Research article

The coexistence of quasi-periodic and blow-up solutions for a class of impact oscillators without the twist condition

  • Received: 10 February 2025 Revised: 13 April 2025 Accepted: 24 April 2025 Published: 06 May 2025
  • MSC : 34C11, 34C15, 37J40, 70K43

  • The purpose of this paper was the study of the dynamic behavior of impact oscillators:

    $\begin{align} \begin{split} \left\{ \begin{array}{l} x''+a(x)\, x^{2n+1}+ \sum\limits_{l = 0}^{m}p_l(t)\, x^{l} = 0, \, \text{for}\ x(t)>0, \, \\ x(t)\geq 0, \\ x'(t^{+}_{0}) = -x'(t^{-}_{0}), \, \text{if}\ x(t_{0}) = 0, \end{array} \right. \nonumber \end{split} \end{align}$

    where the positive function $ a(x) $ is a smooth $ T $-periodic oscillator violating the monotone twist condition. We have proved that the above equation has an infinite number of bounded solutions as well as a solution that escapes to infinity in a finite amount of time.

    Citation: Yanmei Sun. The coexistence of quasi-periodic and blow-up solutions for a class of impact oscillators without the twist condition[J]. AIMS Mathematics, 2025, 10(5): 10263-10282. doi: 10.3934/math.2025467

    Related Papers:

  • The purpose of this paper was the study of the dynamic behavior of impact oscillators:

    $\begin{align} \begin{split} \left\{ \begin{array}{l} x''+a(x)\, x^{2n+1}+ \sum\limits_{l = 0}^{m}p_l(t)\, x^{l} = 0, \, \text{for}\ x(t)>0, \, \\ x(t)\geq 0, \\ x'(t^{+}_{0}) = -x'(t^{-}_{0}), \, \text{if}\ x(t_{0}) = 0, \end{array} \right. \nonumber \end{split} \end{align}$

    where the positive function $ a(x) $ is a smooth $ T $-periodic oscillator violating the monotone twist condition. We have proved that the above equation has an infinite number of bounded solutions as well as a solution that escapes to infinity in a finite amount of time.



    加载中


    [1] J. E. Littlewood, Some problems in real and complex analysis, Lexington, Massachusetts: Heath, 1968.
    [2] Z. Wang, Y. Wang, Existence of quasiperiodic solutions and Littlewood's boundedness problem of super-linear impact oscillators, Appl. Math. Comput., 217 (2011), 6417–6425. https://doi.org/10.1016/j.amc.2011.01.037 doi: 10.1016/j.amc.2011.01.037
    [3] Y. Wang, Boundedness of solutions in a class of Duffing equations with oscillating potentials, Nonlinear Anal.: Theor., 71 (2009), 2906–2917. https://doi.org/10.1016/j.na.2009.01.172 doi: 10.1016/j.na.2009.01.172
    [4] Y. Wang, J. You, Boundedness of solutions for polynomial potentials with $C^{2}$ time dependent coefficients, Z. Angew. Math. Phys., 47 (1996), 943–952. https://doi.org/10.1007/BF00920044 doi: 10.1007/BF00920044
    [5] V. I. Babitsky, Theory of vibro-impact systems and applications, Berlin: Springer, 1998. https://doi.org/10.1007/978-3-540-69635-3
    [6] H. Lamba, Chaotic, regular and unbounded behavior in the elastic impact oscillator, Physica D, 82 (1995), 117–135. https://doi.org/10.1016/0167-2789(94)00222-C doi: 10.1016/0167-2789(94)00222-C
    [7] P. Boyland, Dual billiards, twist maps and impact oscillators, Nonlinearity, 9 (1996), 1411–1438. http://doi.org/10.1088/0951-7715/9/6/002 doi: 10.1088/0951-7715/9/6/002
    [8] M. Corbera, J. Llibre, Periodic orbits of a collinear restricted three-body problem, Celestial Mechanics and Dynamical Astronomy, 86 (2003), 163–183. https://doi.org/10.1023/A:1024183003251 doi: 10.1023/A:1024183003251
    [9] D. Bonheure, C. Fabry, Periodic motions in impact oscillators with perfectly elastic bouncing, Nonlinearity, 15 (2002), 1281–1298. http://doi.org/10.1088/0951-7715/15/4/314 doi: 10.1088/0951-7715/15/4/314
    [10] D. Qian, Large amplitude periodic bouncing in impact oscillators with damping, Proc. Amer. Math. Soc., 133 (2005), 1797–1804.
    [11] D. Qian, P. J. Torres, Periodic motions of linear impact oscillators via successor map, SIAM J. Math. Anal., 36 (2005), 1707–1725. http://doi.org/10.1137/S003614100343771X doi: 10.1137/S003614100343771X
    [12] R. Diekerhoff, E. Zehnder, Boundedness for solutions via the twist theorem, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 14 (1987), 79–95.
    [13] B. Liu, Boundedness for solutions of nonlinear Hill's equation with periodic forcing terms via Moser's twist theorem, J. Differ. Equations, 79 (1989), 304–315. https://doi.org/10.1016/0022-0396(89)90105-8 doi: 10.1016/0022-0396(89)90105-8
    [14] Z. Wang, Y. Wang, Boundedness of solutions for a class of oscillating potentials without the twist condition, Acta Math. Sin., 26 (2010), 2387–2398. https://doi.org/10.1007/s10114-010-9133-0 doi: 10.1007/s10114-010-9133-0
    [15] R. Ortega, Asymmetric oscillators and twist mappings, J. Lond. Math. Soc., 53 (1996), 325–342. https://doi.org/10.1112/jlms/53.2.325 doi: 10.1112/jlms/53.2.325
    [16] B. Liu, Boundedness in asymmetric oscillations, J. Math. Anal. Appl., 231 (1999), 355–373. https://doi.org/10.1006/jmaa.1998.6219 doi: 10.1006/jmaa.1998.6219
    [17] L. D. Pustylnikov, Existence of invariant curves for maps close to degenerate maps and a solution of the Fermi-Ulam problem, Russian Acad. Sci. Sb. Math., 82 (1995), 231–241. https://doi.org/10.1070/SM1995v082n01ABEH003561 doi: 10.1070/SM1995v082n01ABEH003561
    [18] S. Maró, Coexistence of bounded and unbounded motions in a bouncing ball model, Nonlinearity, 26 (2013), 1439–1448. http://doi.org/10.1088/0951-7715/26/5/1439 doi: 10.1088/0951-7715/26/5/1439
    [19] J. M. Alonso, R. Ortega, Roots of unity and unbounded motions of an asymmetric oscillator, J. Differ. Equations, 143 (1998), 201–220. https://doi.org/10.1006/jdeq.1997.3367 doi: 10.1006/jdeq.1997.3367
    [20] Y. Wang, Unboundedness in a Duffing equation with polynomial potentials, J. Differ. Equations, 160 (2000), 467–479. https://doi.org/10.1006/jdeq.1999.3666 doi: 10.1006/jdeq.1999.3666
    [21] R. Ortega, Twist mappings, invariant curves and periodic differential equations, In: Nonlinear analysis and its applications to differential equations, Boston: Birkh$\ddot{a}$user, 2001, 85–112. https://doi.org/10.1007/978-1-4612-0191-5_5
    [22] Z. Wang, C. Ruan, D. Qian, Existence and multiplicity of subharmonic bouncing solutions for sub-linear impact oscillators, (Chinese), Journal of Nanjing University Mathematical Biquarterly, 27 (2010), 17–30. https://doi.org/10.3969/j.issn.0469-5097.2010.01.003
    [23] V. I. Arnold, On the behavior of an adiabatic invariant under slow periodic variation of the Hamiltonian, In: Collected works, Berlin: Springer, 2009,243–247. https://doi.org/10.1007/978-3-642-01742-1_16
    [24] M. Kunze, T. Kupper, J. You, On the application of KAM theory to discontinuous dynamical systems, J. Differ. Equations, 139 (1997), 1–21. https://doi.org/10.1006/jdeq.1997.3286 doi: 10.1006/jdeq.1997.3286
    [25] B. Liu, Boundedness in nonlinear oscillations at resonance, J. Differ. Equations, 153 (1999), 142–174. https://doi.org/10.1006/jdeq.1998.3553 doi: 10.1006/jdeq.1998.3553
    [26] M. Levi, Quasiperiodic motions in superquadratic time periodic potentials, Commun. Math. Phys., 143 (1991), 43–83. https://doi.org/10.1007/BF02100285 doi: 10.1007/BF02100285
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(764) PDF downloads(96) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog