We study the subcritical approximations to Li–Lin's open problem, proposed by Li and Lin (Arch Ration Mech Anal 203(3): 943-968, 2012). By applying the variational method, we obtain two positive solutions. We establish a nonexistence theorem for positive solutions. Finally, through the combination of the variational method and the sub-supersolution method, we find a global bifurcation phenomenon for positive solutions.
Citation: Zhi-Yun Tang, Xianhua Tang. Positive solutions for critical singular elliptic equations without Ambrosetti-Rabinowitz type conditions[J]. Communications in Analysis and Mechanics, 2025, 17(2): 462-473. doi: 10.3934/cam.2025019
We study the subcritical approximations to Li–Lin's open problem, proposed by Li and Lin (Arch Ration Mech Anal 203(3): 943-968, 2012). By applying the variational method, we obtain two positive solutions. We establish a nonexistence theorem for positive solutions. Finally, through the combination of the variational method and the sub-supersolution method, we find a global bifurcation phenomenon for positive solutions.
| [1] |
H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437–477. https://doi.org/10.1002/cpa.3160360405 doi: 10.1002/cpa.3160360405
|
| [2] |
N. Ghoussoub, C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 352 (2000), 5703–5743. https://doi.org/10.1090/S0002-9947-00-02560-5 doi: 10.1090/S0002-9947-00-02560-5
|
| [3] |
N. Ghoussoub, X. S. Kang, Hardy-Sobolev critical elliptic equations with boundary singularities, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 21 (2004), 767–793. https://doi.org/10.1016/j.anihpc.2003.07.002 doi: 10.1016/j.anihpc.2003.07.002
|
| [4] |
Y.Y. Li, C. S. Lin, A nonlinear elliptic PDE and two Sobolev-Hardy critical exponents, Arch. Ration. Mech. Anal., 203 (2012), 943–968. https://doi.org/10.1007/s00205-011-0467-2 doi: 10.1007/s00205-011-0467-2
|
| [5] |
T. Jin, Symmetry and nonexistence of positive solutions of elliptic equations and systems with Hardy terms, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 28 (2011), 965–981. https://doi.org/10.1016/j.anihpc.2011.07.003 doi: 10.1016/j.anihpc.2011.07.003
|
| [6] |
S. Yan, J. Yang, Infinitely many solutions for an elliptic problem involving critical Sobolev and Hardy-Sobolev exponents, Calc. Var. Partial Differential Equations, 48 (2013), 587–610. https://doi.org/10.1007/s00526-012-0563-7 doi: 10.1007/s00526-012-0563-7
|
| [7] |
G. Cerami, X. Zhong, W. Zou, On some nonlinear elliptic PDEs with Sobolev-Hardy critical exponents and a Li-Lin open problem, Calc. Var. Partial Differential Equations, 54 (2015), 1793–1829. https://doi.org/10.1007/s00526-015-0844-z doi: 10.1007/s00526-015-0844-z
|
| [8] |
X. Zhong, W. Zou, A nonlinear elliptic PDE with multiple Hardy-Sobolev critical exponents in $\mathbb{R}^N$, J. Differential Equations, 292 (2021), 354–387. https://doi.org/10.1016/j.jde.2021.05.027 doi: 10.1016/j.jde.2021.05.027
|
| [9] |
C. Wang, J. Su, The ground state solutions of Hénon equation with upper weighted critical exponents, J. Differential Equations, 302 (2021), 444–473. https://doi.org/10.1016/j.jde.2021.09.007 doi: 10.1016/j.jde.2021.09.007
|
| [10] |
Z. Y. Tang, X. H. Tang, On Li-Lin's open problem, J. Differential Equations, 435 (2025), 113244. https://doi.org/10.1016/j.jde.2025.113244 doi: 10.1016/j.jde.2025.113244
|
| [11] |
H. Brezis, J.L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid, 10 (1997), 443–469. https://doi.org/10.5209/rev_rema.1997.v10.n2.17459 doi: 10.5209/rev_rema.1997.v10.n2.17459
|
| [12] | J. Mawhin, M. Willem, Critical point theory and Hamiltonian systems, volume 74 of Applied Mathematical Sciences. Springer-Verlag, New York, 1989. https://doi.org/10.1007/978-1-4757-2061-7 |
| [13] | D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. |
| [14] |
A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349–381. https://doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7
|
| [15] |
M. Montenegro, A. C. Ponce, The sub-supersolution method for weak solutions, Proc. Amer. Math. Soc., 136 (2008), 2429–2438. https://doi.org/10.1090/S0002-9939-08-09231-9 doi: 10.1090/S0002-9939-08-09231-9
|