In this paper, we extended the port-Hamiltonian framework by introducing the concept of Stokes-Lagrange structure, which enables the implicit definition of a Hamiltonian over an $ N $-dimensional domain and incorporates energy ports into the system. This new framework parallels the existing Dirac and Stokes-Dirac structures. We proposed the Stokes-Lagrange structure as a specific case where the subspace is explicitly defined via differential operators that satisfy an integration-by-parts formula. By examining various examples through the lens of the Stokes-Lagrange structure, we demonstrated the existence of multiple equivalent system representations. These representations provide significant advantages for both numerical simulation and control design, offering additional tools for the modeling and control of port-Hamiltonian systems.
Citation: Antoine Bendimerad-Hohl, Ghislain Haine, Laurent Lefèvre, Denis Matignon. Stokes-Lagrange and Stokes-Dirac representations of $ N $-dimensional port-Hamiltonian systems for modeling and control[J]. Communications in Analysis and Mechanics, 2025, 17(2): 474-519. doi: 10.3934/cam.2025020
In this paper, we extended the port-Hamiltonian framework by introducing the concept of Stokes-Lagrange structure, which enables the implicit definition of a Hamiltonian over an $ N $-dimensional domain and incorporates energy ports into the system. This new framework parallels the existing Dirac and Stokes-Dirac structures. We proposed the Stokes-Lagrange structure as a specific case where the subspace is explicitly defined via differential operators that satisfy an integration-by-parts formula. By examining various examples through the lens of the Stokes-Lagrange structure, we demonstrated the existence of multiple equivalent system representations. These representations provide significant advantages for both numerical simulation and control design, offering additional tools for the modeling and control of port-Hamiltonian systems.
| [1] |
A. van der Schaft, D. Jeltsema, Port-Hamiltonian systems theory: An introductory overview, Found. Trends Syst. Control., 1 (2014), 173–378. https://doi.org/10.1561/2600000002 doi: 10.1561/2600000002
|
| [2] | V. Duindam, A. Macchelli, S. Stramigioli, H. Bruyninckx, Modeling and control of complex physical systems: the port-Hamiltonian approach, Springer Berlin, Heidelberg, 2009. https://doi.org/10.1007/978-3-642-03196-0 |
| [3] |
F. Gay-Balmaz, H. Yoshimura, A Lagrangian variational formulation for nonequilibrium thermodynamics. Part Ⅱ: Continuum systems, J. Geom. Phys., 111 (2017), 194–212. https://doi.org/10.1016/j.geomphys.2016.08.019 doi: 10.1016/j.geomphys.2016.08.019
|
| [4] |
A. van der Schaft, B. Maschke, Hamiltonian formulation of distributed-parameter systems with boundary energy flow, J. Geom. Phys., 42 (2002), 166–194. https://doi.org/10.1016/S0393-0440(01)00083-3 doi: 10.1016/S0393-0440(01)00083-3
|
| [5] | B. Jacob, H. J. Zwart, Linear port-Hamiltonian systems on infinite-dimensional spaces, Springer, 2012. https://doi.org/10.1007/978-3-0348-0399-1 |
| [6] |
A. Brugnoli, G. Haine, D. Matignon, Stokes-Dirac structures for distributed parameter port-Hamiltonian systems: An analytical viewpoint, Commun. Anal. Mech., 15 (2023), 362–387. https://doi.org/10.3934/cam.2023018 doi: 10.3934/cam.2023018
|
| [7] |
R. Rashad, F. Califano, A. J. van der Schaft, S. Stramigioli, Twenty years of distributed port-Hamiltonian systems: A literature review, IMA J. Math. Control Inf., 37 (2020), 1400–1422. https://doi.org/10.1093/imamci/dnaa018 doi: 10.1093/imamci/dnaa018
|
| [8] |
C. Beattie, V. Mehrmann, H. Xu, H. Zwart, Linear port-Hamiltonian descriptor systems, Math. Control Signals Syst., 30 (2018), 1–27. https://doi.org/10.1007/s00498-018-0223-3 doi: 10.1007/s00498-018-0223-3
|
| [9] | H. Zwart, V. Mehrmann, Abstract dissipative Hamiltonian differential-dlgebraic equations are everywhere, DAE Panel, 2 (2014). https://doi.org/10.52825/dae-p.v2i.957 |
| [10] |
V. Mehrmann, B. Unger, Control of port-Hamiltonian differential-algebraic systems and applications, Acta Numer., 32 (2023), 395–515. https://doi.org/10.1017/S0962492922000083 doi: 10.1017/S0962492922000083
|
| [11] |
A. van der Schaft, B. Maschke Generalized port-Hamiltonian DAE systems, Systems Control Lett., 121 (2018), 31–37. https://doi.org/10.1016/j.sysconle.2018.09.008 doi: 10.1016/j.sysconle.2018.09.008
|
| [12] |
A. van der Schaft, B. Maschke, Dirac and Lagrange algebraic constraints in nonlinear port-Hamiltonian systems, Vietnam J. Math., 48 (2020), 929–939. https://doi.org/10.1007/s10013-020-00419-x doi: 10.1007/s10013-020-00419-x
|
| [13] |
M. Yaghi, F. Couenne, A. Galfré, L. Lefèvre, B. Maschke, Port-Hamiltonian formulation of the solidification process for a pure substance: A phase field approach, IFAC-PapersOnLine, 55 (2022), 93–98. https://doi.org/10.1016/j.ifacol.2022.08.036 doi: 10.1016/j.ifacol.2022.08.036
|
| [14] |
B. Jacob, K. Morris, On solvability of dissipative partial differential-algebraic equations, IEEE Control Syst. Lett, 6 (2022), 3188–3193. https://doi.org/10.1109/LCSYS.2022.3183479 doi: 10.1109/LCSYS.2022.3183479
|
| [15] |
H. Heidari, H. Zwart, Port-Hamiltonian modelling of nonlocal longitudinal vibrations in a viscoelastic nanorod, Math. Comp. Model. Dyn., 25 (2019), 447–462. https://doi.org/10.1080/13873954.2019.1659374 doi: 10.1080/13873954.2019.1659374
|
| [16] |
H. Heidari, H. Zwart, Nonlocal longitudinal vibration in a nanorod, a system theoretic analysis, Math. Model. Nat. Phenom., 17 (2022), 24. https://doi.org/10.1051/mmnp/2022028 doi: 10.1051/mmnp/2022028
|
| [17] | A. Bendimerad-Hohl, G. Haine, L. Lefèvre, D. Matignon, Implicit port-Hamiltonian systems: structure-preserving discretization for the nonlocal vibrations in a viscoelastic nanorod, and for a seepage model, IFAC-PapersOnLine, 56 (2023), 6789–6795. |
| [18] | B. Maschke, A. van der Schaft, Linear boundary port-Hamiltonian systems with implicitly defined energy, arXiv preprint arXiv: 2305.13772. https://doi.org/10.48550/arXiv.2305.13772 |
| [19] |
K. Krhač, B. Maschke, A. van der Schaft, Port-Hamiltonian systems with energy and power ports, IFAC-PapersOnLine, 58 (2024), 280–285. https://doi.org/10.1016/j.ifacol.2024.08.294 doi: 10.1016/j.ifacol.2024.08.294
|
| [20] | A. van der Schaft, B. Maschke, Boundary control port-Hamiltonian systems with power and energy ports, in 26th International Symposium on Mathematical Theory of Networks and Systems, Cambridge, UK, 2024, 120–122. |
| [21] |
M. Schöberl, K. Schlacher, First-order Hamiltonian field theory and mechanics, Math. Comp. Model. Dyn., 17 (2011), 105–121. https://doi.org/10.1080/13873954.2010.537526 doi: 10.1080/13873954.2010.537526
|
| [22] | M. Schöberl, A. Siuka, Analysis and comparison of port-Hamiltonian formulations for field theories - demonstrated by means of the Mindlin plate, in 2013 European Control Conference (ECC), 2013, 548–553. https://doi.org/10.23919/ECC.2013.6669137 |
| [23] |
M. Schöberl, A. Siuka, Jet bundle formulation of infinite-dimensional port-Hamiltonian systems using differential operators, Automatica, 50 (2014), 607–613. https://doi.org/10.1016/j.automatica.2013.11.035 doi: 10.1016/j.automatica.2013.11.035
|
| [24] |
A. Bendimerad-Hohl, D. Matignon, G. Haine, L. Lefèvre, On Stokes-Lagrange and Stokes-Dirac representations for 1D distributed port-Hamiltonian systems, IFAC-PapersOnLine, 58 (2024), 238–243. https://doi.org/10.1016/j.ifacol.2024.10.174 doi: 10.1016/j.ifacol.2024.10.174
|
| [25] |
M. Kurula, H. Zwart, A. van der Schaft, J. Behrndt, Dirac structures and their composition on Hilbert spaces, J. Math. Anal. Appl., 372 (2010), 402–422. https://doi.org/10.1016/j.jmaa.2010.07.004 doi: 10.1016/j.jmaa.2010.07.004
|
| [26] |
G. Haine, D. Matignon, A. Serhani, Numerical analysis of a structure-preserving space-discretization for an anisotropic and heterogeneous boundary controlled $N$-dimensional wave equation as a port-Hamiltonian system, Int. J. Numer. Anal. Model., 20 (2023), 92–133. https://doi.org/10.4208/ijnam2023-1005 doi: 10.4208/ijnam2023-1005
|
| [27] | P. J. Olver, Applications of Lie groups to differential equations, New York: Springer-Verlag, 1993. https://doi.org/10.1007/978-1-4612-4350-2 |
| [28] |
A. C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., 54 (1983), 4703–4710. https://doi.org/10.1063/1.332803 doi: 10.1063/1.332803
|
| [29] |
G. Romano, R. Barretta, M. Diaco, F. M. de Sciarra, Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams, Int. J. Mech. Sci., 121 (2017), 151–156. https://doi.org/10.1016/j.ijmecsci.2016.10.036 doi: 10.1016/j.ijmecsci.2016.10.036
|
| [30] | W. Rudin, Functional analysis, 2nd edition, International series in pure and applied mathematics, McGraw-Hill, 1991. |
| [31] |
T. Preuster, B. Maschke, M. Schaller, Jet space extensions of infinite-dimensional Hamiltonian systems, IFAC-PapersOnLine, 58 (2024), 298–303. https://doi.org/10.1016/j.ifacol.2024.08.297 doi: 10.1016/j.ifacol.2024.08.297
|
| [32] |
M. Schöberl, K. Schlacher, Lagrangian and port-Hamiltonian formulation for distributed-parameter systems, IFAC-PapersOnLine, 48 (2015), 610–615. https://doi.org/10.1016/j.ifacol.2015.05.025 doi: 10.1016/j.ifacol.2015.05.025
|
| [33] |
A. van der Schaft, B. Maschke, Differential operator Dirac structures, IFAC-PapersOnLine, 54 (2021), 198–203. https://doi.org/10.1016/j.ifacol.2021.11.078 doi: 10.1016/j.ifacol.2021.11.078
|
| [34] |
A. F. Gangi, Constitutive equations and reciprocity, Geophys. J. Int., 143 (2020), 311–318. https://doi.org/10.1046/j.1365-246X.2000.01259.x doi: 10.1046/j.1365-246X.2000.01259.x
|
| [35] | H. Gernandt, F. M. Philipp, T. Preuster, M. Schaller, On the equivalence of geometric and descriptor representations of linear port-Hamiltonian systems, in Systems Theory and PDEs, Springer, 2022, 149–165. https://doi.org/10.1007/978-3-031-64991-2_6 |
| [36] |
V. Mehrmann, A. van der Schaft, Differential–algebraic systems with dissipative Hamiltonian structure, Math. Control Signals Syst., 35 (2023), 541–584. https://doi.org/10.1007/s00498-023-00349-2 doi: 10.1007/s00498-023-00349-2
|
| [37] | J. Bognár, Indefinite inner product spaces, Springer Berlin, Heidelberg, 2012. https://doi.org/10.1007/978-3-642-65567-8 |
| [38] |
R. Ortega, A. van der Schaft, F. Castanos, A. Astolfi, Control by interconnection and standard passivity-based control of port-Hamiltonian systems, IEEE Trans. Autom. Control., 53 (2008), 2527–2542. https://doi.org/10.1109/TAC.2008.2006930 doi: 10.1109/TAC.2008.2006930
|
| [39] |
M. Erbay, B. Jacob, K. Morris, On the Weierstraß form of infinite-dimensional differential algebraic equations, J. Evol. Equ., 24 (2024), 73. https://doi.org/10.1007/s00028-024-01003-3 doi: 10.1007/s00028-024-01003-3
|
| [40] | E. Hairer, C. Lubich, G. Wanner, Geometric numerical integration: structure-preserving algorithms for ordinary differential equations: structure-preserving algorithms for ordinary differential equations, Springer Berlin, Heidelberg, 2006. https://doi.org/10.1007/3-540-30666-8 |
| [41] | R. Altmann, P. Schulze, A novel energy-based modeling framework, Math. Control Signals Syst., 2025. https://doi.org/10.1007/s00498-024-00405-5 |
| [42] | P. Destuynder, M. Salaün, Mathematical analysis of thin plate models, Springer Berlin, Heidelberg, 2013. https://doi.org/10.1007/978-3-642-51761-7 |
| [43] |
R. D. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates, J. Appl. Mech., 18 (1951), 31–38. https://doi.org/10.1115/1.4010217 doi: 10.1115/1.4010217
|
| [44] |
A. Brugnoli, D. Alazard, V. Pommier-Budinger, D. Matignon, Port-Hamiltonian formulation and symplectic discretization of plate models Part Ⅰ: Mindlin model for thick plates, Appl. Math. Model., 75 (2019), 940–960. https://doi.org/10.1016/j.apm.2019.04.035 doi: 10.1016/j.apm.2019.04.035
|
| [45] |
C. Ponce, Y. Wu, Y. Le Gorrec, H. Ramirez, A systematic methodology for port-Hamiltonian modeling of multidimensional flexible linear mechanical systems, Appl. Math. Model., 134 (2024), 434–451. https://doi.org/10.1016/j.apm.2024.05.040 doi: 10.1016/j.apm.2024.05.040
|
| [46] |
A. Brugnoli, D. Alazard, V. Pommier-Budinger, D. Matignon, Port-Hamiltonian formulation and symplectic discretization of plate models Part Ⅱ: Kirchhoff model for thin plates, Appl. Math. Model., 75 (2019), 961–981. https://doi.org/10.1016/j.apm.2019.04.036 doi: 10.1016/j.apm.2019.04.036
|
| [47] | A. Kovetz, Electromagnetic theory, Oxford University Press, 2020. https://doi.org/10.1119/1.1371014 |
| [48] | D. N. Arnold, Finite element exterior calculus, SIAM, 2018. https://doi.org/10.1137/1.9781611975543 |
| [49] |
A. Buffa, H. Ammari, J. C. Nédélec, A justification of eddy currents model for the Maxwell equations, SIAM J. Appl. Math., 60 (2020), 1805–1823. https://doi.org/10.1137/S0036139998348979 doi: 10.1137/S0036139998348979
|
| [50] |
T. Reis, T. Stykel, Passivity, port-Hamiltonian formulation and solution estimates for a coupled magneto-quasistatic system, Evol. Equations Control Theory, 12 (2023), 1208–1232. https://doi.org/10.3934/eect.2023008 doi: 10.3934/eect.2023008
|
| [51] | F. Assous, P. Ciarlet, S. Labrunie, Mathematical foundations of computational electromagnetism, Springer, 2018 https://doi.org/10.1007/978-3-319-70842-3 |
| [52] |
F. L. Cardoso-Ribeiro, G. Haine, Y. Le Gorrec, D. Matignon, H. Ramirez, Port-Hamiltonian formulations for the modeling, simulation and control of fluids, Comput. Fluids., 283 (2024), 106407. https://doi.org/10.1016/j.compfluid.2024.106407 doi: 10.1016/j.compfluid.2024.106407
|
| [53] |
G. Haine, D. Matignon Incompressible Navier-Stokes Equation as port-Hamiltonian system: velocity formulation versus vorticity formulation, IFAC-PapersOnLine, 54 (2021), 161–166. https://doi.org/10.1016/j.ifacol.2021.11.072 doi: 10.1016/j.ifacol.2021.11.072
|
| [54] | E. S. Dzektser, Generalization of the equation of motion of ground waters with free surface, Dokl. Akad. Nauk SSSR, 202 (1972), 1031–1033. |
| [55] |
P. Borja, J. Ferguson, A. van der Schaft, Interconnection schemes in modeling and control, IEEE Control Syst. Lett, 7 (2023), 2287–2292. https://doi.org/10.1109/LCSYS.2023.3286124 doi: 10.1109/LCSYS.2023.3286124
|
| [56] | A. Macchelli, A. van der Schaft, C. Melchiorri, Multi-variable port-Hamiltonian model of piezoelectric material, in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), 2004, 897-–902. https://doi.org/10.1109/IROS.2004.1389466 |
| [57] |
A. Macchelli, Energy shaping of distributed parameter port-Hamiltonian systems based on finite element approximation, Systems Control Lett., 60 (2011), 579–589. https://doi.org/10.1016/j.sysconle.2011.04.016 doi: 10.1016/j.sysconle.2011.04.016
|
| [58] | H. Gernandt, F. Philipp, T. Preuster, M. Schaller, Extension theory via boundary triplets for infinite-dimensional implicit port-Hamiltonian systems, arXiv preprint arXiv: 2503.17874. |