Processing math: 100%
Research article

Decision analysis with known and unknown weights in the complex N-cubic fuzzy environment: An application of accident prediction models

  • Received: 01 December 2024 Revised: 11 February 2025 Accepted: 19 February 2025 Published: 06 May 2025
  • MSC : 03E72, 94D05

  • The component of Pakistan's road safety management (RSM) systems that appears to be the least reliable is the evaluation of road safety measures. Road safety initiatives' daily operations, such as allocating specific financial resources and incorporating measures for road safety into the fabric of culture, are only sometimes observed by governments. When this happens, the analysis usually concentrates on issues related to the infrastructure and the enforcement of laws; thorough evaluations of road safety initiatives are incredibly uncommon. Road authorities, practitioners, and architects of road safety depend on prediction tools, often known as accident prediction models (APMs). These instruments are employed to assess safety concerns, pinpoint areas for improvement, and calculate the expected safety consequences of these modifications. The goal of this research is to use the complex N-cubic fuzzy set (CNCFS), an innovative and practical tool for decision making that excels at handling imprecise or ambiguous data in real-world decision-making processes, in the context. This study also proposes a novel entropy approach to multi-attribute group decision-making issues in RSM. We also investigate the assessment of accident forecasting models in RSM to demonstrate the feasibility and efficacy of the suggested strategy. Further, the advantages and superiority of the proposed strategy are explained using the experimental data and comparisons with known and unknown weights obtained by the entropy method. The study's conclusions demonstrate that the suggested approach is more workable and compatible with other current strategies.

    Citation: Sheikh Rashid, Tahir Abbas, Muhammad Gulistan, Muhammad Usman Jamil, Muhammad M. Al-Shamiri. Decision analysis with known and unknown weights in the complex N-cubic fuzzy environment: An application of accident prediction models[J]. AIMS Mathematics, 2025, 10(5): 10359-10386. doi: 10.3934/math.2025472

    Related Papers:

    [1] Ali Ahmad, Humera Rashid, Hamdan Alshehri, Muhammad Kamran Jamil, Haitham Assiri . Randić energies in decision making for human trafficking by interval-valued T-spherical fuzzy Hamacher graphs. AIMS Mathematics, 2025, 10(4): 9697-9747. doi: 10.3934/math.2025446
    [2] Doaa Al-Sharoa . (α1, 2, β1, 2)-complex intuitionistic fuzzy subgroups and its algebraic structure. AIMS Mathematics, 2023, 8(4): 8082-8116. doi: 10.3934/math.2023409
    [3] Tahir Mahmood, Ubaid Ur Rehman, Muhammad Naeem . A novel approach towards Heronian mean operators in multiple attribute decision making under the environment of bipolar complex fuzzy information. AIMS Mathematics, 2023, 8(1): 1848-1870. doi: 10.3934/math.2023095
    [4] Jun Jiang, Junjie Lv, Muhammad Bilal Khan . Visual analysis of knowledge graph based on fuzzy sets in Chinese martial arts routines. AIMS Mathematics, 2023, 8(8): 18491-18511. doi: 10.3934/math.2023940
    [5] Tareq M. Al-shami, José Carlos R. Alcantud, Abdelwaheb Mhemdi . New generalization of fuzzy soft sets: (a,b)-Fuzzy soft sets. AIMS Mathematics, 2023, 8(2): 2995-3025. doi: 10.3934/math.2023155
    [6] Muhammad Qiyas, Muhammad Naeem, Saleem Abdullah, Neelam Khan . Decision support system based on complex T-Spherical fuzzy power aggregation operators. AIMS Mathematics, 2022, 7(9): 16171-16207. doi: 10.3934/math.2022884
    [7] Shichao Li, Zeeshan Ali, Peide Liu . Prioritized Hamy mean operators based on Dombi t-norm and t-conorm for the complex interval-valued Atanassov-Intuitionistic fuzzy sets and their applications in strategic decision-making problems. AIMS Mathematics, 2025, 10(3): 6589-6635. doi: 10.3934/math.2025302
    [8] Tahir Mahmood, Azam, Ubaid ur Rehman, Jabbar Ahmmad . Prioritization and selection of operating system by employing geometric aggregation operators based on Aczel-Alsina t-norm and t-conorm in the environment of bipolar complex fuzzy set. AIMS Mathematics, 2023, 8(10): 25220-25248. doi: 10.3934/math.20231286
    [9] Atiqe Ur Rahman, Muhammad Saeed, Mazin Abed Mohammed, Alaa S Al-Waisy, Seifedine Kadry, Jungeun Kim . An innovative fuzzy parameterized MADM approach to site selection for dam construction based on sv-complex neutrosophic hypersoft set. AIMS Mathematics, 2023, 8(2): 4907-4929. doi: 10.3934/math.2023245
    [10] Muhammad Arshad, Muhammad Saeed, Khuram Ali Khan, Nehad Ali Shah, Wajaree Weera, Jae Dong Chung . A robust MADM-approach to recruitment-based pattern recognition by using similarity measures of interval-valued fuzzy hypersoft set. AIMS Mathematics, 2023, 8(5): 12321-12341. doi: 10.3934/math.2023620
  • The component of Pakistan's road safety management (RSM) systems that appears to be the least reliable is the evaluation of road safety measures. Road safety initiatives' daily operations, such as allocating specific financial resources and incorporating measures for road safety into the fabric of culture, are only sometimes observed by governments. When this happens, the analysis usually concentrates on issues related to the infrastructure and the enforcement of laws; thorough evaluations of road safety initiatives are incredibly uncommon. Road authorities, practitioners, and architects of road safety depend on prediction tools, often known as accident prediction models (APMs). These instruments are employed to assess safety concerns, pinpoint areas for improvement, and calculate the expected safety consequences of these modifications. The goal of this research is to use the complex N-cubic fuzzy set (CNCFS), an innovative and practical tool for decision making that excels at handling imprecise or ambiguous data in real-world decision-making processes, in the context. This study also proposes a novel entropy approach to multi-attribute group decision-making issues in RSM. We also investigate the assessment of accident forecasting models in RSM to demonstrate the feasibility and efficacy of the suggested strategy. Further, the advantages and superiority of the proposed strategy are explained using the experimental data and comparisons with known and unknown weights obtained by the entropy method. The study's conclusions demonstrate that the suggested approach is more workable and compatible with other current strategies.



    Let Ω={zRn:R1<|z|<R2,R1,R2>0}. In this work we study the existence of positive radial solutions for the following system of boundary value problems with semipositone second order elliptic equations:

    {Δφ+k(|z|)f(φ,ϕ)=0, zΩ,Δϕ+k(|z|)g(φ,ϕ)=0, zΩ,αφ+βφn=0, αϕ+βϕn=0, |z|=R1,γφ+δφn=0, γϕ+δϕn=0, |z|=R2, (1.1)

    where α,β,γ,δ,k,f,g satisfy the conditions:

    (H1) α,β,γ,δ0 with ργβ+αγ+αδ>0;

    (H2) kC([R1,R2],R+), and k is not vanishing on [R1,R2];

    (H3) f,gC(R+×R+,R), and there is a positive constant M such that

    f(u,v),g(u,v)M, u,vR+.

    Elliptic equations have attracted a lot of attention in the literature since they are closely related to many mathematical and physical problems, for instance, incineration theory of gases, solid state physics, electrostatic field problems, variational methods and optimal control. The existence of solutions for this type of equation in annular domains has been discussed in the literature, see for example, [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18] and the references therein. In [1] the authors used the fixed point index to study positive solutions for the elliptic system:

    {Δu+a(|x|)f(u,v)=0,Δv+b(|x|)g(u,v)=0,

    with one of the following boundary conditions

    u=v=0,|x|=R1,|x|=R2,u=v=0,|x|=R1,ur=vr=0,|x|=R2,ur=vr=0,|x|=R1,u=v=0,|x|=R2.

    In [2] the authors used the method of upper and lower solutions to establish the existence of positive radial solutions for the elliptic equation

    {Δu=f(|x|,u,|u|), xΩ,u|Ω=0,

    where Ω={xRN: |x|<1},N2, and f:[0,1]×R+×R+R is a continuous function.

    However, we note that in most of the papers on nonlinear differential equations the nonlinear term is usually assumed to be nonnegative. In recent years boundary value problems for semipositone equations (f(t,x)M,M>0) has received some attention (see [19,20,21,22,23,24,25,26,27,28,29,30,31,32]), and these equations describe and solve many natural phenomena in engineering and technical problems in real life, for example in mechanical systems, suspension bridge design, astrophysics and combustion theoretical models. In [19] the authors used a fixed point theorem to study the system for HIV-1 population dynamics in the fractional sense

    {Dα0+u(t)+λf(t,u(t),Dβ0+u(t),v(t))=0,t(0,1),Dγ0+v(t)+λg(t,u(t))=0,t(0,1),Dβ0+u(0)=Dβ+10+u(0)=0,Dβ0+u(1)=10Dβ0+u(s)dA(s),v(0)=v(0)=0,v(1)=10v(s)dB(s),

    where Dα0+,Dβ0+,Dγ0+ are the standard Riemann-Liouville derivatives, and f, g are two semipositone nonlinearities. In [28] the authors used the nonlinear alternative of Leray-Schauder type and the Guo-Krasnosel'skii fixed point theorem to study the existence of positive solutions for a system of nonlinear Riemann-Liouville fractional differential equations

    {Dα0+u(t)+λf(t,v(t))=0,0<t<1, λ>0,Dα0+v(t)+λg(t,u(t))=0,0<t<1, λ>0,u(j)(0)=v(j)(0)=0,0jn2,u(1)=μ10u(s)ds,v(1)=μ10v(s)ds,

    where f,g satisfy some superlinear or sublinear conditions:

    (HZ)1 There exist M>0 such that lim supz0g(t,z)z<M uniformly for t[0,1] (sublinear growth condition).

    (HZ)2 There exists [θ1,θ2](0,1) such that lim infz+f(t,z)z=+ and lim infz+g(t,z)z=+ uniformly for t[θ1,θ2] (superlinear growth condition).

    Inspired by the aforementioned work, in particular [31,32,33,34], we study positive radial solutions for (1.1) when the nonlinearities f,g satisfy the semipositone condition (H3). Moreover, some appropriate concave and convex functions are utilized to characterize coupling behaviors of our nonlinearities. Note that our conditions (H4) and (H6) (see Section 3) are more general than that in (HZ)1 and (HZ)2.

    Using the methods in [1,4], we transform (1.1) into a system of ordinary differential equations involving Sturm-Liouville boundary conditions. Let φ=φ(r),ϕ=ϕ(r),r=|z|=ni=1z2i. Then (1.1) can be expressed by the following system of ordinary differential equations:

    {φ(r)+n1rφ(r)+k(r)f(φ(r),ϕ(r))=0, R1<r<R2,ϕ(r)+n1rϕ(r)+k(r)g(φ(r),ϕ(r))=0, R1<r<R2,αφ(R1)βφ(R1)=0, γφ(R2)+δφ(R2)=0,αϕ(R1)βϕ(R1)=0, γϕ(R2)+δϕ(R2)=0. (2.1)

    Then if we let s=R2r(1/tn1)dt,t=(ms)/m,m=R2R1(1/tn1)dt, (2.1) can be transformed into the system

    {φ(t)+h(t)f(φ(t),ϕ(t))=0,0<t<1,ϕ(t)+h(t)g(φ(t),ϕ(t))=0,0<t<1,αφ(0)βφ(0)=0,γφ(1)+δφ(1)=0,αϕ(0)βϕ(0)=0,γϕ(1)+δϕ(1)=0, (2.2)

    where h(t)=m2r2(n1)(m(1t))k(r(m(1t))). Consequently, (2.2) is equivalent to the following system of integral equations

    {φ(t)=10G(t,s)h(s)f(φ(s),ϕ(s))ds,ϕ(t)=10G(t,s)h(s)g(φ(s),ϕ(s))ds, (2.3)

    where

    G(t,s)=1ρ{(γ+δγt)(β+αs),0st1,(γ+δγs)(β+αt),0ts1, (2.4)

    and ρ is defined in (H1).

    Lemma 2.1. Suppose that (H1) holds. Then

    (i)

    ρ(γ+δ)(β+α)G(t,t)G(s,s)G(t,s)G(s,s), t,s[0,1];

    (ii)

    G(t,s)G(t,t), t,s[0,1].

    Proof. (i) In G(t,s), we fix the second variable s, we have

    G(t,s)=1ρ{(γ+δγt)(β+αs)(γ+δγs)(β+αs),0st1,(γ+δγs)(β+αt)(γ+δγs)(β+αs),0ts1.

    This implies that

    G(t,s)G(s,s),t,s[0,1].

    When ts, we have

    1ρ(γ+δγt)(β+αs)ρ1ρ1ρ(γ+δγt)(β+αt)(γ+δγs)(β+αs)1(β+α)(γ+δ).

    When ts, we have

    1ρ(γ+δγs)(β+αt)ρ1ρ1ρ(γ+δγt)(β+αt)(γ+δγs)(β+αs)1(β+α)(γ+δ).

    Combining the above we obtain

    G(t,s)G(t,t)G(s,s)ρ(β+α)(γ+δ).

    (ii) In G(t,s) we fix the first variable t, and we obtain

    G(t,s)=1ρ{(γ+δγt)(β+αs)(γ+δγt)(β+αt),0st1,(γ+δγs)(β+αt)(γ+δγt)(β+αt),0ts1.

    Thus

    G(t,s)G(t,t),t,s[0,1].

    Lemma 2.2. Suppose that (H1) holds. Let ϑ(t)=G(t,t)h(t),t[0,1]. Then

    κ1ϑ(s)10G(t,s)h(s)ϑ(t)dtκ2ϑ(s),

    where

    κ1=ρ(γ+δ)(β+α)10G(t,t)ϑ(t)dt, κ2=10ϑ(t)dt.

    Proof. From (H1) and Lemma 2.1(i) we have

    10G(t,s)h(s)ϑ(t)dt10G(s,s)h(s)ϑ(t)dt=κ2ϑ(s)

    and

    10G(t,s)h(s)ϑ(t)dt10ρ(γ+δ)(β+α)G(t,t)G(s,s)h(s)ϑ(t)dt=κ1ϑ(s).

    Note we study (2.3) to obtain positive solutions for (1.1). However here the nonlinear terms f,g can be sign-changing (see (H3)). Therefore we study the following auxiliary problem:

    u(t)=10G(t,s)h(s)˜f(u(s))ds, (2.5)

    where G is in (2.4) and ˜f satisfies the condition:

    (H2) ˜fC(R+,R), and there exists a positive constant M such that

    ˜f(u)M, uR+.

    Let w(t)=M10G(t,s)h(s)ds,t[0,1]. Then w is a solution of the following boundary value problem:

    {u(t)+h(t)M=0,0<t<1,αu(0)βu(0)=0,γu(1)+δu(1)=0. (2.6)

    Lemma 2.3. (i) If u satisfies (2.5), then u+w is a solution of the equation:

    u(t)=10G(t,s)h(s)˜F(u(s)w(s))ds, (2.7)

    where

    ˜F(u)={˜f(u)+M,u0,˜f(0)+M,u<0. (2.8)

    (ii) If u satisfies (2.7) with u(t)w(t),t[0,1], then uw is a positive solution for (2.5).

    Proof. We omit its proof since it is immediate.

    Let E=C[0,1], u=maxt[0,1]|u(t)|. Then (E,) is a Banach space. Define a set on E as follows:

    P={uE:u(t)0,t[0,1]},

    and note P is a cone on E. Note, E2=E×E is also a Banach space with the norm: (u,v)=u+v, and P2=P×P a cone on E2. In order to obtain positive radial solutions for (1.1), combining with (2.5)–(2.7), we define the following operator equation:

    A(φ,ϕ)=(φ,ϕ), (2.9)

    where A(φ,ϕ)=(A1,A2)(φ,ϕ), Ai(i=1,2) are

    {A1(φ,ϕ)(t)=10G(t,s)h(s)F1(φ(s)w(s),ϕ(s)w(s))ds,A2(φ,ϕ)(t)=10G(t,s)h(s)F2(φ(s)w(s),ϕ(s)w(s))ds, (2.10)

    and

    F1(φ,ϕ)={f(φ,ϕ)+M,φ,ϕ0,f(0,ϕ)+M,φ<0,ϕ0,f(φ,0)+M,φ0,ϕ<0,f(0,0)+M,φ,ϕ<0,
    F2(φ,ϕ)={g(φ,ϕ)+M,φ,ϕ0,g(0,ϕ)+M,φ<0,ϕ0,g(φ,0)+M,φ0,ϕ<0,g(0,0)+M,φ,ϕ<0.

    Lemma 2.4. Define P0={φP:φ(t)ρ(γ+δ)(β+α)G(t,t)φ,t[0,1]}. Then Ai(P×P)P0,i=1,2.

    Proof. We only prove it for A1. If φ,ϕP, note the non-negativity of F1(denoted by F1(,)), from Lemma 2.1(i) we have

    10ρ(γ+δ)(β+α)G(t,t)G(s,s)h(s)F1(,)dsA1(φ,ϕ)(t)10G(s,s)h(s)F1(,)ds.

    This implies that

    A1(φ,ϕ)(t)10ρ(γ+δ)(β+α)G(t,t)G(s,s)h(s)F1(,)dsρ(γ+δ)(β+α)G(t,t)A1(φ,ϕ).

    Remark 2.1. (i) w(t)=M10G(t,s)h(s)dsP0;

    (ii) Note (see Corollary 1.5.1 in [35]):

    If k(x,y,u):˜GטG×RR is continuous (˜G is a bounded closed domain in Rn), then K is a completely continuous operator from C(˜G) into itself, where

    Kψ(x)=˜Gk(x,y,ψ(y))dy.

    Note that G(t,s),h(s),Fi(i=1,2) are continuous, and also Ai, A are completely continuous operators, i=1,2.

    From Lemma 2.3 if there exists (φ,ϕ)P2{(0,0)} such that (2.9) holds with (φ,ϕ)(w,w), then φ(t),ϕ(t)w(t),t[0,1], and (φw,ϕw) is a positive solution for (2.3), i.e., we obtain positive radial solutions for (1.1). Note that φ,ϕP0, and from Lemma 2.1(ii) we have

    φ(t)w(t)ρ(γ+δ)(β+α)G(t,t)φM10G(t,t)h(s)ds,
    ϕ(t)w(t)ρ(γ+δ)(β+α)G(t,t)ϕM10G(t,t)h(s)ds.

    Hence, if

    φ,ϕM(γ+δ)(β+α)ρ10h(s)ds,

    we have (φ,ϕ)(w,w). As a result, we only need to seek fixed points of (2.9), when their norms are greater than M(γ+δ)(β+α)ρ10h(s)ds.

    Let E be a real Banach space. A subset XE is called a retract of E if there exists a continuous mapping r:EX such that r(x)=x, xX. Note that every cone in E is a retract of E. Let X be a retract of real Banach space E. Then, for every relatively bounded open subset U of X and every completely continuous operator A:¯UX which has no fixed points on U, there exists an integer i(A,U,X) satisfying the following conditions:

    (i) Normality: i(A,U,X)=1 if Axy0U for any x¯U.

    (ii) Additivity: i(A,U,X)=i(A,U1,X)+i(A,U2,X) whenever U1 and U2 are disjoint open subsets of U such that A has no fixed points on ¯U(U1U2).

    (iii) Homotopy invariance: i(H(t,),U,X) is independent of t (0t1) whenever H:[0,1]ׯUX is completely continuous and H(t,x)x for any (t,x)[0,1]×U.

    (iv) Permanence: i(A,U,X)=i(A,UY,Y) if Y is a retract of X and A(¯U)Y.

    Then i(A,U,X) is called the fixed point index of A on U with respect to X.

    Lemma 2.5. (see [35,36]). Let E be a real Banach space and P a cone on E. Suppose that ΩE is a bounded open set and that A:¯ΩPP is a continuous compact operator. If there exists ω0P{0} such that

    ωAωλω0,λ0,ωΩP,

    then i(A,ΩP,P)=0, where i denotes the fixed point index on P.

    Lemma 2.6. (see [35,36]). Let E be a real Banach space and P a cone on E. Suppose that ΩE is a bounded open set with 0Ω and that A:¯ΩPP is a continuous compact operator. If

    ωλAω0,λ[0,1],ωΩP,

    then i(A,ΩP,P)=1.

    Denote OM,h=M(γ+δ)(β+α)ρ10h(s)ds, Bζ={uE:u<ζ},ζ>0,B2ζ=Bζ×Bζ. We list our assumptions as follows:

    (H4) There exist p,qC(R+,R+) such that

    (i) p is a strictly increasing concave function on R+;

    (ii) lim infvf(u,v)p(v)1, lim infug(u,v)q(u)1;

    (iii) there exists e1(κ21,) such that lim infzp(LG,hq(z))ze1LG,h, where LG,h=maxt,s[0,1]G(t,s)h(s).

    (H5) There exists Qi(0,OM,hκ2) such that

    Fi(uw,vw)Qi,u,v[0,OM,h],i=1,2.

    (H6) There exist ζ,ηC(R+,R+) such that

    (i) ζ is a strictly increasing convex function on R+;

    (ii) lim supvf(u,v)ζ(v)1, lim supug(u,v)η(u)1;

    (iii) there exists e2(0,κ22) such that lim supzζ(LG,hη(z))ze2LG,h.

    (H7) There exists ˜Qi(OM,hκ2LG,) such that

    Fi(uw,vw)˜Qi,u,v[0,OM,h],i=1,2,

    where LG=maxt[0,1]ρ(γ+δ)(β+α)G(t,t).

    Remark 3.1. Condition (H4) implies that f grows p(v)-superlinearly at uniformly on uR+, g grows q(u)-superlinearly at uniformly on vR+; condition (H6) implies that f grows ζ(v)-sublinearly at uniformly on uR+, g grows η(u)-sublinearly at uniformly on vR+.

    Theorem 3.1. Suppose that (H1)–(H5) hold. Then (1.1) has at least one positive radial solution.

    Proof. Step 1. When φ,ϕBOM,hP, we have

    (φ,ϕ)λA(φ,ϕ),λ[0,1]. (3.1)

    Suppose the contrary i.e., if (3.1) is false, then there exist φ0,ϕ0BOM,hP and λ0[0,1] such that

    (φ0,ϕ0)=λ0A(φ0,ϕ0).

    This implies that

    φ0,ϕ0P0 (3.2)

    and

    φ0A1(φ0,ϕ0), ϕ0A2(φ0,ϕ0). (3.3)

    From (H5) we have

    Ai(φ0,ϕ0)(t)=10G(t,s)h(s)Fi(φ0(s)w(s),ϕ0(s)w(s))ds10ϑ(s)Qids<OM,h,i=1,2.

    Thus

    A1(φ0,ϕ0)+A2(φ0,ϕ0)<2OM,h=φ0+ϕ0(φ0,ϕ0BOM,hP),

    which contradicts (3.3), and thus (3.1) holds. From Lemma 2.6 we have

    i(A,B2OM,hP2,P2)=1. (3.4)

    Step 2. There exists a sufficiently large R>OM,h such that

    (φ,ϕ)A(φ,ϕ)+λ(ϱ1,ϱ1),φ,ϕBRP,λ0, (3.5)

    where ϱ1P0 is a given element. Suppose the contrary. Then there are φ1,ϕ1BRP,λ10 such that

    (φ1,ϕ1)=A(φ1,ϕ1)+λ1(ϱ1,ϱ1). (3.6)

    This implies that

    φ1(t)=A1(φ1,ϕ1)(t)+λ1ϱ1(t), ϕ1(t)=A2(φ1,ϕ1)(t)+λ1ϱ1(t),t[0,1].

    From Lemma 2.4 and ϱ1P0 we have

    φ1,ϕ1P0. (3.7)

    Note that φ1=ϕ1=R>OM,h, and thus φ1(t)w(t),ϕ1(t)w(t),t[0,1].

    By (H4)(ii) we obtain

    lim infϕF1(φ,ϕ)p(ϕ)=lim infϕf(φ,ϕ)+Mp(ϕ)1, lim infφF2(φ,ϕ)q(φ)=lim infφg(φ,ϕ)+Mq(φ)1.

    This implies that there exist c1,c2>0 such that

    F1(φ,ϕ)p(ϕ)c1, F2(φ,ϕ)q(φ)c2, φ,ϕR+.

    Therefore, we have

    φ1(t)=A1(φ1,ϕ1)(t)+λ1ϱ1(t)A1(φ1,ϕ1)(t)10G(t,s)h(s)[p(ϕ1(s)w(s))c1]ds10G(t,s)h(s)p(ϕ1(s)w(s))dsc1κ2 (3.8)

    and

    ϕ1(t)=A2(φ1,ϕ1)(t)+λ1ϱ1(t)A2(φ1,ϕ1)(t)10G(t,s)h(s)[q(φ1(s)w(s))c2]ds10G(t,s)h(s)q(φ1(s)w(s))dsc2κ2. (3.9)

    Consequently, we have

    ϕ1(t)w(t)10G(t,s)h(s)q(φ1(s)w(s))dsc2κ2w(t)10G(t,s)h(s)q(φ1(s)w(s))ds(c2+M)κ2.

    From (H4)(iii), there is a c3>0 such that

    p(LG,hq(z))e1LG,hzLG,hc3,zR+.

    Combining with (H4)(i), we have

    p(ϕ1(t)w(t))p(ϕ1(t)w(t)+(c2+M)κ2)p((c2+M)κ2)p(10G(t,s)h(s)q(φ1(s)w(s))ds)p((c2+M)κ2)=p(10G(t,s)h(s)LG,hLG,hq(φ1(s)w(s))ds)p((c2+M)κ2)10p(G(t,s)h(s)LG,hLG,hq(φ1(s)w(s)))dsp((c2+M)κ2)10G(t,s)h(s)LG,hp(LG,hq(φ1(s)w(s)))dsp((c2+M)κ2)10G(t,s)h(s)LG,h(e1LG,h(φ1(s)w(s))LG,hc3)dsp((c2+M)κ2)e110G(t,s)h(s)(φ1(s)w(s))dsp((c2+M)κ2)c3κ2.

    Substituting this inequality into (3.8) we have

    φ1(t)w(t)10G(t,s)h(s)[e110G(s,τ)h(τ)(φ1(τ)w(τ))dτp((c2+M)κ2)c3κ2]ds   (c1+M)κ2e11010G(t,s)h(s)G(s,τ)h(τ)(φ1(τ)w(τ))dτds   p((c2+M)κ2)κ2c3κ22(c1+M)κ2.

    Multiply by ϑ(t) on both sides of the above and integrate over [0,1] and use Lemma 2.2 to obtain

    10(φ1(t)w(t))ϑ(t)dte110ϑ(t)1010G(t,s)h(s)G(s,τ)h(τ)(φ1(τ)w(τ))dτdsdt   p((c2+M)κ2)κ22c3κ32(c1+M)κ22e1κ2110(φ1(t)w(t))ϑ(t)dtp((c2+M)κ2)κ22c3κ32(c1+M)κ22.

    From this inequality we have

    10(φ1(t)w(t))ϑ(t)dtp((c2+M)κ2)κ22+c3κ32+(c1+M)κ22e1κ211

    and thus

    10φ1(t)ϑ(t)dtp((c2+M)κ2)κ22+c3κ32+(c1+M)κ22e1κ211+10w(t)ϑ(t)dtp((c2+M)κ2)κ22+c3κ32+(c1+M)κ22e1κ211+Mκ22.

    Note that (3.7), φ1P0, and we have

    φ1p((c2+M)κ2)κ22+c3κ32+(c1+M)κ22κ1(e1κ211)+Mκ22κ1.

    On the other hand, multiply by ϑ(t) on both sides of (3.8) and integrate over [0,1] and use Lemma 2.2 to obtain

    κ110ϑ(t)p(ϕ1(t)w(t))dt10φ1(t)ϑ(t)dt+c1κ22p((c2+M)κ2)κ22+c3κ32+(c1+M)κ22e1κ211+Mκ22+c1κ22.

    From Remark 2.1 we have wP0, note that ϕ1=R>M(γ+δ)(β+α)ρ10h(s)dsw and ϕ1P0, then ϕ1wP0. By the concavity of p we have

    ϕ1wκ1110(ϕ1(t)w(t))ϑ(t)dt=ϕ1wκ1p(ϕ1w)10ϕ1(t)w(t)ϕ1wp(ϕ1w)ϑ(t)dtϕ1wκ1p(ϕ1w)10p(ϕ1(t)w(t)ϕ1wϕ1w)ϑ(t)dtϕ1wκ21p(ϕ1w)[p((c2+M)κ2)κ22+c3κ32+(c1+M)κ22e1κ211+Mκ22+c1κ22].

    This implies that

    p(ϕ1w)1κ21[p((c2+M)κ2)κ22+c3κ32+(c1+M)κ22e1κ211+Mκ22+c1κ22].

    From (H4)(i) we have

    p(ϕ1)=p(ϕ1w+w)p(ϕ1w+w)p(ϕ1w)+p(w)1κ21[p((c2+M)κ2)κ22+c3κ32+(c1+M)κ22e1κ211+Mκ22+c1κ22]+p(w)1κ21[p((c2+M)κ2)κ22+c3κ32+(c1+M)κ22e1κ211+Mκ22+c1κ22]+p(Mκ2)<+.

    Therefore, there exists Oϕ1>0 such that ϕ1Oϕ1.

    We have prove the boundedness of φ1,ϕ1 when (3.6) holds, i.e., when φ1,ϕ1BRP, there exist a positive constant to control the norms of φ1,ϕ1. Now we choose a sufficiently large

    R1>max{OM,h,Oϕ1,p((c2+M)κ2)κ22+c3κ32+(c1+M)κ22κ1(e1κ211)+Mκ22κ1}.

    Then when φ1,ϕ1BR1P, (3.6) is not satisfied, and thus (3.5) holds. From Lemma 2.5 we have

    i(A,B2R1P2,P2)=0. (3.10)

    Combining (3.4) with (3.10) we have

    i(A,(B2R1¯B2OM,h)P2,P2)=i(A,B2R1P2,P2)i(A,B2OM,hP2,P2)=01=1.

    Then the operator A has at least one fixed point (denoted by (φ,ϕ)) on (B2R1¯B2OM,h)P2 with φ(t),ϕ(t)w(t),t[0,1]. Therefore, (φw,ϕw) is a positive solution for (2.2), and (1.1) has at least one positive radial solution.

    Theorem 3.2. Suppose that (H1)–(H3), (H6) and (H7) hold. Then (1.1) has at least one positive radial solution.

    Proof. Step 1. When φ,ϕBOM,hP, we have

    (φ,ϕ)A(φ,ϕ)+λ(ϱ2,ϱ2),λ0, (3.11)

    where ϱ2P is a given element. Suppose the contrary. Then there exist φ2,ϕ2BOM,hP,λ20 such that

    (φ2,ϕ2)=A(φ2,ϕ2)+λ2(ϱ2,ϱ2).

    This implies that

    φ2φ2(t)A1(φ2,ϕ2)(t)+λ2ϱ2(t)A1(φ2,ϕ2)(t),t[0,1],
    ϕ2ϕ2(t)A2(φ2,ϕ2)(t)+λ2ϱ2(t)A2(φ2,ϕ2)(t),t[0,1].

    Then we have

    φ2+ϕ2A1(φ2,ϕ2)+A2(φ2,ϕ2). (3.12)

    From (H7) we have

    Ai(φ2,ϕ2)=maxt[0,1]Ai(φ2,ϕ2)(t)maxt[0,1]ρ(γ+δ)(β+α)G(t,t)10G(s,s)h(s)Fi(φ2(s)w(s),ϕ2(s)w(s))dsLG10G(s,s)h(s)˜Qids=˜Qiκ2LG,i=1,2.

    By the condition on ˜Qi we have

    A1(φ2,ϕ2)+A2(φ2,ϕ2)>2OM,h=φ2+ϕ2,

    and this contradicts (3.12), so (3.11) holds. By Lemma 2.5 we have

    i(A,B2OM,hP2,P2)=0. (3.13)

    Step 2. There exists a sufficiently large R>OM,h such that

    (φ,ϕ)λA(φ,ϕ),φ,ϕBRP,λ[0,1]. (3.14)

    Suppose the contrary. Then there exist φ3,ϕ3BRP,λ3[0,1] such that

    (φ3,ϕ3)=λ3A(φ3,ϕ3). (3.15)

    Combining with Lemma 2.4 we have

    φ3,ϕ3P0. (3.16)

    Note that φ3,ϕ3BRP, and then φ3(t)w(t),ϕ3(t)w(t)0,t[0,1]. Hence, from (H6) we have

    lim supϕF1(φ,ϕ)ζ(ϕ)=lim supϕf(φ,ϕ)+Mζ(ϕ)1, lim supφF2(φ,ϕ)η(φ)=lim supφg(φ,ϕ)+Mη(φ)1.

    This implies that there exists ˜M>0 such that

    F1(φ,ϕ)ζ(ϕ), F2(φ,ϕ)η(φ),φ,ϕ˜M. (3.17)

    By similar methods as in Theorem 3.1, choosing R>˜M, and from (3.15) we obtain

    φ3(t)=λ3A1(φ3,ϕ3)(t)10G(t,s)h(s)ζ(ϕ3(s)w(s))ds (3.18)

    and

    ϕ3(t)=λ3A2(φ3,ϕ3)(t)10G(t,s)h(s)η(φ3(s)w(s))ds. (3.19)

    From (H6)(iii), there exists c4>0 such that

    ζ(LG,hη(z))e2LG,hz+c4LG,h,zR+.

    By the convexity of ζ we have

    ζ(ϕ3(t)w(t))ζ(10G(t,s)h(s)η(φ3(s)w(s))ds)10ζ[G(t,s)h(s)η(φ3(s)w(s))]ds=10ζ[G(t,s)h(s)LG,hLG,hη(φ3(s)w(s))]ds10G(t,s)h(s)LG,hζ[LG,hη(φ3(s)w(s))]ds10G(t,s)h(s)LG,h[e2LG,h(φ3(s)w(s))+c4LG,h]ds10G(t,s)h(s)[e2(φ3(s)w(s))+c4]ds. (3.20)

    Substituting this inequality into (3.18) we have

    φ3(t)10G(t,s)h(s)10G(s,τ)h(τ)[e2(φ3(τ)w(τ))+c4]dτdse21010G(t,s)h(s)G(s,τ)h(τ)(φ3(τ)w(τ))dτds+c4κ22. (3.21)

    Consequently, we have

    φ3(t)w(t)10G(t,s)h(s)10G(s,τ)h(τ)[e2(φ3(τ)w(τ))+c4]dτdse21010G(t,s)h(s)G(s,τ)h(τ)(φ3(τ)w(τ))dτds+c4κ22. (3.22)

    Multiply by ϑ(t) on both sides of (3.22) and integrate over [0,1] and use Lemma 2.2 to obtain

    10(φ3(t)w(t))ϑ(t)dte2κ2210(φ3(t)w(t))ϑ(t)dt+c4κ32,

    and we have

    10(φ3(t)w(t))ϑ(t)dtc4κ321e2κ22.

    Note that (3.16), wP0, and

    φ3wc4κ32κ1(1e2κ22).

    By the triangle inequality we have

    φ3=φ3w+wφ3w+wc4κ32κ1(1e2κ22)+Mκ2.

    On the other hand, from (3.20) we have

    ζ(ϕ3(t)w(t))10G(t,s)h(s)[e2(φ3(s)w(s))+c4]ds10ϑ(s)[e2(φ3(s)w(s))+c4]dsc4e2κ321e2κ22+c4κ2.

    Note that c4e2κ321e2κ22+c4κ2 is independent to R, and using (H6)(i) there exists Oϕ3>0 such that

    ϕ3wOϕ3,

    and then

    ϕ3=ϕ3w+wϕ3w+wOϕ3+Mκ2.

    Therefore, when φ3,ϕ3BRP, we obtain there is a positive constant to control the norms of φ3,ϕ3. Then if we choose

    R2>{OM,h,Oϕ3+Mκ2,˜M,c4κ32κ1(1e2κ22)+Mκ2},

    then (3.14) holds, and from Lemma 2.6 we have

    i(A,B2R2P2,P2)=1. (3.23)

    From (3.13) and (3.23) we have

    i(A,(B2R2¯B2OM,h)P2,P2)=i(A,B2R2P2,P2)i(A,B2OM,hP2,P2)=10=1.

    Then the operator A has at least one fixed point (denoted by (u,v)) on (B2R2¯B2OM,h)P2 with u(t),v(t)w(t),t[0,1]. Therefore, (uw,vw) is a positive solution for (2.2), and (1.1) has at least one positive radial solution.

    We now provide some examples to illustrate our main results. Let α=β=γ=δ=1, and k(|z|)=e|z|,zRn. Then (H1) and (H2) hold.

    Example 3.1. Let p(ϕ)=ϕ45,q(φ)=φ2,φ,ϕR+. Then lim infzp(LG,hq(z))z=lim infzL45G,hz85z, and (H4)(i), (iii) hold. If we choose

    f(φ,ϕ)=1β1κ2(|sinφ|+1)ϕM, g(φ,ϕ)=O1β3M,hβ2κ2(|cosϕ|+1)φβ3M,β1,β2>1,β3>2,

    then (H3) holds, and when φ,ϕ[0,OM,h], we have

    F1(φ,ϕ)=f(φ,ϕ)+MOM,hβ1κ2:=Q1, F2(φ,ϕ)=g(φ,ϕ)+MO1β3M,hβ2κ2Oβ3M,h=OM,hβ2κ2:=Q2.

    Hence, (H5) holds. Also we have

    lim infϕf(φ,ϕ)p(ϕ)=lim infϕ1β1κ2(|sinφ|+1)ϕMϕ45=, lim infφg(φ,ϕ)q(φ)=lim infφO1β3M,hβ2κ2(|cosϕ|+1)φβ3Mφ2=.

    Then (H4)(ii) holds. As a result, all the conditions in Theorem 3.1 hold, and (1.1) has at least one positive radial solution.

    Example 3.2. Let ζ(ϕ)=ϕ2,η(φ)=φ25, φ,ϕR+. Then lim supzζ(LG,hη(z))z=lim supzL2G,hz45z = 0e2LG,h, and (H7)(i), (iii) hold. If we choose

    f(φ,ϕ)=˜Q1+(ϕ+|cosφ|)α1M, g(φ,ϕ)=˜Q2+(|sinϕ|+φ)α2M,φ,ϕR+,

    where α1(0,2),α2(0,25). Then (H3) holds. Moreover, we have

    F1(φ,ϕ)=f(φ,ϕ)+M˜Q1, F2(φ,ϕ)=g(φ,ϕ)+M˜Q2,

    and

    lim supϕ˜Q1M+(ϕ+|cosφ|)α1ϕ2=0,lim supφ˜Q2M+(|sinϕ|+φ)α2φ25=0.

    Therefore, (H6) and (H7) (ii) hold. As a result, all the conditions in Theorem 3.2 hold, and (1.1) has at least one positive radial solution.

    Remark 3.2. Note that condition (HZ)2 is often used to study various kinds of semipositone boundary value problems (for example, see [19,22,23,26,28,29,30]). However, in Example 3.1 we have

    lim infϕ+f(φ,ϕ)φ=lim infϕ+1β1κ2(|sinφ|+1)ϕMϕ=12β1κ2,φR+.

    Comparing with (HZ)2 we see that our theory gives new results for boundary value problem with semipositone nonlinearities.

    This research was supported by the National Natural Science Foundation of China (12101086), Changzhou Science and Technology Planning Project (CJ20210133), Natural Science Foundation of Chongqing (cstc2020jcyj-msxmX0123), and Technology Research Foundation of Chongqing Educational Committee (KJQN202000528).

    The authors declare no conflict of interest.



    [1] M. Deveci, D. Pamucar, I. Gokasar, M. Köppen, B. B. Gupta, T. Daim, Evaluation of metaverse traffic safety implementations using fuzzy Einstein based logarithmic methodology of additive weights and TOPSIS method, Technol. Forecast. Soc. Change, 194 (2023), 122–681. https://doi.org/10.1016/j.techfore.2023.122681 doi: 10.1016/j.techfore.2023.122681
    [2] L. Xie, J. X. Zhang, R. Cheng, Comprehensive evaluation of freeway driving risks based on fuzzy logic, Sustainability, 15 (2023), 810. https://doi.org/10.3390/su15010810 doi: 10.3390/su15010810
    [3] M. Cubranic-Dobrodolac, L. Švadlenka, S. Cicevic, A. Trifunovic, M. Dobrodolac, Using the interval type-2 fuzzy inference systems to compare the impact of speed and space perception on the occurrence of road traffic accidents, Mathematics, 8 (2020), 15–48. https://doi.org/10.3390/math8091548 doi: 10.3390/math8091548
    [4] A. Al-Omari, N. Shatnawi, T. Khedaywi, T. Miqdady, Prediction of traffic accidents hot spots using fuzzy logic and GIS, Appl. Geomat., 12 (2020), 149–161. https://doi.org/10.1007/s12518-019-00290-7 doi: 10.1007/s12518-019-00290-7
    [5] A. Zaranezhad, H. A. Mahabadi, M. R. Dehghani, Development of prediction models for repair and maintenance-related accidents at oil refineries using artificial neural network, fuzzy system, genetic algorithm, and ant colony optimization algorithm, Process Saf. Environ. Prot., 131 (2019), 331–348. https://doi.org/10.1016/j.psep.2019.08.031 doi: 10.1016/j.psep.2019.08.031
    [6] J. M. Simic, Ž. Stevic, E. K. Zavadskas, V. Bogdanovic, M. Subotic, A. Mardani, A novel CRITIC-fuzzy FUCOM-DEA-fuzzy MARCOS model for safety evaluation of road sections based on geometric parameters of road, Symmetry, 12 (2020), 2006. https://doi.org/10.3390/sym12122006 doi: 10.3390/sym12122006
    [7] O. Koçar, E. Dizdar, A risk assessment model for traffic crashes problem using fuzzy logic: A case study of Zonguldak, Turkey, Transp. Lett., 14 (2022), 492–502. https://doi.org/10.1080/19427867.2021.1896062 doi: 10.1080/19427867.2021.1896062
    [8] Ž. Stevic, M. Subotic, I. Tanackov, S. Sremac, B. Ristic, S. Simic, Evaluation of two-lane road sections in terms of traffic risk using an integrated MCDM model, Transport, 37 (2022), 318–329. https://doi.org/10.3846/transport.2022.18243 doi: 10.3846/transport.2022.18243
    [9] S. H. Ahammad, M. Sukesh, M. Narender, S. A. Ettyem, K. Al-Majdi, K. Saikumar, A novel approach to avoid road traffic accidents and develop safety rules for traffic using crash prediction model technique, In: Micro-electronics and telecommunication engineering: Proceedings of 6th ICMET, Springer Nature Singapore, Singapore, 2023,367–377. https://doi.org/10.1007/978-981-19-9512-5_34
    [10] G. Gecchele, R. Ceccato, R. Rossi, M. Gastaldi, A flexible approach to select road traffic counting locations: System design and application of a fuzzy Delphi analytic hierarchy process, Transp. Eng., 12 (2023), 100167. https://doi.org/10.1016/j.treng.2023.100167 doi: 10.1016/j.treng.2023.100167
    [11] S. J. Ghoushchi, S. S. Haghshenas, A. M. Ghiaci, G. Guido, A. Vitale, Road safety assessment and risks prioritization using an integrated SWARA and MARCOS approach under spherical fuzzy environment, Neural Comput. Applic., 35 (2023), 4549–4567. https://doi.org/10.1007/s00521-022-07929-4 doi: 10.1007/s00521-022-07929-4
    [12] A. Mohammadi, B. Kiani, H. Mahmoudzadeh, R. Bergquist, Pedestrian road traffic accidents in metropolitan areas: GIS-based prediction modelling of cases in Mashhad, Iran, Sustainability, 15 (2023), 10576. https://doi.org/10.3390/su151310576 doi: 10.3390/su151310576
    [13] M. M. Garnaik, J. P. Giri, A. Panda, Impact of highway design on traffic safety: How geometric elements affect accident risk, Ecocycles, 9 (2023), 83–92. https://doi.org/10.19040/ecocycles.v9i1.263 doi: 10.19040/ecocycles.v9i1.263
    [14] M. Gaber, A. Diab, A. Othman, A. M. Wahaballa, Analysis and modeling of rural roads traffic safety data, Sohag Eng. J., 3 (2023), 57–67.
    [15] I. Benallou, A. Azmani, M. Azmani, Evaluation of the accidents risk caused by truck drivers using a fuzzy Bayesian approach, Int. J. Adv. Comput. Sci. Appl., 14 (2023). https://doi.org/10.14569/IJACSA.2023.0140620 doi: 10.14569/IJACSA.2023.0140620
    [16] X. J. Gou, X. R. Xu, F. M. Deng, W. Zhou, E. Herrera-Viedma, Medical health resources allocation evaluation in public health emergencies by an improved ORESTE method with linguistic preference orderings, Fuzzy Optimi. Decis. Making, 23 (2024), 1–27. https://doi.org/10.1007/s10700-023-09409-3 doi: 10.1007/s10700-023-09409-3
    [17] A. Hussain, K. Ullah, An intelligent decision support system for spherical fuzzy Sugeno-Weber aggregation operators and real-life applications, Spect. Mecha. Eng. Ope. Res., 1 (2024), 177–188. https://doi.org/10.31181/smeor11202415 doi: 10.31181/smeor11202415
    [18] P. Wang, B. Y. Zhu, Y. Yu, Z. Ali, B. Almohsen, Complex intuitionistic fuzzy DOMBI prioritized aggregation operators and their application for resilient green supplier selection, Facta Univ. Ser. Mech. Eng., 21 (2023), 339–357. https://doi.org/10.22190/FUME230805029W doi: 10.22190/FUME230805029W
    [19] F. Y. Xiao, Quantum X-entropy in generalized quantum evidence theory, Inform. Sciences, 643 (2023), 119177. https://doi.org/10.1016/j.ins.2023.119177 doi: 10.1016/j.ins.2023.119177
    [20] F. Y. Xiao, A distance measure for intuitionistic fuzzy sets and its application to pattern classification problems, IEEE T. Syst. Man Cy-S, 51 (2021), 3980–3992. https://doi.org/10.1109/TSMC.2019.2958635 doi: 10.1109/TSMC.2019.2958635
    [21] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [22] K. T. Atanassov, Intuitionistic fuzzy sets, In: International Journal of Advanced Computer Science and Applications, 35 (1999). https://doi.org/10.1007/978-3-7908-1870-3_1
    [23] R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE T. Fuzzy Syst., 22 (2015), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [24] R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2017), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [25] F. Ecer, I. Y. Ogel, R. Krishankumar, E. B. Tirkolaee, The q-rung fuzzy LOPCOW-VIKOR model to assess the role of unmanned aerial vehicles for precision agriculture realization in the Agri-Food 4.0 era, Artif. Intell. Rev., 56 (2023), 13373–13406. https://doi.org/10.1007/s10462-023-10476-6 doi: 10.1007/s10462-023-10476-6
    [26] R. Krishankumar, F. Ecer, A. R. Mishra, K. S. Ravichandran, A. H. Gandomi, S. Kar, A SWOT-based framework for personalized ranking of IoT service providers with generalized fuzzy data for sustainable transport in urban regions, IEEE T. Eng. Manag., 71 (2024), 2937–2950. https://doi.org/10.1109/TEM.2022.3204695 doi: 10.1109/TEM.2022.3204695
    [27] M. Deveci, D. Pamucar, I. Gokasar, M. Köppen, B. B. Gupta, Personal mobility in metaverse with autonomous vehicles using q-rung orthopair fuzzy sets based OPA-RAFSI model, IEEE T. Intell. Transp. Syst., 24 (2023), 15642–15651. https://doi.org/10.1109/TITS.2022.3186294 doi: 10.1109/TITS.2022.3186294
    [28] Y. D. Uslu, H. Dinçer, S. Yüksel, E. Gedikli, E. Yilmaz, An integrated decision-making approach based on q-rung orthopair fuzzy sets in service industry, Int. J. Comput. Intell. Syst., 15 (2022), 14. https://doi.org/10.1007/s44196-022-00069-6 doi: 10.1007/s44196-022-00069-6
    [29] M. Deveci, D. Pamucar, U. Cali, E. Kantar, K. Kölle, J. O. Tande, Hybrid q-rung orthopair fuzzy sets based CoCoSo model for floating offshore wind farm site selection in Norway, CSEE J. Power Energy Syst., 8 (2022), 1261–1280. https://doi.org/10.17775/CSEEJPES.2021.07700 doi: 10.17775/CSEEJPES.2021.07700
    [30] A. Fetanat, M. Tayebi, Industrial filtration technologies selection for contamination control in natural gas processing plants: A sustainability and maintainability based decision support system under q-rung orthopair fuzzy set, Process Saf. Environ. Prot., 170 (2023), 310–327. https://doi.org/10.1016/j.psep.2022.12.014 doi: 10.1016/j.psep.2022.12.014
    [31] G. Soujanya, B. S. Reddy, N-cubic picture fuzzy linear spaces, Indian J. Sci. Technol., 17 (2024), 3228–3243. https://doi.org/ 10.17485/IJST/v17i31.1793 doi: 10.17485/IJST/v17i31.1793
    [32] J. D. Madasi, S. Khan, N. Kausar, D. Pamucar, M. Gulistan, B. Sorowen, N-Cubic q-Rung orthopair fuzzy sets: Analysis of the use of mobile app in the education sector, Comput. Intell. Neurosc., 2022 (2022), 9984314. https://doi.org/10.1155/2022/9984314 doi: 10.1155/2022/9984314
    [33] P. R. Kavyasree, B. S. Reddy, Cubic picture hesitant fuzzy linear spaces and their applications in multi criteria decision making, In: Real Life Applications of Multiple Criteria Decision Making Techniques in Fuzzy Domain, Springer Nature Singapore, 2022,533–557. https://doi.org/10.1007/978-981-19-4929-6_25
    [34] M. N. K. Tanoli, M. Gulistan, F. Amin, Z. Khan, M. M. Al-Shamiri, Complex cubic fuzzy einstein averaging aggregation operators: Application to decision-making problems, Cogn. Comput., 15 (2023), 869–887. https://doi.org/10.1007/s12559-022-10100-9 doi: 10.1007/s12559-022-10100-9
    [35] F. Karazma, M. A. Kologani, R. A. Borzooei, Y. B. Jun, Commentsa to N-cubic sets with an NC-decision making problem, Discrete Math. Algorit. Appl., 14 (2022), 2150122. https://doi.org/10.1142/S1793830921501226 doi: 10.1142/S1793830921501226
    [36] M. Rahim, F. Amin, K. Shah, T. Abdeljawad, S. Ahmad, Some distance measures for pythagorean cubic fuzzy sets: Application selection in optimal treatment for depression and anxiety, MethodsX, 12 (2024), 102678. https://doi.org/10.1016/j.mex.2024.102678 doi: 10.1016/j.mex.2024.102678
    [37] G. Ali, M. Nabeel, A. Farooq, Extended ELECTRE method for multi-criteria group decision-making with spherical cubic fuzzy sets, Knowl. Inf. Syst., 66 (2024), 6269–6306. https://doi.org/10.1007/s10115-024-02132-4 doi: 10.1007/s10115-024-02132-4
    [38] K. Alhazaymeh, Y. Al-Qudah, N. Hassan, A. M. Nasruddin, Cubic vague set and its application in decision making, Entropy, 22 (2020). https://doi.org/10.3390/e22090963 doi: 10.3390/e22090963
    [39] S. Naz, M. R. Saeed, S. A. Butt, Multi-attribute group decision-making based on 2-tuple linguistic cubic q-rung orthopair fuzzy DEMATEL analysis, Granul. Comput., 9 (2024). https://doi.org/10.1007/s41066-023-00433-7 doi: 10.1007/s41066-023-00433-7
    [40] J. Ye, S. Du, R. Yong, Multifuzzy cubic sets and their correlation coefficients for multicriteria group decision-making, Math. Probl. Eng., 2021 (2021), 5520335. https://doi.org/10.1155/2021/5520335 doi: 10.1155/2021/5520335
    [41] W. Z. Wang, Y. Chen, Y. Wang, M. Deveci, S. Moslem, D. Coffman, Unveiling the implementation barriers to the digital transformation in the energy sector using the Fermatean cubic fuzzy method, Appl. Energ., 360 (2024), 122756. https://doi.org/10.1016/j.apenergy.2024.122756 doi: 10.1016/j.apenergy.2024.122756
    [42] M. Aslam, A. Fahmi, F. A. A. Almahdi, N. Yaqoob, Extension of TOPSIS method for group decision-making under triangular linguistic neutrosophic cubic sets, Soft Comput., 25 (2021), 3359–3376. https://doi.org/10.1007/s00500-020-05427-0 doi: 10.1007/s00500-020-05427-0
    [43] A. B. Khoshaim, M. Qiyas, S. Abdullah, M. Naeem, Muneeza, An approach for supplier selection problem based on picture cubic fuzzy aggregation operators, J. Intell. Fuzzy Syst., 40 (2021), 10145–10162. https://doi.org/10.3233/JIFS-200194 doi: 10.3233/JIFS-200194
    [44] K. F. B. Muhaya, K. M. Alsager, Extending neutrosophic set theory: Cubic bipolar neutrosophic soft sets for decision making, AIMS Math., 9 (2024), 27739–27769. https://doi.org/10.3934/math.20241347 doi: 10.3934/math.20241347
    [45] M. Sajid, K. A. Khan, A. U. Rahman, S. A. Bajri, A. Alburaikan, H. A. E. W. Khalifa, A novel algorithmic multi-attribute decision-making framework for solar panel selection using modified aggregations of cubic intuitionistic fuzzy hypersoft set, Heliyon, 10 (2024), e36508. https://doi.org/10.1016/j.heliyon.2024.e36508 doi: 10.1016/j.heliyon.2024.e36508
    [46] M. Saeed, H. I. ul Haq, M. Ali, Cubic soft ideals on B-algebra for solving complex problems: Trend analysis, proofs, improvements, and applications, Neutrosophic Syst. Appl., 20 (2024), 1–9. https://doi.org/10.61356/j.nswa.2024.20347 doi: 10.61356/j.nswa.2024.20347
    [47] S. N. I. Rosli, M. I. E. Z. Zulkifly, Interval neutrosophic cubic Bézier curve approximation model for complex data, Malays. J. Fundam. Appl. Sci., 20 (2024), 336–346. https://doi.org/10.11113/mjfas.v20n2.3240 doi: 10.11113/mjfas.v20n2.3240
    [48] L. Y. Hong, R. Ambrin, M. Ibrar, M. A. Khan, [Retracted] Hamacher weighted aggregation operators based on picture cubic fuzzy sets and their application to group decision-making problems, Secur. Commun. Netw., 2022 (2022), 1651017. https://doi.org/10.1155/2022/1651017 doi: 10.1155/2022/1651017
    [49] J. Khatun, S. Amanathulla, M. Pal, Picture fuzzy cubic graphs and their applications. J. Intell. Fuzzy Syst., 46 (2024), 2981–2998. https://doi.org/10.3233/JIFS-232523 doi: 10.3233/JIFS-232523
    [50] M. Azam, A. M. Jadoon, Pythagorean cubic fuzzy aggregation operators based on sine trigonometric operational laws and their application in decision making problem, 2024. https://doi.org/10.21203/rs.3.rs-4378585/v1
    [51] M. G. Ucar, Integrated entropy-based MCDM methods for investigating the effectiveness of Turkey's energy policies, Energy syst., 2024. https://doi.org/10.1007/s12667-024-00688-2 doi: 10.1007/s12667-024-00688-2
    [52] F. S. Alamri, M. H. Saeed, M. Saeed, A hybrid entropy-based economic evaluation of hydrogen generation techniques using Multi-Criteria Decision Making, Int. J. Hydrogen Energ., 49 (2024), 711–723. https://doi.org/10.1016/j.ijhydene.2023.10.324 doi: 10.1016/j.ijhydene.2023.10.324
    [53] K. V. Lakshmi, K. N. U. Kumara, Fuzzy MCDM techniques for portfolio selection in the post-COVID Indian mutual fund market: A comparative study of FAHP and entropy methods, J. Ambient Intell. Human. Comput., 16 (2025), 97–107. https://doi.org/10.1007/s12652-024-04886-9 doi: 10.1007/s12652-024-04886-9
    [54] H. Garg, D. Rani, Some results on information measures for complex intuitionistic fuzzy sets, Int. J. Intell. Syst., 34 (2019), 2319–2363. https://doi.org/10.1002/int.22127 doi: 10.1002/int.22127
  • This article has been cited by:

    1. Ala Amourah, Abdullah Alsoboh, Daniel Breaz, Sheza M. El-Deeb, A Bi-Starlike Class in a Leaf-like Domain Defined through Subordination via q̧-Calculus, 2024, 12, 2227-7390, 1735, 10.3390/math12111735
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(274) PDF downloads(57) Cited by(0)

Figures and Tables

Figures(4)  /  Tables(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog