Research article Topical Sections

A novel bidirectional projection measures of circular intuitionistic fuzzy sets and its application to multiple attribute group decision-making problems

  • Received: 12 February 2025 Revised: 26 April 2025 Accepted: 29 April 2025 Published: 06 May 2025
  • MSC : 28E10, 90B50

  • Atanassov recently proposed a new circular intuitionistic fuzzy set (CIFS) as an extension of intuitionistic fuzzy sets to express uncertain information by a circle with centered membership, non-membership, and radius r. Circular intuitionistic fuzzy sets can express uncertain information more flexibly than the intuitionistic fuzzy set. In this paper, we first propose a new method for calculating the radius r of CIFSs by ordinary least squares (OLS). We introduce some notions, such as modules of the circular intuitionistic fuzzy set and the cosine of the included angle between membership and non-membership vectors of the circular intuitionistic fuzzy set. Then, we define a new bidirectional projection measure of circular intuitionistic fuzzy sets, which takes into account the difference between different CIFSs in terms of membership degree and non-membership degree and radius r. The proposed bidirectional projection measures show superiority compared with some recent research works through numerical examples. Finally, the method is applied to a multi-attribute decision-making problem with group expert decision-making to prove the effectiveness and accuracy of the method.

    Citation: Hu Wang. A novel bidirectional projection measures of circular intuitionistic fuzzy sets and its application to multiple attribute group decision-making problems[J]. AIMS Mathematics, 2025, 10(5): 10283-10307. doi: 10.3934/math.2025468

    Related Papers:

  • Atanassov recently proposed a new circular intuitionistic fuzzy set (CIFS) as an extension of intuitionistic fuzzy sets to express uncertain information by a circle with centered membership, non-membership, and radius r. Circular intuitionistic fuzzy sets can express uncertain information more flexibly than the intuitionistic fuzzy set. In this paper, we first propose a new method for calculating the radius r of CIFSs by ordinary least squares (OLS). We introduce some notions, such as modules of the circular intuitionistic fuzzy set and the cosine of the included angle between membership and non-membership vectors of the circular intuitionistic fuzzy set. Then, we define a new bidirectional projection measure of circular intuitionistic fuzzy sets, which takes into account the difference between different CIFSs in terms of membership degree and non-membership degree and radius r. The proposed bidirectional projection measures show superiority compared with some recent research works through numerical examples. Finally, the method is applied to a multi-attribute decision-making problem with group expert decision-making to prove the effectiveness and accuracy of the method.



    加载中


    [1] Z. S. Xu, J. Chen, Approach to group decision making based on interval-valued intuitionistic judgment matrices, Syst. Eng., 27 (2007), 126–133. https://doi.org/10.1016/S1874-8651(08)60026-5 doi: 10.1016/S1874-8651(08)60026-5
    [2] M. Akram, S. Zahid, Group decision-making method with Pythagorean fuzzy rough number for the evaluation of best design concept, Granular Comput., 8 (2023), 1121–1148. https://doi.org/10.1007/s41066-023-00391-0 doi: 10.1007/s41066-023-00391-0
    [3] M. Akram, C. Kahraman, K. Zahid, Group decision-making based on complex spherical fuzzy VIKOR approach, Knowl. Based Syst., 216 (2023), 106793. https://doi.org/10.1016/j.knosys.2021.106793 doi: 10.1016/j.knosys.2021.106793
    [4] Y. Liu, L. Zhu, R. M. Rodríguez, L. Martínez, Personalized fuzzy semantic model of PHFLTS: Application to linguistic group decision making, Inf. Fusion, 103 (2024), 102118. https://doi.org/10.1016/j.inffus.2023.102118 doi: 10.1016/j.inffus.2023.102118
    [5] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [6] I. Grattan‐Guinness, Fuzzy membership mapped onto intervals and many‐valued quantities, Math. Log. Q., 22 (1976), 149–160. https://doi.org/10.1002/malq.19760220120 doi: 10.1002/malq.19760220120
    [7] K. Atanassov, S. Stoeva, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 31 (1986), 343–349. https://doi.org/10.1007/978-3-030-35445-9-10 doi: 10.1007/978-3-030-35445-9-10
    [8] G. Demir, Fuzzy multi-griteria decision-making based security management: risk assessment and countermeasure selection in smart cities, Knowl. Decis. Syst. Appl., 1 (2025), 70–91. https://doi.org/10.59543/kadsa.v1i.13701 doi: 10.59543/kadsa.v1i.13701
    [9] S. Moslem, Evaluating commuters' travel mode choice using the Z-number extension of parsimonious best worst method, Appl. Soft Comput., 173 (2025), 112918. https://doi.org/10.1016/j.asoc.2025.112918 doi: 10.1016/j.asoc.2025.112918
    [10] W. Y. Zeng, H. S. Cui, Y. Q. Liu, Z. S. Xu, Novel distance measure between intuitionistic fuzzy sets and its application in pattern recognition, Iran. J. Fuzzy Syst., 19 (2022), 127–137. https://doi.org/10.22111/IJFS.2022.6947 doi: 10.22111/IJFS.2022.6947
    [11] R. J. Kuo, C. C. Hsu, T. P. Q. Nguyen, C. Y. Tsai, Hybrid multi-objective metaheuristic and possibilistic intuitionistic fuzzy c-means algorithms for cluster analysis, Soft Comput., 28 (2024), 991–1008. https://doi.org/10.1007/s00500-023-09367-3 doi: 10.1007/s00500-023-09367-3
    [12] K. Rahman, Q. Iqbal, Optimizing railway train selection in Pakistan using confidence-driven intuitionistic fuzzy methods with einstein-based operators, J. Intell Manag. Decis., 4 (2025), 66–77. https://doi.org/10.56578/jimd040105 doi: 10.56578/jimd040105
    [13] K. T. Atanassov, Interval valued intuitionistic fuzzy sets, In: K. T. Atanassov, Intuitionistic fuzzy sets, Springer, 1999,139–177. https://doi.org/10.1007/978-3-7908-1870-3_2
    [14] S. M. Chen, C. H. Tan, Handling multicriteria fuzzy decision-making problems based on vague set theory, Fuzzy Sets Syst., 67 (1994), 163–172. https://doi.org/10.1016/0165-0114(94)90084-1 doi: 10.1016/0165-0114(94)90084-1
    [15] R. Şahin, Fuzzy multicriteria decision making method based on the improved accuracy function for interval-valued intuitionistic fuzzy sets, Soft Comput., 20 (2016), 2557–2563. https://doi.org/10.1007/s00500-015-1657-x doi: 10.1007/s00500-015-1657-x
    [16] K. Kumar, S. M. Chen, Multiattribute decision making based on interval-valued intuitionistic fuzzy values, score function of connection numbers, and the set pair analysis theory, Inf. Sci., 551 (2021), 100–112. https://doi.org/10.1016/j.ins.2020.11.032 doi: 10.1016/j.ins.2020.11.032
    [17] E. Szmidt, J. Kacprzyk, Distances between intuitionistic fuzzy sets, Fuzzy Sets Syst., 114 (2000), 505–518. https://doi.org/10.1016/S0165-0114(98)00244-9 doi: 10.1016/S0165-0114(98)00244-9
    [18] H. M. Zhang, L. Y. Yu, New distance measures between intuitionistic fuzzy sets and interval-valued fuzzy sets, Inf. Sci., 245 (2013), 181–196. https://doi.org/10.1016/j.ins.2013.04.040 doi: 10.1016/j.ins.2013.04.040
    [19] W. Huang, F. Zhang, S. Wang, F. Kong, A novel knowledge-based similarity measure on intuitionistic fuzzy sets and its applications in pattern recognition, Expert Syst. Appl., 249 (2024), 123835. https://doi.org/10.1016/j.eswa.2024.123835 doi: 10.1016/j.eswa.2024.123835
    [20] R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE Trans. Fuzzy Syst., 22 (2014), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [21] R. R. Yager, Generalized orthopair fuzzy sets, IEEE Trans. Fuzzy Syst., 25 (2017), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [22] T. Mahmood, K. Ullah, Q. Khan, N. Jan, An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets, Neural Comput. Appl., 31 (2019), 7041–7053. https://doi.org/10.1007/s00521-018-3521-2 doi: 10.1007/s00521-018-3521-2
    [23] M. Sarfraz, Interval-value Pythagorean fuzzy prioritized aggregation operators for selecting an eco-friendly transportation mode selection, Spec. Eng. Manage. Sci., 2 (2024), 172–201. https://doi.org/10.31181/sems21202422g doi: 10.31181/sems21202422g
    [24] M. Asif, U. Ishtiaq, I. K. Argyros, Hamacher aggregation operators for pythagorean fuzzy set and its application in multi-attribute decision-making problem, Spec. Oper. Res., 2 (2025), 27–40. https://doi.org/10.31181/sor2120258 doi: 10.31181/sor2120258
    [25] P. Liu, P. Wang, Some q‐rung orthopair fuzzy aggregation operators and their applications to multiple‐attribute decision making, Int. J. Intell. Syst., 33 (2018), 259–280. https://doi.org/10.1002/int.21927 doi: 10.1002/int.21927
    [26] P. Mahalakshmi, J. Vimala, K. Jeevitha, S. N. Sri, Advancing cybersecurity strategies for multinational corporations: novel distance measures in q-rung orthopair multi-fuzzy systems, J. Oper. Strategic Anal., 2 (2024), 49–55. https://doi.org/10.56578/josa020105 doi: 10.56578/josa020105
    [27] M. Radovanović, S. Jovčić, A. Petrovski, E. Cirkin, Evaluation of university professors using the spherical fuzzy AHP and grey MARCOS multi-criteria decision-making model: a case study, Spec. Decis. Mak. Appl., 2 (2025), 198–218. https://doi.org/10.31181/sdmap21202518 doi: 10.31181/sdmap21202518
    [28] Z. Xu, H. Hu, Projection models for intuitionistic fuzzy multiple attribute decision making, Int. J. Inf. Technol. Decis. Mak., 9 (2010), 267–280. https://doi.org/10.1142/S0219622010003816 doi: 10.1142/S0219622010003816
    [29] S. Zeng, T. Baležentis, J. Chen, G. Luo, A projection method for multiple attribute group decision making with intuitionistic fuzzy information, Informatica, 24 (2013), 485–503. https://doi.org/10.15388/informatica.2013.407 doi: 10.15388/informatica.2013.407
    [30] J. Zeng, Y. M. Wang, K. Zhang, J. Q. Gao, L. H. Yang, A heterogeneous multi-attribute case retrieval method for emergency decision making based on bidirectional projection and TODIM, Expert Syst. Appl., 203 (2022), 117382. https://doi.org/10.1016/j.eswa.2022.117382 doi: 10.1016/j.eswa.2022.117382
    [31] K. T. Atanassov, Circular intuitionistic fuzzy sets, J. Intell. Fuzzy Syst., 39 (2020), 5981–5986. https://doi.org/10.3233/JIFS-189072 doi: 10.3233/JIFS-189072
    [32] K. T. Atanassov, E. Marinov, Four distances for circular intuitionistic fuzzy sets, Mathematics, 9 (2021), 1121. https://doi.org/10.3390/math9101121 doi: 10.3390/math9101121
    [33] C. Kahraman, N. Alkan, Circular intuitionistic fuzzy TOPSIS method with vague membership functions: supplier selection application context, Notes Intuit. Fuzzy Sets, 27 (2021), 24–52. https://doi.org/10.7546/nifs.2021.27.1.24-52 doi: 10.7546/nifs.2021.27.1.24-52
    [34] N. Alkan, C. Kahraman, Circular intuitionistic fuzzy TOPSIS method: pandemic hospital location selection, J. Intell. Fuzzy Syst., 42 (2022), 295–316. https://doi.org/10.3233/JIFS-219193 doi: 10.3233/JIFS-219193
    [35] C. Xu, Y. Wen, New measure of circular intuitionistic fuzzy sets and its application in decision making, AIMS Math., 8 (2023), 24053–24074. https://doi.org/10.3934/math.20231226 doi: 10.3934/math.20231226
    [36] M. J. Khan, J. C. R. Alcantud, P. Kumam, N. A. Alreshidi, Expanding Pythagorean fuzzy sets with distinctive radii: disc Pythagorean fuzzy sets, Complex Intell. Syst., 9 (2023), 7037–7054. https://doi.org/10.1007/s40747-023-01062-y doi: 10.1007/s40747-023-01062-y
    [37] S. Ashraf, M. S. Chohan, S. Ahmad, M. S. Hameed, F. Khan, Decision aid algorithm for kidney transplants under disc spherical fuzzy sets with distinctive radii information, IEEE Access, 11 (2023), 122029–122044. https://doi.org/10.1109/ACCESS.2023.3327830 doi: 10.1109/ACCESS.2023.3327830
    [38] T. Y. Chen, A circular intuitionistic fuzzy assignment model with a parameterized scoring rule for multiple criteria assessment methodology, Adv. Eng. Inf., 61 (2024), 102479. https://doi.org/10.1016/j.aei.2024.102479 doi: 10.1016/j.aei.2024.102479
    [39] J. C. Wang, T. Y. Chen, A compromise decision-support technique with an augmented scoring function within circular intuitionistic fuzzy settings, Eng. Appl. Artif. Intell., 128 (2024), 107359. https://doi.org/10.1016/j.engappai.2023.107359 doi: 10.1016/j.engappai.2023.107359
    [40] E. Çakır, M. A. Taş, Z. Ulukan, Circular intuitionistic fuzzy sets in multi criteria decision making, 11th International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions and Artificial Intelligence - ICSCCW-2021, 2021. https://doi.org/10.1007/978-3-030-92127-9_9
    [41] J. Ye, Bidirectional projection method for multiple attribute group decision making with neutrosophic numbers, Neural Comput. Appl., 28 (2017), 1021–1029. https://doi.org/10.1007/s00521-015-2123-5 doi: 10.1007/s00521-015-2123-5
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1366) PDF downloads(88) Cited by(2)

Article outline

Figures and Tables

Figures(5)  /  Tables(13)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog