We explore certain extremals of the Sadowsky-type functional in Minkowski 3-space $ \mathbb{R}_{1}^{3} $. Focusing on timelike rectifying strips, we provide a detailed characterization of the hyperelastic configurations. Specifically, we introduce timelike hyperelastic strips as surfaces derived from the solution curves of the minimization of this variational problem. Our investigation extends to the timelike planar critical points of the modified Sadowsky-type functional, where we demonstrate that these correspond to timelike hyperelastic curves situated on a timelike plane. Our research on timelike hyperelastic strips not only uncovers the fundamental Euler-Lagrange equations governing these structures but also highlights the geometric conservation laws that dictate their behavior. By deriving conserved quantities specific to these strips, we formulate the first and second conservation laws. This allows us to present significant insights into how these strips behave under both translational and rotational symmetries. We anticipate that these findings will pave the way for future studies exploring novel types of hyperelastic surfaces and their broader applications in geometric and physical contexts, particularly in relation to de Sitter and pseudo-hyperbolic spaces.
Citation: Gözde Özkan Tükel, Tunahan Turhan. Timelike hyperelastic strips[J]. AIMS Mathematics, 2025, 10(5): 12299-12311. doi: 10.3934/math.2025557
We explore certain extremals of the Sadowsky-type functional in Minkowski 3-space $ \mathbb{R}_{1}^{3} $. Focusing on timelike rectifying strips, we provide a detailed characterization of the hyperelastic configurations. Specifically, we introduce timelike hyperelastic strips as surfaces derived from the solution curves of the minimization of this variational problem. Our investigation extends to the timelike planar critical points of the modified Sadowsky-type functional, where we demonstrate that these correspond to timelike hyperelastic curves situated on a timelike plane. Our research on timelike hyperelastic strips not only uncovers the fundamental Euler-Lagrange equations governing these structures but also highlights the geometric conservation laws that dictate their behavior. By deriving conserved quantities specific to these strips, we formulate the first and second conservation laws. This allows us to present significant insights into how these strips behave under both translational and rotational symmetries. We anticipate that these findings will pave the way for future studies exploring novel types of hyperelastic surfaces and their broader applications in geometric and physical contexts, particularly in relation to de Sitter and pseudo-hyperbolic spaces.
| [1] |
J. Arroyo, O. Garay, M. Barros, Closed free hyperelastic curves in the hyperbolic plane and Chen-Willmore rotational hypersurfaces, Isr. J. Math., 138 (2003), 171–187. https://doi.org/10.1007/BF02783425 doi: 10.1007/BF02783425
|
| [2] |
M. Barros, A. Ferrández, P. Lucas, M. Meroño, Willmore tori and Willmore-Chen submanifolds in pseudo-Riemannian spaces, J. Geom. Phys., 28 (1998), 45–66. https://doi.org/10.1016/S0393-0440(98)00010-2 doi: 10.1016/S0393-0440(98)00010-2
|
| [3] |
M. Barros, A. Ferrández, P. Lucas, M. Meroño, A criterion for reduction of variables in the Willmore-Chen variational problem and its applications, Trans. Amer. Math. Soc., 352 (2000), 3015–3027. https://doi.org/10.1090/S0002-9947-00-02366-7 doi: 10.1090/S0002-9947-00-02366-7
|
| [4] |
D. Chubelaschwili, U. Pinkall, Elastic strips, Manuscripta Math., 133 (2010), 307–326. https://doi.org/10.1007/s00229-010-0369-x doi: 10.1007/s00229-010-0369-x
|
| [5] |
E. Efrati, Non-Euclidean ribbons: generalized Sadowsky functional for residually-stressed thin and narrow bodies, J. Elast., 119 (2015), 251–261. https://doi.org/10.1007/s10659-014-9509-y doi: 10.1007/s10659-014-9509-y
|
| [6] |
E. Efrati, E. Sharon, R. Kupferman, Hyperbolic non-Euclidean elastic strips and almost minimal surfaces, Phys. Rev. E, 83 (2011), 046602. https://doi.org/10.1103/PhysRevE.83.046602 doi: 10.1103/PhysRevE.83.046602
|
| [7] |
L. Freddi, P. Hornung, M. Mora, R. Paroni, A corrected Sadowsky functional for inextensible elastic ribbons, J. Elast., 123 (2016), 125–136. https://doi.org/10.1007/s10659-015-9551-4 doi: 10.1007/s10659-015-9551-4
|
| [8] | N. Gürbüz, p-elastica in the 3-dimensional lorentzian space forms, Turk. J. Math., 30 (2006), 33–41. |
| [9] | A. Gruber, Curvature energy functionals and p-Willmore energy, Ph. D Thesis, Texas Tech University, 2019. |
| [10] |
A. Gruber, M. Toda, H. Tran, On the variation of curvature functionals in a space form with application to a generalized Willmore energy, Ann. Glob. Anal. Geom., 56 (2019), 147–165. https://doi.org/10.1007/s10455-019-09661-0 doi: 10.1007/s10455-019-09661-0
|
| [11] |
A. Gruber, M. Toda, H. Tran, Stationary surfaces with boundaries, Ann. Glob. Anal. Geom., 62 (2022), 305–328. https://doi.org/10.1007/s10455-022-09850-4 doi: 10.1007/s10455-022-09850-4
|
| [12] |
Z. Guo, Generalized Willmore functionals and related variational problems, Differ. Geom. Appl., 25 (2007), 543–551. https://doi.org/10.1016/j.difgeo.2007.06.004 doi: 10.1016/j.difgeo.2007.06.004
|
| [13] |
D. Hinz, E. Fried, Translation of Michael Sadowsky's paper: an elementary proof for the existence of a developable Möbius band and the attribution of the geometric problem to a variational problem, J. Elast., 119 (2015), 3–6. https://doi.org/10.1007/s10659-014-9490-5 doi: 10.1007/s10659-014-9490-5
|
| [14] | T. Hangan, Elastic strips and differential geometry, Rend. Semin. Mat., 63 (2005), 179–186. |
| [15] |
R. López, Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom., 7 (2014), 44–107. https://doi.org/10.36890/iejg.594497 doi: 10.36890/iejg.594497
|
| [16] | B. O'neill, Semi-Riemannian geometry with applications to relativity, San Diego: Academic Press, 1983. |
| [17] | M. Sadowsky, Ein elementarer beweis für die existens eines abwickelbare Möbiuss-ChenBandes und Z üruckführung des geometrischen problems auf ein variations problem, Proceedings of Sitzungsbericht Preussich Akademischer Wissenschaften, 1930,412–415. |
| [18] |
B. Seguin, Y. Chen, E. Fried, Closed unstretchable knotless ribbons and the Wunderlich functional, J. Nonlinear Sci., 30 (2020), 2577–2611. https://doi.org/10.1007/s00332-020-09630-z doi: 10.1007/s00332-020-09630-z
|
| [19] |
E. Starostin, G. van der Heijden, The equilibrium shape of an elastic developable Möbius strip, Proc. Appl. Math. Mech., 7 (2007), 2020115–2020116. https://doi.org/10.1002/pamm.200700858 doi: 10.1002/pamm.200700858
|
| [20] |
E. Starostin, G. van der Heijden, Forceless Sadowsky strips are spherical, Phys. Rev. E, 97 (2018), 023001. https://doi.org/10.1103/PhysRevE.97.023001 doi: 10.1103/PhysRevE.97.023001
|
| [21] |
E. Starostin, G. van der Heijden, Equilibrium shapes with stress localisation for inextensible elastic Mö bius and other strips, J. Elast., 119 (2015), 67–112. https://doi.org/10.1007/s10659-014-9495-0 doi: 10.1007/s10659-014-9495-0
|
| [22] |
E. Starostin, G. van der Heijden, Forceless folding of thin annular strips, J. Mech. Phys. Solids, 169 (2022), 105054. https://doi.org/10.1016/j.jmps.2022.105054 doi: 10.1016/j.jmps.2022.105054
|
| [23] |
R. Todres, Translation of W. Wunderlich's "On a developable Möbius band", J. Elast., 119 (2015), 23–34. https://doi.org/10.1007/s10659-014-9489-y doi: 10.1007/s10659-014-9489-y
|
| [24] | G. Tükel, A. Yücesan, Elastic strips with timelike directrix, Math. Rep., 21 (2019), 67–83. |
| [25] |
G. Tükel, A. Yücesan, Elastic strips with spacelike directrix, Bull. Malays. Math. Sci. Soc., 42 (2019), 2623–2638. https://doi.org/10.1007/s40840-018-0622-0 doi: 10.1007/s40840-018-0622-0
|
| [26] |
G. Tükel, A. Yücesan, Elastic strips with null and pseudo-null directrix, Int. J. Geom. Methods M., 17 (2020), 2050022. https://doi.org/10.1142/S021988782050022X doi: 10.1142/S021988782050022X
|
| [27] |
G. Tükel, A variational study on a natural Hamiltonian for curves, Turk. J. Math., 43 (2019), 2931–2940. https://doi.org/10.3906/mat-1906-1 doi: 10.3906/mat-1906-1
|
| [28] |
G. Tükel, Integrable dynamics and geometric conservation laws of hyperelastic strips, AIMS Mathematics, 9 (2024), 24372–24384. https://doi.org/10.3934/math.20241186 doi: 10.3934/math.20241186
|
| [29] | G. Tükel, T. Turhan, An analysis of hyperelastic strips with spacelike directrix, Proceedings of 6th International Conference on Applied Engineering and Natural Sciences, 2024, 99–104. |
| [30] | G. Tükel, T. Turhan, Geometric and variational analysis of hyperelastic strips with timelike base curve, Proceedings of Ⅴ International Conference on Mathematics and its Applications in Science and Engineering (ICMASE), 2024, 16–18. |
| [31] | T. Weinstein, An introduction to Lorentz surfaces, Berlin: Walter de Gruyter, 1996. |
| [32] |
W. Wunderlich, Über ein abwickelbare Mö biusband, Monatsh. Math., 66 (1962), 276–289. https://doi.org/10.1007/BF01299052 doi: 10.1007/BF01299052
|
| [33] |
D. Yoon, Z. Yüzbaşı, Elastic strips along isotropic curves in complex 3-spaces, Turk. J. Math., 48 (2024), 515–526. https://doi.org/10.55730/1300-0098.3522 doi: 10.55730/1300-0098.3522
|