Research article Special Issues

Viscoelastic Pasternak foundation analysis of a thermoelastic microbeam using Moore–Gibson–Thompson heat conduction under Klein–Gordon (KG) nonlocality

  • Received: 10 December 2024 Revised: 19 April 2025 Accepted: 29 April 2025 Published: 06 May 2025
  • MSC : 74-10, 74B05, 74F05, 74H15

  • This study sought to examine the behavior of thermoelastic microbeams supported by a viscoelastic Pasternak foundation via the Moore–Gibson–Thompson heat conduction equation within the framework of Klein–Gordon nonlocality, a novel approach for analyzing heat transfer in elastic materials. This model facilitates a more precise comprehension of the thermoelastic vibrations in microbeams. We wanted to examine the impact of foundation characteristics and thermal relaxation durations on the vibration frequency and stability of the microbeam. The Laplace transform technique was used. A graphic representation of the computed temperature, bending displacement, and moment is shown. The results provide significant insights into the design and enhancement of microbeams in advanced engineering applications, including microelectromechanical systems and nanoscale structures, where temperature effects and foundational interactions are critical. Furthermore, the fluctuation of waves is somewhat reduced in the examined model.

    Citation: Ahmed Yahya, Adam Zakria, Ibrahim-Elkhalil Ahmed, Shams A. Ahmed, Husam E. Dargail, Abdelgabar Adam Hassan, Eshraga Salih. Viscoelastic Pasternak foundation analysis of a thermoelastic microbeam using Moore–Gibson–Thompson heat conduction under Klein–Gordon (KG) nonlocality[J]. AIMS Mathematics, 2025, 10(5): 10340-10358. doi: 10.3934/math.2025471

    Related Papers:

  • This study sought to examine the behavior of thermoelastic microbeams supported by a viscoelastic Pasternak foundation via the Moore–Gibson–Thompson heat conduction equation within the framework of Klein–Gordon nonlocality, a novel approach for analyzing heat transfer in elastic materials. This model facilitates a more precise comprehension of the thermoelastic vibrations in microbeams. We wanted to examine the impact of foundation characteristics and thermal relaxation durations on the vibration frequency and stability of the microbeam. The Laplace transform technique was used. A graphic representation of the computed temperature, bending displacement, and moment is shown. The results provide significant insights into the design and enhancement of microbeams in advanced engineering applications, including microelectromechanical systems and nanoscale structures, where temperature effects and foundational interactions are critical. Furthermore, the fluctuation of waves is somewhat reduced in the examined model.



    加载中


    [1] X. Zhao, W. D. Zhu, Y. H. Li, Analytical solutions of nonlocal coupled thermoelastic forced vibrations of micro-/nano-beams by means of Green's functions, J. Sound Vib., 481 (2020), 115407. https://doi.org/10.1016/j.jsv.2020.115407 doi: 10.1016/j.jsv.2020.115407
    [2] Z. Adam, A. Yahya, A. E. Abouelregal, M. Suhail, Vibration analysis of thermoelastic microbeams on a Pasternak foundation with two parameters using the Moore–Gibson–Thompson heat conduction model, Continuum Mech. Thermodyn., 37 (2025), 27. https://doi.org/10.1007/s00161-025-01358-z doi: 10.1007/s00161-025-01358-z
    [3] Y. Sun, D. Fang, A. K. Soh, Thermoelastic damping in micro-beam resonators, Int. J. Solids Struct., 43 (2006), 3213–3229. https://doi.org/10.1016/j.ijsolstr.2005.08.011 doi: 10.1016/j.ijsolstr.2005.08.011
    [4] K. Ramachandran, V. Boopalan, J. C. Bear, R. Subramani, Multi-walled carbon nanotubes (MWCNTs)-reinforced ceramic nanocomposites for aerospace applications: a review, J. Mater. Sci., 57 (2022), 3923–3953. https://doi.org/10.1007/s10853-021-06760-x doi: 10.1007/s10853-021-06760-x
    [5] P. Zahedinejad, C. Zhang, H. Zhang, S. Ju, A comprehensive review on vibration analysis of functionally graded beams, Int. J. Struct. Stab. Dyn., 20 (2020), 2030002. https://doi.org/10.1142/S0219455420300025 doi: 10.1142/S0219455420300025
    [6] M. Kandaz, H. Dal, A comparative study of modified strain gradient theory and modified couple stress theory for gold microbeams, Arch. Appl. Mech., 88 (2018), 2051–2070. https://doi.org/10.1007/s00419-018-1436-0 doi: 10.1007/s00419-018-1436-0
    [7] B. Zhao, T. Liu, J. Chen, X. Peng, Z. Song, A new Bernoulli–Euler beam model based on modified gradient elasticity, Arch. Appl. Mech., 89 (2019), 277–289. https://doi.org/10.1007/s00419-018-1464-9 doi: 10.1007/s00419-018-1464-9
    [8] X. Liang, S. Hu, S. Shen, A new Bernoulli–Euler beam model based on a simplified strain gradient elasticity theory and its applications, Compos. Struct., 111 (2014), 317–323. https://doi.org/10.1016/j.compstruct.2014.01.019 doi: 10.1016/j.compstruct.2014.01.019
    [9] O. Doeva, P. K. Masjedi, P. M. Weaver, Closed form solutions for an anisotropic composite beam on a two-parameter elastic foundation, Eur. J. Mech.-A/Solids, 88 (2021), 104245. https://doi.org/10.1016/j.euromechsol.2021.104245 doi: 10.1016/j.euromechsol.2021.104245
    [10] U. Bhattiprolu, A. K. Bajaj, P. Davies, An efficient solution methodology to study the response of a beam on viscoelastic and nonlinear unilateral foundation: static response, Int. J. Solids Struct., 50 (2013), 2328–2339. https://doi.org/10.1016/j.ijsolstr.2013.03.014 doi: 10.1016/j.ijsolstr.2013.03.014
    [11] A. E. Abouelregal, I. Dassios, O. Moaaz, Moore–Gibson–Thompson thermoelastic model effect of laser-induced microstructures of a microbeam sitting on Visco-Pasternak foundations, Appl. Sci., 12 (2022), 9206. https://doi.org/10.3390/app12189206 doi: 10.3390/app12189206
    [12] S. Pradhan, T. Murmu, Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method, J. Sound Vib., 321 (2009), 342–362. https://doi.org/10.1016/j.jsv.2008.09.018 doi: 10.1016/j.jsv.2008.09.018
    [13] M. A. Biot, Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 27 (1956), 240–253. https://doi.org/10.1063/1.1722351 doi: 10.1063/1.1722351
    [14] H. W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15 (1967), 299–309. https://doi.org/10.1016/0022-5096(67)90024-5 doi: 10.1016/0022-5096(67)90024-5
    [15] A. E. Green, K. Lindsay, Thermoelasticity, J. Elast., 2 (1972), 1–7. https://doi.org/10.1007/BF00045689 doi: 10.1007/BF00045689
    [16] A. Green, P. Naghdi, Thermoelasticity without energy dissipation, J. Elast., 31 (1993), 189–208. https://doi.org/10.1007/BF00044969 doi: 10.1007/BF00044969
    [17] M. A. Biot, D. G. Willis, The elastic coefficients of the theory of consolidation, J. Appl. Mech., 24 (1957), 594–601. https://doi.org/10.1115/1.4011606 doi: 10.1115/1.4011606
    [18] D. Y. Tzou, The generalized lagging response in small-scale and high-rate heating, Int. J. Heat Mass Tran., 38 (1995), 3231–3240. https://doi.org/10.1016/0017-9310(95)00052-B doi: 10.1016/0017-9310(95)00052-B
    [19] A. E. Green, P. Naghdi, A re-examination of the basic postulates of thermomechanics, Proc. R. Soc. Lond. Ser. A, 432 (1991), 171–194. https://doi.org/10.1098/rspa.1991.0012 doi: 10.1098/rspa.1991.0012
    [20] A. E. Green, P. M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses, 15 (1992), 253–264. https://doi.org/10.1080/01495739208946136 doi: 10.1080/01495739208946136
    [21] B. Kaltenbacher, I. Lasiecka, R. Marchand, Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Control Cybern., 40 (2011), 971–988.
    [22] F. Dell'Oro, I. Lasiecka, V. Pata, The Moore–Gibson–Thompson equation with memory in the critical case, J. Differ. Equations, 261 (2016), 4188–4222. https://doi.org/10.1016/j.jde.2016.06.025 doi: 10.1016/j.jde.2016.06.025
    [23] I. Lasiecka, X. Wang, Moore–Gibson–Thompson equation with memory, part Ⅱ: general decay of energy, J. Differ. Equations, 259 (2015), 7610–7635. https://doi.org/10.1016/j.jde.2015.08.052 doi: 10.1016/j.jde.2015.08.052
    [24] M. Conti, V. Pata, R. Quintanilla, Thermoelasticity of Moore–Gibson–Thompson type with history dependence in the temperature, Asymptotic Anal., 120 (2020), 1–21. https://doi.org/10.3233/ASY-191576 doi: 10.3233/ASY-191576
    [25] R. Quintanilla, Moore–Gibson–Thompson thermoelasticity, Math. Mech. Solids, 24 (2019), 4020–4031. https://doi.org/10.1177/1081286519862007 doi: 10.1177/1081286519862007
    [26] N. Bazarra, J. R. Fernández, R. Quintanilla, Analysis of a Moore–Gibson–Thompson thermoelastic problem, J. Comput. Appl. Math., 382 (2021), 113058. https://doi.org/10.1016/j.cam.2020.113058 doi: 10.1016/j.cam.2020.113058
    [27] D. G. B. Edelen, N. Laws, On the thermodynamics of systems with nonlocality, Arch. Rational Mech. Anal., 43 (1971), 24–35. https://doi.org/10.1007/BF00251543 doi: 10.1007/BF00251543
    [28] D. G. B. Edelen, A. E. Green, N. Laws, Nonlocal continuum mechanics, Arch. Rational Mech. Anal., 43 (1971), 36–44. https://doi.org/10.1007/BF00251544 doi: 10.1007/BF00251544
    [29] H. Zhou, X. Song, P. Li, Generalized thermoelastic dissipation in micro/nano-beams with two-dimensional heat conduction, Int. J. Mech. Sci., 252 (2023), 108371. https://doi.org/10.1016/j.ijmecsci.2023.108371 doi: 10.1016/j.ijmecsci.2023.108371
    [30] X. Song, P. Li, H. Zhou, Generalized frequency shift and attenuation in simply-supported micro/nano-beam resonators with thermoelastic dissipation, J. Therm. Stresses, 47 (2024), 395–417. https://doi.org/10.1080/01495739.2023.2301609 doi: 10.1080/01495739.2023.2301609
    [31] A. C. Eringen, Linear theory of nonlocal elasticity and dispersion of plane waves, Int. J. Eng. Sci., 10 (1972), 425–435. https://doi.org/10.1016/0020-7225(72)90050-X doi: 10.1016/0020-7225(72)90050-X
    [32] D. Singh, G. Kaur, S. K. Tomar, Waves in nonlocal elastic solid with voids, J. Elast., 128 (2017), 85–114. https://doi.org/10.1007/s10659-016-9618-x doi: 10.1007/s10659-016-9618-x
    [33] A. C. Eringen, Theory of nonlocal thermoelasticity, Int. J. Eng. Sci., 12 (1974), 1063–1077. https://doi.org/10.1016/0020-7225(74)90033-0 doi: 10.1016/0020-7225(74)90033-0
    [34] F. Balta, E. S. Şuhubi, Theory of nonlocal generalized thermoelasticity, Int. J. Eng. Sci., 15 (1977), 579–588. https://doi.org/10.1016/0020-7225(77)90054-4 doi: 10.1016/0020-7225(77)90054-4
    [35] S. Biswas, Rayleigh waves in a nonlocal thermoelastic layer lying over a nonlocal thermoelastic half-space, Acta Mech., 231 (2020), 4129–4144. https://doi.org/10.1007/s00707-020-02751-2 doi: 10.1007/s00707-020-02751-2
    [36] P. Lata, S. Singh, Rayleigh wave propagation in a nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer, Int. J. Geomath., 13 (2022), 5. https://doi.org/10.1007/s13137-022-00195-5 doi: 10.1007/s13137-022-00195-5
    [37] A. M. Abd-Alla, S. M. Abo-Dahab, S. M. Ahmed, M. M. Rashid, Effect of magnetic field and voids on Rayleigh waves in a nonlocal thermoelastic half-space, J. Strain Anal. Eng. Des., 57 (2021), 61–72. https://doi.org/10.1177/03093247211001243 doi: 10.1177/03093247211001243
    [38] K. Jangid, M. Gupta, S. Mukhopadhyay, On propagation of harmonic plane waves under the Moore–Gibson–Thompson thermoelasticity theory, Waves Random Complex Media, 34 (2021), 1976–1999. https://doi.org/10.1080/17455030.2021.1949071 doi: 10.1080/17455030.2021.1949071
    [39] R. Quintanilla, Moore–Gibson–Thompson thermoelasticity with two temperatures, Appl. Eng. Sci., 1 (2020), 100006. https://doi.org/10.1016/j.apples.2020.100006 doi: 10.1016/j.apples.2020.100006
    [40] M. Lazer, E Agiasofal, Nonlocal elasticity of Klein–Gordon type: fundamentals and wave propagation, Wave Motion, 114 (2022), 103038. https://doi.org/10.1016/j.wavemoti.2022.103038 doi: 10.1016/j.wavemoti.2022.103038
    [41] O. A. Bauchau, J. I. Craig, Euler–Bernoulli beam theory, In: O. A. Bauchau, J. I. Craig, Structural analysis, Solid Mechanics and Its Applications, Springer, 163 (2009), 173–221. https://doi.org/10.1007/978-90-481-2516-6_5
    [42] O. Aldraihem, R. Wetherhold, T. Singh, Intelligent beam structures: Timoshenko theory vs. Euler-Bernoulli theory, Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro, 1996,976–981. https://doi.org/10.1109/CCA.1996.559047
    [43] X. Wang, R. Therefore, Y. Liu, Flow-induced vibration of an Euler–Bernoulli beam, J. Sound Vib., 243 (2001), 241–268. https://doi.org/10.1006/jsvi.2000.3342 doi: 10.1006/jsvi.2000.3342
    [44] A. D. Kerr, A study of a new foundation model, Acta Mech., 1 (1965), 135–147. https://doi.org/10.1007/BF01174308 doi: 10.1007/BF01174308
    [45] A. Zakria, O. A. A. Osman, M. Suhail, M. N. A. Rabih, Fractional Moore–Gibson–Thompson heat conduction for vibration analysis of non-local thermoelastic Micro-Beams on a viscoelastic Pasternak foundation, Fractal Fract., 9 (2025), 118. https://doi.org/10.3390/fractalfract9020118 doi: 10.3390/fractalfract9020118
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1116) PDF downloads(61) Cited by(0)

Article outline

Figures and Tables

Figures(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog