right|}\prod\limits_{j = 1}^m{|y|_{h}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}}\prod\limits_{j = 1}^m{\left( \int_{\mathbb{H} ^n}{| f_j( z_j ) |^{q_j}|z_j|_{h}^{\frac{q_j\alpha _j}{q}}dx} \right)}^{\frac{1}{q_j}}}dy_1\cdots dy_m \\ & = \int_{\mathbb{H} ^{mn}}{K\left( y_1, ..., y_m \right)}\prod\limits_{j = 1}^m{|y|_{h}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}}}dy_1\cdot \cdot \cdot dy_m\left\| g \right\| _{L^{q^{\prime}}\left( \mathbb{H} ^n, \left| x \right|_{h}^{\alpha} \right)}\prod\limits_{j = 1}^m{\left\| f_j \right\| _{L^{q_j}( \mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_j\alpha _j}{q}})}} \\ & = C^h\left\| g \right\| _{L^{q^{\prime}}\left( \mathbb{H} ^n, \left| x \right|_{h}^{\alpha} \right)}\prod\limits_{j = 1}^m{\left\| f_j \right\| _{L^{q_j}( \mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_j\alpha _j}{q}} )}}. \end{align*}

    This proves the first part of our theorem.

    For the second part, we will show that if the kernel K is nonnegative, then the operator norm \| \mathcal{H}^h \| of \mathcal{H}^h is equal to C^h . For a positive number \varepsilon and i = 1, 2, ..., m , we define the sequences of functions g_{\varepsilon} and f_{j, \varepsilon} by

    g_{\varepsilon}\left( x \right) = |x|_{h}^{-\frac{Q+\alpha}{q^{\prime}}+\frac{\varepsilon}{q^{\prime}}}\chi _{B\left( 0, 1 \right)}\left( x \right) , \quad f_{j, \varepsilon} = |x|_{h}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+\frac{\varepsilon}{q_j}}\chi _{B\left( 0, 1 \right)}\left( x \right).

    By a simple computation, we have

    \begin{align*} {\left\| g_{\varepsilon} \right\| ^{q^{\prime}}}_{L^{q^{\prime}}\left( \mathbb{H} ^n, \left| x \right|_{h}^{\alpha} \right)} & = \int_{\mathbb{H} ^n}{|x|_{h}^{-Q+\varepsilon}dx} = \left( \left( \int_{\mathbb{H} ^n}{\left( |x|_{h}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+\frac{\varepsilon}{q_j}} \right) ^{q_j}\left| x \right|_{h}^{\frac{q_j\alpha _j}{q}}dx} \right) ^{\frac{1}{q_j}} \right) ^{q_j} \\ & = {\left\| f_{j, \varepsilon} \right\| ^{q^j}}_{L^{q^j}( \mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_j\alpha _j}{q}})} = \left\| g_{\varepsilon} \right\| _{L^{q^{\prime}}( \mathbb{H} ^n, \left| x \right|_{h}^{\alpha} )}\prod\limits_{j = 1}^m{\left\| f_{j, \varepsilon} \right\| _{L^{q_j}( \mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_j\alpha _j}{q}})}} = \frac{\omega _Q}{\varepsilon}. \end{align*}

    Therefore, we have

    \begin{align*} &\left| \left < \mathcal{H} ^h\left( f_{1, \varepsilon}, ..., f_{m, \varepsilon} \right) , g_{\varepsilon} \right > \right| \\ & = \int_{B\left( 0, 1 \right)}{|x|_{h}^{-\frac{Q+\alpha}{q^{\prime}}+\frac{\varepsilon}{q^{\prime}}}}|x|_{h}^{\alpha}\int_{\mathbb{H} ^{mn}}{\left| K\left( y_1, ..., y_m \right) \right|}\prod\limits_{j = 1}^m{f_{j, \varepsilon}(\delta _{|x|_h}y_j)dy_1\cdots dy_mdx} \\ & = \int_{B\left( 0, 1 \right)}{|x|_{h}^{-\frac{Q+\alpha}{q^{\prime}}+\frac{\varepsilon}{q^{\prime}}}}\left| x \right|_{h}^{\alpha}\int_{B(0, \frac{1}{\left| x \right|_h})}{\cdots}\int_{B(0, \frac{1}{\left| x \right|_h})}{K\left( y_1, ..., y_m \right)}\prod\limits_{j = 1}^m{\left( \left| x \right|_h| y_j |_h \right) ^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+\frac{\varepsilon}{q_j}}}dy_1\cdots dy_mdx \\ & = \int_{B\left( 0, 1 \right)}{|x|_{h}^{-Q+\varepsilon}}\int_{B(0, \frac{1}{\left| x \right|_h})}{\cdots}\int_{B(0, \frac{1}{\left| x \right|_h})}{K\left( y_1, ..., y_m \right)}\prod\limits_{j = 1}^m{| y_j |_{h}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+\frac{\varepsilon}{q_j}}}dy_1\cdots dy_mdx \\ & = \omega _Q\int_0^1{r^{\varepsilon -1}}\int_{B( 0, \frac{1}{r} )}{\cdots \int_{B( 0, \frac{1}{r} )}{K\left( y_1, ..., y_m \right)}}\prod\limits_{j = 1}^m{| y_j |_{h}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+\frac{\varepsilon}{q_j}}}dy_1\cdots dy_mdr \\ & = \omega _Q\int_1^{\infty}{r^{-1-\varepsilon}}\int_{B\left( 0, r \right)}{\cdots \int_{B\left( 0, r \right)}{K\left( \left| y_1 \right|_h, ..., \left| y_m \right|_h \right)}}\prod\limits_{j = 1}^m{| y_j |_{h}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+\frac{\varepsilon}{q_j}}}dy_1\cdots dy_mdr \\ & = -\frac{\omega _Q}{\varepsilon}\int_1^{\infty}{\left( r^{-\varepsilon} \right) ^{\prime}}\left( \omega _{Q}^{m}\int_0^r{\cdots}\int_0^r{K\left( r_1, ..., r_m \right)}\prod\limits_{j = 1}^m{r_j^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+\frac{\varepsilon}{q_j}+Q-1}}dr_1\cdots dr_m \right) dr \\ & = \frac{\omega _{Q}^{m+1}}{\varepsilon}\int_0^1{\cdots}\int_0^1{K\left( r_1, ..., r_m \right)}\prod\limits_{j = 1}^m{r_j^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+\frac{\varepsilon}{q_j}+Q-1}}dr_1\cdots dr_m+\sum\limits_{i = 1}^m{L_i}, \end{align*}

    where L_i is defined as

    \begin{align*} L_i & = \frac{\omega _{Q}^{m+1}}{\varepsilon}\int_1^{\infty}{r^{-\varepsilon}}\int_0^r{\cdots}\int_0^r{K(r_1, ..., \overset{\left( i \right)}{r}, ..., r_m)}r^{-\frac{\alpha _i}{q}-\frac{Q}{q_i}+\frac{\varepsilon}{q_i}+Q-1} \\ &\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \times \prod\limits_{j\ne i}^m{r_{j}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+\frac{\varepsilon}{q_j}+Q-1}}dr_1..., \overset{\land}{dr_i}\cdots dr_mdr \\ & = \frac{\omega _{Q}^{m+1}}{\varepsilon}\int_1^{\infty}{r_{i}^{-\varepsilon}}\int_0^{r_i}{\cdots}\int_0^{r_i}{K\left( r_1, ..., r_m \right)}\prod\limits_{j = 1}^m{r_j^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+\frac{\varepsilon}{q_j}+Q-1}}dr_1\cdots \overset{\land}{dr_i}\cdots dr_mdr_i. \end{align*}

    Here \overset{\land}{dr_i} means that we do not integrate with respect to the variable r_i . The last equality follows from integration by parts and the observation that, if we let

    F\left( x, ..., x \right) = \int_0^x{\cdots}\int_0^x{K\left( r_1, ..., r_m \right)}\prod\limits_{j = 1}^m{r_j^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+\frac{\varepsilon}{q_j}+Q-1}}dr_1\cdots dr_m,

    then

    \frac{dF\left( x, ..., x \right)}{dx} = \sum\limits_{i = 1}^m{\int_0^x{\cdots}\int_0^x{K( r_1, ..., \overset{\left( i \right)}{x}, ... , r_m)}}x^{-\frac{\alpha _i}{q}-\frac{Q}{q_i}+\frac{\varepsilon}{q_i}+Q-1}\times \prod\limits_{j\ne i}^m{r_{j}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+\frac{\varepsilon}{q_j}+Q-1}}dr_1\cdots \overset{\land}{dr_i}\cdots dr_m,

    where the upper index (i) means that x replaces the variable r_i in the i -th position. By means of the previous step, we have

    \begin{equation} \begin{aligned} &\frac{\left| \left < \mathcal{H}^h\left( f_{1, \varepsilon}, ..., f_{m, \varepsilon} \right) , g_{\varepsilon} \right > \right|}{\left\| g_{\varepsilon} \right\| _{L^{q ^{\prime}}\left( \mathbb{H} ^n, \left| x \right|_{h}^{\alpha} \right)}\left\| f_{1, \varepsilon} \right\| _{L^{q_1}( \mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_1\alpha _1}{q}} )}\cdots \left\| f_{m, \varepsilon} \right\| _{L^{q_m}( \mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_m\alpha _m}{q}})}} \\ & = \omega _{Q}^{m}\int_0^1{\cdots}\int_0^1{K\left( r_1, ..., r_m \right)}\prod\limits_{j = 1}^m{r_{j}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+\frac{\varepsilon}{q_j}+Q-1}}dr_1\cdots dr_m+\sum\limits_{i = 1}^m{\frac{\varepsilon L_i}{\omega _Q}}. \end{aligned} \end{equation} (3.4)

    Let E_i denote the domain of integral L_i above (3.4), that is,

    E_i = \left\{ \left( r_1, ..., r_m \right) \in \left( 0, \infty \right) ^m:1\leqslant r_i < \infty , 0\leqslant r_j\leqslant r_i, j\ne i \right\}.

    Taking into account that \frac{1}{q} = \frac{1}{q_1}+\cdots +\frac{1}{q_m} , we can bound the integrand of \frac{\varepsilon L_i}{\omega _Q} on E_i as follows:

    \begin{align*} {r_i}^{-\varepsilon}K\left( r_1, ..., r_m \right) \prod\limits_{j = 1}^m{r_{j}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+\frac{\varepsilon}{q_j}+Q-1}} &\leqslant {r_i}^{-\varepsilon +\frac{\varepsilon}{q_1}+\cdots +\frac{\varepsilon}{q_m}}K\left( r_1, ..., r_m \right) \prod\limits_{j = 1}^m{r_{j}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+Q-1}} \\ & = {r_i}^{-\frac{\varepsilon}{q^{\prime}}}K\left( r_1, ..., r_m \right) \prod\limits_{j = 1}^m{r_{j}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+Q-1}} \\ &\leqslant K\left( r_1, ..., r_m \right) \prod\limits_{j = 1}^m{r_{j}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+Q-1}}. \end{align*}

    For the integrand of the first term in (3.4) on \left[0, 1 \right] ^m , we also have that

    K\left( r_1, ..., r_m \right) \prod\limits_{j = 1}^m{r_{j}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+\frac{\varepsilon}{q_j}+Q-1}}\leqslant K\left( r_1, ..., r_m \right) \prod\limits_{j = 1}^m{r_{j}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+Q-1}}.

    Since the condition of kernel K (3.1) is equivence to

    \begin{equation} \begin{aligned} C^h & = \int_{\mathbb{H} ^{mn}}{K\left( y_1, ..., y_m \right)}\prod\limits_{j = 1}^m{| y_j |_{h}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}}}dy_1\cdots dy_m \\ & = \omega _{Q}^{m}\int_0^{\infty}{\cdots}\int_0^{\infty}{K\left( r_1, ..., r_m \right)}\prod\limits_{j = 1}^m{r_{j}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+Q-1}}dr_1\cdots dr_m < \infty, \end{aligned} \end{equation} (3.5)

    using assumption (3.5), we can use the Lebesgue dominated convergence theorem, which implies that

    \begin{equation} \begin{aligned} \underset{\varepsilon \rightarrow 0^+}{\lim}\frac{\varepsilon L_i}{\omega _Q} = \omega _{Q}^{m}\int_1^{\infty}{\int_0^{r_i}{\cdots}\int_0^{r_i}{K\left( r_1, ..., r_m \right)}}\prod\limits_{j = 1}^m{r_{j}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+Q-1}}dr_1\cdots dr_mdr_i, \end{aligned} \end{equation} (3.6)

    and

    \begin{equation} \begin{aligned} &\underset{\varepsilon \rightarrow 0^+}{\lim}\omega _{Q}^{m}\int_0^1{\cdots}\int_0^1{K\left( r_1, ..., r_m \right)}\prod\limits_{j = 1}^m{r_{j}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+\frac{\varepsilon}{q_j}+Q-1}}dr_1\cdots dr_m \\ & = \omega _{Q}^{m}\int_0^1{\cdots}\int_0^1{K\left( r_1, ..., r_m \right)}\prod\limits_{j = 1}^m{r_{j}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+Q-1}}dr_1\cdots dr_m. \end{aligned} \end{equation} (3.7)

    Furthermore, we have

    \left[ 0, 1 \right] ^m\cup \left( \bigcup\limits_{i = 1}^m{E_i} \right) = \left( 0, \infty \right) ^m,

    and for i, j = 1, ..., m , any of the intersection sets \left[0, 1 \right] ^m\cap E_i , E_i\cap E_j , i\ne j , has Lebesgue measure zero in \mathbb{H} ^n . Consequently, (3.4), (3.6), and (3.7) imply that

    \begin{align*} &\left\| \mathcal{H}^h \right\| _{L^{q_1}( \mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_1\alpha _1}{q}}) \times \cdot \cdot \cdot \times L^{q_m}( \mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_m\alpha _m}{q}}) \rightarrow L^q\left( \mathbb{H} ^n, \left| x \right|_{h}^{\alpha} \right)} \\ & = \underset{\varepsilon \rightarrow 0^+}{\lim}\frac{\left| \left < \mathcal{H}^h\left( f_{1, \varepsilon}, ..., f_{m, \varepsilon} \right) , g_{\varepsilon} \right > \right|}{\left\| g_{\varepsilon} \right\| _{L^{q ^{\prime}}( \mathbb{H} ^n, \left| x \right|_{h}^{\alpha})}\left\| f_{1, \varepsilon} \right\| _{L^{q_1}( \mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_1\alpha _1}{q}} )}\cdots \left\| f_{m, \varepsilon} \right\| _{L^{q_m}( \mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_m\alpha _m}{q}} )}} = C^h. \end{align*}

    This finishes the proof of Theorem 3.1.

    By taking a particular kernel K in operator T defined by (3.1), we can obtain sharp weighted L^p estimates for Hardy, Hardy-Littlewood-Pólya, and Hilbert operators on the Heisenberg group. Our results in this section are as follows.

    Corollary 4.1. Assume that the real paramenters q , q_j , \alpha , and \alpha_j with j = 1, 2, ..., m are the same as in Theorem 3.1, and f_j is a radial function in L^{q_{\boldsymbol{j}}}(\mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_{\boldsymbol{j}}\alpha _{\boldsymbol{j}}}{q}}) . Assume also that -\frac{\alpha _j}{q}-\frac{Q}{q_j}+Q > 0 . Then

    \begin{equation} \begin{aligned} \left\| \mathcal{H}_1 ^h \right\| _{L^{q_1}(\mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_1\alpha _1}{q}})\times \cdot \cdot \cdot \times L^{q_m}(\mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_m\alpha _m}{q}})\rightarrow L^q(\mathbb{H} ^n, \left| x \right|_{h}^{\alpha})} = \frac{q\omega _Q2^{1-m}}{mqQ-\alpha -Q}\frac{\prod\nolimits_{j = 1}^m{\varGamma ( ( Q-\frac{\alpha _j}{q}-\frac{Q}{q_j} ) /2 )}}{\varGamma ( ( mQ-\frac{\alpha}{q}-\frac{Q}{q} ) /2 )}. \end{aligned} \end{equation} (4.1)

    Corollary 4.2. Assume that the real paramenters q , q_j , \alpha , and \alpha_j with j = 1, 2, ..., m are the same as in Theorem 3.1, f_j is a radial function in L^{q_{\boldsymbol{j}}}(\mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_{\boldsymbol{j}}\alpha _{\boldsymbol{j}}}{q}}) . Assume also that -\frac{\alpha _j}{q}-\frac{Q}{q_j}+Q > 0 and -\frac{\alpha}{q}-\frac{Q}{q} < 0 . Then

    \begin{equation} \begin{aligned} \left\| \mathcal{H} _{2}^{h} \right\| _{L^{q_1}(\mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_1\alpha _1}{q}})\times \cdot \cdot \cdot \times L^{q_m}(\mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_m\alpha _m}{q}})\rightarrow L^q(\mathbb{H} ^n, \left| x \right|_{h}^{\alpha})} = \frac{q\omega _{Q}^{m}( mQ-\frac{\alpha}{q}-\frac{Q}{q})}{\left( \alpha +Q \right) \prod _{j = 1}^m{( Q-\frac{\alpha _j}{q}-\frac{Q}{q_j} )}}. \end{aligned} \end{equation} (4.2)

    Corollary 4.3. Assume that the real paramenters q , q_j , \alpha , and \alpha_j with j = 1, 2, ..., m are the same as in Theorem 3.1, and f_j is a radial function in L^{q_{\boldsymbol{j}}}(\mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_{\boldsymbol{j}}\alpha _{\boldsymbol{j}}}{q}}) . Assume also that -\frac{\alpha _j}{q}-\frac{Q}{q_j}+Q > 0 and -\frac{\alpha}{q}-\frac{Q}{q} < 0 . Then

    \begin{equation} \begin{aligned} \left\| \mathcal{H} _{3}^{h} \right\| _{L^{q_1}(\mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_1\alpha _1}{q}})\times \cdot \cdot \cdot \times L^{q_m}(\mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_m\alpha _m}{q}})\rightarrow L^q(\mathbb{H} ^n, \left| x \right|_{h}^{\alpha})} = \frac{\omega _{Q}^{m}\varGamma ( \frac{\alpha +Q}{qQ} ) \prod _{j = 1}^m{\varGamma ( 1-\frac{\alpha _j}{qQ}-\frac{1}{q_j})}}{Q^m\varGamma \left( m \right)}\, \, . \end{aligned} \end{equation} (4.3)

    Proof of Corollary 4.1. Next, we will use the methods in [7,17]. If we take the kernel

    \begin{align} K\left( y_1, ..., y_m \right) = \chi _{\{ \left| \left( y_1, ..., y_m \right) \right|_h\leqslant 1 \}}\left( y_1, ..., y_m \right) \end{align} (4.4)

    in Theorems 3.1, by a change of variables, it is easy to verify that \mathcal{H}^h = \mathcal{H}_1^h , and then \mathcal{H}_1^h can be denoted by

    \mathcal{H}_1^h = \int_{\left| \left( y_1, ..., y_m \right) \right|_h\leqslant 1}{f_1( \left| x \right|_{h}y_1 ) \cdots f_m( \left| x \right|_{h}y_m ) dy_1\cdots dy_m}.

    Then all things reduce to calculating

    C_{1}^{h} = \int_{\left| \left( y_1, ..., y_m \right) \right|_h\leqslant 1}{\prod\limits_{i = 1}^m{\left| y_i \right|_{h}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}}}dy_1\cdots dy_m}.

    To calculate this integral, employing the polar coordinates y_j = \rho _j\xi _j , j = 1, 2, ..., m , and Fubini's theorem, we obtain

    \begin{equation} \begin{aligned} C_{1}^{h} & = \int_{\mathbb{S}}{\cdot \cdot \cdot \int_{\mathbb{S}}{\int_{\sum\limits_{j = 1}^m{\rho _{j}^{2} < 1, \rho _j > 0, j = 1, ..., m}}{\prod\limits_{j = 1}^m{\rho_{j}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+Q-1}}}}}d\rho _1\cdots d\rho _md\sigma \left( \xi _1 \right) \cdot \cdot \cdot d\sigma \left( \xi _m \right) \\ & = \omega _{Q}^{m}\int_{\sum\limits_{j = 1}^m{\rho _{j}^{2} < 1, \rho _j > 0, j = 1, ..., m}}{\prod\limits_{j = 1}^m{\rho_{j}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+Q-1}}}d\rho _1\cdots d\rho _m. \end{aligned} \end{equation} (4.5)

    We use the m -dimensional spherical coordinates

    \begin{align*} &\rho _1 = r\cos \varphi _1, \\ &\rho _2 = r\sin \varphi _1\cos \varphi _2, \\ &\rho _3 = r\sin \varphi _1\sin \varphi _2\cos \varphi _3, \\ &\vdots \\ &\rho _{m-1} = r\sin \varphi _1\sin \varphi _2\cdots \sin \varphi _{m-2}\cos \varphi _{m-1}, \\ &\rho _m = r\sin \varphi _1\sin \varphi _2\cdots \sin \varphi _{m-2}\sin \varphi _{m-1}, \end{align*}

    where r\geqslant 0 is the radial coordinate and \varphi _j , j = 1, 2, ..., m-1 , are angular coordinates, \varphi _j\in \left[0, \pi \right] , j = 1, 2, ..., m-2 , \varphi _{m-1}\in \left[0, 2\pi \right) , and the known fact that the associated Jacobian is

    \left| J_m \right| = r^{m-1}\sin ^{m-2}\varphi _1\sin ^{m-3}\varphi _2\cdots \sin \varphi _{m-2}

    in (4.5). Since -\frac{\alpha _j}{q}-\frac{Q}{q_j}+Q > 0 , we have

    \begin{align*} &C_{1}^{h} = \omega _{Q}^{m}\int_0^1{r^{\sum _{j = 1}^m{( -\frac{\alpha _j}{q}-\frac{Q}{q_j}+Q-1 )}}}r^{m-1}\int_0^{\frac{\pi}{2}}{\int_0^{\frac{\pi}{2}}{\cdots \int_0^{\frac{\pi}{2}}{( \sin \varphi _1 ) ^{m-2}( \sin \varphi _2 ) ^{m-3}\cdots ( \sin \varphi _{m-2} ) ^1}}} \\ &( \sin \varphi _1) ^{\sum _{j = 2}^m{( -\frac{\alpha _j}{q}-\frac{Q}{q_j}+Q-1)}}( \sin \varphi _2) ^{\sum _{j = 3}^m{( -\frac{\alpha _j}{q}-\frac{Q}{q_j}+Q-1 )}}\cdots ( \sin \varphi _{m-2}) ^{\sum _{j = m-1}^m{( -\frac{\alpha _j}{q}-\frac{Q}{q_j}+Q-1)}}( \sin \varphi _{m-1} ) ^{-\frac{\alpha _m}{q}-\frac{Q}{q_m}+Q-1} \\ &( \cos \varphi _1) ^{-\frac{\alpha _1}{q}-\frac{Q}{q_1}+Q-1}\cdots ( \cos \varphi _{m-2} ) ^{-\frac{\alpha _{m-2}}{q}-\frac{Q}{q_{m-2}}+Q-1}( \cos \varphi _{m-1}) ^{-\frac{\alpha _{m-1}}{q}-\frac{Q}{q_{m-1}}+Q-1}d\varphi _1\cdots d\varphi _{m-1}dr \\ & = \omega _{Q}^{m}\int_0^1{r^{\sum _{j = 1}^m{( -\frac{\alpha _j}{q}-\frac{Q}{q_j}+Q) -1}}}dr \\ &\times\int_0^{\frac{\pi}{2}}{\cdots \int_0^{\frac{\pi}{2}}{\prod\limits_{j = 1}^{m-1}{( \sin \varphi _j ) ^{m-( j+1) +\sum _{i = j+1}^m{( -\frac{\alpha _i}{q}-\frac{Q}{q_i}+Q-1)}}}}}( \cos \varphi _j) ^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+Q-1}d\varphi _1\cdots d\varphi _{m-1} \\ & = \frac{\omega _{Q}^{m}}{\sum _{j = 1}^m{( -\frac{\alpha _j}{q}-\frac{Q}{q_j}+Q )}}\int_0^{\frac{\pi}{2}}{\cdots \int_0^{\frac{\pi}{2}}{\prod\limits_{j = 1}^{m-1}{( \sin \varphi _j ) ^{Q( m-j ) -1-\sum _{i = j+1}^m{( \frac{\alpha _i}{q}+\frac{Q}{q_i} )}}}}}( \cos \varphi _j ) ^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+Q-1}d\varphi _1\cdots d\varphi _m \\ & = \frac{\omega _{Q}^{m}}{mQ-\frac{\alpha +Q}{q}}\prod\limits_{j = 1}^{m-1}{\int_0^1{t_{j}^{Q( m-j) -1-\sum _{i = j+1}^m{( \frac{\alpha _i}{q}+\frac{Q}{q_i} )}}}}( 1-t_{j}^{2} ) ^{\frac{Q-2-\frac{\alpha _j}{q}-\frac{Q}{q_j}}{2}}dt_j \\ & = \frac{q\omega _{Q}^{m}2^{1-m}}{mqQ-\alpha -Q}\prod\limits_{j = 1}^{m-1}{\int_0^1{s_{j}^{\frac{Q(m-j)-\sum _{i = j+1}^m{(\frac{\alpha _i}{q}+\frac{Q}{q_i})}}{2}-1}}}\left( 1-s_{j\, \, } \right) ^{\frac{Q-\frac{\alpha _j}{q}-\frac{Q}{q_j}}{2}-1}ds_j \\ & = \frac{q\omega _{Q}^{m}2^{1-m}}{mqQ-\alpha -Q}\prod\limits_{j = 1}^{m-1}{B\left( \frac{Q( m-j ) -\sum _{i = j+1}^m{( \frac{\alpha _i}{q}+\frac{Q}{q_i} )}}{2}, \frac{Q-\frac{\alpha _j}{q}-\frac{Q}{q_j}}{2} \right)}. \end{align*}

    We also use the fact \varphi _j\in \left(0, \pi /2 \right) , j = 1, 2, ..., m-1 . From the seventh to eighth lines, we let t_j = \sin \varphi _j for j = 1, 2, ..., m-1 . From the eighth to ninth lines, we set s_j = t_j^2 for j = 1, 2, ..., m-1 , as well as the definition of the beta function (see, e.g., [24]).

    By using the following well-known relation between Euler's beta and gamma functions:

    B\left( a, b \right) = \frac{\varGamma \left( a \right) \varGamma \left( b \right)}{\varGamma \left( a+b \right)},

    (see, for example, [24]), after some simple calculations, we see that the following relations hold:

    \begin{align*} \prod\limits_{j = 1}^{m-1}{B\left( \frac{Q\left( m-j \right) -\sum _{i = j+1}^m{( \frac{\alpha _i}{q}+\frac{Q}{q_i} )}}{2}, \frac{Q-\frac{\alpha _j}{q}-\frac{Q}{q_j}}{2} \right)} & = \prod\limits_{j = 1}^{m-1}{\left( \frac{\varGamma \left( \frac{Q\left( m-j \right) -\sum _{i = j+1}^m{( \frac{\alpha _i}{q}+\frac{Q}{q_i})}}{2} \right) \varGamma \left( \frac{Q-\frac{\alpha _j}{q}-\frac{Q}{q_j}}{2} \right)}{\varGamma \left( \frac{Q\left( m-\left( j-1 \right) \right) -\sum _{i = j}^m{( \frac{\alpha _i}{q}+\frac{Q}{q_i})}}{2} \right)} \right)} \\ & = \frac{\prod _{j = 1}^m{\varGamma \left( \frac{Q-\frac{\alpha _j}{q}-\frac{Q}{q_j}}{2} \right)}}{\varGamma \left( \frac{mQ-\frac{\alpha}{q}-\frac{Q}{q}}{2} \right)}. \end{align*}

    Then we have

    C_{1}^{h} = \frac{q\omega _{Q}^{m}2^{1-m}}{mqQ-\alpha -Q}\frac{\prod _{j = 1}^m{\varGamma ( ( Q-\frac{\alpha _j}{q}-\frac{Q}{q_j}) /2 )}}{\varGamma ( ( mQ-\frac{\alpha}{q}-\frac{Q}{q} ) /2)}.

    This finishes the proof of Corollary 4.1.

    Proof of Corollary 4.2. Next, we refer to the methods in [3]. If we take the kernel

    \begin{align} K\left( y_1, ..., y_m \right) = \frac{1}{[\max\mathrm{(}1, \left| y_1 \right|_{h}^{Q}, ..., \left| y_m \right|_{h}^{Q})]^m} \end{align} (4.6)

    in Theorem 2.1, by a change of variables, we have \mathcal{H}^p = \mathcal{H}_{2}^{h} , and then \mathcal{H}_{2}^{h} can be denoted by

    \mathcal{H} _{2}^{h} = \int_{\mathbb{H} ^{mn}}{\frac{1}{[\max\mathrm{(}1, \left| y_1 \right|_{h}^{Q}, ..., \left| y_m \right|_{h}^{Q})]^m}f_1(\left| x \right|_hy_1)\cdots f_m(\left| x \right|_hy_m)dy_1\cdots dy_m}.

    Then, we reduce to calculating

    C_{2}^{h} = \int_{\mathbb{H} ^{mn}}{\frac{1}{[\max\mathrm{(}1, \left| y_1 \right|_{h}^{Q}, ..., \left| y_m \right|_{h}^{Q})]^m}\prod\limits_{j = 1}^m{| y_j |_{h}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}}}dy_1\cdots dy_m}.

    To calculate this integral, we divide the integral into m parts. Let

    \begin{align*} &E_0 = \left\{ \left( y_1, ..., y_m \right) \in \mathbb{H} ^n\times \cdots \times \mathbb{H} ^n:\left| y_k \right|_h\leqslant 1, 1\leqslant k\leqslant m \right\} ; \\ &E_1 = \left\{ \left( y_1, ..., y_m \right) \in \mathbb{H} ^n\times \cdots \times \mathbb{H} ^n:\left| y_1 \right|_h > 1, \left| y_k \right|_h\leqslant \left| y_1 \right|_h, 2\leqslant k\leqslant m \right\} ; \\ &E_i = \{ \left( y_1, ..., y_m \right) \in \mathbb{H} ^n\times \cdots \times \mathbb{H} ^n:| y_i |_h > 1, | y_j|_h < \left| y_i \right|_h, \left| y_k \right|_h\leqslant \left| y_i \right|_h, 1\leqslant j < i < k\leqslant m \} ; \\ &E_m = \{ \left( y_1, ..., y_m \right) \in \mathbb{H} ^n\times \cdots \times \mathbb{H} ^n:\left| y_m \right|_h > 1, | y_j |_h < \left| y_m \right|_h, 1\leqslant j < m \}. \end{align*}

    It is clear that

    \bigcup\limits_{j = 0}^m{E_j = \mathbb{H} ^n\times \cdots \times \mathbb{H} ^n},

    and E_i\cap E_j = \varnothing \left(i\ne j \right) . Let

    K_j: = \int_{E_j}{\frac{1}{[\max\mathrm{(}1, \left| y_1 \right|_{h}^{Q}, ..., \left| y_m \right|_{h}^{Q})]^m}\prod\limits_{k = 1}^m{\left| y_k \right|_{h}^{-\frac{\alpha _k}{q}-\frac{Q}{q_k}}}}dy_1\cdots dy_m,

    and then we have

    C_{2}^{h} = \sum\limits_{j = 1}^m{K_j:} = \sum\limits_{j = 1}^m{\int_{E_j}{\frac{1}{[\max\mathrm{(}1, \left| y_1 \right|_{h}^{Q}, ..., \left| y_m \right|_{h}^{Q})]^m}\prod\limits_{k = 1}^m{\left| y_k \right|_{h}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}}}dy_1\cdots dy_m}}.

    Now let us calculate J_j , j = 1, 2, ..., m . Since -\frac{\alpha _j}{q}-\frac{Q}{q_j}+Q > 0 , using the polar coordinate transformation, we have

    \begin{align*} K_0& = \int_{E_0}{\prod\limits_{j = 1}^m{\left| y_i \right|_{h}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}}}}dy_1\cdots dy_m = \prod\limits_{j = 1}^m{\int_{\left| y_i \right|_h\leqslant 1}{\left| y_i \right|_{h}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}}dy_i}} \\ & = \prod\limits_{j = 1}^m{\omega _Q\int_0^1{r_{j}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+Q-1}dr_j} = \frac{\omega _{Q}^{m}}{\prod\limits_{j = 1}^m{( Q-\frac{\alpha _j}{q}-\frac{Q}{q_j})}}}. \end{align*}

    For j = 1 , since -\frac{\alpha _j}{q}-\frac{Q}{q_j}+Q > 0 and -\frac{\alpha}{q}-\frac{Q}{q} < 0 , we have

    \begin{align*} K_1& = \int_{E_1}{\frac{\prod _{j = 1}^m{\left| y_i \right|_{h}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}}}}{[ \max( 1, \left| y_1 \right|_{h}^{Q}, ...\left| y_m \right|_{h}^{Q})] ^m}}dy_1\cdots dy_m = \int_{E_1}{\left| y_1 \right|_{h}^{-\frac{\alpha _1}{q}-\frac{Q}{q_1}-mQ}}\prod\limits_{j = 2}^m{| y_j |_{h}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}}}dy_2\cdots dy_mdy_1 \\ & = \int_{\left| y_1 \right|_h > 1}{\left| y_1 \right|_{h}^{-\frac{\alpha _1}{q}-\frac{Q}{q_1}-mQ}}\prod\limits_{j = 2}^m{\int_{\left| y_j \right|_h\leqslant \left| y_1 \right|_h}{| y_j|_{h}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}}dy_j}}dy_1 \\ & = \int_{\left| y_1 \right|_h > 1}{\left| y_1 \right|_{h}^{-\frac{\alpha _1}{q}-\frac{Q}{q_1}-mQ}}\prod\limits_{j = 2}^m{\omega _Q}\frac{\left| y_1 \right|_{h}^{Q-\frac{\alpha _j}{q}-\frac{Q}{q_j}}}{Q-\frac{\alpha _j}{q}-\frac{Q}{q_j}}dy_1 \\ & = \frac{\omega _{Q}^{m-1}}{\prod _{j = 2}^m{( Q-\frac{\alpha _j}{q}-\frac{Q}{q_j})}}\int_{\left| y_1 \right|_h > 1}{\left| y_1 \right|_{h}^{-\frac{\alpha}{q}-\frac{Q}{q}-Q}}dy_1 = \frac{q\omega _{Q}^{m}}{\left( \alpha +Q \right) \prod _{j = 2}^m{( Q-\frac{\alpha _j}{q}-\frac{Q}{q_j})}}. \end{align*}

    Similar for i = 2, ..., m-1 , we have

    \begin{align*} K_i& = \int_{E_i}{\left| y_i \right|_{h}^{-\frac{\alpha _i}{q}-\frac{Q}{q_i}-mQ}}\prod\limits_{j\ne i}^m{| y_j |_{h}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}}}dy_1\cdots dy_{i-1}dy_{i+1}dy_mdy_i \\ & = \int_{\left| y_i \right|_h > 1}{\left| y_i \right|_{h}^{-\frac{\alpha _i}{q}-\frac{Q}{q_i}-mQ}}\prod\limits_{j = 2}^{i-1}{\int_{| y_j|_h\leqslant \left| y_i \right|_h}{| y_j |_{h}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}}dy_j}}\prod\limits_{k = i+1}^m{\int_{\left| y_k \right|_h\leqslant \left| y_i \right|_h}{\left| y_k \right|_{h}^{-\frac{\alpha _k}{q}-\frac{Q}{q_k}}dy_kdy_i}} \\ & = \frac{q\omega _{Q}^{m}}{\left( \alpha +Q \right) \prod _{1\leqslant j\leqslant m, j\ne i}{( Q-\frac{\alpha _j}{q}-\frac{Q}{q_j})}}. \end{align*}

    When i = m , similar to the previous step, we show that

    K_m = \int_{\left| y_i \right|_h > 1}{\left| y_m \right|_{h}^{-\frac{\alpha _m}{q}-\frac{Q}{q_m}-mQ}}\prod\limits_{j = 1}^{m-1}{| y_j |_{h}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}}}dy_1\cdots dy_m = \frac{q\omega _{Q}^{m}}{\left( \alpha +Q \right) \prod _{j = 1}^{m-1}{( Q-\frac{\alpha _j}{q}-\frac{Q}{q_j})}}.

    Then, it yields that

    C_{h}^{2} = K_0+K_1+\sum\limits_{i = 2}^{m-1}{K_i}+K_m = \frac{q\omega _{Q}^{m}(mQ-\frac{\alpha}{q}-\frac{Q}{q})}{\left( \alpha +Q \right) \prod _{j = 1}^m{(Q-\frac{\alpha _j}{q}-\frac{Q}{q_j})}}.

    This finishes the proof of Corollary 4.2.

    Proof of Corollary 4.3. If we take the kernel

    \begin{align} K\left( y_1, ..., y_m \right) = \frac{1}{(1+\left| y_1 \right|_{h}^{Q}+\cdots +\left| y_m \right|_{h}^{Q})^m} \end{align} (4.7)

    in Theorem 2.1, by a change of variables, we have \mathcal{H}^p = \mathcal{H}_{3}^{h} , and then \mathcal{H}_{3}^{h} can be denoted by

    \mathcal{H} _{3}^{h} = \int_{\mathbb{H} ^{mn}}{\frac{1}{(1+\left| y_1 \right|_{h}^{Q}+\cdots +\left| y_m \right|_{h}^{Q})^m}f_1(\left| x \right|_hy_1)\cdots f_m(\left| x \right|_hy_m)dy_1\cdots dy_m}.

    Then, we reduce to calculating

    C_{3}^{h} = \int_{\mathbb{H} ^{mn}}{\frac{1}{(1+\left| y_1 \right|_{h}^{Q}+\cdots +\left| y_m \right|_{h}^{Q})^m}\prod\limits_{j = 1}^m{| y_j |_{h}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}}}dy_1\cdots dy_m}.

    Actually, this method stems from Benyi and Oh [2], who investigated the one-dimensional case. Following their method, it is easy to find the higher-dimensional case, as well. For completeness, we give the details. Employing the polar coordinates and making a change of variables, we have

    C_{3}^{h} = \omega _{Q}^{m}\int_0^{\infty}{\cdots \int_0^{\infty}{\frac{1}{(1+\rho _{1}^{Q}+\cdots +\rho _{m}^{Q})^m}\prod\limits_{j = 1}^m{\rho_{j}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+Q-1}}}}d\rho _1\cdots d\rho _m.

    Let \rho _{j}^{Q} = t_j , and we have

    C_{3}^{h} = \frac{\omega _{Q}^{m}}{Q^m}\int_0^{\infty}{\cdots \int_0^{\infty}{\frac{1}{\left( 1+t_1+\cdots +t_m \right) ^m}\prod\limits_{j = 1}^m{t_{j}^{\frac{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+Q}{Q}-1}}}}dt_1\cdots dt_m.

    Let us denote the integral on the right by

    \frac{Q^m}{\omega _{Q}^{m}}C_{3}^{h} = I_m\left( m, \frac{Q-\frac{\alpha _1}{q}-\frac{Q}{q_1}}{Q}, ..., \frac{Q-\frac{\alpha _m}{q}-\frac{Q}{q_m}}{Q} \right).

    By making the change of variables t_m = \left(1+t_1+\cdots +t_{m-1} \right) t and performing integration with respect to dt , we have the following identity:

    \begin{align*} &I_m\left( m, \frac{Q-\frac{\alpha _1}{q}-\frac{Q}{q_1}}{Q}, ..., \frac{Q-\frac{\alpha _m}{q}-\frac{Q}{q_m}}{Q} \right) \\ & = \int_0^{\infty}{\cdots \int_0^{\infty}{\frac{\left[ \left( 1+t_1+\cdots +t_{m-1} \right) t \right] ^{\frac{-\frac{\alpha _m}{q}-\frac{Q}{q_m}+Q}{Q}-1}\left( 1+t_1+\cdots +t_{m-1} \right)}{\left[ \left( 1+t_1+\cdots +t_{m-1} \right) +\left( 1+t_1+\cdots +t_{m-1} \right) t \right] ^m}}\prod\limits_{j = 1}^{m-1}{t_{j}^{\frac{-\frac{\alpha _j}{q}-\frac{Q}{q_j}+Q}{Q}-1}dt_1}}\cdots dt_{m-1}dt \\ & = \int_0^{\infty}{\left( 1+t \right) ^{-m}}t^{\frac{-\frac{\alpha _m}{q}-\frac{Q}{q_m}+Q}{Q}-1}dtI_{m-1}\left( m-\frac{Q-\frac{\alpha _m}{q}-\frac{Q}{q_m}}{Q}, \frac{Q-\frac{\alpha _1}{q}-\frac{Q}{q_1}}{Q}, ..., \frac{Q-\frac{\alpha _m}{q}-\frac{Q}{q_m}}{Q} \right). \end{align*}

    Observe that, if we make the change of variables t+1 = 1/s , we obtain

    \int_0^{\infty}{\left( 1+t \right) ^{-a-b}}t^{a-1}dt = \int_0^1{s^{a-1}\left( 1-s \right) ^{b-1}}ds = B\left( a, b \right) = \frac{\varGamma \left( a \right) \varGamma \left( b \right)}{\varGamma \left( a+b \right)}

    for a, b > 0 . According to known conditions, obviously, we have (Q-\frac{\alpha _j}{q}-\frac{Q}{q_j}) /Q > 0 . Now, we will show that m-(Q-\frac{\alpha _m}{q}-\frac{Q}{q_m}) /Q-\cdots -(Q-\frac{\alpha _k}{q}-\frac{Q}{q_k}) /Q > 0 with k = m, m-1, ..., 1 . Since -\frac{\alpha _j}{q}-\frac{Q}{q_j}+Q > 0 and -\frac{\alpha}{q}-\frac{Q}{q} < 0 , we have

    \begin{align*} m-\frac{Q-\frac{\alpha _m}{q}-\frac{Q}{q_m}}{Q}-\cdots -\frac{Q-\frac{\alpha _k}{q}-\frac{Q}{q_k}}{Q} & = \frac{\left( k-1 \right) Q+( \frac{\alpha _m}{q}+\frac{Q}{q_m} ) +\cdots +( \frac{\alpha _k}{q}+\frac{Q}{q_k} )}{Q} \\ & = \frac{\left( k-1 \right) Q+( \frac{\alpha}{q}+\frac{Q}{q}) -( \frac{\alpha _{k-1}}{q}+\frac{Q}{q_{k-1}}) -\cdots- ( \frac{\alpha _1}{q}+\frac{Q}{q_1})}{Q} \\ & = \frac{( Q-\frac{\alpha _{k-1}}{q}-\frac{Q}{q_{k-1}}) +\cdots +( Q-\frac{\alpha _1}{q}-\frac{Q}{q_1}) +( \frac{\alpha}{q}+\frac{Q}{q})}{Q} > 0. \end{align*}

    Therefore, if we recall the relationship between the beta and gamma functions, we obtain

    \int_0^{\infty}{\left( 1+t \right) ^{-m}}t^{( \frac{\alpha _m}{q}-\frac{Q}{q_m}+Q) /Q-1}dt = \frac{\varGamma( ( \frac{\alpha _m}{q}-\frac{Q}{q_m}+Q) /Q ) \varGamma ( m-( \frac{\alpha _m}{q}-\frac{Q}{q_m}+Q ) /Q)}{\varGamma \left( m \right)},

    and

    \begin{align*} &I_m\left( m, \frac{Q-\frac{\alpha _1}{q}-\frac{Q}{q_1}}{Q}, ..., \frac{Q-\frac{\alpha _m}{q}-\frac{Q}{q_m}}{Q} \right) \\ & = \frac{\varGamma \left( \frac{\frac{\alpha _m}{q}-\frac{Q}{q_m}+Q}{Q} \right) \varGamma \left( m-\frac{\frac{\alpha _m}{q}-\frac{Q}{q_m}+Q}{Q} \right)}{\varGamma \left( m \right)}I_{m-1}\left( m-\frac{Q-\frac{\alpha _m}{q}-\frac{Q}{q_m}}{Q}, \frac{Q-\frac{\alpha _1}{q}-\frac{Q}{q_1}}{Q}, ..., \frac{Q-\frac{\alpha _{m-1}}{q}-\frac{Q}{q_{m-1}}}{Q} \right). \end{align*}

    By a simple induction argument, we obtain from this recurrence that

    \begin{align*} I\left( m, \frac{Q-\frac{\alpha _1}{q}-\frac{Q}{q_1}}{Q}, ..., \frac{Q-\frac{\alpha _m}{q}-\frac{Q}{q_m}}{Q} \right) & = \frac{\varGamma \left( m-\frac{Q-\frac{\alpha _m}{q}-\frac{Q}{q_m}}{Q}-\cdots -\frac{Q-\frac{\alpha _1}{q}-\frac{Q}{q_1}}{Q} \right) \varGamma \left( \frac{Q-\frac{\alpha _m}{q}-\frac{Q}{q_m}}{Q} \right) \cdots \varGamma \left( \frac{Q-\frac{\alpha _1}{q}-\frac{Q}{q_1}}{Q} \right)}{\varGamma \left( m \right)} \\ & = \frac{\varGamma \left( \frac{\alpha +Q}{qQ} \right) \prod _{j = 1}^m{\varGamma \left( 1-\frac{\alpha _j}{qQ}-\frac{1}{q_j} \right)}}{\varGamma \left( m \right)}. \end{align*}

    Then

    C_{3}^{h} = \frac{\omega _{Q}^{m}}{Q^m}I_m\left( m, \frac{Q-\frac{\alpha _1}{q}-\frac{Q}{q_1}}{Q}, ..., \frac{Q-\frac{\alpha _m}{q}-\frac{Q}{q_m}}{Q} \right) = \frac{\omega _{Q}^{m}\varGamma \left( \frac{\alpha +Q}{qQ} \right) \prod _{j = 1}^m{\varGamma \left( 1-\frac{\alpha _j}{qQ}-\frac{1}{q_j} \right)}}{Q^m\varGamma \left( m \right)}\, \, .

    This finishes the proof of Corollary 4.3.

    In this section, we will use the previous results to give the weighted L^p estimates for the m -linear n -dimensional Hausdorff operator on the Heisenberg group.

    Corollary 5.1. Assume that the real paramenters q , q_j , \alpha , and \alpha_j with j = 1, 2, ..., m are the same as in Theorem 3.1. A nonnegative function \Phi on \mathbb{H} ^n satisfies

    \begin{align} C_{\Phi}^{h} = \int_0^{\infty}{\cdots \int_0^{\infty}{\int_{\mathbb{S} ^{Q-1}}{\cdots \int_{\mathbb{S} ^{Q-1}}{\frac{\Phi \left( \delta _{r_1}y_{1}^{\prime}, ..., \delta _{r_m}y_{m}^{\prime} \right)}{\left| r_1 \right|_{h}^{Q}\cdots \left| r_m \right|_{h}^{Q}}\prod\limits_{j = 1}^m{r_{j}^{\frac{\alpha _j}{q}+\frac{Q}{q_j}-\frac{\varepsilon}{q_j}-Q+1}}}}}}dy_{1}^{\prime}\cdots dy_{m}^{\prime}dr_1\cdots dr_m < \infty. \end{align} (5.1)

    Then

    \begin{align} \left\| \mathcal{H} _{\Phi}^{h} \right\| _{L^{q_1}(\mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_1\alpha _1}{q}})\times \cdot \cdot \cdot \times L^{q_m}(\mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_m\alpha _m}{q}})\rightarrow L^q(\mathbb{H} ^n, \left| x \right|_{h}^{\alpha})} = C_{\Phi}^{h}. \end{align} (5.2)

    Proof. By a change of variables, the m -linear n -dimensional Hausdorff operator become

    \mathcal{H} _{\Phi}^{h} = \int_{\mathbb{H} ^n}{\cdots}\int_{\mathbb{H} ^n}{\frac{\Phi \left( y_1, ..., y_m \right)}{\left| y_1 \right|_{h}^{n}\cdots \left| y_m \right|_{h}^{n}}}f_1(\delta _{\left| y_1 \right|_{h}^{-1}}x)\cdots f_m(\delta _{\left| y_m \right|_{h}^{-1}}x)dy_1\cdots dy_m.

    We can obtain

    \begin{align*} &\left\| \mathcal{H} _{\Phi}^{h} \right\| _{L^{q_1}(\mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_1\alpha _1}{q}})\times \cdot \cdot \cdot \times L^{q_m}(\mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_m\alpha _m}{q}})\rightarrow L^q(\mathbb{H} ^n, \left| x \right|_{h}^{\alpha})} \\ & = \int_0^{\infty}{\cdots \int_0^{\infty}{\int_{\mathbb{S} ^{Q-1}}{\cdots \int_{\mathbb{S} ^{Q-1}}{\frac{\Phi \left( \delta _{r_1}y_{1}^{\prime}, ..., \delta _{r_m}y_{m}^{\prime} \right)}{\left| r_1 \right|_{h}^{Q}\cdots \left| r_m \right|_{h}^{Q}}\prod\limits_{j = 1}^m{r_{j}^{\frac{\alpha _j}{q}+\frac{Q}{q_j}-\frac{\varepsilon}{q_j}-Q+1}}}}}}dy_{1}^{\prime}\cdots dy_{m}^{\prime}dr_1\cdots dr_m \\ & = C_{\Phi}^{h}. \end{align*}

    This is similar to the proof of Theorem 3.1, so we omit the details. This finishes the proof of Corollary 5.1.

    First, in the setting of the Heisenberg group, the n -dimensional fractional Hardy operator has a sharp weak estimate from L^p to L^{q, \infty} . The weak estimate bound is given by

    \begin{align*} \left\| \mathcal{H}_{\alpha} \right\| _{L^p( \mathbb{H} ^n, \left| x \right|_{h}^{\beta} ) \rightarrow L^{q, \infty}( \mathbb{H} ^n, \left| x \right|_{h}^{\gamma} )} = \left( \frac{\omega _Q}{Q+\gamma} \right) ^{\frac{1}{q}}\left( \frac{\omega _Q\left( p-1 \right)}{pQ-Q-\beta} \right) ^{\frac{1}{p^{\prime}}}. \end{align*}

    Additionally, for the L^1 case, we have

    \begin{align*} \left\| \mathcal{H}_{\alpha} \right\| _{L^1\left( \mathbb{H} ^n \right) \rightarrow L^{\left( Q+\beta \right) /\left( Q-\alpha \right) , \infty}( \mathbb{H} ^n, \left| x \right|_{h}^{\gamma} )} = \left( \frac{\omega _Q}{Q+\beta} \right) ^{\left( Q-\alpha \right) /\left( Q+\beta \right)}. \end{align*}

    Second, we derive the sharp bounds for the m -linear n -dimensional integral operator with a kernel on weighted Lebesgue spaces:

    \begin{align*} \left\| \mathcal{H}^h\right\| _{L^{q_1}( \mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_1\alpha _1}{q}} ) \times \cdot \cdot \cdot \times L^{q_m}( \mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_m\alpha _m}{q}} ) \rightarrow L^q( \mathbb{H} ^n, \left| x \right|_{h}^{\alpha} )} = \int_{\mathbb{H} ^n}{\cdots \int_{\mathbb{H} ^n}{K\left( y_1, ..., y_m \right) \prod\limits_{i = 1}^m{\left| y_i \right|_{h}^{-\frac{\alpha _j}{q}-\frac{Q}{q_j}}}}}dy_1\cdots dy_m. \end{align*}

    Finally, as an application, the sharp bounds for Hardy, Hardy-Littlewood-Pólya, and Hilbert operators on weighted Lebesgue spaces are obtained. Moreover, we also find the estimate for the Hausdorff operator on weighted L^p spaces:

    \begin{align*} &\left\| \mathcal{H} _{\Phi}^{h} \right\| _{L^{q_1}(\mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_1\alpha _1}{q}})\times \cdot \cdot \cdot \times L^{q_m}(\mathbb{H} ^n, \left| x \right|_{h}^{\frac{q_m\alpha _m}{q}})\rightarrow L^q(\mathbb{H} ^n, \left| x \right|_{h}^{\alpha})}\\ & = \int_0^{\infty}{\cdots \int_0^{\infty}{\int_{\mathbb{S} ^{Q-1}}{\cdots \int_{\mathbb{S} ^{Q-1}}{\frac{\Phi \left( \delta _{r_1}y_{1}^{\prime}, ..., \delta _{r_m}y_{m}^{\prime} \right)}{\left| r_1 \right|_{h}^{Q}\cdots \left| r_m \right|_{h}^{Q}}\prod\limits_{j = 1}^m{r_{j}^{\frac{\alpha _j}{q}+\frac{Q}{q_j}-\frac{\varepsilon}{q_j}-Q+1}}}}}}dy_{1}^{\prime}\cdots dy_{m}^{\prime}dr_1\cdots dr_m. \end{align*}

    Tianyang He: Conceptualization, methodology; Zhiwen Liu: Writing-original draft; Ting Yu: Writing-review and editing, validation, methodology. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the National Natural Science Foundation of China with code 12471461 and the Fundamental Research Funds for the Central Universities. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

    The authors declare that they have no conflict of interest.



    [1] W. G. Faris, Weak Lebesgue spaces and quantum mechanical binding, Duke Math. J., 43 (1976), 365–373. https://doi.org/10.1215/S0012-7094-76-04332-5 doi: 10.1215/S0012-7094-76-04332-5
    [2] A. Benyi, C. T. Oh, Best constants for certain multilinear integral operators, J. Inequal. Appl., 2006, 28582. https://doi.org/10.1155/jia/2006/28582
    [3] T. Batbold, Y. Sawano, Sharp bounds for m-linear Hilbert-type operators on the weighted Morrey spaces, Math. Inequal. Appl., 20 (2017), 263–283. https://doi.org/10.7153/mia-20-20 doi: 10.7153/mia-20-20
    [4] M. Christ, L. Grafakos, Best constants for two nonconvolution inequalities, P. Am. Math. Soc., 123 (1995), 1687–1693. https://doi.org/10.1090/s0002-9939-1995-1239796-6 doi: 10.1090/s0002-9939-1995-1239796-6
    [5] J. Y. Chu, Z. W. Fu, Q. Y. Wu, L^p and BMO bounds for weighted Hardy operators on the Heisenberg group, J. Inequal. Appl., 2016, 1–12. https://doi.org/10.1186/s13660-016-1222-x
    [6] T. Coulhon, D. M\ddot{u}ller, J. Zienkiewicz, About Riesz transforms on the Heisenberg groups, Math. Ann., 305 (1996), 369–379. https://doi.org/10.1007/bf01444227 doi: 10.1007/bf01444227
    [7] Z. W. Fu, L. Grafakos, S. Z. Lu, F. Y. Zhao, Sharp bounds for m-linear Hardy and Hilbert operators, Houston J. Math., 38 (2012), 225–243.
    [8] G. Gao, X. Hu, C. Zhang, Sharp weak estimates for Hardy-type operators, Ann. Funct. Anal., 7 (2016), 421–433. https://doi.org/10.1215/20088752-3605447 doi: 10.1215/20088752-3605447
    [9] G. Gao, F. Y. Zhao, Sharp weak bounds for Hausdorff operators, Anal. Math., 41 (2015), 163–173. https://doi.org/10.1007/s10476-015-0204-4 doi: 10.1007/s10476-015-0204-4
    [10] Q. J. He, M. Q. Wei, D. Y. Yan, Sharp bound for generalized m-linear n-dimensional Hardy-Littlewood-Pólya operator, Anal. Theor. Appl., 37 (2021), 1–14. https://doi.org/10.4208/ata.OA-2020-0039 doi: 10.4208/ata.OA-2020-0039
    [11] G. H. Hardy, Note on a theorem of Hilbert, Math. Z., 6 (1920), 314–317. https://doi.org/10.1007/bf01199965
    [12] A. Korányi, H. Reimann, Quasiconformal mappings on the Heisenberg group, Invent. Math., 80 (1985), 309–338. https://doi.org/10.1007/bf01388609 doi: 10.1007/bf01388609
    [13] S. Z. Lu, D. D. Yan, F. Y. Zhao, Sharp bounds for Hardy type operators on higher-dimensional product spaces, J. Inequal. Appl., 2013 (2013), 1–11. https://doi.org/10.1186/1029-242x-2013-148 doi: 10.1186/1029-242x-2013-148
    [14] S. Lu, Some recent progress of n-dimensional Hardy operators, Adv. Math. China, 42 (2013), 737–747.
    [15] Y. Mizuta, A. Nekvinda, T. Shimomura, Optimal estimates for the fractional Hardy operator, Stud. Math., 227 (2015), 1–19. https://doi.org/10.4064/sm227-1-1 doi: 10.4064/sm227-1-1
    [16] S. Semmes, An introduction to Heisenberg groups in analysis and geometry, Not. Am. Math. Soc., 50 (2003), 173–186.
    [17] S. Stević, Note on norm of an m-linear integral-type operator between weighted-type spaces, Adv. Differ. Equ., 2021 (2021), 1–10. https://doi.org/10.1186/s13662-021-03346-4 doi: 10.1186/s13662-021-03346-4
    [18] S. Thangavelu, Harmonic analysis on the Heisenberg group, MA: Birkhauser Boston, 159 (1998).
    [19] Q. Y. Wu, Z. W. Fu, Sharp estimates of m-linear p-adic Hardy and Hardy-Littlewood-Pólya operators, Appl. Math., 2011, 1–20.
    [20] H. X. Yu, J. F. Li, Sharp weak bounds for n-dimensional fractional Hardy operators, Front. Math. China, 13 (2018), 449–457. https://doi.org/10.1007/s11464-018-0685-0 doi: 10.1007/s11464-018-0685-0
    [21] F. Y. Zhao, Z. W. Fu, S. Z. Lu, Endpoint estimates for n-dimensional Hardy operators and their commutators, Sci. China Math., 55 (2012), 1977–1990. https://doi.org/10.1007/s11425-012-4465-0 doi: 10.1007/s11425-012-4465-0
    [22] F. Y. Zhao, S. Z. Lu, The best bound for n-dimensional fractional Hardy operators, Math. Inequal. Appl., 18 (2015), 233–240. https://doi.org/10.7153/mia-18-17 doi: 10.7153/mia-18-17
    [23] G. Zhang, Q. Li, Q. Wu, The Weighted and estimates for fractional Hausdorff operators on the Heisenberg Group, J. Funct. Space., 2020.
    [24] V. A. Zorich, O. Paniagua, Mathematical analysis II, Berlin: Springer, 2016. https://doi.org/10.5860/choice.42-0997b
    [25] X. S. Zhang, M. Q. Wei, D. Y. Yan, Sharp bound of Hausdorff operators on Morrey spaces with power weights, J. Univ. Chinese Acad. Sci., 38 (2021), 577.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(591) PDF downloads(73) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog