Within the self-consistent Maxwell-Pauli theory, a nonlinear Schrödinger equation with a short-range compensating field was derived. Stationary and nonstationary solutions of the obtained nonlinear Schrödinger equation for the hydrogen atom were investigated. It is shown that spontaneous emission and the associated rearrangement of the internal structure of the atom, which is traditionally called a spontaneous transition, have a simple and natural description within the classical field theory without any quantization and additional hypotheses. The solution of the nonlinear Schrödinger equation shows that, depending on the frequency of spontaneous emission, the compensating field behaves differently. At relatively low frequencies of spontaneous emission, there is no radiation (waves) of the short-range compensating field, and this field does not carry away energy. In this case, the damping rate of the spontaneous emission coincides with that obtained in quantum electrodynamics (QED). At relatively high frequencies of spontaneous emission, radiation (waves) of the compensating field arises, which, along with electromagnetic radiation, carry away some of the energy. In this case, the damping rate of the spontaneous emission is greater (up 1.5 times) than that predicted by QED.
Citation: Sergey A. Rashkovskiy. Nonlinear Schrödinger equation with a short-range compensating field[J]. Communications in Analysis and Mechanics, 2025, 17(2): 520-549. doi: 10.3934/cam.2025021
Within the self-consistent Maxwell-Pauli theory, a nonlinear Schrödinger equation with a short-range compensating field was derived. Stationary and nonstationary solutions of the obtained nonlinear Schrödinger equation for the hydrogen atom were investigated. It is shown that spontaneous emission and the associated rearrangement of the internal structure of the atom, which is traditionally called a spontaneous transition, have a simple and natural description within the classical field theory without any quantization and additional hypotheses. The solution of the nonlinear Schrödinger equation shows that, depending on the frequency of spontaneous emission, the compensating field behaves differently. At relatively low frequencies of spontaneous emission, there is no radiation (waves) of the short-range compensating field, and this field does not carry away energy. In this case, the damping rate of the spontaneous emission coincides with that obtained in quantum electrodynamics (QED). At relatively high frequencies of spontaneous emission, radiation (waves) of the compensating field arises, which, along with electromagnetic radiation, carry away some of the energy. In this case, the damping rate of the spontaneous emission is greater (up 1.5 times) than that predicted by QED.
| [1] |
P. A. M. Dirac, Relativity quantum mechanics with an application to Compton scattering, Proc. Roy. Soc. London. A, 111 (1926), 405–423. https://doi.org/10.1098/rspa.1926.0074 doi: 10.1098/rspa.1926.0074
|
| [2] |
P. A. M. Dirac, The Compton effect in wave mechanics. Proc. Cambr. Phil. Soc., 23 (1927), 500–507. https://doi.org/10.1017/S0305004100011634 doi: 10.1017/S0305004100011634
|
| [3] |
W. Gordon, Der comptoneffekt nach der schrödingerschen theorie, Zeit. f. Phys., 40 (1926), 117–133. https://doi.org/10.1007/BF01390840 doi: 10.1007/BF01390840
|
| [4] |
O. Klein, Y. Nishina, Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac, Z. Phys. 52 (1929), 853–869. https://doi.org/10.1007/BF01366453 doi: 10.1007/BF01366453
|
| [5] | W. E. Lamb, M. O. Scully, The photoelectric effect without photons, in Polarization, Matter and Radiation. Jubilee volume in honour of Alfred Kasiler, 363–369, Press of University de France, Paris, 1969. |
| [6] |
M. D. Crisp, E. T. Jaynes, Radiative effects in semiclassical theory, Phys Rev, 179 (1969), 1253. https://doi.org/10.1103/PhysRev.179.1253 doi: 10.1103/PhysRev.179.1253
|
| [7] |
C. R. Stroud Jr, E. T. Jaynes, Long-term solutions in semiclassical radiation theory, Phys Rev A, 1 (1970), 106. https://doi.org/10.1103/PhysRevA.1.106 doi: 10.1103/PhysRevA.1.106
|
| [8] |
R. K. Nesbet, Spontaneous emission in semiclassical radiation theory, Phys Rev A, 4 (1971), 259. https://doi.org/10.1103/PhysRevA.4.259 doi: 10.1103/PhysRevA.4.259
|
| [9] |
A. O. Barut, J. F. Van Huele, Quantum electrodynamics based on self-energy: Lamb shift and spontaneous emission without field quantization, Phys Rev A, 32 (1985), 3187. https://doi.org/10.1103/PhysRevA.32.3187 doi: 10.1103/PhysRevA.32.3187
|
| [10] |
A. O. Barut, Y. I. Salamin, Relativistic theory of spontaneous emission, Phys Rev A, 37 (1988), 2284. https://doi.org/10.1103/PhysRevA.37.2284 doi: 10.1103/PhysRevA.37.2284
|
| [11] |
A. O. Barut, Quantum-electrodynamics based on self-energy, Phys Scripta, 1988 (1988), 18. https://doi.org/10.1088/0031-8949/1988/T21/003 doi: 10.1088/0031-8949/1988/T21/003
|
| [12] |
A. O. Barut, J. P. Dowling, J. F. Van Huele, Quantum electrodynamics based on self-fields, without second quantization: A nonrelativistic calculation of g-2, Phys Rev A, 38 (1988), 4405. https://doi.org/10.1103/PhysRevA.38.4405 doi: 10.1103/PhysRevA.38.4405
|
| [13] |
A. O. Barut, J. P. Dowling, QED based on self-fields: A relativistic calculation of g-2, Zeitschrift für Naturforschung A, 44 (1989), 1051–1056. https://doi.org/10.1515/zna-1989-1104 doi: 10.1515/zna-1989-1104
|
| [14] |
A. O. Barut, J. P. Dowling, Quantum electrodynamics based on self-fields, without second quantization: Apparatus dependent contributions to g-2. Phys Rev A, 39 (1989), 2796. https://doi.org/10.1103/PhysRevA.39.2796 doi: 10.1103/PhysRevA.39.2796
|
| [15] |
A. O. Barut, J. P. Dowling Self-field quantum electrodynamics: The two-level atom, Phys Rev A, 41 (1990), 2284. https://doi.org/10.1103/PhysRevA.41.2284 doi: 10.1103/PhysRevA.41.2284
|
| [16] |
M. D. Crisp, Self-fields in semiclassical radiation theory, Phys Rev A, 42 (1990), 3703. https://doi.org/10.1103/PhysRevA.42.3703 doi: 10.1103/PhysRevA.42.3703
|
| [17] |
M. D. Crisp, Relativistic neoclassical radiation theory, Phys Rev A, 54 (1996), 87. https://doi.org/10.1103/PhysRevA.54.87 doi: 10.1103/PhysRevA.54.87
|
| [18] |
S. A. Rashkovskiy, Quantum mechanics without quanta: 2. The nature of the electron, Quantum Stud. : Math. Found, 4 (2017), 29–58. https://doi.org/10.1007/s40509-016-0085-7 doi: 10.1007/s40509-016-0085-7
|
| [19] |
S. A. Rashkovskiy, Classical-field model of the hydrogen atom, Indian J Phys, 91 (2017), 607–621. https://doi.org/10.1007/s12648-017-0972-8 doi: 10.1007/s12648-017-0972-8
|
| [20] |
S. A. Rashkovskiy, Nonlinear Schrödinger equation and semiclassical description of the light-atom interaction, Prog Theor Exp Phys, 2017 (2017), 013A03. https://doi.org/10.1093/ptep/ptw177 doi: 10.1093/ptep/ptw177
|
| [21] | S. A. Rashkovskiy, Classical field theory of the photoelectric effect, in Quantum Foundations, Probability and Information, Springer, Cham, 2018. https://doi.org/10.1007/978-3-319-74971-6_15 |
| [22] |
S. A. Rashkovskiy, Nonlinear Schrodinger equation and classical-field description of thermal radiation, Indian J Phys, 92 (2018), 289–302. https://doi.org/10.1007/s12648-017-1112-1 doi: 10.1007/s12648-017-1112-1
|
| [23] |
S. A. Rashkovskiy, Nonlinear Schrödinger equation and semiclassical description of the microwave-to-optical frequency conversion based on the Lamb–Retherford experiment, Indian J Phys, 94 (2020), 161–174. https://doi.org/10.1007/s12648-019-01476-w doi: 10.1007/s12648-019-01476-w
|
| [24] |
C. M. Bustamante, E. D. Gadea, A. Horsfield, T. N. Todorov, M. C. G. Lebrero, D. A. Scherlis, Dissipative equation of motion for electromagnetic radiation in quantum dynamics, Phys Rev Lett, 126 (2021), 087401. https://doi.org/10.1103/PhysRevLett.126.087401 doi: 10.1103/PhysRevLett.126.087401
|
| [25] |
E. D. Gadea, C. M. Bustamante, T. N. Todorov, D. A. Scherlis, Radiative thermalization in semiclassical simulations of light-matter interaction, Phys Rev A, 105 (2022), 042201. https://doi.org/10.1103/PhysRevA.105.042201 doi: 10.1103/PhysRevA.105.042201
|
| [26] |
E. Schrödinger, An undulatory theory of the mechanics of atoms and molecules, Phys Rev, 28 (1926), 1049. https://doi.org/10.1103/PhysRev.28.1049 doi: 10.1103/PhysRev.28.1049
|
| [27] |
A. O. Barut, Schrödinger's interpretation of $ \psi $ as a continuous charge distribution, Annalen der Physik, 500 (1988), 31–36. https://doi.org/10.1002/andp.19885000109 doi: 10.1002/andp.19885000109
|
| [28] |
S. A. Rashkovskiy, Self-consistent Maxwell-Pauli theory, Indian J Phys, 97 (2023), 4285–4301. https://doi.org/10.1007/s12648-023-02760-6 doi: 10.1007/s12648-023-02760-6
|
| [29] |
S. A. Rashkovskiy, Self-consistent Maxwell-Dirac theory. Indian J Phys, 98 (2024): 3431–3438. https://doi.org/10.1007/s12648-024-03125-3 doi: 10.1007/s12648-024-03125-3
|
| [30] |
S. A. Rashkovskiy, Nonlinear Pauli equation. Commun. Anal. Mech., 16 (2024): 94−120. https://doi.org/10.3934/cam.2024005 doi: 10.3934/cam.2024005
|
| [31] | L. D. Landau, E. M. Lifshitz, The classical theory of fields, Vol. 2, Butterworth-Heinemann, 1975. |
| [32] | L. D. Landau, E. M. Lifshitz, Quantum mechanics: non-relativistic theory, Vol 3, Pergamon Press, 1977. |
| [33] | V. B. Berestetskii, E. M. Lifshitz, L. P. Pitaevskii, Quantum Electrodynamics, Vol. 4, Butterworth-Heinemann, 1982. |
| [34] | A. Khrennikov, Characterization of Entanglement via Non‐Existence of a Subquantum Random Field. Annalen der Physik, 536 (2024), 2400035. https://doi.org/10.1002/andp.202400035 |