Research article

Decision analysis with known and unknown weights in the complex N-cubic fuzzy environment: An application of accident prediction models

  • Received: 01 December 2024 Revised: 11 February 2025 Accepted: 19 February 2025 Published: 06 May 2025
  • MSC : 03E72, 94D05

  • The component of Pakistan's road safety management (RSM) systems that appears to be the least reliable is the evaluation of road safety measures. Road safety initiatives' daily operations, such as allocating specific financial resources and incorporating measures for road safety into the fabric of culture, are only sometimes observed by governments. When this happens, the analysis usually concentrates on issues related to the infrastructure and the enforcement of laws; thorough evaluations of road safety initiatives are incredibly uncommon. Road authorities, practitioners, and architects of road safety depend on prediction tools, often known as accident prediction models (APMs). These instruments are employed to assess safety concerns, pinpoint areas for improvement, and calculate the expected safety consequences of these modifications. The goal of this research is to use the complex N-cubic fuzzy set (CNCFS), an innovative and practical tool for decision making that excels at handling imprecise or ambiguous data in real-world decision-making processes, in the context. This study also proposes a novel entropy approach to multi-attribute group decision-making issues in RSM. We also investigate the assessment of accident forecasting models in RSM to demonstrate the feasibility and efficacy of the suggested strategy. Further, the advantages and superiority of the proposed strategy are explained using the experimental data and comparisons with known and unknown weights obtained by the entropy method. The study's conclusions demonstrate that the suggested approach is more workable and compatible with other current strategies.

    Citation: Sheikh Rashid, Tahir Abbas, Muhammad Gulistan, Muhammad Usman Jamil, Muhammad M. Al-Shamiri. Decision analysis with known and unknown weights in the complex N-cubic fuzzy environment: An application of accident prediction models[J]. AIMS Mathematics, 2025, 10(5): 10359-10386. doi: 10.3934/math.2025472

    Related Papers:

  • The component of Pakistan's road safety management (RSM) systems that appears to be the least reliable is the evaluation of road safety measures. Road safety initiatives' daily operations, such as allocating specific financial resources and incorporating measures for road safety into the fabric of culture, are only sometimes observed by governments. When this happens, the analysis usually concentrates on issues related to the infrastructure and the enforcement of laws; thorough evaluations of road safety initiatives are incredibly uncommon. Road authorities, practitioners, and architects of road safety depend on prediction tools, often known as accident prediction models (APMs). These instruments are employed to assess safety concerns, pinpoint areas for improvement, and calculate the expected safety consequences of these modifications. The goal of this research is to use the complex N-cubic fuzzy set (CNCFS), an innovative and practical tool for decision making that excels at handling imprecise or ambiguous data in real-world decision-making processes, in the context. This study also proposes a novel entropy approach to multi-attribute group decision-making issues in RSM. We also investigate the assessment of accident forecasting models in RSM to demonstrate the feasibility and efficacy of the suggested strategy. Further, the advantages and superiority of the proposed strategy are explained using the experimental data and comparisons with known and unknown weights obtained by the entropy method. The study's conclusions demonstrate that the suggested approach is more workable and compatible with other current strategies.



    加载中


    [1] M. Deveci, D. Pamucar, I. Gokasar, M. Köppen, B. B. Gupta, T. Daim, Evaluation of metaverse traffic safety implementations using fuzzy Einstein based logarithmic methodology of additive weights and TOPSIS method, Technol. Forecast. Soc. Change, 194 (2023), 122–681. https://doi.org/10.1016/j.techfore.2023.122681 doi: 10.1016/j.techfore.2023.122681
    [2] L. Xie, J. X. Zhang, R. Cheng, Comprehensive evaluation of freeway driving risks based on fuzzy logic, Sustainability, 15 (2023), 810. https://doi.org/10.3390/su15010810 doi: 10.3390/su15010810
    [3] M. Cubranic-Dobrodolac, L. Švadlenka, S. Cicevic, A. Trifunovic, M. Dobrodolac, Using the interval type-2 fuzzy inference systems to compare the impact of speed and space perception on the occurrence of road traffic accidents, Mathematics, 8 (2020), 15–48. https://doi.org/10.3390/math8091548 doi: 10.3390/math8091548
    [4] A. Al-Omari, N. Shatnawi, T. Khedaywi, T. Miqdady, Prediction of traffic accidents hot spots using fuzzy logic and GIS, Appl. Geomat., 12 (2020), 149–161. https://doi.org/10.1007/s12518-019-00290-7 doi: 10.1007/s12518-019-00290-7
    [5] A. Zaranezhad, H. A. Mahabadi, M. R. Dehghani, Development of prediction models for repair and maintenance-related accidents at oil refineries using artificial neural network, fuzzy system, genetic algorithm, and ant colony optimization algorithm, Process Saf. Environ. Prot., 131 (2019), 331–348. https://doi.org/10.1016/j.psep.2019.08.031 doi: 10.1016/j.psep.2019.08.031
    [6] J. M. Simic, Ž. Stevic, E. K. Zavadskas, V. Bogdanovic, M. Subotic, A. Mardani, A novel CRITIC-fuzzy FUCOM-DEA-fuzzy MARCOS model for safety evaluation of road sections based on geometric parameters of road, Symmetry, 12 (2020), 2006. https://doi.org/10.3390/sym12122006 doi: 10.3390/sym12122006
    [7] O. Koçar, E. Dizdar, A risk assessment model for traffic crashes problem using fuzzy logic: A case study of Zonguldak, Turkey, Transp. Lett., 14 (2022), 492–502. https://doi.org/10.1080/19427867.2021.1896062 doi: 10.1080/19427867.2021.1896062
    [8] Ž. Stevic, M. Subotic, I. Tanackov, S. Sremac, B. Ristic, S. Simic, Evaluation of two-lane road sections in terms of traffic risk using an integrated MCDM model, Transport, 37 (2022), 318–329. https://doi.org/10.3846/transport.2022.18243 doi: 10.3846/transport.2022.18243
    [9] S. H. Ahammad, M. Sukesh, M. Narender, S. A. Ettyem, K. Al-Majdi, K. Saikumar, A novel approach to avoid road traffic accidents and develop safety rules for traffic using crash prediction model technique, In: Micro-electronics and telecommunication engineering: Proceedings of 6th ICMET, Springer Nature Singapore, Singapore, 2023,367–377. https://doi.org/10.1007/978-981-19-9512-5_34
    [10] G. Gecchele, R. Ceccato, R. Rossi, M. Gastaldi, A flexible approach to select road traffic counting locations: System design and application of a fuzzy Delphi analytic hierarchy process, Transp. Eng., 12 (2023), 100167. https://doi.org/10.1016/j.treng.2023.100167 doi: 10.1016/j.treng.2023.100167
    [11] S. J. Ghoushchi, S. S. Haghshenas, A. M. Ghiaci, G. Guido, A. Vitale, Road safety assessment and risks prioritization using an integrated SWARA and MARCOS approach under spherical fuzzy environment, Neural Comput. Applic., 35 (2023), 4549–4567. https://doi.org/10.1007/s00521-022-07929-4 doi: 10.1007/s00521-022-07929-4
    [12] A. Mohammadi, B. Kiani, H. Mahmoudzadeh, R. Bergquist, Pedestrian road traffic accidents in metropolitan areas: GIS-based prediction modelling of cases in Mashhad, Iran, Sustainability, 15 (2023), 10576. https://doi.org/10.3390/su151310576 doi: 10.3390/su151310576
    [13] M. M. Garnaik, J. P. Giri, A. Panda, Impact of highway design on traffic safety: How geometric elements affect accident risk, Ecocycles, 9 (2023), 83–92. https://doi.org/10.19040/ecocycles.v9i1.263 doi: 10.19040/ecocycles.v9i1.263
    [14] M. Gaber, A. Diab, A. Othman, A. M. Wahaballa, Analysis and modeling of rural roads traffic safety data, Sohag Eng. J., 3 (2023), 57–67.
    [15] I. Benallou, A. Azmani, M. Azmani, Evaluation of the accidents risk caused by truck drivers using a fuzzy Bayesian approach, Int. J. Adv. Comput. Sci. Appl., 14 (2023). https://doi.org/10.14569/IJACSA.2023.0140620 doi: 10.14569/IJACSA.2023.0140620
    [16] X. J. Gou, X. R. Xu, F. M. Deng, W. Zhou, E. Herrera-Viedma, Medical health resources allocation evaluation in public health emergencies by an improved ORESTE method with linguistic preference orderings, Fuzzy Optimi. Decis. Making, 23 (2024), 1–27. https://doi.org/10.1007/s10700-023-09409-3 doi: 10.1007/s10700-023-09409-3
    [17] A. Hussain, K. Ullah, An intelligent decision support system for spherical fuzzy Sugeno-Weber aggregation operators and real-life applications, Spect. Mecha. Eng. Ope. Res., 1 (2024), 177–188. https://doi.org/10.31181/smeor11202415 doi: 10.31181/smeor11202415
    [18] P. Wang, B. Y. Zhu, Y. Yu, Z. Ali, B. Almohsen, Complex intuitionistic fuzzy DOMBI prioritized aggregation operators and their application for resilient green supplier selection, Facta Univ. Ser. Mech. Eng., 21 (2023), 339–357. https://doi.org/10.22190/FUME230805029W doi: 10.22190/FUME230805029W
    [19] F. Y. Xiao, Quantum X-entropy in generalized quantum evidence theory, Inform. Sciences, 643 (2023), 119177. https://doi.org/10.1016/j.ins.2023.119177 doi: 10.1016/j.ins.2023.119177
    [20] F. Y. Xiao, A distance measure for intuitionistic fuzzy sets and its application to pattern classification problems, IEEE T. Syst. Man Cy-S, 51 (2021), 3980–3992. https://doi.org/10.1109/TSMC.2019.2958635 doi: 10.1109/TSMC.2019.2958635
    [21] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [22] K. T. Atanassov, Intuitionistic fuzzy sets, In: International Journal of Advanced Computer Science and Applications, 35 (1999). https://doi.org/10.1007/978-3-7908-1870-3_1
    [23] R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE T. Fuzzy Syst., 22 (2015), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [24] R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2017), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [25] F. Ecer, I. Y. Ogel, R. Krishankumar, E. B. Tirkolaee, The q-rung fuzzy LOPCOW-VIKOR model to assess the role of unmanned aerial vehicles for precision agriculture realization in the Agri-Food 4.0 era, Artif. Intell. Rev., 56 (2023), 13373–13406. https://doi.org/10.1007/s10462-023-10476-6 doi: 10.1007/s10462-023-10476-6
    [26] R. Krishankumar, F. Ecer, A. R. Mishra, K. S. Ravichandran, A. H. Gandomi, S. Kar, A SWOT-based framework for personalized ranking of IoT service providers with generalized fuzzy data for sustainable transport in urban regions, IEEE T. Eng. Manag., 71 (2024), 2937–2950. https://doi.org/10.1109/TEM.2022.3204695 doi: 10.1109/TEM.2022.3204695
    [27] M. Deveci, D. Pamucar, I. Gokasar, M. Köppen, B. B. Gupta, Personal mobility in metaverse with autonomous vehicles using q-rung orthopair fuzzy sets based OPA-RAFSI model, IEEE T. Intell. Transp. Syst., 24 (2023), 15642–15651. https://doi.org/10.1109/TITS.2022.3186294 doi: 10.1109/TITS.2022.3186294
    [28] Y. D. Uslu, H. Dinçer, S. Yüksel, E. Gedikli, E. Yilmaz, An integrated decision-making approach based on q-rung orthopair fuzzy sets in service industry, Int. J. Comput. Intell. Syst., 15 (2022), 14. https://doi.org/10.1007/s44196-022-00069-6 doi: 10.1007/s44196-022-00069-6
    [29] M. Deveci, D. Pamucar, U. Cali, E. Kantar, K. Kölle, J. O. Tande, Hybrid q-rung orthopair fuzzy sets based CoCoSo model for floating offshore wind farm site selection in Norway, CSEE J. Power Energy Syst., 8 (2022), 1261–1280. https://doi.org/10.17775/CSEEJPES.2021.07700 doi: 10.17775/CSEEJPES.2021.07700
    [30] A. Fetanat, M. Tayebi, Industrial filtration technologies selection for contamination control in natural gas processing plants: A sustainability and maintainability based decision support system under q-rung orthopair fuzzy set, Process Saf. Environ. Prot., 170 (2023), 310–327. https://doi.org/10.1016/j.psep.2022.12.014 doi: 10.1016/j.psep.2022.12.014
    [31] G. Soujanya, B. S. Reddy, N-cubic picture fuzzy linear spaces, Indian J. Sci. Technol., 17 (2024), 3228–3243. https://doi.org/ 10.17485/IJST/v17i31.1793 doi: 10.17485/IJST/v17i31.1793
    [32] J. D. Madasi, S. Khan, N. Kausar, D. Pamucar, M. Gulistan, B. Sorowen, N-Cubic q-Rung orthopair fuzzy sets: Analysis of the use of mobile app in the education sector, Comput. Intell. Neurosc., 2022 (2022), 9984314. https://doi.org/10.1155/2022/9984314 doi: 10.1155/2022/9984314
    [33] P. R. Kavyasree, B. S. Reddy, Cubic picture hesitant fuzzy linear spaces and their applications in multi criteria decision making, In: Real Life Applications of Multiple Criteria Decision Making Techniques in Fuzzy Domain, Springer Nature Singapore, 2022,533–557. https://doi.org/10.1007/978-981-19-4929-6_25
    [34] M. N. K. Tanoli, M. Gulistan, F. Amin, Z. Khan, M. M. Al-Shamiri, Complex cubic fuzzy einstein averaging aggregation operators: Application to decision-making problems, Cogn. Comput., 15 (2023), 869–887. https://doi.org/10.1007/s12559-022-10100-9 doi: 10.1007/s12559-022-10100-9
    [35] F. Karazma, M. A. Kologani, R. A. Borzooei, Y. B. Jun, Commentsa to N-cubic sets with an NC-decision making problem, Discrete Math. Algorit. Appl., 14 (2022), 2150122. https://doi.org/10.1142/S1793830921501226 doi: 10.1142/S1793830921501226
    [36] M. Rahim, F. Amin, K. Shah, T. Abdeljawad, S. Ahmad, Some distance measures for pythagorean cubic fuzzy sets: Application selection in optimal treatment for depression and anxiety, MethodsX, 12 (2024), 102678. https://doi.org/10.1016/j.mex.2024.102678 doi: 10.1016/j.mex.2024.102678
    [37] G. Ali, M. Nabeel, A. Farooq, Extended ELECTRE method for multi-criteria group decision-making with spherical cubic fuzzy sets, Knowl. Inf. Syst., 66 (2024), 6269–6306. https://doi.org/10.1007/s10115-024-02132-4 doi: 10.1007/s10115-024-02132-4
    [38] K. Alhazaymeh, Y. Al-Qudah, N. Hassan, A. M. Nasruddin, Cubic vague set and its application in decision making, Entropy, 22 (2020). https://doi.org/10.3390/e22090963 doi: 10.3390/e22090963
    [39] S. Naz, M. R. Saeed, S. A. Butt, Multi-attribute group decision-making based on 2-tuple linguistic cubic q-rung orthopair fuzzy DEMATEL analysis, Granul. Comput., 9 (2024). https://doi.org/10.1007/s41066-023-00433-7 doi: 10.1007/s41066-023-00433-7
    [40] J. Ye, S. Du, R. Yong, Multifuzzy cubic sets and their correlation coefficients for multicriteria group decision-making, Math. Probl. Eng., 2021 (2021), 5520335. https://doi.org/10.1155/2021/5520335 doi: 10.1155/2021/5520335
    [41] W. Z. Wang, Y. Chen, Y. Wang, M. Deveci, S. Moslem, D. Coffman, Unveiling the implementation barriers to the digital transformation in the energy sector using the Fermatean cubic fuzzy method, Appl. Energ., 360 (2024), 122756. https://doi.org/10.1016/j.apenergy.2024.122756 doi: 10.1016/j.apenergy.2024.122756
    [42] M. Aslam, A. Fahmi, F. A. A. Almahdi, N. Yaqoob, Extension of TOPSIS method for group decision-making under triangular linguistic neutrosophic cubic sets, Soft Comput., 25 (2021), 3359–3376. https://doi.org/10.1007/s00500-020-05427-0 doi: 10.1007/s00500-020-05427-0
    [43] A. B. Khoshaim, M. Qiyas, S. Abdullah, M. Naeem, Muneeza, An approach for supplier selection problem based on picture cubic fuzzy aggregation operators, J. Intell. Fuzzy Syst., 40 (2021), 10145–10162. https://doi.org/10.3233/JIFS-200194 doi: 10.3233/JIFS-200194
    [44] K. F. B. Muhaya, K. M. Alsager, Extending neutrosophic set theory: Cubic bipolar neutrosophic soft sets for decision making, AIMS Math., 9 (2024), 27739–27769. https://doi.org/10.3934/math.20241347 doi: 10.3934/math.20241347
    [45] M. Sajid, K. A. Khan, A. U. Rahman, S. A. Bajri, A. Alburaikan, H. A. E. W. Khalifa, A novel algorithmic multi-attribute decision-making framework for solar panel selection using modified aggregations of cubic intuitionistic fuzzy hypersoft set, Heliyon, 10 (2024), e36508. https://doi.org/10.1016/j.heliyon.2024.e36508 doi: 10.1016/j.heliyon.2024.e36508
    [46] M. Saeed, H. I. ul Haq, M. Ali, Cubic soft ideals on B-algebra for solving complex problems: Trend analysis, proofs, improvements, and applications, Neutrosophic Syst. Appl., 20 (2024), 1–9. https://doi.org/10.61356/j.nswa.2024.20347 doi: 10.61356/j.nswa.2024.20347
    [47] S. N. I. Rosli, M. I. E. Z. Zulkifly, Interval neutrosophic cubic Bézier curve approximation model for complex data, Malays. J. Fundam. Appl. Sci., 20 (2024), 336–346. https://doi.org/10.11113/mjfas.v20n2.3240 doi: 10.11113/mjfas.v20n2.3240
    [48] L. Y. Hong, R. Ambrin, M. Ibrar, M. A. Khan, [Retracted] Hamacher weighted aggregation operators based on picture cubic fuzzy sets and their application to group decision-making problems, Secur. Commun. Netw., 2022 (2022), 1651017. https://doi.org/10.1155/2022/1651017 doi: 10.1155/2022/1651017
    [49] J. Khatun, S. Amanathulla, M. Pal, Picture fuzzy cubic graphs and their applications. J. Intell. Fuzzy Syst., 46 (2024), 2981–2998. https://doi.org/10.3233/JIFS-232523 doi: 10.3233/JIFS-232523
    [50] M. Azam, A. M. Jadoon, Pythagorean cubic fuzzy aggregation operators based on sine trigonometric operational laws and their application in decision making problem, 2024. https://doi.org/10.21203/rs.3.rs-4378585/v1
    [51] M. G. Ucar, Integrated entropy-based MCDM methods for investigating the effectiveness of Turkey's energy policies, Energy syst., 2024. https://doi.org/10.1007/s12667-024-00688-2 doi: 10.1007/s12667-024-00688-2
    [52] F. S. Alamri, M. H. Saeed, M. Saeed, A hybrid entropy-based economic evaluation of hydrogen generation techniques using Multi-Criteria Decision Making, Int. J. Hydrogen Energ., 49 (2024), 711–723. https://doi.org/10.1016/j.ijhydene.2023.10.324 doi: 10.1016/j.ijhydene.2023.10.324
    [53] K. V. Lakshmi, K. N. U. Kumara, Fuzzy MCDM techniques for portfolio selection in the post-COVID Indian mutual fund market: A comparative study of FAHP and entropy methods, J. Ambient Intell. Human. Comput., 16 (2025), 97–107. https://doi.org/10.1007/s12652-024-04886-9 doi: 10.1007/s12652-024-04886-9
    [54] H. Garg, D. Rani, Some results on information measures for complex intuitionistic fuzzy sets, Int. J. Intell. Syst., 34 (2019), 2319–2363. https://doi.org/10.1002/int.22127 doi: 10.1002/int.22127
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1068) PDF downloads(74) Cited by(1)

Article outline

Figures and Tables

Figures(4)  /  Tables(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog