Research article

Lower deviation probabilities for supercritical Markov branching processes with immigration

  • Received: 15 November 2024 Revised: 01 April 2025 Accepted: 07 April 2025 Published: 06 May 2025
  • MSC : 60J27, 60J35

  • Let $ \{Z(t); t\geq 0\} $ be a continuous-time supercritical branching process with immigration (MBPI) with the offspring mean $ m(t) $. In this paper, we mainly research the lower deviation probabilities $ {\rm P}(Z(t) = k_t) $ and $ {\rm P}(0\leq Z(t)\leq k_t) $ with $ k_t/e^{m(t)}\rightarrow 0 $ as $ t\rightarrow \infty $. Moreover, we present the local limit theorem and some related estimates of the MBPIs. For our proofs, we use the well-known Cramér method to prove the large deviation of the sum of independent variables to satisfy our needs.

    Citation: Juan Wang, Chao Peng. Lower deviation probabilities for supercritical Markov branching processes with immigration[J]. AIMS Mathematics, 2025, 10(5): 10324-10339. doi: 10.3934/math.2025470

    Related Papers:

  • Let $ \{Z(t); t\geq 0\} $ be a continuous-time supercritical branching process with immigration (MBPI) with the offspring mean $ m(t) $. In this paper, we mainly research the lower deviation probabilities $ {\rm P}(Z(t) = k_t) $ and $ {\rm P}(0\leq Z(t)\leq k_t) $ with $ k_t/e^{m(t)}\rightarrow 0 $ as $ t\rightarrow \infty $. Moreover, we present the local limit theorem and some related estimates of the MBPIs. For our proofs, we use the well-known Cramér method to prove the large deviation of the sum of independent variables to satisfy our needs.



    加载中


    [1] K. B. Athreya, P. E. Ney, Branching processes, Berlin, Heidelberg: Springer, 1972. https://doi.org/10.1007/978-3-642-65371-1
    [2] J. Li, L. Cheng, L. Li, Long time behaviour for Markovian branching-immigration systems, Discrete Event Dyn. Syst., 31 (2021), 37–57. https://doi.org/10.1007/s10626-020-00323-z doi: 10.1007/s10626-020-00323-z
    [3] K. B. Athreya, P. Ney, The local limit theorem and some related aspects of super-critical branching processes, Trans. Am. Math. Soc., 152 (1970), 233–251. https://doi.org/10.1090/S0002-9947-1970-0268971-X doi: 10.1090/S0002-9947-1970-0268971-X
    [4] K. B. Athreya, Large deviation rates for branching processes–Ⅰ. Single type case, Ann. Appl. Probab., 4 (1994), 779–790. https://doi.org/10.1214/aoap/1177004971 doi: 10.1214/aoap/1177004971
    [5] P. E. Ney, A. N. Vidyashankar, Harmonic moments and large deviation rates for supercritical branching processes, Ann. Appl. Probab., 13 (2003), 475–489. https://doi.org/10.2307/1193154 doi: 10.2307/1193154
    [6] P. E. Ney, A. N. Vidyashankar, Local limit theory and large deviations for supercritical branching processes, Ann. Appl. Probab., 14 (2004), 1135–1166. https://doi.org/10.1214/105051604000000242 doi: 10.1214/105051604000000242
    [7] K. Fleischmann, V. Wachtel, Lower deviation probabilities for supercritical Galton-Watson processes, Ann. Inst. H. Poincaré Probab. Statist., 43 (2007), 233–255. https://doi.org/10.1016/j.anihpb.2006.03.001 doi: 10.1016/j.anihpb.2006.03.001
    [8] E. Seneta, On the supercritical Galton-Watson process with immigration, Math. Biosci., 7 (1970), 9–14. https://doi.org/10.1016/0025-5564(70)90038-6 doi: 10.1016/0025-5564(70)90038-6
    [9] A. Pakes, On supercritical galton-watson processes allowing immigration, J. Appl. Probab., 11 (1974), 814–817. https://doi.org/10.2307/3212564 doi: 10.2307/3212564
    [10] W. Chu, W. V. Li, Y. X. Ren, Small value probabilities for supercritical branching processes with immigration, Bernoulli, 20 (2014), 377–393. https://doi.org/10.3150/12-BEJ490 doi: 10.3150/12-BEJ490
    [11] J. Liu, M. Zhang, Large deviation for supercritical Galton-Watson processes with immigration, Acta. Math. Sin., 32 (2016), 893–900. https://doi.org/10.1007/s10114-016-5437-z doi: 10.1007/s10114-016-5437-z
    [12] Q. Sun, M. Zhang, Harmonic moments and large deviations for supercritical branching processes with immigration, Front. Math. China, 12 (2017), 1201–1220. https://doi.org/10.1007/s11464-017-0642-3 doi: 10.1007/s11464-017-0642-3
    [13] Q. Sun, M. Zhang, Lower deviations for supercritical branching processes with immigration, Front. Math. China, 16 (2021), 567–594. https://doi.org/10.1007/s11464-021-0922-9 doi: 10.1007/s11464-021-0922-9
    [14] D. Li, M. Zhang, Harmonic moments and large deviations for a critical Galton-Watson processes with immigration, Sci. China. Math., 64 (2021), 1885–1904. https://doi.org/10.1007/s11425-019-1676-x doi: 10.1007/s11425-019-1676-x
    [15] J. Li, L. Cheng, A. G. Pakes, A. Chen, L. Li, Large deviation rates for Markov branching processes, Anal. Appl., 18 (2020), 447–468. https://doi.org/10.1142/S0219530519500209 doi: 10.1142/S0219530519500209
    [16] J. Li, A. Chen, A. G. Pakes, Asymptotic properties of the Markov branching process with immigration, J. Theor. Probab., 25 (2012), 122–143. https://doi.org/10.1007/s10959-010-0301-z doi: 10.1007/s10959-010-0301-z
    [17] V. V. Petrov, Sums of independent random variables, Berlin, Heidelberg: Springer, 1975. https://doi.org/10.1007/978-3-642-65809-9
    [18] H. L. Royden, Real analysis, New York: Macmillan, 1968.
    [19] S. Dubuc, E. Seneta, The local limit theorem for the galton-watson process, Ann. Probab., 4 (1976), 490–496. https://doi.org/10.1214/aop/1176996100 doi: 10.1214/aop/1176996100
    [20] S. Asmussen, H. Hering, Branching processes, Boston, MA: Birkhäuser, 1983. https://doi.org/10.1007/978-1-4615-8155-0
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(662) PDF downloads(59) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog