Research article Topical Sections

Improved estimation of population parameter of in the existence of nonresponse using auxiliary information

  • Published: 27 May 2025
  • MSC : 03H10, 37N40, 62P20, 68T07, 68T09, 91G15, 91G30

  • The issue of survey nonresponse causes substantial effects on the reliability, together with validity of study findings. This research develops precise estimation methods for two distinct nonresponse situations: when nonresponse happens to primary survey variables like the number of students, and when nonresponse includes survey variables together with the accompanying auxiliary variables. The proposed estimators receive full a performance assessment through derived equations for bias and mean square error (MSE) based on first-order approximation. The accuracy and reliability assessment depends heavily on MSE calculations, since this method effectively merges systematic error measurements with random error measurements. The MSE values of different estimators receive numerical evaluation through a comparative analysis under equivalent operational conditions for assessing proposed estimator performance outcomes. The research seeks to find the estimator with the minimal MSE because this selection results in the most trustworthy estimates under nonresponse conditions. All the findings from this study create important guidelines for building educational survey designs.

    Citation: Badr Aloraini. Improved estimation of population parameter of in the existence of nonresponse using auxiliary information[J]. AIMS Mathematics, 2025, 10(5): 12312-12342. doi: 10.3934/math.2025558

    Related Papers:

  • The issue of survey nonresponse causes substantial effects on the reliability, together with validity of study findings. This research develops precise estimation methods for two distinct nonresponse situations: when nonresponse happens to primary survey variables like the number of students, and when nonresponse includes survey variables together with the accompanying auxiliary variables. The proposed estimators receive full a performance assessment through derived equations for bias and mean square error (MSE) based on first-order approximation. The accuracy and reliability assessment depends heavily on MSE calculations, since this method effectively merges systematic error measurements with random error measurements. The MSE values of different estimators receive numerical evaluation through a comparative analysis under equivalent operational conditions for assessing proposed estimator performance outcomes. The research seeks to find the estimator with the minimal MSE because this selection results in the most trustworthy estimates under nonresponse conditions. All the findings from this study create important guidelines for building educational survey designs.



    加载中


    [1] A. Ahmadini, T. Yadav, S. Yadav, A. Al Luhayb, Restructured searls family of estimators of population mean in the presence of nonresponse, Front. Appl. Math. Stat., 8 (2022), 969068. https://doi.org/10.3389/fams.2022.969068 doi: 10.3389/fams.2022.969068
    [2] S. Ahmad, S. Hussain, M. Aamir, F. Khan, M. Alshahrani, M. Alqawba, Estimation of finite population mean using dual auxiliary variable for nonresponse using simple random sampling, AIMS Mathematics, 7 (2022), 4592–4613. https://doi.org/10.3934/math.2022256 doi: 10.3934/math.2022256
    [3] F. Almulhim, H. Aljohani, R. Aldallal, M. Mustafa, M. Alsolmi, A. Elshenawy, et al., Estimation of finite population mean using dual auxiliary information under nonresponse with simple random sampling, Alex. Eng. J., 100 (2024), 286–299. https://doi.org/10.1016/j.aej.2024.04.058 doi: 10.1016/j.aej.2024.04.058
    [4] N. Adichwal, A. Ahmadini, Y. Raghav, R. Singh, I. Ali, Estimation of general parameters using auxiliary information in simple random sampling without replacement, J. King Saud Univ. Sci., 34 (2022), 101754. https://doi.org/10.1016/j.jksus.2021.101754 doi: 10.1016/j.jksus.2021.101754
    [5] V. Adamo, On the exchangeability property in causal models, Computational Journal of Mathematical and Statistical Sciences, 3 (2024), 228–239.
    [6] H. Alshanbari, A. Gemeay, A. El-Bagoury, S. Khosa, E. Hafez, A. Muse, A novel extension of Fréchet distribution: Application on real data and simulation, Alex. Eng. J., 61 (2022), 7917–7938. https://doi.org/10.1016/j.aej.2022.01.013 doi: 10.1016/j.aej.2022.01.013
    [7] M. Bakr, A. Al-Babtain, Z. Mahmood, R. Aldallal, S. Khosa, M. Abd El-Raouf, et al., Statistical modelling for a new family of generalized distributions with real data applications, Math. Biosci. Eng., 19 (2022), 8705–8740. https://doi.org/10.3934/mbe.2022404 doi: 10.3934/mbe.2022404
    [8] Z. Basit, S. Masood, I. Bhatti, A class of estimators for estimation of population mean under random nonresponse in two phase successive sampling, J. Stat. Theory Appl., 22 (2023), 309–338. https://doi.org/10.1007/s44199-023-00065-5 doi: 10.1007/s44199-023-00065-5
    [9] W. Cochran, The estimation of the yields of cereal experiments by sampling for the ratio of grain to total produce, J. Agr. Sci., 30 (1940), 262–275. https://doi.org/10.1017/S0021859600048012 doi: 10.1017/S0021859600048012
    [10] A. Dyab, S. El Sayed, A. Abdelfattah, Short dynamic panel data models in the presence of a higher frequency regressor(s), Computational Journal of Mathematical and Statistical Sciences, 2 (2023), 251–274.
    [11] D. Gujarati, D. Porter, Basic econometrics, New York: McGraw-Hill, 2009.
    [12] A. Gemeay, K. Karakaya, M. Bakr, O. Balogun, M. Atchadé, E. Hussam, Power Lambert uniform distribution: statistical properties, actuarial measures, regression analysis, and applications, AIP Adv., 13 (2023), 095319. https://doi.org/10.1063/5.0170964 doi: 10.1063/5.0170964
    [13] L. Grover, P. Kaur, A generalized class of ratio type exponential estimators of population mean under linear transformation of auxiliary variable, Commun. Stat. Simul. Comput., 43 (2014), 1552–1574. https://doi.org/10.1080/03610918.2012.736579 doi: 10.1080/03610918.2012.736579
    [14] S. Hussain, S. Ahmad, S. Akhtar, A. Javed, U. Yasmeen, Estimation of finite population distribution function with dual use of auxiliary information under nonresponse, PLoS One, 15 (2020), e0243584. https://doi.org/10.1371/journal.pone.0243584 doi: 10.1371/journal.pone.0243584
    [15] M. Hansen, W. Hurwitz, The problem of nonresponse in sample surveys, J. Am. Stat. Assoc., 41 (1946), 517–529. https://doi.org/10.1080/01621459.1946.10501894 doi: 10.1080/01621459.1946.10501894
    [16] S. Hussain, M. Zichuan, S. Hussain, A. Iftikhar, M. Asif, S. Akhtar, et al., On estimation of distribution function using dual auxiliary information under nonresponse using simple random sampling, J. Probab. Stat., 2020 (2020), 1693612. https://doi.org/10.1155/2020/1693612 doi: 10.1155/2020/1693612
    [17] M. Ismail, Combination of ratio and regression estimator of population mean in presence of nonresponse, Gazi Univ. J. Sci., 30 (2017), 634–642.
    [18] B. Khare, S. Kumar, Chain ratio-regression estimators in two phase sampling in the presence of nonresponse, ProbStat Forum, 8 (2015), 95–102.
    [19] B. Khare, R. Sinha, On class of estimators for population mean using multi-auxiliary characters in the presence of nonresponse, Statistics in Transition, 10 (2009), 3–14.
    [20] R. Kurbah, P. Khongji, A new exponential ratio-type estimator of population mean using mean and median with two auxiliary variables under double sampling, Thail. Statist., 22 (2024), 458–470.
    [21] N. Koyuncu, C. Kadilar, Ratio and product estimators in stratified random sampling, J. Stat. Plan. Infer., 139 (2009), 2552–2558. https://doi.org/10.1016/j.jspi.2008.11.009 doi: 10.1016/j.jspi.2008.11.009
    [22] S. Lone, M. Subzar, A. Sharma, Enhanced estimators of population variance with the use of supplementary information in survey sampling, Math. Probl. Eng., 2021 (2021), 9931217. https://doi.org/10.1155/2021/9931217 doi: 10.1155/2021/9931217
    [23] S. Muneer, J. Shabbir, A. Khalil, A generalized exponential type estimator of population mean in the presence of nonresponse, Statistics in Transition, 19 (2018), 259–276.
    [24] M. Qureshi, Y. Faizan, A. Shetty, M. Ahelali, M. Hanif, O. Alamri, Ln-type estimators for the estimation of the population mean of a sensitive study variable using auxiliary information, Heliyon, 10 (2024), e23066. https://doi.org/10.1016/j.heliyon.2023.e23066 doi: 10.1016/j.heliyon.2023.e23066
    [25] T. Raja, S. Maqbool, Ratio type estimators for estimating population mean by using some auxiliary information, International Journal of Agriculture Sciences, 16 (2024), 12799–12801.
    [26] M. Rueda, A. Arcos, M. Martínez-Miranda, Y. Román, Some improved estimators of finite population quantile using auxiliary information in sample surveys, Comput. Stat. Data Anal., 45 (2004), 825–848. https://doi.org/10.1016/S0167-9473(03)00097-5 doi: 10.1016/S0167-9473(03)00097-5
    [27] T. Rao, On certain methods of improving ratio and regression estimators, Commun. Stat. Theor. M., 20 (1991), 3325–3340.
    [28] F. Riad, E. Hussam, A. Gemeay, R. Aldallal, A. Afify, Classical and Bayesian inference of the weighted-exponential distribution with an application to insurance data, Math. Biosci. Eng., 19 (2022), 6551–6581. https://doi.org/10.3934/mbe.2022309 doi: 10.3934/mbe.2022309
    [29] R. Sinha, B. Khanna, Efficient estimation for ratio of means using dual auxiliary information under nonresponse, Thail. Statist., 22 (2025), 736–749.
    [30] S. Singh, Advanced sampling theory with applications: how Michael "selected" Amy, volume I, Dordrecht: Springer, 2003. https://doi.org/10.1007/978-94-007-0789-4
    [31] H. Singh, N. Garg, Modified correlated measurement errors model for estimation of population mean utilizing auxiliary information, Sci. Rep., 14 (2024), 11086. https://doi.org/10.1038/s41598-024-61609-y doi: 10.1038/s41598-024-61609-y
    [32] A. Salama, H. Elagamy, Neutrosophic fuzzy ideal open sets, ideal closed sets, and their applications in geographic information systems, Journal of Business and Environmental Science, 3 (2024), 302–321. https://doi.org/10.21608/jcese.2024.281435.1058 doi: 10.21608/jcese.2024.281435.1058
    [33] H. Semary, S. Ahmad, I. Elbatal, C. Chesneau, M. Elgarhy, E. Almetwally, New comprehensive class of estimators for population proportion using auxiliary attribute: simulation and an application, Alex. Eng. J., 99 (2024), 130–136. https://doi.org/10.1016/j.aej.2024.04.065 doi: 10.1016/j.aej.2024.04.065
    [34] A. Teamah, A. Elbanna, A. Gemeay, An alternative version of half-logistic distribution: properties, estimation and application, Thail. Statist., 23 (2024), 97–114.
    [35] K. Ullah, Z. Hussain, I. Hussain, S. Cheema, Z. Almaspoor, M. El-Morshedy, Estimation of finite population mean in simple and stratified random sampling by utilizing the auxiliary, ranks, and square of the auxiliary information, Math. Probl. Eng., 2022 (2022), 5263492. https://doi.org/10.1155/2022/5263492 doi: 10.1155/2022/5263492
    [36] D. Watson, The estimation of leaf area in field crops, J. Agr. Sci., 27 (1937), 474–483. https://doi.org/10.1017/S002185960005173X doi: 10.1017/S002185960005173X
    [37] M. Yaqub, F. Sohil, J. Shabbir, M. Sohail, Estimation of population distribution function in the presence of nonresponse using stratified random sampling, Commun. Stat.-Simul. Comput., 53 (2024), 2498–2526. https://doi.org/10.1080/03610918.2022.2078492 doi: 10.1080/03610918.2022.2078492
    [38] E. Yıldırım, E. Ilıkkan, A. Gemeay, N. Makumi, M. Bakr, O. Balogun, Power unit Burr-Ⅻ distribution: statistical inference with applications, AIP Adv., 13 (2023), 105107. https://doi.org/10.1063/5.0171077 doi: 10.1063/5.0171077
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(734) PDF downloads(27) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(25)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog