Research article

Flag-transitive $ 2 $-designs with block size 5 and alternating groups

  • Received: 15 November 2024 Revised: 24 April 2025 Accepted: 28 April 2025 Published: 06 May 2025
  • MSC : 05B05, 05B25, 05E18, 20B25

  • This paper contributes to the classification of flag-transitive 2-designs with block size 5. In a recent paper, the flag-transitive automorphism groups of such designs are reduced to point-primitive groups of affine type and almost simple type, and a classification is given of such automorphism groups with sporadic socle. In the present paper, we classify such designs admitting a flag-transitive automorphism group whose socle is an alternating group. We prove that there are precisely six such designs and determine the corresponding automorphism groups.

    Citation: Jiaxin Shen, Yuqing Xia. Flag-transitive $ 2 $-designs with block size 5 and alternating groups[J]. AIMS Mathematics, 2025, 10(5): 10308-10323. doi: 10.3934/math.2025469

    Related Papers:

  • This paper contributes to the classification of flag-transitive 2-designs with block size 5. In a recent paper, the flag-transitive automorphism groups of such designs are reduced to point-primitive groups of affine type and almost simple type, and a classification is given of such automorphism groups with sporadic socle. In the present paper, we classify such designs admitting a flag-transitive automorphism group whose socle is an alternating group. We prove that there are precisely six such designs and determine the corresponding automorphism groups.



    加载中


    [1] J. D. Dixon, B. Mortimer, Permutation groups, Springer-Verlag, 1996. https://doi.org/10.1007/978-1-4612-0731-3
    [2] H. Wielandt, Finite permutation groups, Academic Press, 1964.
    [3] W. M. Kantor, Primitive permutation groups of odd degree, and an application to finite projective planes, J. Algebra, 106 (1987), 15–45. https://doi.org/10.1016/0021-8693(87)90019-6 doi: 10.1016/0021-8693(87)90019-6
    [4] F. Buekenhout, A. Delandtsheer, J. Doyen, P. B. Kleidman, M. W. Liebeck, J. Saxl, Linear spaces with flag-transitive automorphism groups, Geom. Dedicata, 36 (1990), 89–94. https://doi.org/10.1007/BF00181466 doi: 10.1007/BF00181466
    [5] W. M. Kantor, Classification of 2-transitive symmetric designs, Graphs Combin., 1 (1985), 165–166. https://doi.org/10.1007/BF02582940 doi: 10.1007/BF02582940
    [6] U. Dempwolff, Affine rank 3 groups on symmetric designs, Desci. Codes Cryptogr., 31 (2004), 159–168. https://doi.org/10.1023/B:DESI.0000012444.37411.1c doi: 10.1023/B:DESI.0000012444.37411.1c
    [7] U. Dempwolff, Primitive rank 3 groups on symmetric designs, Desci. Codes Cryptogr., 22 (2001), 191–207. https://doi.org/10.1023/A:1008373207617 doi: 10.1023/A:1008373207617
    [8] X. Zhan, S. Zhou, G. Chen, Flag-transitive $2$-$(v, 4, \lambda)$ designs of product type, J. Combin. Desci., 26 (2018), 455–462. https://doi.org/10.1002/jcd.21605 doi: 10.1002/jcd.21605
    [9] J. Shen, S. Zhou, Flag-transitive $2$-$(u, 5, \lambda)$ designs with sporadic socle, Front. Math. China, 15 (2021), 1201–1210. https://doi.org/10.1007/s11464-020-0876-3 doi: 10.1007/s11464-020-0876-3
    [10] C. J. Colbourn, J. H. Dinitz, The CRC handbook of combinatorial designs, CRC Press, 2007.
    [11] P. Dembowski, Finite geometries, Springer-Verlag, 1968. https://doi.org/10.1007/978-3-642-62012-6
    [12] D. H. Davies, Automorphisms of designs, Ph. D. Thesis, University of East Anglia, 1987.
    [13] M. W. Liebeck, C. E. Praeger, J. Saxl, A classification of the maximal subgroups of the finite alternating and symmetric groups, J. Algebra, 111 (1987), 365–383. https://doi.org/10.1016/0021-8693(87)90223-7 doi: 10.1016/0021-8693(87)90223-7
    [14] S. H. Alavi, T. Burness, Large subgroups of simple groups, J. Algebra, 421 (2015), 187–233. https://doi.org/10.1016/j.jalgebra.2014.08.026 doi: 10.1016/j.jalgebra.2014.08.026
    [15] W. Bosma, J. Cannon, C. Playoust, The magma algebra system I: the user language, J. Symb. Comput., 24 (1997), 235–265. https://doi.org/10.1006/jsco.1996.0125 doi: 10.1006/jsco.1996.0125
    [16] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Oxford University Press, 1985.
    [17] J. Shen, J. Chen, S. Zhou, Flag-transitive 2-designs with prime square replication number and alternating groups, Desci. Codes Cryptogr., 91 (2023), 709–717. https://doi.org/10.1007/s10623-022-01121-4 doi: 10.1007/s10623-022-01121-4
    [18] A. Delandtsheer, Finite flag-transitive linear spaces with alternating socle, In: A. Betten, A. Kohnert, R. Laue, A. Wassermann, Algebraic combinatorics and applications, Springer, 2001, 79–88. https://doi.org/10.1007/978-3-642-59448-9_5
    [19] Y. Zhang, J. Chen, S. Zhou, Flag-transitive $2$-$(v, k, \lambda)$ designs with $\lambda$ prime and alternating socle, J. Algebra Appl., 23 (2024), 2450080. https://doi.org/10.1142/S0219498824500804 doi: 10.1142/S0219498824500804
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(843) PDF downloads(62) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog