In this paper, we studied the precise norm of the multilinear Hardy operators $ P^m $ and $ Q^m $ on central Morrey spaces with power weights. Furthermore, the precise norm of the multilinear Hardy operator $ Q^m $ on Lebesgue spaces with power weights was also obtained.
Citation: Meichuan Lv, Wenming Li. Sharp bounds for multilinear Hardy operators on central Morrey spaces with power weights[J]. AIMS Mathematics, 2025, 10(6): 14183-14195. doi: 10.3934/math.2025639
In this paper, we studied the precise norm of the multilinear Hardy operators $ P^m $ and $ Q^m $ on central Morrey spaces with power weights. Furthermore, the precise norm of the multilinear Hardy operator $ Q^m $ on Lebesgue spaces with power weights was also obtained.
| [1] | J. Alvarez, M. Guzmán-Partida, J. Lakey, Spaces of bounded $\lambda$-central mean oscillation, Morrey spaces, and $\lambda$-central Carleson measures, Collect. Math., 51 (2000), 1–47. |
| [2] |
Á. Bényi, C. T. Oh, Best constants for certain multilinear integral operators, J. Inequal. Appl., 2006 (2006), 1–12. https://doi.org/10.1155/JIA/2006/28582 doi: 10.1155/JIA/2006/28582
|
| [3] |
M. Christ, L. Grafakos, Best constants for two nonconvolution inequalities, Proc. Amer. Math. Soc., 123 (1995), 1687–1693. https://doi.org/10.2307/2160978 doi: 10.2307/2160978
|
| [4] |
J. Duoandikoetxea, F. J. Martín-Reyes, S. Ombrosi, Calderón weights as Muckenhoupt weights, Indiana Univ. Math. J., 62 (2013), 891–910. https://doi.org/10.1512/iumj.2013.62.4971 doi: 10.1512/iumj.2013.62.4971
|
| [5] |
J. Duoandikoetxea, Fractional integrals on radial functions with applications to weighted inequalities, Ann. Mat. Pur. Appl., 192 (2013), 553–568. https://doi.org/10.1007/s10231-011-0237-7 doi: 10.1007/s10231-011-0237-7
|
| [6] |
W. D. Faris, Weak Lebesgue spaces and quantum mechanical binding, Duke Math. J., 43 (1976), 365–373. http://doi.org/10.1215/S0012-7094-76-04332-5 doi: 10.1215/S0012-7094-76-04332-5
|
| [7] |
Z. W. Fu, S. L. Gong, S. Z. Lu, W. Yuan, Weighted multilinear Hardy operators and commutators, Forum Math., 27 (2015), 2825–2851. https://doi.org/10.1515/forum-2013-0064 doi: 10.1515/forum-2013-0064
|
| [8] | Z. W. Fu, L. Grafakos, S. Z. Lu, F. Y. Zhao, Sharp bounds for $m$-linear Hardy and Hilbert operators, Houston J. Math., 38 (2012), 225–244. |
| [9] | G. H. Hardy, Note on a theorem of Hilbert, Math. Zeit., 6 (1920), 314–317. https://doi.org/10.1007/BF01199965 |
| [10] | G. H. Hardy, Note on some points in the integral calculus, Messenger Math., 57 (1928), 12–16. |
| [11] |
S. Z. Lu, D. Y. Yan, F. Y. Zhao, Sharp bounds for Hardy type operators on higher-dimensional product spaces, J. Inequal. Appl., 2013 (2013), 148. https://doi.org/10.1186/1029-242X-2013-148 doi: 10.1186/1029-242X-2013-148
|
| [12] |
C. B. Morrey Jr, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126–166. https://doi.org/10.2307/1989904 doi: 10.2307/1989904
|
| [13] |
T. Ono, Tent space approach of Morrey spaces and their application to duality and complex interpolation, J. Funct. Space., 2023 (2023), 5822846. https://doi.org/10.1155/2023/5822846 doi: 10.1155/2023/5822846
|
| [14] | M. A. Ragusa, Dirichlet problem in Morrey Spaces for elliptic equations in non divergence form with VMO coefffcients, 8th Int. Coll. Differ. Equ., (1998), 385–390. |
| [15] |
N. Samko, Weighted Hardy and singular operators in Morrey spaces, J. Math. Anal. Appl., 350 (2008), 56–72. https://doi.org/10.1016/j.jmaa.2008.09.021 doi: 10.1016/j.jmaa.2008.09.021
|
| [16] |
A. Scapellato, Riesz potential, Marcinkiewicz integral and their commutators on mixed Morrey spaces, Filomat, 34 (2020), 931–944. https://doi.org/10.2298/fil2003931s doi: 10.2298/fil2003931s
|
| [17] |
S. M. Wang, S. Z. Lu, D. Y. Yan, Explicit constants for Hardy's inequality with power weight on $n$-dimensional product spaces, Sci. China Math., 55 (2012), 2469–2480. https://doi.org/10.1007/s11425-012-4453-4 doi: 10.1007/s11425-012-4453-4
|
| [18] |
M. Q. Wei, D. Y. Yan, Sharp bounds for Hardy-type operators on mixed radial-angular central Morrey spaces, J. Inequal. Appl., 2023 (2023), 1–13. https://doi.org/10.1186/s13660-023-02936-y doi: 10.1186/s13660-023-02936-y
|
| [19] | T. L. Yee, K. P. Ho, General Hardy-type operators on local generalized Morrey spaces, Constr. Math. Anal., 8 (2025), 1–14. |
| [20] |
F. Y. Zhao, Z. W. Fu, S. Z. Lu, Endpoint estimates for $n$-dimensional Hardy operators and their commutators, Sci. China Math., 55 (2012), 1977–1990. https://doi.org/10.1007/s11425-012-4465-0 doi: 10.1007/s11425-012-4465-0
|