Let $ \{Z(t); t\geq 0\} $ be a continuous-time supercritical branching process with immigration (MBPI) with the offspring mean $ m(t) $. In this paper, we mainly research the lower deviation probabilities $ {\rm P}(Z(t) = k_t) $ and $ {\rm P}(0\leq Z(t)\leq k_t) $ with $ k_t/e^{m(t)}\rightarrow 0 $ as $ t\rightarrow \infty $. Moreover, we present the local limit theorem and some related estimates of the MBPIs. For our proofs, we use the well-known Cramér method to prove the large deviation of the sum of independent variables to satisfy our needs.
Citation: Juan Wang, Chao Peng. Lower deviation probabilities for supercritical Markov branching processes with immigration[J]. AIMS Mathematics, 2025, 10(5): 10324-10339. doi: 10.3934/math.2025470
Let $ \{Z(t); t\geq 0\} $ be a continuous-time supercritical branching process with immigration (MBPI) with the offspring mean $ m(t) $. In this paper, we mainly research the lower deviation probabilities $ {\rm P}(Z(t) = k_t) $ and $ {\rm P}(0\leq Z(t)\leq k_t) $ with $ k_t/e^{m(t)}\rightarrow 0 $ as $ t\rightarrow \infty $. Moreover, we present the local limit theorem and some related estimates of the MBPIs. For our proofs, we use the well-known Cramér method to prove the large deviation of the sum of independent variables to satisfy our needs.
| [1] | K. B. Athreya, P. E. Ney, Branching processes, Berlin, Heidelberg: Springer, 1972. https://doi.org/10.1007/978-3-642-65371-1 |
| [2] |
J. Li, L. Cheng, L. Li, Long time behaviour for Markovian branching-immigration systems, Discrete Event Dyn. Syst., 31 (2021), 37–57. https://doi.org/10.1007/s10626-020-00323-z doi: 10.1007/s10626-020-00323-z
|
| [3] |
K. B. Athreya, P. Ney, The local limit theorem and some related aspects of super-critical branching processes, Trans. Am. Math. Soc., 152 (1970), 233–251. https://doi.org/10.1090/S0002-9947-1970-0268971-X doi: 10.1090/S0002-9947-1970-0268971-X
|
| [4] |
K. B. Athreya, Large deviation rates for branching processes–Ⅰ. Single type case, Ann. Appl. Probab., 4 (1994), 779–790. https://doi.org/10.1214/aoap/1177004971 doi: 10.1214/aoap/1177004971
|
| [5] |
P. E. Ney, A. N. Vidyashankar, Harmonic moments and large deviation rates for supercritical branching processes, Ann. Appl. Probab., 13 (2003), 475–489. https://doi.org/10.2307/1193154 doi: 10.2307/1193154
|
| [6] |
P. E. Ney, A. N. Vidyashankar, Local limit theory and large deviations for supercritical branching processes, Ann. Appl. Probab., 14 (2004), 1135–1166. https://doi.org/10.1214/105051604000000242 doi: 10.1214/105051604000000242
|
| [7] |
K. Fleischmann, V. Wachtel, Lower deviation probabilities for supercritical Galton-Watson processes, Ann. Inst. H. Poincaré Probab. Statist., 43 (2007), 233–255. https://doi.org/10.1016/j.anihpb.2006.03.001 doi: 10.1016/j.anihpb.2006.03.001
|
| [8] |
E. Seneta, On the supercritical Galton-Watson process with immigration, Math. Biosci., 7 (1970), 9–14. https://doi.org/10.1016/0025-5564(70)90038-6 doi: 10.1016/0025-5564(70)90038-6
|
| [9] |
A. Pakes, On supercritical galton-watson processes allowing immigration, J. Appl. Probab., 11 (1974), 814–817. https://doi.org/10.2307/3212564 doi: 10.2307/3212564
|
| [10] |
W. Chu, W. V. Li, Y. X. Ren, Small value probabilities for supercritical branching processes with immigration, Bernoulli, 20 (2014), 377–393. https://doi.org/10.3150/12-BEJ490 doi: 10.3150/12-BEJ490
|
| [11] |
J. Liu, M. Zhang, Large deviation for supercritical Galton-Watson processes with immigration, Acta. Math. Sin., 32 (2016), 893–900. https://doi.org/10.1007/s10114-016-5437-z doi: 10.1007/s10114-016-5437-z
|
| [12] |
Q. Sun, M. Zhang, Harmonic moments and large deviations for supercritical branching processes with immigration, Front. Math. China, 12 (2017), 1201–1220. https://doi.org/10.1007/s11464-017-0642-3 doi: 10.1007/s11464-017-0642-3
|
| [13] |
Q. Sun, M. Zhang, Lower deviations for supercritical branching processes with immigration, Front. Math. China, 16 (2021), 567–594. https://doi.org/10.1007/s11464-021-0922-9 doi: 10.1007/s11464-021-0922-9
|
| [14] |
D. Li, M. Zhang, Harmonic moments and large deviations for a critical Galton-Watson processes with immigration, Sci. China. Math., 64 (2021), 1885–1904. https://doi.org/10.1007/s11425-019-1676-x doi: 10.1007/s11425-019-1676-x
|
| [15] |
J. Li, L. Cheng, A. G. Pakes, A. Chen, L. Li, Large deviation rates for Markov branching processes, Anal. Appl., 18 (2020), 447–468. https://doi.org/10.1142/S0219530519500209 doi: 10.1142/S0219530519500209
|
| [16] |
J. Li, A. Chen, A. G. Pakes, Asymptotic properties of the Markov branching process with immigration, J. Theor. Probab., 25 (2012), 122–143. https://doi.org/10.1007/s10959-010-0301-z doi: 10.1007/s10959-010-0301-z
|
| [17] | V. V. Petrov, Sums of independent random variables, Berlin, Heidelberg: Springer, 1975. https://doi.org/10.1007/978-3-642-65809-9 |
| [18] | H. L. Royden, Real analysis, New York: Macmillan, 1968. |
| [19] |
S. Dubuc, E. Seneta, The local limit theorem for the galton-watson process, Ann. Probab., 4 (1976), 490–496. https://doi.org/10.1214/aop/1176996100 doi: 10.1214/aop/1176996100
|
| [20] | S. Asmussen, H. Hering, Branching processes, Boston, MA: Birkhäuser, 1983. https://doi.org/10.1007/978-1-4615-8155-0 |