Research article

Sharp bounds for multilinear Hardy operators on central Morrey spaces with power weights

  • Published: 19 June 2025
  • MSC : 42B25, 40A30

  • In this paper, we studied the precise norm of the multilinear Hardy operators $ P^m $ and $ Q^m $ on central Morrey spaces with power weights. Furthermore, the precise norm of the multilinear Hardy operator $ Q^m $ on Lebesgue spaces with power weights was also obtained.

    Citation: Meichuan Lv, Wenming Li. Sharp bounds for multilinear Hardy operators on central Morrey spaces with power weights[J]. AIMS Mathematics, 2025, 10(6): 14183-14195. doi: 10.3934/math.2025639

    Related Papers:

  • In this paper, we studied the precise norm of the multilinear Hardy operators $ P^m $ and $ Q^m $ on central Morrey spaces with power weights. Furthermore, the precise norm of the multilinear Hardy operator $ Q^m $ on Lebesgue spaces with power weights was also obtained.



    加载中


    [1] J. Alvarez, M. Guzmán-Partida, J. Lakey, Spaces of bounded $\lambda$-central mean oscillation, Morrey spaces, and $\lambda$-central Carleson measures, Collect. Math., 51 (2000), 1–47.
    [2] Á. Bényi, C. T. Oh, Best constants for certain multilinear integral operators, J. Inequal. Appl., 2006 (2006), 1–12. https://doi.org/10.1155/JIA/2006/28582 doi: 10.1155/JIA/2006/28582
    [3] M. Christ, L. Grafakos, Best constants for two nonconvolution inequalities, Proc. Amer. Math. Soc., 123 (1995), 1687–1693. https://doi.org/10.2307/2160978 doi: 10.2307/2160978
    [4] J. Duoandikoetxea, F. J. Martín-Reyes, S. Ombrosi, Calderón weights as Muckenhoupt weights, Indiana Univ. Math. J., 62 (2013), 891–910. https://doi.org/10.1512/iumj.2013.62.4971 doi: 10.1512/iumj.2013.62.4971
    [5] J. Duoandikoetxea, Fractional integrals on radial functions with applications to weighted inequalities, Ann. Mat. Pur. Appl., 192 (2013), 553–568. https://doi.org/10.1007/s10231-011-0237-7 doi: 10.1007/s10231-011-0237-7
    [6] W. D. Faris, Weak Lebesgue spaces and quantum mechanical binding, Duke Math. J., 43 (1976), 365–373. http://doi.org/10.1215/S0012-7094-76-04332-5 doi: 10.1215/S0012-7094-76-04332-5
    [7] Z. W. Fu, S. L. Gong, S. Z. Lu, W. Yuan, Weighted multilinear Hardy operators and commutators, Forum Math., 27 (2015), 2825–2851. https://doi.org/10.1515/forum-2013-0064 doi: 10.1515/forum-2013-0064
    [8] Z. W. Fu, L. Grafakos, S. Z. Lu, F. Y. Zhao, Sharp bounds for $m$-linear Hardy and Hilbert operators, Houston J. Math., 38 (2012), 225–244.
    [9] G. H. Hardy, Note on a theorem of Hilbert, Math. Zeit., 6 (1920), 314–317. https://doi.org/10.1007/BF01199965
    [10] G. H. Hardy, Note on some points in the integral calculus, Messenger Math., 57 (1928), 12–16.
    [11] S. Z. Lu, D. Y. Yan, F. Y. Zhao, Sharp bounds for Hardy type operators on higher-dimensional product spaces, J. Inequal. Appl., 2013 (2013), 148. https://doi.org/10.1186/1029-242X-2013-148 doi: 10.1186/1029-242X-2013-148
    [12] C. B. Morrey Jr, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126–166. https://doi.org/10.2307/1989904 doi: 10.2307/1989904
    [13] T. Ono, Tent space approach of Morrey spaces and their application to duality and complex interpolation, J. Funct. Space., 2023 (2023), 5822846. https://doi.org/10.1155/2023/5822846 doi: 10.1155/2023/5822846
    [14] M. A. Ragusa, Dirichlet problem in Morrey Spaces for elliptic equations in non divergence form with VMO coefffcients, 8th Int. Coll. Differ. Equ., (1998), 385–390.
    [15] N. Samko, Weighted Hardy and singular operators in Morrey spaces, J. Math. Anal. Appl., 350 (2008), 56–72. https://doi.org/10.1016/j.jmaa.2008.09.021 doi: 10.1016/j.jmaa.2008.09.021
    [16] A. Scapellato, Riesz potential, Marcinkiewicz integral and their commutators on mixed Morrey spaces, Filomat, 34 (2020), 931–944. https://doi.org/10.2298/fil2003931s doi: 10.2298/fil2003931s
    [17] S. M. Wang, S. Z. Lu, D. Y. Yan, Explicit constants for Hardy's inequality with power weight on $n$-dimensional product spaces, Sci. China Math., 55 (2012), 2469–2480. https://doi.org/10.1007/s11425-012-4453-4 doi: 10.1007/s11425-012-4453-4
    [18] M. Q. Wei, D. Y. Yan, Sharp bounds for Hardy-type operators on mixed radial-angular central Morrey spaces, J. Inequal. Appl., 2023 (2023), 1–13. https://doi.org/10.1186/s13660-023-02936-y doi: 10.1186/s13660-023-02936-y
    [19] T. L. Yee, K. P. Ho, General Hardy-type operators on local generalized Morrey spaces, Constr. Math. Anal., 8 (2025), 1–14.
    [20] F. Y. Zhao, Z. W. Fu, S. Z. Lu, Endpoint estimates for $n$-dimensional Hardy operators and their commutators, Sci. China Math., 55 (2012), 1977–1990. https://doi.org/10.1007/s11425-012-4465-0 doi: 10.1007/s11425-012-4465-0
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(612) PDF downloads(42) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog