
The issue of survey nonresponse causes substantial effects on the reliability, together with validity of study findings. This research develops precise estimation methods for two distinct nonresponse situations: when nonresponse happens to primary survey variables like the number of students, and when nonresponse includes survey variables together with the accompanying auxiliary variables. The proposed estimators receive full a performance assessment through derived equations for bias and mean square error (MSE) based on first-order approximation. The accuracy and reliability assessment depends heavily on MSE calculations, since this method effectively merges systematic error measurements with random error measurements. The MSE values of different estimators receive numerical evaluation through a comparative analysis under equivalent operational conditions for assessing proposed estimator performance outcomes. The research seeks to find the estimator with the minimal MSE because this selection results in the most trustworthy estimates under nonresponse conditions. All the findings from this study create important guidelines for building educational survey designs.
Citation: Badr Aloraini. Improved estimation of population parameter of in the existence of nonresponse using auxiliary information[J]. AIMS Mathematics, 2025, 10(5): 12312-12342. doi: 10.3934/math.2025558
[1] | Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang . A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, 2021, 29(3): 2375-2389. doi: 10.3934/era.2020120 |
[2] | Chunmei Wang . Simplified weak Galerkin finite element methods for biharmonic equations on non-convex polytopal meshes. Electronic Research Archive, 2025, 33(3): 1523-1540. doi: 10.3934/era.2025072 |
[3] | Leilei Wei, Xiaojing Wei, Bo Tang . Numerical analysis of variable-order fractional KdV-Burgers-Kuramoto equation. Electronic Research Archive, 2022, 30(4): 1263-1281. doi: 10.3934/era.2022066 |
[4] | Guanrong Li, Yanping Chen, Yunqing Huang . A hybridized weak Galerkin finite element scheme for general second-order elliptic problems. Electronic Research Archive, 2020, 28(2): 821-836. doi: 10.3934/era.2020042 |
[5] | Victor Ginting . An adjoint-based a posteriori analysis of numerical approximation of Richards equation. Electronic Research Archive, 2021, 29(5): 3405-3427. doi: 10.3934/era.2021045 |
[6] | Jun Pan, Yuelong Tang . Two-grid H1-Galerkin mixed finite elements combined with L1 scheme for nonlinear time fractional parabolic equations. Electronic Research Archive, 2023, 31(12): 7207-7223. doi: 10.3934/era.2023365 |
[7] | Hongze Zhu, Chenguang Zhou, Nana Sun . A weak Galerkin method for nonlinear stochastic parabolic partial differential equations with additive noise. Electronic Research Archive, 2022, 30(6): 2321-2334. doi: 10.3934/era.2022118 |
[8] | Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang . A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28(4): 1487-1501. doi: 10.3934/era.2020078 |
[9] | Suayip Toprakseven, Seza Dinibutun . A weak Galerkin finite element method for parabolic singularly perturbed convection-diffusion equations on layer-adapted meshes. Electronic Research Archive, 2024, 32(8): 5033-5066. doi: 10.3934/era.2024232 |
[10] | Bin Wang, Lin Mu . Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29(1): 1881-1895. doi: 10.3934/era.2020096 |
The issue of survey nonresponse causes substantial effects on the reliability, together with validity of study findings. This research develops precise estimation methods for two distinct nonresponse situations: when nonresponse happens to primary survey variables like the number of students, and when nonresponse includes survey variables together with the accompanying auxiliary variables. The proposed estimators receive full a performance assessment through derived equations for bias and mean square error (MSE) based on first-order approximation. The accuracy and reliability assessment depends heavily on MSE calculations, since this method effectively merges systematic error measurements with random error measurements. The MSE values of different estimators receive numerical evaluation through a comparative analysis under equivalent operational conditions for assessing proposed estimator performance outcomes. The research seeks to find the estimator with the minimal MSE because this selection results in the most trustworthy estimates under nonresponse conditions. All the findings from this study create important guidelines for building educational survey designs.
For simplicity, we consider Poisson equation with a Dirichlet boundary condition as our model problem.
−Δu=f,inΩ, | (1) |
u=g,on∂Ω, | (2) |
where
Using integration by parts, we can get the variational form: find
(∇u,∇v)=(f,v),∀v∈H10(Ω). | (3) |
Various finite element methods have been introduced to solve the Poisson equations (1)-(2), such as the Galerkin finite element methods (FEMs)[2, 3], the mixed FEMs [15] and the finite volume methods (FVMs) [6], etc. The FVMs emphasis on the local conservation property and discretize equations by asking the solution satisfying the flux conservation on a dual mesh consisting of control volumes. The mixed FEMs is another category method that based on the variable
The classical conforming finite element method obtains numerical approximate results by constructing a finite-dimensional subspace of
(∇uh,∇vh)=(f,vh),∀vh∈V0h, | (4) |
where
One obvious disadvantage of discontinuous finite element methods is their rather complex formulations which are often necessary to ensure connections of discontinuous solutions across element boundaries. For example, the IPDG methods add parameter depending interior penalty terms. Besides additional programming complexity, one often has difficulties in finding optimal values for the penalty parameters and corresponding efficient solvers. Most recently, Zhang and Ye [21] developed a discontinuous finite element method that has an ultra simple weak formulation on triangular/tetrahedal meshes. The corresponding numerical scheme can be written as: find
(∇wuh,∇wvh)=(f,vh),∀vh∈V0h, | (5) |
where
Following the work in [21, 22], we propose a new conforming DG finite element method on rectangular partitions in this work. It can be obtained from the conforming formulation simply by replacing
In this paper, we keep the same finite element space as DG method, replace the boundary function with the average of the inner function, and use the weak gradient arising from local Raviart-Thomas (RT) elements [5] to approximate the classic gradient. Moreover, the derivation process in this paper is based on rectangular RT elements [16]. Error estimates of optimal order are established for the corresponding conforming DG approximation in both a discrete
The rest of this paper is organized as follows: In Section 2, we shall present the conforming DG finite element scheme for the Poisson equation on rectangular partitions. Section 3 is devoted to a discussion of the stability and solvability of the new method. In Section 4, we shall prepare ourselves for error estimates by deriving some identities. Error estimates of optimal order in
Throughout this paper, we adopt the standard definition of Sobolev space
H10(Ω)={v∈H1(Ω):v|∂Ω=0}, |
and the space
H(div,Ω)={q∈[L2(Ω)]d:∇⋅q∈L2(Ω)}. |
Assume that the domain
For any interior edge
\begin{eqnarray} \{v\}& = &\frac{1}{2}(v|_{\partial T_1}+v|_{\partial T_2}),\; \; [\![ v]\! ] = v|_{\partial T_1}\boldsymbol{n}_1+v|_{\partial T_2}\boldsymbol{n}_2, \end{eqnarray} | (6) |
where
\begin{eqnarray} \{v\}& = &v|_e \; \; \text{and}\; \; [\![ v]\! ] = v|_e\boldsymbol{n}. \end{eqnarray} | (7) |
We define a discontinuous finite element space
\begin{eqnarray} V_h = \{v\in L^2(\Omega): v|_T \in Q_k(T), \; \forall \; T\in \mathcal{T}_h\}, \end{eqnarray} | (8) |
and its subspace
\begin{eqnarray} V^0_h = \{v \in V_h:v = 0 \; \text{on} \; \partial \Omega\}, \end{eqnarray} | (9) |
where
Definition 2.1. For a given
\begin{eqnarray} (\nabla_{d}v,\boldsymbol{q})_T: = -(v,\nabla\cdot\boldsymbol{q})_T +\langle \{v\},\boldsymbol{q}\cdot \boldsymbol{n}\rangle_{\partial T},\; \; \; \; \forall\; \boldsymbol{q}\in RT_k(T), \end{eqnarray} | (10) |
where
The weak gradient operator
\begin{eqnarray*} (\nabla_d v)|_T = \nabla_{d}(v|_T). \end{eqnarray*} |
We introduce the following bilinear form:
\begin{eqnarray*} a(v,w) = (\nabla_d v, \nabla_d w), \end{eqnarray*} |
the conforming DG algorithm to solve the problems (1) - (2) is given by
Conforming DG algorithm 1. Find
\begin{eqnarray} a(u_h, v_h) = (f, v_h), \; \; \forall \; v_h\in V^0_h, \end{eqnarray} | (11) |
where
We will prove the existence and uniqueness of the solution of equation (11). Firstly, we present the following two useful inequalities to derive the forthcoming analysis.
Lemma 3.1 (trace inequality). Let
\begin{eqnarray} \|\varphi\|_e^2\leq C(h_T^{-1}\|\varphi\|_T^2+h_T\|\nabla\varphi\|_T^2), \end{eqnarray} | (12) |
where
Lemma 3.2 (inverse inequality). Let
\begin{eqnarray} \|\nabla\varphi\|_T\leq C(n)h_T^{-1}\|\varphi\|_T,\; \; \forall T\in \mathcal{T}_h. \end{eqnarray} | (13) |
Then, we define the following semi-norms in the discontinuous finite element space
\begin{eqnarray} |\!|\!| v |\!|\!|^2& = &a(v, v) = \sum\limits_{T\in \mathcal{T}_h}\| \nabla_d v\|_T^2, \end{eqnarray} | (14) |
\begin{eqnarray} \| v \|_{1,h}^2& = &\sum\limits_{T\in \mathcal{T}_h}\|\nabla v\|_T^2+\sum\limits_{e\in\mathcal{E}_h^0}h_e^{-1}\|[\![ v]\! ]\|_e^2. \end{eqnarray} | (15) |
We have the equivalence between the semi-norms
Lemma 3.3. For any
\begin{eqnarray} C_1\|v\|_{1,h}\leq|\!|\!| v |\!|\!|\leq C_2\|v\|_{1,h}, \end{eqnarray} | (16) |
where
Proof. It follows from the definition of
\begin{eqnarray} \|\nabla_d v\|_{T_1}^2 & = & (\nabla_d v, \nabla_d v)_{T_1} = -(v, \nabla\cdot\nabla_d v)_{T_1} + \langle\{v\}\boldsymbol{n}, \nabla_d v\rangle_{\partial {T_1}}\\ & = & (\nabla v, \nabla_d v)_{T_1} - \langle (v-\{v\})\boldsymbol{n}, \nabla_d v\rangle_{\partial {T_1}}\\ &\leq& \|\nabla v\|_{T_1}\|\nabla_d v\|_{T_1}+\|(v-\{v\})\boldsymbol{n}\|_{\partial {T_1}}\|\nabla_d v\|_{\partial {T_1}}\\ &\leq&\|\nabla_d v\|_{T_1}(\|\nabla v\|_{T_1} + h_{T_1}^{-\frac{1}{2}}\|(v-\{v\})\boldsymbol{n}\|_{\partial {T_1}}). \end{eqnarray} | (17) |
For any
\begin{eqnarray*} (v-\{v\})|_e\boldsymbol{n}_1 & = & v|_{\partial T_1}\boldsymbol{n}_1-\frac{1}{2}(v|_{\partial T_1}+v|_{\partial T_2})\boldsymbol{n}_1\\ & = & \frac{1}{2}(v|_{\partial T_1}\boldsymbol{n}_1+v|_{\partial T_2}\boldsymbol{n}_2)\\ & = & \frac{1}{2}[\![ v]\! ]_e. \end{eqnarray*} |
Then we can get
\begin{eqnarray} \|(v-\{v\})\boldsymbol{n}\|_{\partial T_1}^2\leq\frac{1}{2}\sum\limits_{e\in\partial T_1}\|[\![ v]\! ]\|_e^2. \end{eqnarray} | (18) |
Substituting (18) into (17) gives
\begin{eqnarray*} \|\nabla_d v\|_{T_1}^2 &\leq& C_2\|\nabla_d v\|_{T_1}(\|\nabla v\|_{T_1}+\sum\limits_{e\in\partial T_1}h_e^{-\frac{1}{2}}\|[\![ v]\! ]\|_e), \end{eqnarray*} |
this completes the proof of the right-hand of (16).
To prove the left-hand of (16), we consider the subspace of
\begin{eqnarray*} D(k,T): = \{\bf{q}\in RT_k(T):\; \boldsymbol{q}\cdot\boldsymbol{n} = 0\; \text{on}\; \partial T\}. \end{eqnarray*} |
Note that
\begin{eqnarray} \|\nabla v\|_T = \sup\limits_{\boldsymbol{q}\in D(k,T)}\frac{(\nabla v,\boldsymbol{q})_T}{\|\boldsymbol{q}\|_T}. \end{eqnarray} | (19) |
Using the integration by parts, Cauchy-Schwarz inequality, the definition of
\begin{eqnarray*} (\nabla v,\boldsymbol{q})_T & = & -(v,\nabla\cdot\boldsymbol{q})_T + \langle v, \boldsymbol{q}\cdot\boldsymbol{n}\rangle_{\partial T}\\ & = & (\nabla_d v, \boldsymbol{q})_T-\langle \{v\},\boldsymbol{q}\cdot \boldsymbol{n}\rangle_{\partial T}\\ & = & (\nabla_d v, \boldsymbol{q})_T\\ &\leq& \|\nabla_d v\|_T\cdot\|\boldsymbol{q}\|_T, \end{eqnarray*} |
where we have used the fact that
\begin{eqnarray} \|\nabla v\|_T \leq \|\nabla_d v\|_T. \end{eqnarray} | (20) |
We define the space
\begin{eqnarray} \|[\![ v]\! ]\|_e = \sup\limits_{\boldsymbol{q}\in D_e(k,T)}\frac{\langle [\![ v]\! ], \boldsymbol{q}\cdot\boldsymbol{n}\rangle_e}{\|\boldsymbol{q}\cdot\boldsymbol{n}\|_e}. \end{eqnarray} | (21) |
Following the integration by parts and the definition of
\begin{eqnarray*} (\nabla_d v,\boldsymbol{q})_T = ( \nabla v, \boldsymbol{q} )_T - \langle v,\boldsymbol{q}\cdot\boldsymbol{n}\rangle_e + \langle \{v\}, \boldsymbol{q}\cdot\boldsymbol{n}\rangle_e. \end{eqnarray*} |
Together with (20), we obtain
\begin{eqnarray*} |\langle [\![ v]\! ], \boldsymbol{q}\cdot\boldsymbol{n}\rangle_e| & = &2|(\nabla_d v,\boldsymbol{q})_T - (\nabla v, \boldsymbol{q})_T|\\ &\leq& 2|(\nabla_d v,\boldsymbol{q})_T|+2|(\nabla v, \boldsymbol{q})_T|\\ &\leq& C(\|\nabla_d v\|_T\|\boldsymbol{q}\|_T+\|\nabla v\|_T\|\boldsymbol{q}\|_T)\\ &\leq& C\|\nabla_d v\|_T\|\boldsymbol{q}\|_T. \end{eqnarray*} |
Substituting the above inequality into (21), by the scaling argument [13], for such
\begin{eqnarray} \|[\![ v]\! ]\|_e \leq C\frac{\|\nabla_d v\|_T\|\boldsymbol{q}\|_T}{\|\boldsymbol{q}\cdot\boldsymbol{n}\|_e} \leq Ch^{\frac{1}{2}}\|\nabla_d v\|_T. \end{eqnarray} | (22) |
Combining (20) and (22) gives a proof of the left-hand of (16).
Lemma 3.4. The semi-norm
Proof. We shall only verify the positivity property for
The above two lemmas imply the well posedness of the scheme (11). We prove the existence and uniqueness of solution of the conforming DG method in Theorem 3.1.
Theorem 3.1. The conforming DG scheme (11) has and only has one solution.
Proof. To prove the scheme (11) is uniquely solvable, it suffices to verify that the homogeneous equation has zero as its unique solution. To this end, let
\begin{eqnarray*} a(u_h, u_h) = 0, \end{eqnarray*} |
which leads to
In this section, we will derive an error equation which will be used for the error estimates. For any
\begin{eqnarray} (\nabla\cdot\boldsymbol{q},v)_T = (\nabla\cdot\Pi_h\boldsymbol{q}, v)_T, \; \; \forall v \in Q_k(T). \end{eqnarray} | (23) |
For any
\begin{eqnarray} \|\Pi_h(\nabla w)-\nabla w\|\leq Ch^k\|w\|_{1+k}. \end{eqnarray} | (24) |
Moreover, it is easy to verify the following property holds true.
Lemma 4.1. For any
\begin{eqnarray} \sum\limits_{T\in\mathcal{T}_h}(-\nabla\cdot\boldsymbol{q}, v)_T = \sum\limits_{T\in\mathcal{T}_h}(\Pi_h\boldsymbol{q}, \nabla_d v)_T, \; \; \forall v\in V_h^0. \end{eqnarray} | (25) |
Proof.
\begin{eqnarray} \sum\limits_{T\in\mathcal{T}_h}\langle\{v\}, \Pi_h\boldsymbol{q}\cdot\boldsymbol{n}\rangle_{\partial T} = 0. \end{eqnarray} | (26) |
By the definition of
\begin{eqnarray*} \sum\limits_{T\in\mathcal{T}_h}(-\nabla\cdot\boldsymbol{q}, v)_T & = & \sum\limits_{T\in\mathcal{T}_h}(-\nabla\cdot\Pi_h\boldsymbol{q}, v)_T\\ & = & \sum\limits_{T\in\mathcal{T}_h}(-\nabla\cdot\Pi_h\boldsymbol{q}, v)_T+ \sum\limits_{T\in\mathcal{T}_h}\langle\{v\}, \Pi_h\boldsymbol{q}\cdot\boldsymbol{n}\rangle_{\partial T}\\ & = & \sum\limits_{T\in\mathcal{T}_h}(\Pi_h\boldsymbol{q}, \nabla_d v)_T. \end{eqnarray*} |
This completes the proof of the lemma.
Before establishing the error equation, we define a continuous finite element subspace of
\begin{eqnarray} \tilde{V}_{h} = \{v \in H^{1}(\Omega) :v|_T \in Q_k(T), \; \forall T \in \mathcal{T}_{h}\}. \end{eqnarray} | (27) |
so as a subspace of
\begin{eqnarray} \tilde{V}_h^0: = \{v\in\tilde{V}_h:v|_{\partial\Omega} = 0\}. \end{eqnarray} | (28) |
Lemma 4.2. For any
\begin{eqnarray*} \nabla_d v = \nabla v. \end{eqnarray*} |
Proof. By the definition of
\begin{eqnarray*} (\nabla_d v, \boldsymbol{q})_T & = & -(v, \nabla\cdot\boldsymbol{q})_T + \langle\{v\}, \boldsymbol{q}\cdot\boldsymbol{n}\rangle_{\partial T}\\ & = & -(v,\nabla\cdot\boldsymbol{q})_T + \langle v, \boldsymbol{q}\cdot\boldsymbol{n}\rangle_{\partial T}\\ & = & (\nabla v, \boldsymbol{q})_T, \end{eqnarray*} |
which gives
\begin{eqnarray*} (\nabla_d v-\nabla v, \boldsymbol{q})_T = 0, \; \; \forall \boldsymbol{q}\in RT_k(T). \end{eqnarray*} |
Letting
Let
\begin{eqnarray} \|I_hu-u\|\leq Ch^{k+1}\|u\|_{k+1}, \end{eqnarray} | (29) |
\begin{eqnarray} \|\nabla I_hu-\nabla u\|\leq Ch^k\|u\|_{k+1}. \end{eqnarray} | (30) |
It is obvious that
Lemma 4.3. Denote
\begin{eqnarray} a(e_h, v_h) = l_u( v_h), \end{eqnarray} | (31) |
where
\begin{eqnarray} l_u(v_h) = \sum\limits_{T\in{\mathcal{T}_h}}(\nabla I_{h} u-\Pi_h\nabla u, \nabla_d v_h). \end{eqnarray} | (32) |
Proof. Since
\begin{eqnarray*} \sum\limits_{T\in{\mathcal{T}_h}}(\nabla_d I_h u, \nabla_d v_h)_T & = & \sum\limits_{T\in{\mathcal{T}_h}}(\nabla I_h u, \nabla_d v_h)_T\\ & = & \sum\limits_{T\in{\mathcal{T}_h}}(\nabla I_h u -\Pi_h\nabla u + \Pi_h\nabla u, \nabla_d v_h)_T\\ & = & \sum\limits_{T\in{\mathcal{T}_h}}(\nabla I_h u -\Pi_h\nabla u, \nabla_d v_h)_T +\sum\limits_{T\in{\mathcal{T}_h}}(\Pi_h\nabla u, \nabla_d v_h)_T\\ & = & l_u(v_h) - \sum\limits_{T\in{\mathcal{T}_h}}(\nabla\cdot\nabla u, v_h)_T\\ & = & l_u(v_h) + (f,v_h). \end{eqnarray*} |
By the definition of the scheme (11), we have
\begin{eqnarray*} \sum\limits_{T\in{\mathcal{T}_h}}(\nabla_d I_h u - \nabla_d u_h, \nabla_d v_h)_T = l_u(v_h). \end{eqnarray*} |
This completes the proof of the lemma.
The goal of this section is to derive the error estimates in
Theorem 5.1. Let
\begin{eqnarray} |\!|\!|e_h|\!|\!| \leq Ch^k|u|_{k+1}. \end{eqnarray} | (33) |
Proof. Letting
\begin{eqnarray} |\!|\!|e_h|\!|\!|^2 = l_u(e_h). \end{eqnarray} | (34) |
From the Cauchy-Schwarz inequality, the triangle inequality, the definition of
\begin{eqnarray*} l_u(v_h)& = & \sum\limits_{T\in\mathcal{T}_h}(\nabla I_hu-\Pi_h(\nabla u), \nabla_d v_h)_T\\ &\leq& \sum\limits_{T\in\mathcal{T}_h}\|\nabla I_hu-\Pi_h(\nabla u)\|_T\|\nabla_d v_h\|_T\\ &\leq& \left(\sum\limits_{T\in\mathcal{T}_h}\|\nabla I_hu-\Pi_h(\nabla u)\|_T^2\right)^{\frac{1}{2}}\left(\sum\limits_{T\in\mathcal{T}_h}\|\nabla_d v_h\|_T^2\right)^{\frac{1}{2}}\\ & = & \left(\sum\limits_{T\in\mathcal{T}_h}\|\nabla I_hu-\nabla u+\nabla u-\Pi_h(\nabla u)\|_T^2\right)^{\frac{1}{2}}|\!|\!|v_h|\!|\!|\\ &\leq& \left(\sum\limits_{T\in\mathcal{T}_h}\|\nabla I_hu-\nabla u\|_T^2+\|\nabla u-\Pi_h(\nabla u)\|_T^2\right)^{\frac{1}{2}}|\!|\!|v_h|\!|\!|\\ &\leq& Ch^k|u|_{k+1}|\!|\!|v_h|\!|\!|. \end{eqnarray*} |
Then, we have
\begin{eqnarray} l_u(e_h) \leq Ch^k|u|_{k+1}|\!|\!|e_h|\!|\!|. \end{eqnarray} | (35) |
Substituting (35) to (34), we obtain
\begin{eqnarray*} |\!|\!|e_h|\!|\!|^2 \leq Ch^k|u|_{k+1}|\!|\!|e_h|\!|\!|, \end{eqnarray*} |
which completes the proof of the lemma.
It is obvious that
\begin{eqnarray} (\nabla\tilde{u}_h, \nabla v) = (f, v), \; \; \forall v\in\tilde{V}_h^0. \end{eqnarray} | (36) |
For any
\begin{eqnarray} (\nabla_d u_h - \nabla\tilde{u}_h, \nabla v) = 0, \; \; \forall v\in\tilde{V}_h^0. \end{eqnarray} | (37) |
In the rest of this section, we derive an optimal order error estimate for the conforming DG approximation (11) in
\begin{eqnarray} -\nabla\cdot(\nabla\Phi) = u_h-\tilde{u}_h, \; \; in\; \Omega. \end{eqnarray} | (38) |
Assume that the dual problem satisfies
\begin{eqnarray} \|\Phi\|_2 \leq C\|u_h-\tilde{u}_h\|. \end{eqnarray} | (39) |
In the following of this paper, we note
Theorem 5.2. Assume
\begin{eqnarray} \|u-u_h\|\leq C h^{k+1}|u|_{k+1}. \end{eqnarray} | (40) |
Proof. First, we shall derive the optimal order for
\begin{eqnarray} a(\Phi_h, v) = (\varepsilon_h, v), \; \; \forall v\in V_h^0. \end{eqnarray} | (41) |
Since
\begin{eqnarray*} (\nabla_d u_h-\nabla\tilde{u}_h, \nabla I_h\Phi) & = & 0,\\ \nabla_d I_h\Phi & = & \nabla I_h\Phi, \end{eqnarray*} |
which gives
\begin{eqnarray} (\nabla_d u_h-\nabla\tilde{u}_h, \nabla_d I_h\Phi) = 0. \end{eqnarray} | (42) |
Setting
\begin{eqnarray*} \|\varepsilon_h\|^2& = &a(\Phi_h, \varepsilon_h) = \sum\limits_{T\in\mathcal{T}_h}(\nabla_d \Phi_h, \nabla_d\varepsilon_h)_T\\ & = & \sum\limits_{T\in\mathcal{T}_h}(\nabla_d (\Phi_h-I_h\Phi), \nabla_d u_h -\nabla\tilde{u}_h)_T\\ &\leq&|\!|\!| \Phi_h-I_h\Phi |\!|\!|(|\!|\!|u_h-I_h u|\!|\!|+\|\nabla(I_h u-\tilde{u}_h)\|). \end{eqnarray*} |
Then, by the Cauchy-Schwarz inequality, (33) and (39), we obtain
\begin{eqnarray*} \|\varepsilon_h\|^2&\leq& Ch|\Phi|_2h^k|u|_{k+1} \leq Ch^{k+1}|u|_{k+1}\|\varepsilon_h\|, \end{eqnarray*} |
which gives
\begin{eqnarray} \|\varepsilon_h\| \leq Ch^{k+1}|u|_{k+1}. \end{eqnarray} | (43) |
Combining the error estimate of finite element solution, the triangle inequality and (43) yields (40), which completes the proof of the theorem.
In this section, we shall present some numerical results for the conforming discontinuous Galerkin method analyzed in the previous sections.
We solve the following Poisson equation on the unit square domain
\begin{align} -\Delta u & = 2 \pi^2 \sin(\pi x)\sin(\pi y) &&\hbox{in }\Omega && \end{align} | (44) |
\begin{align} u& = 0 &&\hbox{on }\partial\Omega. \end{align} | (45) |
The exact solution of the above problem is
We first use the
level | rate | rate | |||
by |
|||||
6 | 0.1996E-02 | 1.97 | 0.8887E-02 | 1.98 | 1024 |
7 | 0.5013E-03 | 1.99 | 0.2228E-02 | 2.00 | 4096 |
8 | 0.1255E-03 | 2.00 | 0.5574E-03 | 2.00 | 16384 |
by |
|||||
6 | 0.2427E-02 | 1.97 | 0.1027E+00 | 1.02 | 3072 |
7 | 0.6100E-03 | 1.99 | 0.5105E-01 | 1.01 | 12288 |
8 | 0.1527E-03 | 2.00 | 0.2546E-01 | 1.00 | 49152 |
by |
|||||
5 | 0.1533E-03 | 3.00 | 0.2042E-01 | 2.03 | 1536 |
6 | 0.1915E-04 | 3.00 | 0.5061E-02 | 2.01 | 6144 |
7 | 0.2394E-05 | 3.00 | 0.1260E-02 | 2.01 | 24576 |
by |
|||||
5 | 0.7959E-05 | 4.00 | 0.1965E-02 | 3.00 | 2560 |
6 | 0.4971E-06 | 4.00 | 0.2451E-03 | 3.00 | 10240 |
7 | 0.3140E-07 | 3.98 | 0.3059E-04 | 3.00 | 40960 |
by |
|||||
4 | 0.1055E-04 | 4.97 | 0.1421E-02 | 4.05 | 960 |
5 | 0.3314E-06 | 4.99 | 0.8735E-04 | 4.02 | 3840 |
6 | 0.1057E-07 | 4.97 | 0.5417E-05 | 4.01 | 15360 |
by |
|||||
2 | 0.2835E-02 | 6.24 | 0.1450E+00 | 5.49 | 84 |
3 | 0.4532E-04 | 5.97 | 0.4718E-02 | 4.94 | 336 |
4 | 0.7115E-06 | 5.99 | 0.1478E-03 | 5.00 | 1344 |
The same test case is also computed using the
level | rate | rate | |||
by |
|||||
6 | 0.4006E-03 | 1.99 | 0.2389E-02 | 1.99 | 4096 |
7 | 0.1003E-03 | 2.00 | 0.5982E-03 | 2.00 | 16384 |
8 | 0.2510E-04 | 2.00 | 0.1496E-03 | 2.00 | 65536 |
by |
|||||
6 | 0.2360E-04 | 2.99 | 0.3186E-02 | 1.99 | 9216 |
7 | 0.2953E-05 | 3.00 | 0.7976E-03 | 2.00 | 36864 |
8 | 0.3692E-06 | 3.00 | 0.1995E-03 | 2.00 | 147456 |
by |
|||||
5 | 0.1413E-04 | 4.08 | 0.1650E-02 | 2.97 | 4096 |
6 | 0.8676E-06 | 4.03 | 0.2072E-03 | 2.99 | 16384 |
7 | 0.5398E-07 | 4.01 | 0.2593E-04 | 3.00 | 65536 |
by |
|||||
3 | 0.2226E-02 | 4.59 | 0.5414E-01 | 3.52 | 400 |
4 | 0.9610E-04 | 4.53 | 0.3723E-02 | 3.86 | 1600 |
5 | 0.3279E-05 | 4.87 | 0.2392E-03 | 3.96 | 6400 |
To test the superconvergence of
\begin{align*} -\Delta u +u & = f &&\hbox{in }\Omega &&\\ u& = 0 &&\hbox{on }\partial\Omega, \end{align*} |
where
\begin{align} u = (x-x^2)(y-y^3). \end{align} | (46) |
Uniform square grids as shown in Figure 1 are used for numerical computation. The numerical results are listed in Table 3. Surprising, for this problem, the
level | rate | rate | |||
by |
|||||
3 | 0.8265E-02 | 1.06 | 0.4577E-01 | 1.14 | 16 |
4 | 0.2772E-02 | 1.58 | 0.1732E-01 | 1.40 | 64 |
5 | 0.7965E-03 | 1.80 | 0.6331E-02 | 1.45 | 256 |
6 | 0.2142E-03 | 1.90 | 0.2290E-02 | 1.47 | 1024 |
7 | 0.5564E-04 | 1.94 | 0.8213E-03 | 1.48 | 4096 |
8 | 0.1419E-04 | 1.97 | 0.2928E-03 | 1.49 | 16384 |
To test further the superconvergence of
\begin{align*} -\nabla(a \nabla u ) & = f &&\hbox{in }\Omega &&\\ u& = 0 &&\hbox{on }\partial\Omega, \end{align*} |
where
\begin{align} u = (x-x^3)(y^2-y^3). \end{align} | (47) |
Uniform square grids as shown in Figure 1 are used for computation. The numerical results are listed in Table 4. Surprising, again, the
level | rate | rate | |||
by |
|||||
3 | 0.4929E-02 | 0.97 | 0.5371E-01 | 0.80 | 16 |
4 | 0.1917E-02 | 1.36 | 0.2401E-01 | 1.16 | 64 |
5 | 0.6004E-03 | 1.67 | 0.9407E-02 | 1.35 | 256 |
6 | 0.1682E-03 | 1.84 | 0.3507E-02 | 1.42 | 1024 |
7 | 0.4457E-04 | 1.92 | 0.1275E-02 | 1.46 | 4096 |
8 | 0.1148E-04 | 1.96 | 0.4576E-03 | 1.48 | 16384 |
In this paper, we establish a new numerical approximation scheme based on the rectangular partition to solve second order elliptic equation. We derived the numerical scheme and then proved the optimal order of convergence of the error estimates in
[1] |
A. Ahmadini, T. Yadav, S. Yadav, A. Al Luhayb, Restructured searls family of estimators of population mean in the presence of nonresponse, Front. Appl. Math. Stat., 8 (2022), 969068. https://doi.org/10.3389/fams.2022.969068 doi: 10.3389/fams.2022.969068
![]() |
[2] |
S. Ahmad, S. Hussain, M. Aamir, F. Khan, M. Alshahrani, M. Alqawba, Estimation of finite population mean using dual auxiliary variable for nonresponse using simple random sampling, AIMS Mathematics, 7 (2022), 4592–4613. https://doi.org/10.3934/math.2022256 doi: 10.3934/math.2022256
![]() |
[3] |
F. Almulhim, H. Aljohani, R. Aldallal, M. Mustafa, M. Alsolmi, A. Elshenawy, et al., Estimation of finite population mean using dual auxiliary information under nonresponse with simple random sampling, Alex. Eng. J., 100 (2024), 286–299. https://doi.org/10.1016/j.aej.2024.04.058 doi: 10.1016/j.aej.2024.04.058
![]() |
[4] |
N. Adichwal, A. Ahmadini, Y. Raghav, R. Singh, I. Ali, Estimation of general parameters using auxiliary information in simple random sampling without replacement, J. King Saud Univ. Sci., 34 (2022), 101754. https://doi.org/10.1016/j.jksus.2021.101754 doi: 10.1016/j.jksus.2021.101754
![]() |
[5] | V. Adamo, On the exchangeability property in causal models, Computational Journal of Mathematical and Statistical Sciences, 3 (2024), 228–239. |
[6] |
H. Alshanbari, A. Gemeay, A. El-Bagoury, S. Khosa, E. Hafez, A. Muse, A novel extension of Fréchet distribution: Application on real data and simulation, Alex. Eng. J., 61 (2022), 7917–7938. https://doi.org/10.1016/j.aej.2022.01.013 doi: 10.1016/j.aej.2022.01.013
![]() |
[7] |
M. Bakr, A. Al-Babtain, Z. Mahmood, R. Aldallal, S. Khosa, M. Abd El-Raouf, et al., Statistical modelling for a new family of generalized distributions with real data applications, Math. Biosci. Eng., 19 (2022), 8705–8740. https://doi.org/10.3934/mbe.2022404 doi: 10.3934/mbe.2022404
![]() |
[8] |
Z. Basit, S. Masood, I. Bhatti, A class of estimators for estimation of population mean under random nonresponse in two phase successive sampling, J. Stat. Theory Appl., 22 (2023), 309–338. https://doi.org/10.1007/s44199-023-00065-5 doi: 10.1007/s44199-023-00065-5
![]() |
[9] |
W. Cochran, The estimation of the yields of cereal experiments by sampling for the ratio of grain to total produce, J. Agr. Sci., 30 (1940), 262–275. https://doi.org/10.1017/S0021859600048012 doi: 10.1017/S0021859600048012
![]() |
[10] | A. Dyab, S. El Sayed, A. Abdelfattah, Short dynamic panel data models in the presence of a higher frequency regressor(s), Computational Journal of Mathematical and Statistical Sciences, 2 (2023), 251–274. |
[11] | D. Gujarati, D. Porter, Basic econometrics, New York: McGraw-Hill, 2009. |
[12] |
A. Gemeay, K. Karakaya, M. Bakr, O. Balogun, M. Atchadé, E. Hussam, Power Lambert uniform distribution: statistical properties, actuarial measures, regression analysis, and applications, AIP Adv., 13 (2023), 095319. https://doi.org/10.1063/5.0170964 doi: 10.1063/5.0170964
![]() |
[13] |
L. Grover, P. Kaur, A generalized class of ratio type exponential estimators of population mean under linear transformation of auxiliary variable, Commun. Stat. Simul. Comput., 43 (2014), 1552–1574. https://doi.org/10.1080/03610918.2012.736579 doi: 10.1080/03610918.2012.736579
![]() |
[14] |
S. Hussain, S. Ahmad, S. Akhtar, A. Javed, U. Yasmeen, Estimation of finite population distribution function with dual use of auxiliary information under nonresponse, PLoS One, 15 (2020), e0243584. https://doi.org/10.1371/journal.pone.0243584 doi: 10.1371/journal.pone.0243584
![]() |
[15] |
M. Hansen, W. Hurwitz, The problem of nonresponse in sample surveys, J. Am. Stat. Assoc., 41 (1946), 517–529. https://doi.org/10.1080/01621459.1946.10501894 doi: 10.1080/01621459.1946.10501894
![]() |
[16] |
S. Hussain, M. Zichuan, S. Hussain, A. Iftikhar, M. Asif, S. Akhtar, et al., On estimation of distribution function using dual auxiliary information under nonresponse using simple random sampling, J. Probab. Stat., 2020 (2020), 1693612. https://doi.org/10.1155/2020/1693612 doi: 10.1155/2020/1693612
![]() |
[17] | M. Ismail, Combination of ratio and regression estimator of population mean in presence of nonresponse, Gazi Univ. J. Sci., 30 (2017), 634–642. |
[18] | B. Khare, S. Kumar, Chain ratio-regression estimators in two phase sampling in the presence of nonresponse, ProbStat Forum, 8 (2015), 95–102. |
[19] | B. Khare, R. Sinha, On class of estimators for population mean using multi-auxiliary characters in the presence of nonresponse, Statistics in Transition, 10 (2009), 3–14. |
[20] | R. Kurbah, P. Khongji, A new exponential ratio-type estimator of population mean using mean and median with two auxiliary variables under double sampling, Thail. Statist., 22 (2024), 458–470. |
[21] |
N. Koyuncu, C. Kadilar, Ratio and product estimators in stratified random sampling, J. Stat. Plan. Infer., 139 (2009), 2552–2558. https://doi.org/10.1016/j.jspi.2008.11.009 doi: 10.1016/j.jspi.2008.11.009
![]() |
[22] |
S. Lone, M. Subzar, A. Sharma, Enhanced estimators of population variance with the use of supplementary information in survey sampling, Math. Probl. Eng., 2021 (2021), 9931217. https://doi.org/10.1155/2021/9931217 doi: 10.1155/2021/9931217
![]() |
[23] | S. Muneer, J. Shabbir, A. Khalil, A generalized exponential type estimator of population mean in the presence of nonresponse, Statistics in Transition, 19 (2018), 259–276. |
[24] |
M. Qureshi, Y. Faizan, A. Shetty, M. Ahelali, M. Hanif, O. Alamri, Ln-type estimators for the estimation of the population mean of a sensitive study variable using auxiliary information, Heliyon, 10 (2024), e23066. https://doi.org/10.1016/j.heliyon.2023.e23066 doi: 10.1016/j.heliyon.2023.e23066
![]() |
[25] | T. Raja, S. Maqbool, Ratio type estimators for estimating population mean by using some auxiliary information, International Journal of Agriculture Sciences, 16 (2024), 12799–12801. |
[26] |
M. Rueda, A. Arcos, M. Martínez-Miranda, Y. Román, Some improved estimators of finite population quantile using auxiliary information in sample surveys, Comput. Stat. Data Anal., 45 (2004), 825–848. https://doi.org/10.1016/S0167-9473(03)00097-5 doi: 10.1016/S0167-9473(03)00097-5
![]() |
[27] | T. Rao, On certain methods of improving ratio and regression estimators, Commun. Stat. Theor. M., 20 (1991), 3325–3340. |
[28] |
F. Riad, E. Hussam, A. Gemeay, R. Aldallal, A. Afify, Classical and Bayesian inference of the weighted-exponential distribution with an application to insurance data, Math. Biosci. Eng., 19 (2022), 6551–6581. https://doi.org/10.3934/mbe.2022309 doi: 10.3934/mbe.2022309
![]() |
[29] | R. Sinha, B. Khanna, Efficient estimation for ratio of means using dual auxiliary information under nonresponse, Thail. Statist., 22 (2025), 736–749. |
[30] | S. Singh, Advanced sampling theory with applications: how Michael "selected" Amy, volume I, Dordrecht: Springer, 2003. https://doi.org/10.1007/978-94-007-0789-4 |
[31] |
H. Singh, N. Garg, Modified correlated measurement errors model for estimation of population mean utilizing auxiliary information, Sci. Rep., 14 (2024), 11086. https://doi.org/10.1038/s41598-024-61609-y doi: 10.1038/s41598-024-61609-y
![]() |
[32] |
A. Salama, H. Elagamy, Neutrosophic fuzzy ideal open sets, ideal closed sets, and their applications in geographic information systems, Journal of Business and Environmental Science, 3 (2024), 302–321. https://doi.org/10.21608/jcese.2024.281435.1058 doi: 10.21608/jcese.2024.281435.1058
![]() |
[33] |
H. Semary, S. Ahmad, I. Elbatal, C. Chesneau, M. Elgarhy, E. Almetwally, New comprehensive class of estimators for population proportion using auxiliary attribute: simulation and an application, Alex. Eng. J., 99 (2024), 130–136. https://doi.org/10.1016/j.aej.2024.04.065 doi: 10.1016/j.aej.2024.04.065
![]() |
[34] | A. Teamah, A. Elbanna, A. Gemeay, An alternative version of half-logistic distribution: properties, estimation and application, Thail. Statist., 23 (2024), 97–114. |
[35] |
K. Ullah, Z. Hussain, I. Hussain, S. Cheema, Z. Almaspoor, M. El-Morshedy, Estimation of finite population mean in simple and stratified random sampling by utilizing the auxiliary, ranks, and square of the auxiliary information, Math. Probl. Eng., 2022 (2022), 5263492. https://doi.org/10.1155/2022/5263492 doi: 10.1155/2022/5263492
![]() |
[36] |
D. Watson, The estimation of leaf area in field crops, J. Agr. Sci., 27 (1937), 474–483. https://doi.org/10.1017/S002185960005173X doi: 10.1017/S002185960005173X
![]() |
[37] |
M. Yaqub, F. Sohil, J. Shabbir, M. Sohail, Estimation of population distribution function in the presence of nonresponse using stratified random sampling, Commun. Stat.-Simul. Comput., 53 (2024), 2498–2526. https://doi.org/10.1080/03610918.2022.2078492 doi: 10.1080/03610918.2022.2078492
![]() |
[38] |
E. Yıldırım, E. Ilıkkan, A. Gemeay, N. Makumi, M. Bakr, O. Balogun, Power unit Burr-Ⅻ distribution: statistical inference with applications, AIP Adv., 13 (2023), 105107. https://doi.org/10.1063/5.0171077 doi: 10.1063/5.0171077
![]() |
1. | Xiu Ye, Shangyou Zhang, A weak divergence CDG method for the biharmonic equation on triangular and tetrahedral meshes, 2022, 178, 01689274, 155, 10.1016/j.apnum.2022.03.017 | |
2. | Jun Zhou, Da Xu, Wenlin Qiu, Leijie Qiao, An accurate, robust, and efficient weak Galerkin finite element scheme with graded meshes for the time-fractional quasi-linear diffusion equation, 2022, 124, 08981221, 188, 10.1016/j.camwa.2022.08.022 | |
3. | Xiu Ye, Shangyou Zhang, A conforming discontinuous Galerkin finite element method for the Stokes problem on polytopal meshes, 2021, 93, 0271-2091, 1913, 10.1002/fld.4959 | |
4. | Xiu Ye, Shangyou Zhang, Constructing a CDG Finite Element with Order Two Superconvergence on Rectangular Meshes, 2023, 2096-6385, 10.1007/s42967-023-00330-5 | |
5. | Yan Yang, Xiu Ye, Shangyou Zhang, A pressure-robust stabilizer-free WG finite element method for the Stokes equations on simplicial grids, 2024, 32, 2688-1594, 3413, 10.3934/era.2024158 | |
6. | Xiu Ye, Shangyou Zhang, A superconvergent CDG finite element for the Poisson equation on polytopal meshes, 2023, 0044-2267, 10.1002/zamm.202300521 | |
7. | Xiu Ye, Shangyou Zhang, Two-Order Superconvergent CDG Finite Element Method for the Heat Equation on Triangular and Tetrahedral Meshes, 2024, 2096-6385, 10.1007/s42967-024-00444-4 | |
8. | Xiu Ye, Shangyou Zhang, Order two superconvergence of the CDG finite elements for non-self adjoint and indefinite elliptic equations, 2024, 50, 1019-7168, 10.1007/s10444-023-10100-9 | |
9. | Fuchang Huo, Weilong Mo, Yulin Zhang, A locking-free conforming discontinuous Galerkin finite element method for linear elasticity problems, 2025, 465, 03770427, 116582, 10.1016/j.cam.2025.116582 |
level | rate | rate | |||
by |
|||||
6 | 0.1996E-02 | 1.97 | 0.8887E-02 | 1.98 | 1024 |
7 | 0.5013E-03 | 1.99 | 0.2228E-02 | 2.00 | 4096 |
8 | 0.1255E-03 | 2.00 | 0.5574E-03 | 2.00 | 16384 |
by |
|||||
6 | 0.2427E-02 | 1.97 | 0.1027E+00 | 1.02 | 3072 |
7 | 0.6100E-03 | 1.99 | 0.5105E-01 | 1.01 | 12288 |
8 | 0.1527E-03 | 2.00 | 0.2546E-01 | 1.00 | 49152 |
by |
|||||
5 | 0.1533E-03 | 3.00 | 0.2042E-01 | 2.03 | 1536 |
6 | 0.1915E-04 | 3.00 | 0.5061E-02 | 2.01 | 6144 |
7 | 0.2394E-05 | 3.00 | 0.1260E-02 | 2.01 | 24576 |
by |
|||||
5 | 0.7959E-05 | 4.00 | 0.1965E-02 | 3.00 | 2560 |
6 | 0.4971E-06 | 4.00 | 0.2451E-03 | 3.00 | 10240 |
7 | 0.3140E-07 | 3.98 | 0.3059E-04 | 3.00 | 40960 |
by |
|||||
4 | 0.1055E-04 | 4.97 | 0.1421E-02 | 4.05 | 960 |
5 | 0.3314E-06 | 4.99 | 0.8735E-04 | 4.02 | 3840 |
6 | 0.1057E-07 | 4.97 | 0.5417E-05 | 4.01 | 15360 |
by |
|||||
2 | 0.2835E-02 | 6.24 | 0.1450E+00 | 5.49 | 84 |
3 | 0.4532E-04 | 5.97 | 0.4718E-02 | 4.94 | 336 |
4 | 0.7115E-06 | 5.99 | 0.1478E-03 | 5.00 | 1344 |
level | rate | rate | |||
by |
|||||
6 | 0.4006E-03 | 1.99 | 0.2389E-02 | 1.99 | 4096 |
7 | 0.1003E-03 | 2.00 | 0.5982E-03 | 2.00 | 16384 |
8 | 0.2510E-04 | 2.00 | 0.1496E-03 | 2.00 | 65536 |
by |
|||||
6 | 0.2360E-04 | 2.99 | 0.3186E-02 | 1.99 | 9216 |
7 | 0.2953E-05 | 3.00 | 0.7976E-03 | 2.00 | 36864 |
8 | 0.3692E-06 | 3.00 | 0.1995E-03 | 2.00 | 147456 |
by |
|||||
5 | 0.1413E-04 | 4.08 | 0.1650E-02 | 2.97 | 4096 |
6 | 0.8676E-06 | 4.03 | 0.2072E-03 | 2.99 | 16384 |
7 | 0.5398E-07 | 4.01 | 0.2593E-04 | 3.00 | 65536 |
by |
|||||
3 | 0.2226E-02 | 4.59 | 0.5414E-01 | 3.52 | 400 |
4 | 0.9610E-04 | 4.53 | 0.3723E-02 | 3.86 | 1600 |
5 | 0.3279E-05 | 4.87 | 0.2392E-03 | 3.96 | 6400 |
level | rate | rate | |||
by |
|||||
3 | 0.8265E-02 | 1.06 | 0.4577E-01 | 1.14 | 16 |
4 | 0.2772E-02 | 1.58 | 0.1732E-01 | 1.40 | 64 |
5 | 0.7965E-03 | 1.80 | 0.6331E-02 | 1.45 | 256 |
6 | 0.2142E-03 | 1.90 | 0.2290E-02 | 1.47 | 1024 |
7 | 0.5564E-04 | 1.94 | 0.8213E-03 | 1.48 | 4096 |
8 | 0.1419E-04 | 1.97 | 0.2928E-03 | 1.49 | 16384 |
level | rate | rate | |||
by |
|||||
3 | 0.4929E-02 | 0.97 | 0.5371E-01 | 0.80 | 16 |
4 | 0.1917E-02 | 1.36 | 0.2401E-01 | 1.16 | 64 |
5 | 0.6004E-03 | 1.67 | 0.9407E-02 | 1.35 | 256 |
6 | 0.1682E-03 | 1.84 | 0.3507E-02 | 1.42 | 1024 |
7 | 0.4457E-04 | 1.92 | 0.1275E-02 | 1.46 | 4096 |
8 | 0.1148E-04 | 1.96 | 0.4576E-03 | 1.48 | 16384 |
level | rate | rate | |||
by |
|||||
6 | 0.1996E-02 | 1.97 | 0.8887E-02 | 1.98 | 1024 |
7 | 0.5013E-03 | 1.99 | 0.2228E-02 | 2.00 | 4096 |
8 | 0.1255E-03 | 2.00 | 0.5574E-03 | 2.00 | 16384 |
by |
|||||
6 | 0.2427E-02 | 1.97 | 0.1027E+00 | 1.02 | 3072 |
7 | 0.6100E-03 | 1.99 | 0.5105E-01 | 1.01 | 12288 |
8 | 0.1527E-03 | 2.00 | 0.2546E-01 | 1.00 | 49152 |
by |
|||||
5 | 0.1533E-03 | 3.00 | 0.2042E-01 | 2.03 | 1536 |
6 | 0.1915E-04 | 3.00 | 0.5061E-02 | 2.01 | 6144 |
7 | 0.2394E-05 | 3.00 | 0.1260E-02 | 2.01 | 24576 |
by |
|||||
5 | 0.7959E-05 | 4.00 | 0.1965E-02 | 3.00 | 2560 |
6 | 0.4971E-06 | 4.00 | 0.2451E-03 | 3.00 | 10240 |
7 | 0.3140E-07 | 3.98 | 0.3059E-04 | 3.00 | 40960 |
by |
|||||
4 | 0.1055E-04 | 4.97 | 0.1421E-02 | 4.05 | 960 |
5 | 0.3314E-06 | 4.99 | 0.8735E-04 | 4.02 | 3840 |
6 | 0.1057E-07 | 4.97 | 0.5417E-05 | 4.01 | 15360 |
by |
|||||
2 | 0.2835E-02 | 6.24 | 0.1450E+00 | 5.49 | 84 |
3 | 0.4532E-04 | 5.97 | 0.4718E-02 | 4.94 | 336 |
4 | 0.7115E-06 | 5.99 | 0.1478E-03 | 5.00 | 1344 |
level | rate | rate | |||
by |
|||||
6 | 0.4006E-03 | 1.99 | 0.2389E-02 | 1.99 | 4096 |
7 | 0.1003E-03 | 2.00 | 0.5982E-03 | 2.00 | 16384 |
8 | 0.2510E-04 | 2.00 | 0.1496E-03 | 2.00 | 65536 |
by |
|||||
6 | 0.2360E-04 | 2.99 | 0.3186E-02 | 1.99 | 9216 |
7 | 0.2953E-05 | 3.00 | 0.7976E-03 | 2.00 | 36864 |
8 | 0.3692E-06 | 3.00 | 0.1995E-03 | 2.00 | 147456 |
by |
|||||
5 | 0.1413E-04 | 4.08 | 0.1650E-02 | 2.97 | 4096 |
6 | 0.8676E-06 | 4.03 | 0.2072E-03 | 2.99 | 16384 |
7 | 0.5398E-07 | 4.01 | 0.2593E-04 | 3.00 | 65536 |
by |
|||||
3 | 0.2226E-02 | 4.59 | 0.5414E-01 | 3.52 | 400 |
4 | 0.9610E-04 | 4.53 | 0.3723E-02 | 3.86 | 1600 |
5 | 0.3279E-05 | 4.87 | 0.2392E-03 | 3.96 | 6400 |
level | rate | rate | |||
by |
|||||
3 | 0.8265E-02 | 1.06 | 0.4577E-01 | 1.14 | 16 |
4 | 0.2772E-02 | 1.58 | 0.1732E-01 | 1.40 | 64 |
5 | 0.7965E-03 | 1.80 | 0.6331E-02 | 1.45 | 256 |
6 | 0.2142E-03 | 1.90 | 0.2290E-02 | 1.47 | 1024 |
7 | 0.5564E-04 | 1.94 | 0.8213E-03 | 1.48 | 4096 |
8 | 0.1419E-04 | 1.97 | 0.2928E-03 | 1.49 | 16384 |
level | rate | rate | |||
by |
|||||
3 | 0.4929E-02 | 0.97 | 0.5371E-01 | 0.80 | 16 |
4 | 0.1917E-02 | 1.36 | 0.2401E-01 | 1.16 | 64 |
5 | 0.6004E-03 | 1.67 | 0.9407E-02 | 1.35 | 256 |
6 | 0.1682E-03 | 1.84 | 0.3507E-02 | 1.42 | 1024 |
7 | 0.4457E-04 | 1.92 | 0.1275E-02 | 1.46 | 4096 |
8 | 0.1148E-04 | 1.96 | 0.4576E-03 | 1.48 | 16384 |