This paper demonstrates the boundedness of the fractional bilinear Hardy operator and its adjoint on weighted $ \rlap{-} \lambda $-central Morrey spaces with a variable exponent. Analogous outcomes for their commutators were derived when the symbol functions are elements of the weighted $ \rlap{-} \lambda $-central bounded mean oscillation ($ \rlap{-} \lambda $-central BMO) spaces.
Citation: Muhammad Asim, Ghada AlNemer. Analytical findings on bilinear fractional Hardy operators in weighted central Morrey spaces with variable exponents[J]. AIMS Mathematics, 2025, 10(5): 10431-10451. doi: 10.3934/math.2025475
This paper demonstrates the boundedness of the fractional bilinear Hardy operator and its adjoint on weighted $ \rlap{-} \lambda $-central Morrey spaces with a variable exponent. Analogous outcomes for their commutators were derived when the symbol functions are elements of the weighted $ \rlap{-} \lambda $-central bounded mean oscillation ($ \rlap{-} \lambda $-central BMO) spaces.
| [1] |
W. Orlicz, Uber konjugierete exponentenfolgen, Stud. Math., 3 (1931), 200–212. https://doi.org/10.4064/sm-3-1-200-211 doi: 10.4064/sm-3-1-200-211
|
| [2] |
O. Kováčik, J. Rákosník, On spaces $ L^{p(x)} $ and $ W^{k, p(x)} $, Czech. Math. J., 41 (1991), 592–618. https://doi.org/10.21136/CMJ.1991.102493 doi: 10.21136/CMJ.1991.102493
|
| [3] |
I. I. Sharapudinov, On a topology of the space $L^{p(t)}[0, 1]$, Math. Notes, 26 (1979), 796–806. https://doi.org/10.1007/BF01159546 doi: 10.1007/BF01159546
|
| [4] | M. Ruzicka, Electrorheological fluids, modeling and mathematical theory, Lectures Notes in Math., Berlin: Springer, 2000. https://doi.org/10.1007/BFb0104030 |
| [5] |
M. Izuki, Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization, Anal. Math., 13 (2010), 33–50. https://doi.org/10.1007/s10476-010-0102-8 doi: 10.1007/s10476-010-0102-8
|
| [6] |
H. Zhao, J. Zhou, Anisotropic Herz-type Hardy spaces with variable exponent and their applications, Acta Math. Hung., 156 (2018), 309–335. https://doi.org/10.1007/s10474-018-0851-6 doi: 10.1007/s10474-018-0851-6
|
| [7] |
C. Fang, J. Zhou, On 2-microlocal Herz type Besov and Triebel-Lizorkin spaces with variable exponents, J. Math. Study, 54 (2021), 227–249. https://doi.org/10.4208/jms.v54n3.21.01 doi: 10.4208/jms.v54n3.21.01
|
| [8] |
J. Xu, The boundedness of multilinear commutators of singular integrals on Lebesgue spaces with variable exponent, Czech. Math. J., 57 (2007), 13–27. https://doi.org/10.1007/S10587-007-0040-1 doi: 10.1007/S10587-007-0040-1
|
| [9] |
M. Asim, G. AlNemer, Results for fractional bilinear Hardy operators in central varying exponent Morrey space, AIMS Math., 9 (2024), 29689–29706. https://doi.org/10.3934/math.20241438 doi: 10.3934/math.20241438
|
| [10] |
A. Asim, F. Gurbaz, Some variable exponent boundedness and commutators estimates for fractional Hardy operators on central Morrey spaces, Commun. Fac. Sci. Univ., 7 (2024), 802–819. https://doi.org/10.31801/cfsuasmas.1463245 doi: 10.31801/cfsuasmas.1463245
|
| [11] |
C. Capone, D. Cruz-Uribe, SFO, A. Fiorenza, The fractional maximal operator and fractional integrals on variable $L^p$ spaces, Rev. Mat. Iberoam., 23 (2007), 743–770. https://doi.org/10.4171/rmi/511 doi: 10.4171/rmi/511
|
| [12] | M. Asim, G. AlNemer, Boundedness on variable exponent Morrey-Herz space for fractional multilinear Hardy operators, AIMS Math., 10 (2025), 117–136. https://dx.doi.org/2010.3934/math.2025007 |
| [13] |
J. Peetre, On the theory of $L_{p, \lambda}$ spaces, J. Funct. Anal., 4 (1969), 71–87. https://doi.org/10.1016/0022-1236(69)90022-6 doi: 10.1016/0022-1236(69)90022-6
|
| [14] | J. Alvarez, J. Lakey, M. Guzmán-Partida, Spaces of bounded $\rlap{-} \lambda$-central mean oscillation, Morrey spaces, and $\rlap{-} \lambda$-central Carleson measures, Collect. Math., 51 (2000), 1–47. |
| [15] |
Z. Fu, S. Lu, H. Wang, L. Wang, Singular integral operators with rough kernels on central Morrey spaces with variable exponent, Ann. Acad. Sci. Fenn.-M., 44 (2019), 505–522. https://doi.org/10.5186/aasfm.2019.4431 doi: 10.5186/aasfm.2019.4431
|
| [16] |
H. Wang, Z. Liu, Boundedness of singular integral operators on weak Herz type spaces with variable exponent, Ann. Funct. Anal., 11 (2020), 1108–1125. https://doi.org/10.48550/arXiv.2003.05690 doi: 10.48550/arXiv.2003.05690
|
| [17] |
H. Wang, J. Xu, Multilinear fractional integral operators on central Morrey spaces with variable exponent, J. Inequal. Appl., 2019 (2019). https://doi.org/10.1186/s13660-019-2264-7 doi: 10.1186/s13660-019-2264-7
|
| [18] |
A. Hussain, M. Asim, F. Jarad, Variable $\rlap{-} \lambda$-central Morrey space estimates for the fractional Hardy operators and commutators, J. Math., 2022 (2022). https://doi.org/10.1155/2022/5855068 doi: 10.1155/2022/5855068
|
| [19] |
G. H. Hardy, Note on a theorem of Hilbert, Math. Z., 6 (1920), 314–317. https://doi.org/10.1007/BF01199965 doi: 10.1007/BF01199965
|
| [20] |
M. Chris, L. Grafakos, Best constant for two nonconvolution inequalities, Math. Z., 123 (1995), 1687–1693. https://doi.org/10.1090/S0002-9939-1995-1239796-6 doi: 10.1090/S0002-9939-1995-1239796-6
|
| [21] |
Z. W. Fu, Z. G. Liu, S. Z. Lu, H. Wong, Characterization for commutators of $ n $-dimensional fractional Hardy Operators, Sci. China Ser. A, 10 (2007), 1418–1426. https://doi.org/10.1007/s11425-007-0094-4 doi: 10.1007/s11425-007-0094-4
|
| [22] |
Z. Fu, S. Lu, F. Zhao, Commutators of n-dimensional rough Hardy operators, Sci. China Math., 54 (2011), 95–104. https://doi.org/10.1007/s11425-010-4110-8 doi: 10.1007/s11425-010-4110-8
|
| [23] |
B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, T. Am. Math. Soc., 165 (1972), 207–226. http://doi.org/10.1090/S0002-9947-1972-0293384-6 doi: 10.1090/S0002-9947-1972-0293384-6
|
| [24] | D. Cruz-Uribe, A. Fiorenza, C. Neugebauer, The maximal function on variable $L^p$ spaces, Ann. Acad. Sci. Fenn.-M., 28 (2003), 223–238. Available from: https://acadsci.fi/mathematica/Vol28/cruz.pdf. |
| [25] |
M. Izuki, T. Noi, Boundedness of fractional integrals on weighted Herz spaces with variable exponent, J. Inequal. Appl., 2016 (2016), 199. https://doi.org/10.1186/s13660-016 doi: 10.1186/s13660-016
|
| [26] |
M. Izuki, T. Noi, An intrinsic square function on weighted Herz spaces with variable exponent, J. Math. Inequal., 11 (2017), 799–816. http://dx.doi.org/10.7153/jmi-2017-11-62 doi: 10.7153/jmi-2017-11-62
|
| [27] |
D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, Weighted norm inequalities for the maximal operator on variable Lebesgue spaces, J. Math. Anal. Appl., 394 (2012), 744–760. http://dx.doi.org/10.1016/j.jmaa.2012.04.044 doi: 10.1016/j.jmaa.2012.04.044
|
| [28] | C. Bennett, R. C. Sharpley, Interpolation of operators, Boston: Academic Press, 1988. |
| [29] |
D. Cruz-Uribe, L. Diening, P. Hästö, The maximal operator on weighted variable Lebesgue spaces, Fract. Calc. Appl. Anal., 14 (2011), 361–374. https://doi.org/10.2478/s13540-011-0023-7 doi: 10.2478/s13540-011-0023-7
|
| [30] | M. Izuki, Remarks on Muckenhoupt weights with variable exponent, Sci. Math. Jpn., 2 (2013), 27–41. |
| [31] | A. Y. Karlovich, I. M. Spitkovsky, The Cauchy singular integral operator on weighted variable Lebesgue spaces, In: Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation, Operator Theory: Advances and Applications, Birkhäuser, Basel, 236 (2014), 275–291. https://doi.org/10.1007/978-3-0348-0648-0-17 |
| [32] |
M. Izuki, T. Noi, Two weight Herz space variable exponent, B. Malays. Math. Sci. So., 43 (2020), 169–200. https://doi.org/10.1007/s40840-018-0671-4 doi: 10.1007/s40840-018-0671-4
|
| [33] |
M. Izuki, Boundedness of commutators on Herz spaces with variable exponent, Rend. Circ. Mat. Palerm., 59 (2010), 199–213. https://doi.org/10.1007/s12215-010-0015-1 doi: 10.1007/s12215-010-0015-1
|