This paper contributes to the classification of flag-transitive 2-designs with block size 5. In a recent paper, the flag-transitive automorphism groups of such designs are reduced to point-primitive groups of affine type and almost simple type, and a classification is given of such automorphism groups with sporadic socle. In the present paper, we classify such designs admitting a flag-transitive automorphism group whose socle is an alternating group. We prove that there are precisely six such designs and determine the corresponding automorphism groups.
Citation: Jiaxin Shen, Yuqing Xia. Flag-transitive $ 2 $-designs with block size 5 and alternating groups[J]. AIMS Mathematics, 2025, 10(5): 10308-10323. doi: 10.3934/math.2025469
This paper contributes to the classification of flag-transitive 2-designs with block size 5. In a recent paper, the flag-transitive automorphism groups of such designs are reduced to point-primitive groups of affine type and almost simple type, and a classification is given of such automorphism groups with sporadic socle. In the present paper, we classify such designs admitting a flag-transitive automorphism group whose socle is an alternating group. We prove that there are precisely six such designs and determine the corresponding automorphism groups.
| [1] | J. D. Dixon, B. Mortimer, Permutation groups, Springer-Verlag, 1996. https://doi.org/10.1007/978-1-4612-0731-3 |
| [2] | H. Wielandt, Finite permutation groups, Academic Press, 1964. |
| [3] |
W. M. Kantor, Primitive permutation groups of odd degree, and an application to finite projective planes, J. Algebra, 106 (1987), 15–45. https://doi.org/10.1016/0021-8693(87)90019-6 doi: 10.1016/0021-8693(87)90019-6
|
| [4] |
F. Buekenhout, A. Delandtsheer, J. Doyen, P. B. Kleidman, M. W. Liebeck, J. Saxl, Linear spaces with flag-transitive automorphism groups, Geom. Dedicata, 36 (1990), 89–94. https://doi.org/10.1007/BF00181466 doi: 10.1007/BF00181466
|
| [5] |
W. M. Kantor, Classification of 2-transitive symmetric designs, Graphs Combin., 1 (1985), 165–166. https://doi.org/10.1007/BF02582940 doi: 10.1007/BF02582940
|
| [6] |
U. Dempwolff, Affine rank 3 groups on symmetric designs, Desci. Codes Cryptogr., 31 (2004), 159–168. https://doi.org/10.1023/B:DESI.0000012444.37411.1c doi: 10.1023/B:DESI.0000012444.37411.1c
|
| [7] |
U. Dempwolff, Primitive rank 3 groups on symmetric designs, Desci. Codes Cryptogr., 22 (2001), 191–207. https://doi.org/10.1023/A:1008373207617 doi: 10.1023/A:1008373207617
|
| [8] |
X. Zhan, S. Zhou, G. Chen, Flag-transitive $2$-$(v, 4, \lambda)$ designs of product type, J. Combin. Desci., 26 (2018), 455–462. https://doi.org/10.1002/jcd.21605 doi: 10.1002/jcd.21605
|
| [9] |
J. Shen, S. Zhou, Flag-transitive $2$-$(u, 5, \lambda)$ designs with sporadic socle, Front. Math. China, 15 (2021), 1201–1210. https://doi.org/10.1007/s11464-020-0876-3 doi: 10.1007/s11464-020-0876-3
|
| [10] | C. J. Colbourn, J. H. Dinitz, The CRC handbook of combinatorial designs, CRC Press, 2007. |
| [11] | P. Dembowski, Finite geometries, Springer-Verlag, 1968. https://doi.org/10.1007/978-3-642-62012-6 |
| [12] | D. H. Davies, Automorphisms of designs, Ph. D. Thesis, University of East Anglia, 1987. |
| [13] |
M. W. Liebeck, C. E. Praeger, J. Saxl, A classification of the maximal subgroups of the finite alternating and symmetric groups, J. Algebra, 111 (1987), 365–383. https://doi.org/10.1016/0021-8693(87)90223-7 doi: 10.1016/0021-8693(87)90223-7
|
| [14] |
S. H. Alavi, T. Burness, Large subgroups of simple groups, J. Algebra, 421 (2015), 187–233. https://doi.org/10.1016/j.jalgebra.2014.08.026 doi: 10.1016/j.jalgebra.2014.08.026
|
| [15] |
W. Bosma, J. Cannon, C. Playoust, The magma algebra system I: the user language, J. Symb. Comput., 24 (1997), 235–265. https://doi.org/10.1006/jsco.1996.0125 doi: 10.1006/jsco.1996.0125
|
| [16] | J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Oxford University Press, 1985. |
| [17] |
J. Shen, J. Chen, S. Zhou, Flag-transitive 2-designs with prime square replication number and alternating groups, Desci. Codes Cryptogr., 91 (2023), 709–717. https://doi.org/10.1007/s10623-022-01121-4 doi: 10.1007/s10623-022-01121-4
|
| [18] | A. Delandtsheer, Finite flag-transitive linear spaces with alternating socle, In: A. Betten, A. Kohnert, R. Laue, A. Wassermann, Algebraic combinatorics and applications, Springer, 2001, 79–88. https://doi.org/10.1007/978-3-642-59448-9_5 |
| [19] |
Y. Zhang, J. Chen, S. Zhou, Flag-transitive $2$-$(v, k, \lambda)$ designs with $\lambda$ prime and alternating socle, J. Algebra Appl., 23 (2024), 2450080. https://doi.org/10.1142/S0219498824500804 doi: 10.1142/S0219498824500804
|